1
|
Gluvic Z, Obradovic M, Manojlovic M, Vincenza Giglio R, Maria Patti A, Ciaccio M, Suri JS, Rizzo M, Isenovic ER. Impact of different hormones on the regulation of nitric oxide in diabetes. Mol Cell Endocrinol 2024; 592:112325. [PMID: 38968968 DOI: 10.1016/j.mce.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.
Collapse
Affiliation(s)
- Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mia Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Manfredi Rizzo
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Niu Q, Li D, Guo W, Feng Z, Han Z, Yang Y. Dietary nitrate maintains homeostasis of oxidative stress and gut microbiota to promote flap survival in type 2 diabetes mellitus rats. BMC Endocr Disord 2024; 24:184. [PMID: 39256735 PMCID: PMC11386097 DOI: 10.1186/s12902-024-01691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Random-pattern skin flaps are commonly used to repair skin tissue defects in surgical tissue reconstruction. However, flