1
|
Priya A, Mol N, Singh AK, Aditya AK, Ray AK. "Unveiling the impacts of climatic cold events on the cardiovascular health in animal models". THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179028. [PMID: 40073773 DOI: 10.1016/j.scitotenv.2025.179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Climate change is increasingly driving extreme weather events, leading to drastic temperature fluctuations worldwide. While overall temperatures rise, many regions are simultaneously experiencing severe cold spells that threaten the health of human populations, especially to vulnerable populations including the elderly and those with pre-existing conditions. Exposure to cold stress triggers significant physiological and biochemical disruptions. As cardiovascular diseases (CVDs) rank among the leading causes of global morbidity and mortality, the exacerbation of these conditions by cold exposure underscores critical public health challenges. The complex pathophysiological processes in cold-induced CVDs require careful analysis at an organ-system level, making animal models an ideal tool for replicating human physiological and molecular responses in a controlled environment. However, a detailed mechanism linking cold exposure and cardiovascular dysfunction remains incompletely understood, particularly in the context of animal models. Therefore, this comprehensive review aims to address and analyze from traditional rodent models to less conventional ruminants, broilers, canines, and primate animal models to understand cold stress-induced CVDs, with an extensive account of the potential molecular mechanisms and pathways such as oxidative stress, inflammation, vasomotor dysfunction, and apoptosis, along with emerging roles of cold shock proteins (CSPs), etc. We also delve into various potential therapeutic approaches and preventive measures in cold stress conditions. In conclusion, this review is the first to comprehensively address the underexplored cardiovascular complications arising from cold stress and their underlying mechanisms, particularly using animal models. Furthermore, it provides a foundation for advancing the development of more effective and targeted therapies through translational research.
Collapse
Affiliation(s)
- Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Nidhi Mol
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Centre, Mathura, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Koike S, Kimura H, Ogasawara Y. Polysulfide and persulfide-mediated activation of the PERK-eIF2α-ATF4 pathway increases Sestrin2 expression and reduces methylglyoxal toxicity. Redox Biol 2025; 79:103450. [PMID: 39667306 PMCID: PMC11697784 DOI: 10.1016/j.redox.2024.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Unfolded protein response (UPR) is activated in cells under endoplasmic reticulum (ER) stress. One sensor protein involved in this response is PERK, which is activated through its redox-dependent oligomerization. Prolonged UPR activation is associated with the development and progression of various diseases, making it essential to understanding the redox regulation of PERK. Sulfane sulfur, such as polysulfides and persulfides, can modify the cysteine residues and regulate the function of various proteins. However, the regulatory mechanism and physiological effects of sulfane sulfur on the PERK-eIF2α-ATF4 pathway remain poorly understood. This study focuses on the persulfidation of PERK to elucidate the effects of polysulfides on the PERK-eIF2α-ATF4 pathway and investigate its cytoprotective mechanism. Here, we demonstrated that polysulfide treatment promoted the oligomerization of PERK and PTP1B in neuronal cells using western blotting under nonreducing conditions. We also observed that l-cysteine, a biological source of sulfane sulfur, promoted the oligomerization of PERK and the knockdown of CBS and 3-MST, two sulfane sulfur-producing enzymes, and reduced PERK oligomerization induced by l-cysteine treatment. Furthermore, the band shift assay and LC-MS/MS studies revealed that polysulfides and persulfides induce PTP1B and PERK persulfidation. Additionally, polysulfides promoted eIF2α phosphorylation and ATF4 accumulation in the nucleus, suggesting that polysulfides activate the PERK-eIF2α-ATF4 pathway in neuronal cells. Moreover, polysulfides protected neuronal cells from methylglyoxal-induced toxicity, and this protective effect was reduced when the expression of Sestrin2, regulated by ATF4 activity, was suppressed. This study identified a novel mechanism for the activation of the PERK-eIF2α-ATF4 pathway through persulfidation by polysulfides and persulfides. Interestingly, activation of this pathway overcame the toxicity of methylglyoxal in dependence on Sestrin2 expression. These findings deepen our understanding of neuronal diseases involving ER stress and UPR disturbance and may inspire new therapeutic strategies.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Dori, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
3
|
Tain YL, Hsu CN, Hou CY, Chen CK. Antihypertensive Effects of a Sodium Thiosulfate-Loaded Nanoparticle in a Juvenile Chronic Kidney Disease Rat Model. Antioxidants (Basel) 2024; 13:1574. [PMID: 39765901 PMCID: PMC11673196 DOI: 10.3390/antiox13121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Sodium thiosulfate (STS), a precursor of hydrogen sulfide (H2S), has demonstrated antihypertensive properties. Previous studies have suggested that H2S-based interventions can prevent hypertension in pediatric chronic kidney disease (CKD). However, the clinical application of STS is limited by its rapid release and intravenous administration. To address this, we developed a poly-lactic acid (PLA)-based nanoparticle system for sustained STS delivery and investigated whether weekly treatment with STS-loaded nanoparticles (NPs) could protect against hypertension in a juvenile CKD rat model. Male Sprague Dawley rats, aged three weeks, were fed a diet containing 0.5% adenine for three weeks to induce a model of pediatric CKD. STS-loaded NPs (25 mg/kg) were administered intravenously during weeks 6, 7, and 8, and at week 9, all rats were sacrificed. Treatment with STS-loaded NPs reduced systolic and diastolic blood pressure by 10 mm Hg and 8 mm Hg, respectively, in juvenile CKD rats. The protective effect of STS-loaded NPs was linked to increased renal expression of H2S-producing enzymes, including cystathionine γ-lyase (CSE) and D-amino acid oxidase (DAO). Additionally, STS-loaded NP therapy restored nitric oxide (NO) signaling, increasing L-arginine levels, which were disrupted in CKD. Furthermore, the beneficial effects of STS-loaded NPs were associated with inhibition of the renin-angiotensin system (RAS) and the enhancement of the NO signaling pathway. Our findings suggest that STS-loaded NP treatment provides sustained STS delivery and effectively reduces hypertension in a juvenile CKD rat model, bringing us closer to the clinical translation of STS-based therapy for pediatric CKD-induced hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
4
|
Fang F, Guan YN, Zhong MJ, Wen JY, Chen ZW. H 2S protects rat cerebral ischemia-reperfusion injury by inhibiting expression and activation of hippocampal ROCK 2 at the Thr436 and Ser575 sites. Eur J Pharmacol 2024; 985:177079. [PMID: 39486769 DOI: 10.1016/j.ejphar.2024.177079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND H2S is an endogenous gas signal molecule, which protects cerebral ischemia/reperfusion (I/R) injury by phosphorylating rho-associated coiled coil-containing protein kinase 2 (ROCK2) at Tyr722, and inhibiting ROCK2 protein expression and activities. We previously reported that H2S protected rat neurons from hypoxia/reoxygenation injury in vitro through inhibiting phosphorylation of ROCK2 at Thr436 and Ser575, but it is unclear whether these two sites are involved in protection of H2S against cerebral I/R injury. METHOD Rats transfected with wild-type and mutant eukaryotic plasmids of ROCK2 in hippocampus were used to establish I/R model by ligating bilateral common carotid artery. Rat behavioral deficit was detected by water maze assay, and ROCK2, lactate dehydrogenase (LDH), nerve-specific enolase (NSE) and reactive oxygen species (ROS) were determined by ELISA. ROCK2 expressions was examined by western-blot assay, and bcl-2 and Bax mRNAs were examined by RT-qPCR. RESULTS NaHS (4.8 mg/kg) significantly inhibited the I/R-increased serum LDH, NSE and ROS in the ROCK2wild-pEGFP-N1-transfected rats, but had no obvious effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats; inhibitions of NaHS on the I/R-increased escape latency and the I/R-decreased percentage of target quadrant distance to total distance were markedly attenuated or abolished in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats compared with those in the ROCK2wild-pEGFP-N1-transfected rats; NaHS obviously inhibited the I/R-increased hippocampal ROCK2 and GFP-ROCK2 proteins, Bax mRNA, and ROCK2 activity, as well as the I/R-decreased hippocampal bcl-2 mRNA in the hippocampus of the ROCK2wild-pEGFP-N1-transfected rats, but had no significant effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats. CONCLUSION H2S protects cerebral I/R injury in rats by inhibiting expression and activation of hippocampal ROCK2 via the Thr436 and Ser575 sites.
Collapse
Affiliation(s)
- Fang Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China; Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yi-Ning Guan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Mei-Jing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Ji-Yue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| | - Zhi-Wu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| |
Collapse
|
5
|
Song C, Chen Q, Xu J, He K, Guo Q, Teng X, Xue H, Xiao L, Tian D, Jin S, An C, Wu Y. H 2S alleviated sepsis-induced acute kidney injury by inhibiting PERK/Bax-Bcl2 pathway. Nitric Oxide 2024; 152:11-18. [PMID: 39271041 DOI: 10.1016/j.niox.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
To investigate the protective mechanisms of hydrogen sulfide (H2S) in sepsis-induced acute kidney injury (SAKI), we conducted an in vivo study using a SAKI mouse model induced by intraperitoneal lipopolysaccharide (LPS) injection. Following 6 h of LPS injection, levels of tumor necrosis factor-alpha (TNF-α) and blood urea nitrogen (Bun) were significantly elevated in mouse plasma. In the kidneys of SAKI mice, expression of H2S-generating enzymes cysteinyl-tRNA synthetase (CARS), cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) was markedly downregulated, while glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), phosphorylated protein kinase R-like endoplasmic reticulum kinase/protein kinase R-like endoplasmic reticulum kinase (p-PERK/PERK), and B-cell lymphoma-2 recombinant protein X/B-cell lymphoma-2 (Bax/Bcl2) expression was significantly upregulated. H2S improved renal function and attenuated renal histopathological changes in SAKI mice, thereby alleviating LPS-induced endoplasmic reticulum stress (ERS). Additionally, it inhibited the expression of p-PERK/PERK and Bax/Bcl2. After inhibiting CSE activity with dl-propargylglycine (PPG i. p.), the renal tissue pathology in LPS-induced AKI mice was further exacerbated, leading to enhanced activation of the PERK/Bax-Bcl2 pathway. Our findings suggest that endogenous H2S influences the pathogenesis of SAKI, while exogenous H2S protects against LPS-induced AKI by inhibiting the PERK/Bax-Bcl2 pathway involved in ERS.
Collapse
Affiliation(s)
- Chengqing Song
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Qian Chen
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Jiao Xu
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Kaichuan He
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Metabolic Diseases, Clinical Medicine Research Center, Hebei General Hospital, 050051, Shijiazhuang, Hebei, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Cuixia An
- Department of Psychiatry, The First Hospital of Hebei Medical University, 050031, Shijiazhuang, Hebei, China.
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, 050017, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Li H, Wang S, An S, Gao B, Wu D, Li Y. Hydrogen sulphide reduces renal ischemia-reperfusion injury by enhancing autophagy and reducing oxidative stress. Nephrology (Carlton) 2024; 29:645-654. [PMID: 39075751 DOI: 10.1111/nep.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
AIM Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury. Hydrogen sulphide (H2S) exerts a protective effect in renal IRI. The present study was carried out to investigate the effects of exogenous H2S on renal IRI by regulating autophagy in mice. METHODS Mice were randomly assigned to control, IRI and NaHS (an H2S donor, 28, 56 and 100 μmol/kg) groups. Renal IRI was induced by clamping the bilateral renal pedicles with non-traumatic arterial clamp for 45 min and then reperfused for 24 h. Mice were administered intraperitoneally with NaHS 20 min prior to renal ischemia. Sham group mice underwent the same procedures without clamping. Serum and kidney tissues were harvested 24 h after reperfusion for functional, histological, oxidative stress, and autophagic determination. RESULTS Compared with the control group, the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), the protein levels of LC3II/I, Beclin-1 and P62, as well as the number of autophagosomes were significantly increased, but the activity of superoxide dismutase (SOD) was decreased after renal IRI. NaHS pre-treatment dramatically attenuated renal IRI-induced renal dysfunction, histological changes, MDA concentration and p62 expression in a dose-dependent manner. However, NaHS increased the SOD activity and the protein levels of LC3II/I and Beclin-1. CONCLUSION These results indicate that exogenous H2S protects the kidney from IRI through enhancement of autophagy and reduction of oxidative stress. Novel H2S donors could be developed in the treatment of renal IRI.
Collapse
Affiliation(s)
- Hui Li
- Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, Henan, China
| | - Shuaiwei Wang
- International Laboratory for Sepsis Research, Huaihe Hospital, Henan University, Kaifeng, Henan, China
| | - Shuangshuang An
- Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, Henan, China
| | - Biao Gao
- Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Dongdong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
7
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
8
|
Salehiyeh S, Faiz AF, Manzourolhojeh M, Bagheri AM, Lorian K. The functions of hydrogen sulfide on the urogenital system of both males and females: from inception to the present. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6391-6415. [PMID: 38689070 DOI: 10.1007/s00210-024-03086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Hydrogen sulfide (H2S) is known as a chemical gas in nature with both enzymatic and non-enzymatic biosynthesis in different human organs. A couple of studies have demonstrated the function of H2S in regulating the homeostasis of the human body. Additionally, they have shown its synthesis, measurement, chemistry, protective effects, and interaction in various aspects of scientific evidence. Furthermore, many researches have demonstrated the beneficial impacts of H2S on genital organs and systems. According to various studies, it is recognized that H2S-producing enzymes and the endogenous production of H2S are expressed in male and female reproductive systems in different mammalian species. The main goal of this comprehensive review is to assess the potential therapeutic impacts of this gasotransmitter in the male and female urogenital system and find underlying mechanisms of this agent. This narrative review investigated the articles that were published from the 1970s to 2022. The review's primary focus is the impacts of H2S on the male and female urogenital system. Medline, CINAHL, PubMed, and Google scholar databases were searched. Keywords used in this review were "Hydrogen sulfide," "H2S," "urogenital system," and "urogenital tract". Numerous studies have demonstrated the therapeutic and protective effects of sodium hydrosulfide (Na-HS) as an H2S donor on male and female infertility disorders. Furthermore, it has been observed that H2S plays a significant role in improving different diseases such as ameliorating sperm parameters. The specific localization of H2S enzymes in the urogenital system provides an excellent opportunity to comprehend its function and role in various disorders related to this system. It is noteworthy that H2S has been demonstrated to be produced in endocrine organs and exhibit diverse activities. Moreover, it is important to recognize that alterations in H2S biosynthesis are closely linked to endocrine disorders. Therefore, hormones can be pivotal in regulating H2S production, and H2S synthesis pathways may aid in establishing novel therapeutic strategies. H2S possesses pharmacological effects on essential disorders, such as anti-inflammation, anti-apoptosis, and anti-oxidant activities, which render it a valuable therapeutic agent for human urogenital disease. Furthermore, this agent shows promise in ameliorating the detrimental effects of various male and female diseases. Despite the limited clinical research, studies have demonstrated that applying H2S as an anti-oxidant source could ameliorate adverse effects of different conditions in the urogenital system. More clinical studies are required to confirm the role of this component in clinical settings.
Collapse
Affiliation(s)
- Sajad Salehiyeh
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Faisal Faiz
- Department of Paraclinic, School of Medicine, Herat University, Herat, Afghanistan
| | - Mohammad Manzourolhojeh
- Department of Medical Laboratory Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Amir Mohammad Bagheri
- Department of Medical Genetics, Shahid Sadoughi university of Medical Sciences, Yazd, Iran
| | - Keivan Lorian
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
9
|
Liang XY, Wang Y, Zhu YW, Zhang YX, Yuan H, Liu YF, Jin YQ, Gao W, Ren ZG, Ji XY, Wu DD. Role of hydrogen sulfide in dermatological diseases. Nitric Oxide 2024; 150:18-26. [PMID: 38971520 DOI: 10.1016/j.niox.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.
Collapse
Affiliation(s)
- Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Guang Ren
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
10
|
McDonough J, Singhal NK, Getsy PM, Knies K, Knauss ZT, Mueller D, Bates JN, Damron DS, Lewis SJ. The epigenetic signatures of opioid addiction and physical dependence are prevented by D-cysteine ethyl ester and betaine. Front Pharmacol 2024; 15:1416701. [PMID: 39281282 PMCID: PMC11392886 DOI: 10.3389/fphar.2024.1416701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
We have reported that D,L-thiol esters, including D-cysteine ethyl ester (D-CYSee), are effective at overcoming opioid-induced respiratory depression (OIRD) in rats. Our on-going studies reveal that co-injections of D-CYSee with multi-day morphine injections markedly diminish spontaneous withdrawal that usually occurs after cessation of multiple injections of morphine in rats. Chronically administered opioids are known (1) to alter cellular redox status, thus inducing an oxidative state, and (2) for an overall decrease in DNA methylation, therefore resulting in the transcriptional activation of previously silenced long interspersed elements (LINE-1) retrotransposon genes. The first objective of the present study was to determine whether D-CYSee and the one carbon metabolism with the methyl donor, betaine, would maintain redox control and normal DNA methylation levels in human neuroblastoma cell cultures (SH-SY5Y) under overnight challenge with morphine (100 nM). The second objective was to determine whether D-CYSee and/or betaine could diminish the degree of physical dependence to morphine in male Sprague Dawley rats. Our data showed that overnight treatment with morphine reduced cellular GSH levels, induced mitochondrial damage, decreased global DNA methylation, and increased LINE-1 mRNA expression. These adverse effects by morphine, which diminished the reducing capacity and compromised the maintenance of the membrane potential of SH-SY5Y cells, was prevented by concurrent application of D-CYSee (100 µM) or betaine (300 µM). Furthermore, our data demonstrated that co-injections of D-CYSee (250 μmol/kg, IV) and to a lesser extent, betaine (250 μmol/kg, IV), markedly diminished the development of physical dependence induced by multi-day morphine injections (escalating daily doses of 10-30 mg/kg, IV), as assessed by the lesser number of withdrawal phenomena elicited by the injection of the opioid receptor antagonist, naloxone (1.5 mg/kg, IV). These findings provide evidence that D-CYSee and betaine prevent the appearance of redox alterations and epigenetic signatures commonly seen in neural cells involved in opioid physical dependence/addiction, and lessen development of physical dependence to morphine.
Collapse
Affiliation(s)
- Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Naveen K Singhal
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Knies
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Zackery T Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Derek S Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J Lewis
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
11
|
Zhang J, Aroca A, Hervás M, Navarro JA, Moreno I, Xie Y, Romero LC, Gotor C. Analysis of sulfide signaling in rice highlights specific drought responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5130-5145. [PMID: 38808567 PMCID: PMC11349868 DOI: 10.1093/jxb/erae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 05/30/2024]
Abstract
Hydrogen sulfide regulates essential plant processes, including adaptation responses to stress situations, and the best characterized mechanism of action of sulfide consists of the post-translational modification of persulfidation. In this study, we reveal the first persulfidation proteome described in rice including 3443 different persulfidated proteins that participate in a broad range of biological processes and metabolic pathways. In addition, comparative proteomics revealed specific proteins involved in sulfide signaling during drought responses. Several proteins are involved in the maintenance of cellular redox homeostasis, the tricarboxylic acid cycle and energy-related pathways, and ion transmembrane transport and cellular water homeostasis, with the aquaporin family showing the highest differential levels of persulfidation. We revealed that water transport activity is regulated by sulfide which correlates with an increasing level of persulfidation of aquaporins. Our findings emphasize the impact of persulfidation on total ATP levels, fatty acid composition, levels of reactive oxygen species, antioxidant enzymatic activities, and relative water content. Interestingly, the role of persulfidation in aquaporin transport activity as an adaptation response in rice differs from current knowledge of Arabidopsis, which highlights the distinct role of sulfide in improving rice tolerance to drought.
Collapse
Affiliation(s)
- Jing Zhang
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
12
|
Sun X, Wu S, Mao C, Qu Y, Xu Z, Xie Y, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules 2024; 14:740. [PMID: 39062455 PMCID: PMC11274451 DOI: 10.3390/biom14070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury, a prevalent pathological condition in medical practice, presents significant treatment challenges. Hydrogen sulfide (H2S), acknowledged as the third gas signaling molecule, profoundly impacts various physiological and pathophysiological processes. Extensive research has demonstrated that H2S can mitigate I/R damage across multiple organs and tissues. This review investigates the protective effects of H2S in preventing I/R damage in the heart, brain, liver, kidney, intestines, lungs, stomach, spinal cord, testes, eyes, and other tissues. H2S provides protection against I/R damage by alleviating inflammation and endoplasmic reticulum stress; inhibiting apoptosis, oxidative stress, and mitochondrial autophagy and dysfunction; and regulating microRNAs. Significant advancements in understanding the mechanisms by which H2S reduces I/R damage have led to the development and synthesis of H2S-releasing agents such as diallyl trisulfide-loaded mesoporous silica nanoparticles (DATS-MSN), AP39, zofenopril, and ATB-344, offering a new therapeutic avenue for I/R injury.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Zihang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| |
Collapse
|
13
|
Dilxat T, Shi Q, Chen X, Liu X. Garlic oil supplementation blocks inflammatory pyroptosis-related acute lung injury by suppressing the NF-κB/NLRP3 signaling pathway via H 2S generation. Aging (Albany NY) 2024; 16:6521-6536. [PMID: 38613798 PMCID: PMC11042940 DOI: 10.18632/aging.205721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/09/2024] [Indexed: 04/15/2024]
Abstract
Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.
Collapse
Affiliation(s)
- Tursunay Dilxat
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Qiang Shi
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xiaofan Chen
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xuxin Liu
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| |
Collapse
|
14
|
Bates JN, Getsy PM, Coffee GA, Baby SM, MacFarlane PM, Hsieh YH, Knauss ZT, Bubier JA, Mueller D, Lewis SJ. Lipophilic analogues of D-cysteine prevent and reverse physical dependence to fentanyl in male rats. Front Pharmacol 2024; 14:1336440. [PMID: 38645835 PMCID: PMC11026688 DOI: 10.3389/fphar.2023.1336440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 04/23/2024] Open
Abstract
We examined whether co-injections of the cell-permeant D-cysteine analogues, D-cysteine ethyl ester (D-CYSee) and D-cysteine ethyl amide (D-CYSea), prevent acquisition of physical dependence induced by twice-daily injections of fentanyl, and reverse acquired dependence to these injections in freely-moving male Sprague Dawley rats. Injection of the opioid receptor antagonist, naloxone HCl (NLX, 1.5 mg/kg, IV), elicited a series of withdrawal phenomena that included cardiorespiratory and behavioral responses, and falls in body weight and body temperature, in rats that received 5 or 10 injections of fentanyl (125 μg/kg, IV), and the same number of vehicle co-injections. Regarding the development of physical dependence, the NLX-precipitated withdrawal phenomena were markedly reduced in fentanyl-injected rats that had received co-injections of D-CYSee (250 μmol/kg, IV) or D-CYSea (100 μmol/kg, IV), but not D-cysteine (250 μmol/kg, IV). Regarding reversal of established dependence to fentanyl, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 μg/kg, IV) was markedly reduced in rats that received co-injections of D-CYSee (250 μmol/kg, IV) or D-CYSea (100 μmol/kg, IV), but not D-cysteine (250 μmol/kg, IV), starting with injection 6 of fentanyl. This study provides evidence that co-injections of D-CYSee and D-CYSea prevent the acquisition of physical dependence, and reverse acquired dependence to fentanyl in male rats. The lack of effect of D-cysteine suggests that the enhanced cell-penetrability of D-CYSee and D-CYSea into cells, particularly within the brain, is key to their ability to interact with intracellular signaling events involved in acquisition to physical dependence to fentanyl.
Collapse
Affiliation(s)
- James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Section of Biology, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | | | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Song Y, Wu S, Zhang R, Zhong Q, Zhang X, Sun X. Therapeutic potential of hydrogen sulfide in osteoarthritis development. Front Pharmacol 2024; 15:1336693. [PMID: 38370481 PMCID: PMC10869529 DOI: 10.3389/fphar.2024.1336693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
The pathological mechanisms and treatments of osteoarthritis (OA) are critical topics in medical research. This paper reviews the regulatory mechanisms of hydrogen sulfide (H2S) in OA and the therapeutic potential of H2S donors. The review highlights the importance of changes in the endogenous H2S pathway in OA development and systematically elaborates on the role of H2S as a third gaseous transmitter that regulates inflammation, oxidative stress, and pain associated with OA. It also explains how H2S can lessen bone and joint inflammation by inhibiting leukocyte adhesion and migration, reducing pro-inflammatory mediators, and impeding the activation of key inflammatory pathways such as nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). Additionally, H2S is shown to mitigate mitochondrial dysfunction and endoplasmic reticulum stress, and to modulate Nrf2, NF-κB, PI3K/Akt, and MAPK pathways, thereby decreasing oxidative stress-induced chondrocyte apoptosis. Moreover, H2S alleviates bone and joint pain through the activation of Kv7, K-ATP, and Nrf2/HO-1-NQO1 pathways. Recent developments have produced a variety of H2S donors, including sustained-release H2S donors, natural H2S donors, and synthetic H2S donors. Understanding the role of H2S in OA can lead to the discovery of new therapeutic targets, while innovative H2S donors offer promising new treatments for patients with OA.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Baby SM, May WJ, Young AP, Wilson CG, Getsy PM, Coffee GA, Lewis THJ, Hsieh YH, Bates JN, Lewis SJ. L-cysteine ethylester reverses the adverse effects of morphine on breathing and arterial blood-gas chemistry while minimally affecting antinociception in unanesthetized rats. Biomed Pharmacother 2024; 171:116081. [PMID: 38219385 PMCID: PMC10922989 DOI: 10.1016/j.biopha.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
L-cysteine ethylester (L-CYSee) is a membrane-permeable analogue of L-cysteine with a variety of pharmacological effects. The purpose of this study was to determine the effects of L-CYSee on morphine-induced changes in ventilation, arterial-blood gas (ABG) chemistry, Alveolar-arterial (A-a) gradient (i.e., a measure of the index of alveolar gas-exchange), antinociception and sedation in male Sprague Dawley rats. An injection of morphine (10 mg/kg, IV) produced adverse effects on breathing, including sustained decreases in minute ventilation. L-CYSee (500 μmol/kg, IV) given 15 min later immediately reversed the actions of morphine. Another injection of L-CYSee (500 μmol/kg, IV) after 15 min elicited more pronounced excitatory ventilatory responses. L-CYSee (250 or 500 μmol/kg, IV) elicited a rapid and prolonged reversal of the actions of morphine (10 mg/kg, IV) on ABG chemistry (pH, pCO2, pO2, sO2) and A-a gradient. L-serine ethylester (an oxygen atom replaces the sulfur; 500 μmol/kg, IV), was ineffective in all studies. L-CYSee (500 μmol/kg, IV) did not alter morphine (10 mg/kg, IV)-induced sedation, but slightly reduced the overall duration of morphine (5 or 10 mg/kg, IV)-induced analgesia. In summary, L-CYSee rapidly overcame the effects of morphine on breathing and alveolar gas-exchange, while not affecting morphine sedation or early-stage analgesia. The mechanisms by which L-CYSee modulates morphine depression of breathing are unknown, but appear to require thiol-dependent processes.
Collapse
Affiliation(s)
- Santhosh M Baby
- Department of Drug Discovery, Galleon Pharmaceuticals, Inc., Horsham, PA, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christopher G Wilson
- Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, USA
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Yee-Hee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Abolfazli S, Ebrahimi N, Morabi E, Asgari Yazdi MA, Zengin G, Sathyapalan T, Jamialahmadi T, Sahebkar A. Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19. Curr Med Chem 2024; 31:3132-3148. [PMID: 37138436 DOI: 10.2174/0929867330666230502111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Nima Ebrahimi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Etekhar Morabi
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Bates JN, Getsy PM, Coffee GA, Baby SM, MacFarlane PM, Hsieh YH, Knauss ZT, Bubier JA, Mueller D, Lewis SJ. L-cysteine ethyl ester prevents and reverses acquired physical dependence on morphine in male Sprague Dawley rats. Front Pharmacol 2023; 14:1303207. [PMID: 38111383 PMCID: PMC10726967 DOI: 10.3389/fphar.2023.1303207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/31/2023] [Indexed: 12/20/2023] Open
Abstract
The molecular mechanisms underlying the acquisition of addiction/dependence on morphine may result from the ability of the opioid to diminish the transport of L-cysteine into neurons via inhibition of excitatory amino acid transporter 3 (EAA3). The objective of this study was to determine whether the co-administration of the cell-penetrant L-thiol ester, L-cysteine ethyl ester (L-CYSee), would reduce physical dependence on morphine in male Sprague Dawley rats. Injection of the opioid-receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IP), elicited pronounced withdrawal phenomena in rats which received a subcutaneous depot of morphine (150 mg/kg) for 36 h and were receiving a continuous infusion of saline (20 μL/h, IV) via osmotic minipumps for the same 36 h period. The withdrawal phenomena included wet-dog shakes, jumping, rearing, fore-paw licking, 360° circling, writhing, apneas, cardiovascular (pressor and tachycardia) responses, hypothermia, and body weight loss. NLX elicited substantially reduced withdrawal syndrome in rats that received an infusion of L-CYSee (20.8 μmol/kg/h, IV) for 36 h. NLX precipitated a marked withdrawal syndrome in rats that had received subcutaneous depots of morphine (150 mg/kg) for 48 h) and a co-infusion of vehicle. However, the NLX-precipitated withdrawal signs were markedly reduced in morphine (150 mg/kg for 48 h)-treated rats that began receiving an infusion of L-CYSee (20.8 μmol/kg/h, IV) at 36 h. In similar studies to those described previously, neither L-cysteine nor L-serine ethyl ester (both at 20.8 μmol/kg/h, IV) mimicked the effects of L-CYSee. This study demonstrates that 1) L-CYSee attenuates the development of physical dependence on morphine in male rats and 2) prior administration of L-CYSee reverses morphine dependence, most likely by intracellular actions within the brain. The lack of the effect of L-serine ethyl ester (oxygen atom instead of sulfur atom) strongly implicates thiol biochemistry in the efficacy of L-CYSee. Accordingly, L-CYSee and analogs may be a novel class of therapeutics that ameliorate the development of physical dependence on opioids in humans.
Collapse
Affiliation(s)
- James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Section of Biology, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | | | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Munteanu C, Iordan DA, Hoteteu M, Popescu C, Postoiu R, Onu I, Onose G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review. Int J Mol Sci 2023; 24:15481. [PMID: 37895161 PMCID: PMC10607039 DOI: 10.3390/ijms242015481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, ‘Dunarea de Jos’ University of Galati, 800008 Galati, Romania;
| | - Mihail Hoteteu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ilie Onu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| |
Collapse
|
20
|
Gupta SK, Mochan S, Arora P, Rani N, Luthra K, Dwivedi S, Bhatla N, Kshetrapal P, Dhingra R. Hydrogen sulfide promotes migration of trophoblast cells by a Rho GTPase mediated actin cytoskeleton reorganization. Placenta 2023; 142:135-146. [PMID: 37774537 DOI: 10.1016/j.placenta.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION Preeclampsia (PE) arises due to defective spiral artery remodelling which may be due to deficient migration of trophoblast cells. Migration of human endothelial cells has been shown to be promoted via Hydrogen sulphide(H2S)/Rho GTPase Rac1 axis. This novel role of H2S and its downstream processes have not yet been studied in the development and function of the placental trophoblast cells. METHODS Placental tissues were obtained post-delivery from consented preeclamptic and normotensive mothers (n = 60). The protein expression levels of cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS) along with its downstream migratory molecules were compared in both the arms. The pro-migratory role of H2S was investigated in a first trimester placental cell line. RESULTS H2S promoted the migration of trophoblast cells in a Rho GTPase dependent manner mediated by actin cytoskeleton reorganization. The reduced levels of H2S producing enzymes in the PE placentae along with decreased levels of Rho GTPases (Rac1 and Rho A) corroborate the results of PAG and AOAA treatment in down regulating the Rho GTPases in the in vitro grown placental cultures. Reduction of the migratory potential of trophoblastic cells caused due to hypoxia/reoxygenation was rescued by upregulating the H2S expression with the use of NaHS as a H2S donor. DISCUSSION Exogenous H2S increases the migratory potential of the placental cells in culture conditions and also post hypoxia/reoxygenation injury. H2S as a gaso-transmitter holds a great potential as a therapeutic agent. Its long-term effects need to be investigated using model systems (rat/mouse) of PE following it up with clinical regulatory trials.
Collapse
Affiliation(s)
- Sunil Kumar Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Sankat Mochan
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pallavi Arora
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sadanand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Pallavi Kshetrapal
- Maternal & Child Health, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| | - Renu Dhingra
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
21
|
Munteanu C, Turnea MA, Rotariu M. Hydrogen Sulfide: An Emerging Regulator of Oxidative Stress and Cellular Homeostasis-A Comprehensive One-Year Review. Antioxidants (Basel) 2023; 12:1737. [PMID: 37760041 PMCID: PMC10526107 DOI: 10.3390/antiox12091737] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogen sulfide (H2S), traditionally recognized as a toxic gas, has emerged as a critical regulator in many biological processes, including oxidative stress and cellular homeostasis. This review presents an exhaustive overview of the current understanding of H2S and its multifaceted role in mammalian cellular functioning and oxidative stress management. We delve into the biological sources and function of H2S, mechanisms underlying oxidative stress and cellular homeostasis, and the intricate relationships between these processes. We explore evidence from recent experimental and clinical studies, unraveling the intricate biochemical and molecular mechanisms dictating H2S's roles in modulating oxidative stress responses and maintaining cellular homeostasis. The clinical implications and therapeutic potential of H2S in conditions characterized by oxidative stress dysregulation and disrupted homeostasis are discussed, highlighting the emerging significance of H2S in health and disease. Finally, this review underscores current challenges, controversies, and future directions in the field, emphasizing the need for further research to harness H2S's potential as a therapeutic agent for diseases associated with oxidative stress and homeostatic imbalance. Through this review, we aim to emphasize H2S's pivotal role in cellular function, encouraging further exploration into this burgeoning area of research.
Collapse
Affiliation(s)
- Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania;
| | - Marius Alexandru Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania;
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania;
| |
Collapse
|
22
|
Yoon SA, Gopala L, Lee MH. Biocompatible 7-nitro-2,1,3-benzoxadiazole-embedded naphthalimide for exploring endogenous H 2S in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122582. [PMID: 36905738 DOI: 10.1016/j.saa.2023.122582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is a central signaling and antioxidant biomolecule involved in various biological processes. As inappropriate levels of H2S in the human body are closely related to various diseases, including cancer, a tool capable of detecting H2S with high selectivity and sensitivity in living systems is urgently required. In this work, we intended to develop a biocompatible and activatable fluorescent molecular probe for detecting H2S generation in living cells. The 7-nitro-2,1,3-benzoxadiazole-imbedded naphthalimide (1) probe presented here responds specifically to H2S and produces readily detectable fluorescence at 530 nm. Interestingly, probe 1 exhibited significant fluorescence responses to changes in endogenous H2S levels as well as high biocompatibility and permeability in living HeLa cells. This allowed for the real-time monitoring of endogenous H2S generation as an antioxidant defense response in the oxidatively stressed cells.
Collapse
Affiliation(s)
- Shin A Yoon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | - Lavanya Gopala
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea.
| |
Collapse
|
23
|
Ikeda Y, Matsuda S. Gut Protective Effect from D-Methionine or Butyric Acid against DSS and Carrageenan-Induced Ulcerative Colitis. Molecules 2023; 28:4392. [PMID: 37298868 PMCID: PMC10254188 DOI: 10.3390/molecules28114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Microbiome dysbiosis resulting in altered metabolite profiles may be associated with certain diseases, including inflammatory bowel diseases (IBD), which are characterized by active intestinal inflammation. Several studies have indicated the beneficial anti-inflammatory effect of metabolites from gut microbiota, such as short-chain fatty acids (SCFAs) and/or D-amino acids in IBD therapy, through orally administered dietary supplements. In the present study, the potential gut protective effects of d-methionine (D-Met) and/or butyric acid (BA) have been investigated in an IBD mouse model. We have also built an IBD mouse model, which was cost-effectively induced with low molecular weight DSS and kappa-carrageenan. Our findings revealed that D-Met and/or BA supplementation resulted in the attenuation of the disease condition as well as the suppression of several inflammation-related gene expressions in the IBD mouse model. The data shown here may suggest a promising therapeutic potential for improving symptoms of gut inflammation with an impact on IBD therapy. However, molecular metabolisms need to be further explored.
Collapse
Affiliation(s)
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan;
| |
Collapse
|
24
|
Chen CJ, Cheng MC, Hsu CN, Tain YL. Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites 2023; 13:688. [PMID: 37367846 DOI: 10.3390/metabo13060688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogen sulfide (H2S) plays a decisive role in kidney health and disease. H2S can ben synthesized via enzymatic and non-enzymatic pathways, as well as gut microbial origins. Kidney disease can originate in early life induced by various maternal insults throughout the process, namely renal programming. Sulfur-containing amino acids and sulfate are essential in normal pregnancy and fetal development. Dysregulated H2S signaling behind renal programming is linked to deficient nitric oxide, oxidative stress, the aberrant renin-angiotensin-aldosterone system, and gut microbiota dysbiosis. In animal models of renal programming, treatment with sulfur-containing amino acids, N-acetylcysteine, H2S donors, and organosulfur compounds during gestation and lactation could improve offspring's renal outcomes. In this review, we summarize current knowledge regarding sulfide/sulfate implicated in pregnancy and kidney development, current evidence supporting the interactions between H2S signaling and underlying mechanisms of renal programming, and recent advances in the beneficial actions of sulfide-related interventions on the prevention of kidney disease. Modifying H2S signaling is the novel therapeutic and preventive approach to reduce the global burden of kidney disease; however, more work is required to translate this into clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ming-Chou Cheng
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
25
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
26
|
Hilal B, Khan TA, Fariduddin Q. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1065-1083. [PMID: 36921557 DOI: 10.1016/j.plaphy.2023.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Adverse environmental constraints such as drought, heat, cold, salinity, and heavy metal toxicity are the primary concerns of the agricultural industry across the globe, as these stresses negatively affect yield and quality of crop production and therefore can be a major threat to world food security. Recently, it has been demonstrated that hydrogen sulfide (H2S), which is well-known as a gasotransmitter in animals, also plays a potent role in various growth and developmental processes in plants. H2S, as a potent signaling molecule, is involved in several plant processes such as in the regulation of stomatal pore movements, seed germination, photosynthesis and plant adaptation to environmental stress through gene regulation, post-translation modification of proteins and redox homeostasis. Moreover, a number of experimental studies have revealed that H2S could improve the adaptation capabilities of plants against diverse environmental constraints by mitigating the toxic and damaging effects triggered by stressful environments. An attempt has been made to uncover recent development in the biosynthetic and metabolic pathways of H2S and various physiological functions modulated in plants, H2S donors, their functional mechanism, and application in plants. Specifically, our focus has been on how H2S is involved in combating the destructive effects of abiotic stresses and its role in persulfidation. Furthermore, we have comprehensively elucidated the crosstalk of H2S with plant growth regulators.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
27
|
Zhang H, Du J, Huang Y, Tang C, Jin H. Hydrogen Sulfide Regulates Macrophage Function in Cardiovascular Diseases. Antioxid Redox Signal 2023; 38:45-56. [PMID: 35658575 DOI: 10.1089/ars.2022.0075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is an endogenous gasotransmitter that plays a vital role in immune system regulation. Recently, the regulation of macrophage function by H2S has been extensively and actively recognized. Recent Advances: The mechanisms by which endogenous H2S controls macrophage function have attracted increasing attention. The generation of endogenous H2S from macrophages is mainly catalyzed by cystathionine-γ-lyase. H2S is involved in the macrophage activation and inflammasome formation, which contributes to macrophage apoptosis, adhesion, chemotaxis, and polarization. In addition, H2S has redox ability and interacts with reactive oxygen species to prevent oxidative stress. Moreover, H2S epigenetically regulates gene expression. Critical Issues: In this article, the generation of endogenous H2S in macrophages and its regulatory effect on macrophage function are reviewed. In addition, the signal transduction targeting macrophages by H2S is also addressed. Finally, the potential therapeutic effect of H2S on macrophages is discussed. Future Directions: Further experiments are required to explore the involvement of endogenous H2S in the regulation of macrophage function in various physiological and pathophysiological processes and elucidate the mechanisms involved. Regarding the clinical translation of H2S, further exploration of the application of H2S in inflammation-related diseases is needed. Antioxid. Redox Signal. 38, 45-56.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China.,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People's Republic of China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
28
|
Perinatal Oxidative Stress and Kidney Health: Bridging the Gap between Animal Models and Clinical Reality. Antioxidants (Basel) 2022; 12:antiox12010013. [PMID: 36670875 PMCID: PMC9855228 DOI: 10.3390/antiox12010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress arises when the generation of reactive oxygen species or reactive nitrogen species overwhelms antioxidant systems. Developing kidneys are vulnerable to oxidative stress, resulting in adult kidney disease. Oxidative stress in fetuses and neonates can be evaluated by assessing various biomarkers. Using animal models, our knowledge of oxidative-stress-related renal programming, the molecular mechanisms underlying renal programming, and preventive interventions to avert kidney disease has grown enormously. This comprehensive review provides an overview of the impact of perinatal oxidative stress on renal programming, the implications of antioxidant strategies on the prevention of kidney disease, and the gap between animal models and clinical reality.
Collapse
|
29
|
Tain YL, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Perinatal Garlic Oil Supplementation Averts Rat Offspring Hypertension Programmed by Maternal Chronic Kidney Disease. Nutrients 2022; 14:4624. [PMID: 36364887 PMCID: PMC9657312 DOI: 10.3390/nu14214624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
Garlic (Allium sativum) is a functional food, having hydrogen sulfide (H2S)-releasing capacity, which exhibits considerable effects on hypertension and gut microbiota. H2S is strongly associated with hypertension and chronic kidney disease (CKD). Maternal CKD leads to hypertension in adult rat progeny, which was linked to disruption of the gut microbiota. This study validated the benefits of perinatal garlic oil supplementation against offspring hypertension induced by maternal CKD via modulation of H2S signaling, nitric oxide (NO), and the gut microbiota. Before pregnancy, female rats received a 0.5% adenine diet for 3 weeks to develop an animal model to mimic human CKD. Garlic oil (100 mg/kg/day) or vehicle was administered to pregnant rats by oral gavage during gestation and lactation. Perinatal garlic oil supplementation protected against maternal CKD-induced hypertension in offspring at 12 weeks of age. The beneficial effects of garlic oil are associated with enhanced H2S signaling, increased NO bioavailability, and shifts in gut microbiota. Perinatal garlic oil supplementation reduces abundance of genera Variovorax, Nocardia, Sphingomonas, and Rhodococcus. Our findings provide insight into the role of early H2S-targeted intervention as a preventive strategy in hypertension for further translational research.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
30
|
Xu X, Yang L, Zhang X, Xing X, Zhou J. Characterization and structural basis of D-cysteine desulfhydrase from Pectobacterium atrosepticum. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
32
|
Getsy PM, Baby SM, May WJ, Bates JN, Ellis CR, Feasel MG, Wilson CG, Lewis THJ, Gaston B, Hsieh YH, Lewis SJ. L-cysteine methyl ester overcomes the deleterious effects of morphine on ventilatory parameters and arterial blood-gas chemistry in unanesthetized rats. Front Pharmacol 2022; 13:968378. [PMID: 36249760 PMCID: PMC9554613 DOI: 10.3389/fphar.2022.968378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
We are developing a series of thiolesters that produce an immediate and sustained reversal of the deleterious effects of opioids, such as morphine and fentanyl, on ventilation without diminishing the antinociceptive effects of these opioids. We report here the effects of systemic injections of L-cysteine methyl ester (L-CYSme) on morphine-induced changes in ventilatory parameters, arterial-blood gas (ABG) chemistry (pH, pCO2, pO2, sO2), Alveolar-arterial (A-a) gradient (i.e., the index of alveolar gas-exchange within the lungs), and antinociception in unanesthetized Sprague Dawley rats. The administration of morphine (10 mg/kg, IV) produced a series of deleterious effects on ventilatory parameters, including sustained decreases in tidal volume, minute ventilation, inspiratory drive and peak inspiratory flow that were accompanied by a sustained increase in end inspiratory pause. A single injection of L-CYSme (500 μmol/kg, IV) produced a rapid and long-lasting reversal of the deleterious effects of morphine on ventilatory parameters, and a second injection of L-CYSme (500 μmol/kg, IV) elicited pronounced increases in ventilatory parameters, such as minute ventilation, to values well above pre-morphine levels. L-CYSme (250 or 500 μmol/kg, IV) also produced an immediate and sustained reversal of the deleterious effects of morphine (10 mg/kg, IV) on arterial blood pH, pCO2, pO2, sO2 and A-a gradient, whereas L-cysteine (500 μmol/kg, IV) itself was inactive. L-CYSme (500 μmol/kg, IV) did not appear to modulate the sedative effects of morphine as measured by righting reflex times, but did diminish the duration, however, not the magnitude of the antinociceptive actions of morphine (5 or 10 mg/kg, IV) as determined in tail-flick latency and hindpaw-withdrawal latency assays. These findings provide evidence that L-CYSme can powerfully overcome the deleterious effects of morphine on breathing and gas-exchange in Sprague Dawley rats while not affecting the sedative or early stage antinociceptive effects of the opioid. The mechanisms by which L-CYSme interferes with the OR-induced signaling pathways that mediate the deleterious effects of morphine on ventilatory performance, and by which L-CYSme diminishes the late stage antinociceptive action of morphine remain to be determined.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Paulina M. Getsy,
| | | | - Walter J. May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Christopher R. Ellis
- United States Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Michael G. Feasel
- United States Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Christopher G. Wilson
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
33
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
34
|
Sugiyama E, Higashi T, Nakamura M, Mizuno H, Toyo’oka T, Todoroki K. Precolumn Derivatization LC/MS Method for Observation of Efficient Hydrogen Sulfide Supply to the Kidney via d-Cysteine Degradation Pathway. J Pharm Biomed Anal 2022; 222:115088. [DOI: 10.1016/j.jpba.2022.115088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022]
|
35
|
Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Promising role of D-amino acids in irritable bowel syndrome. World J Gastroenterol 2022; 28:4471-4474. [PMID: 36159020 PMCID: PMC9453761 DOI: 10.3748/wjg.v28.i31.4471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is an important health care concern. Alterations in the microbiota of the gut-brain axis may be linked to the pathophysiology of IBS. Some dietary intake could contribute to produce various metabolites including D-amino acids by the fermentation by the gut microbiota. D-amino acids are the enantiomeric counterparts of L-amino acids, in general, which could play key roles in cellular physiological processes against various oxidative stresses. Therefore, the presence of D-amino acids has been shown to be linked to the protection of several organs in the body. In particular, the gut microbiota could play significant roles in the stability of emotion via the action of D-amino acids. Here, we would like to shed light on the roles of D-amino acids, which could be used for the treatment of IBS.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
36
|
Zou S, Shimizu T, Kurabayashi A, Yamamoto M, Shimizu S, Higashi Y, Shimizu N, Karashima T, Saito M. Protective effects of hydrogen sulfide pretreatment on cyclophosphamide-induced bladder dysfunction in rats via suppression of bladder afferent nerves. Nitric Oxide 2022; 127:54-63. [PMID: 35918055 DOI: 10.1016/j.niox.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Cyclophosphamide (CYP), a broad-spectrum anticancer drug, causes serious side effects, such as haemorrhagic cystitis (HC). Hydrogen sulfide (H2S), an endogenous gasotransmitter, has physiological properties, including anti-inflammation, anti-oxidation, and neuromodulation. In this study, we investigated the effects of NaHS (H2S donor) pretreatment on bladder dysfunction in CYP-treated rats. Male Wistar rats were intraperitoneally pretreated with NaHS (3 or 10 μmol/kg) or vehicle once daily for 7 days before cystometry, and CYP (150 mg/kg) or saline was intraperitoneally administered 2 days before cystometry. After cystometry, the bladder tissues were collected for haematoxylin and eosin staining. In some rats, capsaicin (CAP), which can desensitise CAP-sensitive afferent nerves, was subcutaneously injected at 125 mg/kg 4 days before cystometry. CYP reduced intercontraction intervals (ICI) and bladder compliance (Comp) and increased the number of non-voiding contractions (NVCs) compared with the saline-treated control group. NaHS pretreatment dose-dependently improved the CYP-induced these changes. In bladder tissues, CYP increased histological scores of neutrophil infiltration, haemorrhage, and oedema, while NaHS had no effect on these CYP-induced changes. CAP showed a tendency to suppress CYP-induced changes in ICI. NaHS-induced improvement in CYP-induced changes in urodynamic parameters were not detected in CAP-treated rats. These findings suggest that NaHS pretreatment prevented bladder dysfunction in CYP-treated rats by suppressing CAP-sensitive bladder afferent nerves, but not by suppressing bladder inflammation. Therefore, H2S represents a new candidate as a protective drug for bladder dysfunction induced by HC, a side effect of CYP chemotherapy.
Collapse
Affiliation(s)
- Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Atsushi Kurabayashi
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Masaki Yamamoto
- Department of Pediatrics, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Nobutaka Shimizu
- Department of Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
37
|
Hsu CN, Chen WL, Liao WT, Chang-Chien GP, Lin S, Tain YL. Hydrogen Sulfide-to-Thiosulfate Ratio Associated with Blood Pressure Abnormalities in Pediatric CKD. J Pers Med 2022; 12:1241. [PMID: 36013190 PMCID: PMC9409977 DOI: 10.3390/jpm12081241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Identifying children with chronic kidney disease (CKD) at high risk of cardiovascular disease (CVD) and ensuring they receive appropriate treatment can prevent CVD events and mortality later in life. Hydrogen sulfide (H2S) is a gaseous signaling molecule participating in CVD and CKD. Thiosulfate is not only an oxidation product of H2S but is also a H2S donor. We examined whether H2S, thiosulfate, and their combined ratio have differential associations with CVD risk markers in 56 children and adolescents aged 6-18 years with CKD stages G1-G4. Up to two-thirds of CKD children showed higher BP load on 24 h ambulatory blood pressure monitoring (ABPM), even in the early stage. CKD children with ABPM abnormalities had a higher H2S-to-thiosulfate ratio, while H2S-related parameters were not affected by the severity of CKD. The H2S-to-thiosulfate ratio was positively correlated with 24 h systolic BP (SBP), nighttime SBP, and carotid artery intima-media thickness (cIMT). After adjusting for confounders, H2S was negatively associated with LV mass, thiosulfate was positively associated with 24-DBP, and the H2S-to-thiosulfate ratio was positively correlated with nighttime SBP and cIMT. Our data demonstrate differential associations in circulating H2S, thiosulfate, and their combined ratio with CVD risk in childhood CKD. Further studies are required to determine whether targeting the H2S signaling pathway can develop novel therapeutic strategies against CVD in this high-risk population.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan, China;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, China
| | - Wei-Ling Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan, China; (W.-L.C.); (W.-T.L.)
| | - Wei-Ting Liao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan, China; (W.-L.C.); (W.-T.L.)
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan, China; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan, China
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan, China
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan, China; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan, China
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan, China
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan, China; (W.-L.C.); (W.-T.L.)
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan, China
| |
Collapse
|
38
|
Getsy PM, Baby SM, May WJ, Young AP, Gaston B, Hodges MR, Forster HV, Bates JN, Wilson CG, Lewis THJ, Hsieh YH, Lewis SJ. D-Cysteine Ethyl Ester Reverses the Deleterious Effects of Morphine on Breathing and Arterial Blood-Gas Chemistry in Freely-Moving Rats. Front Pharmacol 2022; 13:883329. [PMID: 35814208 PMCID: PMC9260251 DOI: 10.3389/fphar.2022.883329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023] Open
Abstract
Cell-penetrant thiol esters including the disulfides, D-cystine diethyl ester and D-cystine dimethyl ester, and the monosulfide, L-glutathione ethyl ester, prevent and/or reverse the deleterious effects of opioids, such as morphine and fentanyl, on breathing and gas exchange within the lungs of unanesthetized/unrestrained rats without diminishing the antinociceptive or sedative effects of opioids. We describe here the effects of the monosulfide thiol ester, D-cysteine ethyl ester (D-CYSee), on intravenous morphine-induced changes in ventilatory parameters, arterial blood-gas chemistry, alveolar-arterial (A-a) gradient (i.e., index of gas exchange in the lungs), and sedation and antinociception in freely-moving rats. The bolus injection of morphine (10 mg/kg, IV) elicited deleterious effects on breathing, including depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive. Subsequent injections of D-CYSee (2 × 500 μmol/kg, IV, given 15 min apart) elicited an immediate and sustained reversal of these effects of morphine. Morphine (10 mg/kg, IV) also A-a gradient, which caused a mismatch in ventilation perfusion within the lungs, and elicited pronounced changes in arterial blood-gas chemistry, including pronounced decreases in arterial blood pH, pO2 and sO2, and equally pronounced increases in pCO2 (all responses indicative of decreased ventilatory drive). These deleterious effects of morphine were immediately reversed by the injection of a single dose of D-CYSee (500 μmol/kg, IV). Importantly, the sedation and antinociception elicited by morphine (10 mg/kg, IV) were minimally affected by D-CYSee (500 μmol/kg, IV). In contrast, none of the effects of morphine were affected by administration of the parent thiol, D-cysteine (1 or 2 doses of 500 μmol/kg, IV). Taken together, these data suggest that D-CYSee may exert its beneficial effects via entry into cells that mediate the deleterious effects of opioids on breathing and gas exchange. Whether D-CYSee acts as a respiratory stimulant or counteracts the inhibitory actions of µ-opioid receptor activation remains to be determined. In conclusion, D-CYSee and related thiol esters may have clinical potential for the reversal of the adverse effects of opioids on breathing and gas exchange, while largely sparing antinociception and sedation.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Department of Drug Discovery, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Walter J. May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alex P. Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hubert V. Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Christopher G. Wilson
- Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
39
|
A novel fluorescent probe for real-time imaging of thionitrous acid under inflammatory and oxidative conditions. Redox Biol 2022; 54:102372. [PMID: 35728302 PMCID: PMC9214870 DOI: 10.1016/j.redox.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Thionitrous acid (HSNO), a crosstalk intermediate of two crucial gasotransmitters nitric oxide and hydrogen sulfide, plays a critical role in redox regulation of cellular signaling and functions. However, real-time and facile detection of HSNO with high selectivity and sensitivity remains highly challenging. Herein we report a novel fluorescent probe (SNP-1) for HSNO detection. SNP-1 has a simple molecular structure, but showing strong fluorescence, a low detection limit, a broad linear detection range (from nanomolar to micromolar concentrations), ultrasensitivity, and high selectivity for HSNO in both aqueous media and cells. Benefiting from these unique features, SNP-1 could effectively visualize changes of HSNO levels in mouse models of acute ulcerative colitis and renal ischemia/reperfusion injury. Moreover, the good correlation between colonic HSNO levels and disease activity index demonstrated that HSNO is a promising new diagnostic agent for acute ulcerative colitis. Therefore, SNP-1 can serve as a useful fluorescent probe for precision detection of HSNO in various biological systems, thereby facilitating mechanistic studies, therapeutic assessment, and high-content drug screening for corresponding diseases. HSNO was the preferred intermediate to study crosstalk between H2S and NO. HSNO displayed translational potential for diagnosis and assessment of diseases. SNP-1 displayed excellent fluorescence performance for HSNO detection. SNP-1 could effectively image HSNO in cells and mouse models.
Collapse
|
40
|
Zhang B, Lin T, Bai X, An X, Dai L, Shi J, Zhang Y, Zhao X, Zhang Q. Sulfur Amino Acid Metabolism and the Role of Endogenous Cystathionine-γ-lyase/H2S in Holstein Cows with Clinical Mastitis. Animals (Basel) 2022; 12:ani12111451. [PMID: 35681915 PMCID: PMC9179249 DOI: 10.3390/ani12111451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
H2S plays an important role in various inflammatory diseases. However, the role of H2S and synthetic enzymes in Holstein cows with CM is unknown. The aim of this study was to identify DEPs associated with sulfide metabolism and further investigate their roles in dairy cows with CM. From 3739 DEPs generated by data-independent acquisition proteomics, we identified a total of 17 DEPs included in 44 GO terms and five KEGG pathways related to sulfide metabolism, including CTH and cystathionine-β-synthase (CBS). Immunohistochemical and immunofluorescence staining results showed that CTH and CBS proteins were present mainly in the cytoplasm of mammary epithelial cells. Endogenous H2S production in the serum of the CM group was significantly lower than that of the healthy Holstein cows. CTH and CBS mRNA and protein levels in the mammary glands of the CM group were significantly downregulated compared to those of the healthy group. These results indicate that CTH and H2S were correlated with the occurrence and development of CM in Holstein cows, which provides important insights into the function and regulatory mechanism of CTH/H2S in Holstein cows.
Collapse
Affiliation(s)
- Bohao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Y.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ting Lin
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xiaoxiao An
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lijun Dai
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jun Shi
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Y.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Y.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (X.Z.); (Q.Z.); Tel.: +86-93-1763-2509 (Q.Z.)
| | - Quanwei Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Y.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (X.Z.); (Q.Z.); Tel.: +86-93-1763-2509 (Q.Z.)
| |
Collapse
|
41
|
Kariapper FS, Thanzeel FY, Zandi LS, Wolf C. Selective chiroptical sensing of D/L-cysteine. Org Biomol Chem 2022; 20:3056-3060. [PMID: 35343543 DOI: 10.1039/d2ob00198e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chromophoric bifunctional probe design that allows selective chiroptical sensing of cysteine in aqueous solution is introduced. The common need for chiral HPLC separation is eliminated which expedites and simplifies the sample analysis while reducing solvent waste. Screening of the reaction between six phenacyl bromides and the enantiomers of cysteine showed that cyclization to an unsaturated thiomorpholine scaffold coincides with characteristic UV and CD effects, in particular when the reagent carries a proximate auxochromic nitro group. The UV changes and CD inductions were successfully used for determination of the absolute configuration, enantiomeric composition and total concentration of 18 test samples. This assay is highly selective for free cysteine while other amino acids, cysteine derived small peptides and biothiols do not interfere with the chiroptical signal generation.
Collapse
Affiliation(s)
- F Safia Kariapper
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - F Yushra Thanzeel
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - Lily S Zandi
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
42
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
43
|
Nagase N, Ikeda Y, Tsuji A, Kitagishi Y, Matsuda S. Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World J Diabetes 2022; 13:150-160. [PMID: 35432750 PMCID: PMC8984564 DOI: 10.4239/wjd.v13.i3.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are insufficient. The number of patients with DN has been increasing in Asian countries because of westernization of dietary lifestyle, which may be associated with the following changes in gut microbiota. Alterations in the gut microbiota composition can lead to an imbalanced gastrointestinal environment that promotes abnormal production of metabolites and/or inflammatory status. Functional microenvironments of the gut could be changed in the different stages of DN. In particular, altered levels of short chain fatty acids, D-amino acids, and reactive oxygen species biosynthesis in the gut have been shown to be relevant to the pathogenesis of the DN. So far, evidence suggests that the gut microbiota may play a key role in determining networks in the development of DN. Interventions directing the gut microbiota deserve further investigation as a new protective therapy in DN. In this review, we discuss the potential roles of the gut microbiota and future perspectives in the protection and/or treatment of kidneys.
Collapse
Affiliation(s)
- Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
44
|
Dietary Supplementation with Cysteine during Pregnancy Rescues Maternal Chronic Kidney Disease-Induced Hypertension in Male Rat Offspring: The Impact of Hydrogen Sulfide and Microbiota-Derived Tryptophan Metabolites. Antioxidants (Basel) 2022; 11:antiox11030483. [PMID: 35326133 PMCID: PMC8944658 DOI: 10.3390/antiox11030483] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023] Open
Abstract
Maternal chronic kidney disease (CKD) is linked to offspring hypertension. The gut microbiome and its tryptophan metabolites, nitric oxide (NO), and renin–angiotensin system (RAS) are closely related to the development of hypertension. Hydrogen sulfide (H2S) has shown an anti-hypertensive effect. Our objective was to test whether l- or d-cysteine supplementation in pregnancy can prevent hypertension programmed by maternal CKD in adult offspring and to explore the protective mechanisms. CKD was induced in pregnant Sprague Dawley rats by a 0.5% adenine diet for 3 weeks. l- or d-cysteine was supplemented at 8 mmol/kg body weight/day during pregnancy. Male offspring were sacrificed at the age of 12 weeks (n = 8 per group). Maternal CKD-induced hypertension was similarly prevented by l- or d-cysteine supplementation. The protective effects of l- and d-cysteine are related to reducing oxidative stress, rebalancing the RAS, and reshaping the gut microbiome. l-cysteine therapy protected adult offspring against hypertension and was associated with enhanced H2S production, restoration of NO bioavailability, enhancement of beneficial genera Oscillibacter and Butyricicoccus, depletion of indole-producing genera Alistipes and Akkermansia, and the reduction of several indole metabolites. d-cysteine treatment increased kynurenic acid, 3-hydroxykynurenine, and xanthurenic acid in the kynurenine pathway, decreased 5-hydroxytryptophan and serotonin in the serotonin pathway, and enriched genera Bacteroides and Odoribacter abundance. In summary, these results suggest that l- and d-cysteine protect against maternal CKD-induced offspring hypertension, likely by enhancing H2S production, modulating gut microbiota and its derived metabolites, and the restoration of NO and RAS.
Collapse
|
45
|
Exogenous H 2S Ameliorates High Salt-Induced Hypertension by Alleviating Oxidative Stress and Inflammation in the Paraventricular Nucleus in Dahl S Rats. Cardiovasc Toxicol 2022; 22:477-491. [PMID: 35181841 PMCID: PMC8993738 DOI: 10.1007/s12012-022-09729-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/03/2022] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is an important gaseous signaling molecule that regulates cardiovascular activity in animals. The hypothalamic paraventricular nucleus (PVN) is a major integrative region involved in blood pressure (BP) regulation. We explored whether exogenous H2S application by intraperitoneal injection of sodium hydrosulfide (NaHS) alleviates BP increase induced by a high salt diet (HSD) and the role of PVN in Dahl salt-sensitive (Dahl S) rats. Dahl S rats were divided into four groups according to diet regime (normal salt diet [NSD] and HSD) and treatment method (daily intraperitoneal NaHS or saline injection). We monitored BP, food and water intake, and body weight for 8 weeks. Plasma, kidney, and brain tissues were collected at the end of the experiment. We found that exogenous H2S not only delayed BP elevation but also attenuated the increase in the levels of norepinephrine, cystatin C, and blood urea nitrogen in the plasma of Dahl S rats with an HSD. Furthermore, H2S enhanced the total antioxidant capacity, superoxide dismutase, and glutathione peroxidase in the PVN. Exogenous H2S attenuated the protein expression of the nuclear factor-κB pathway and proinflammatory cytokines, which were significantly higher in the PVN in rats with an HSD than in rats with an NSD. Additionally, exogenous H2S relieved PVN neuronal apoptosis induced by an HSD. These findings suggest that exogenous H2S attenuates hypertension caused by an HSD by ameliorating oxidative stress, inflammation, and apoptosis in the PVN. This study provides evidence of the benefits of peripheral H2S therapy for hypertension.
Collapse
|
46
|
Lu CL, Liao CH, Wu WB, Zheng CM, Lu KC, Ma MC. Uremic Toxin Indoxyl Sulfate Impairs Hydrogen Sulfide Formation in Renal Tubular Cells. Antioxidants (Basel) 2022; 11:antiox11020361. [PMID: 35204244 PMCID: PMC8868407 DOI: 10.3390/antiox11020361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogen sulfide (H2S) was the third gasotransmitter to be recognized as a cytoprotectant. A recent study demonstrated that exogenous supplementation of H2S ameliorates functional insufficiency in chronic kidney disease (CKD). However, how the H2S system is impaired by CKD has not been elucidated. The uremic toxin indoxyl sulfate (IS) is known to accumulate in CKD patients and harm the renal tubular cells. This study therefore treated the proximal tubular cells, LLC-PK1, with IS to see how IS affects H2S formation. Our results showed that H2S release from LLC-PK1 cells was markedly attenuated by IS when compared with control cells. The H2S donors NaHS and GYY-4137 significantly attenuated IS-induced tubular damage, indicating that IS impairs H2S formation. Interestingly, IS downregulated the H2S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), and these effects could be reversed by inhibition of the IS receptor, aryl hydrocarbon receptor (AhR). As transcription factor specificity protein 1 (Sp1) regulates the gene expression of H2S-producing enzymes, we further showed that IS significantly decreased the DNA binding activity of Sp1 but not its protein expression. Blockade of AhR reversed low Sp1 activity caused by IS. Moreover, exogenous H2S supplementation attenuated IS-mediated superoxide formation and depletion of the cellular glutathione content. These results clearly indicate that IS activates AhR, which then attenuates Sp1 function through the regulation of H2S-producing enzyme expression. The attenuation of H2S formation contributes to the low antioxidant defense of glutathione in uremic toxin-mediated oxidative stress, causing tubular cell damage.
Collapse
Affiliation(s)
- Chien-Lin Lu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-L.L.); (C.-H.L.); (W.-B.W.)
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 243089, Taiwan;
| | - Chun-Hou Liao
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-L.L.); (C.-H.L.); (W.-B.W.)
- Divisions of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 231403, Taiwan
| | - Wen-Bin Wu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-L.L.); (C.-H.L.); (W.-B.W.)
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235041, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110301, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 243089, Taiwan;
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231405, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-L.L.); (C.-H.L.); (W.-B.W.)
- Correspondence:
| |
Collapse
|
47
|
Liu H, Wang C, Li C, Zhao Z, Wei L, Liu Z, Hu D, Liao W. Nitric oxide is involved in hydrogen sulfide-induced adventitious rooting in tomato ( Solanum lycopersicum). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:245-258. [PMID: 34991782 DOI: 10.1071/fp21288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2 S) are signalling molecules that regulate adventitious rooting in plants. However, little is known about the cross-talk between NO and H2 S during adventitious rooting. Tomato (Solanum lycopersicum L.) explants were used to investigate the roles of and relationships between NO and H2 S during rooting. Effects of the NO donor sodium nitroprusside (SNP) and the H2 S donor sodium hydrosulfide (NaHS) on adventitious rooting were dose-dependent, and the greatest biological responses were observed under 25μM SNP and 50μM NaHS. The positive effect of NaHS was reversed by the NO scavenger 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), indicating that the H2 S-induced response was partially NO-dependent. Peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD) activities significantly increased by SNP and NaHS treatment, and indoleacetic acid oxidase (IAAO) activity and the O2 - and H2 O2 content significantly decreased by SNP and NaHS treatment. SNP and NaHS treatment also increased the content of soluble sugar and protein and indole-3-acetic acid (IAA). cPTIO significantly mitigated the increases in POD, PPO and SOD activity and soluble sugar, protein and IAA content induced by NaHS. SNP and NaHS upregulated the expression of auxin-related genes (ARF4 and ARF16 ), cell cycle-related genes (CYCD3 , CYCA3 and CDKA1 ), and antioxidant-related genes (TPX2 , SOD and POD ); whereas cPTIO significantly inhibited the increase in the expression of these genes induced by NaHS. Overall, these results show that NO may be involved in H2 S-induced adventitious rooting by regulating the activity of rooting-related enzymes, the expression of related genes, and the content of various nutrients.
Collapse
Affiliation(s)
- Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
48
|
Sodium Thiosulfate Improves Hypertension in Rats with Adenine-Induced Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:antiox11010147. [PMID: 35052651 PMCID: PMC8772748 DOI: 10.3390/antiox11010147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Hypertension is highly prevalent in chronic kidney disease (CKD). Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter with vasodilator properties. We, hence, investigated whether oral administration of sodium thiosulfate (STS), a clinically applicable H2S-based therapy, can exert a protective effect against hypertension in an adenine-induced CKD rat model. Eight-week-old male Sprague–Dawley rats were fed with 0.5% adenine chow for 3 weeks to induce CKD. After 1 week, the rats were divided into two groups: one without and one with STS (2 g/kg body weight/day) in drinking water for 2 weeks. Treatment with STS lowered systolic and diastolic blood pressure by 7 and 9 mm Hg, respectively. Renal H2S-generating enzyme expression was inhibited by CKD, while STS therapy increased plasma levels of H2S and thiosulfate. Additionally, restoration of nitric oxide bioavailability and rebalance of the renin–angiotensin system may contribute to the protective effects of STS. Our data suggest that the oral administration of STS improves hypertension in an adenine-induced CKD model, which brings us closer to the clinical translation of H2S-targeting therapy in CKD-induced hypertension.
Collapse
|
49
|
Jimidar CC, Grunenberg J, Karge B, Fuchs HLS, Brönstrup M, Klahn P. Masked Amino Trimethyl Lock (H 2 N-TML) Systems: New Molecular Entities for the Development of Turn-On Fluorophores and Their Application in Hydrogen Sulfide (H 2 S) Imaging in Human Cells. Chemistry 2022; 28:e202103525. [PMID: 34713944 PMCID: PMC9299139 DOI: 10.1002/chem.202103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/11/2022]
Abstract
Masked trimethyl lock (TML) systems as molecular moieties enabling the bioresponsive release of compounds or dyes in a controlled temporal and spatial manner have been widely applied for the development of drug conjugates, prodrugs or molecular imaging tools. Herein, we report the development of a novel amino trimethyl lock (H2 N-TML) system as an auto-immolative molecular entity for the release of fluorophores. We designed Cou-TML-N3 and MURh-TML-N3 , two azide-masked turn-on fluorophores. The latter was demonstrated to selectively release fluorescent MURh in the presence of physiological concentrations of the redox-signaling molecule H2 S in vitro and was successfully applied to image H2 S in human cells.
Collapse
Affiliation(s)
- Claire Cheyenne Jimidar
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Jörg Grunenberg
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Bianka Karge
- Department Chemical BiologyHelmholtz Center for Infection ResearchInhoffenstraße 738124BraunschweigGermany
- German Center for Infection Research (DZIF) -Partner site Braunschweig-HannoverGermany
| | - Hazel Leanne Sarah Fuchs
- Department Chemical BiologyHelmholtz Center for Infection ResearchInhoffenstraße 738124BraunschweigGermany
- German Center for Infection Research (DZIF) -Partner site Braunschweig-HannoverGermany
| | - Mark Brönstrup
- Department Chemical BiologyHelmholtz Center for Infection ResearchInhoffenstraße 738124BraunschweigGermany
- German Center for Infection Research (DZIF) -Partner site Braunschweig-HannoverGermany
| | - Philipp Klahn
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
50
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|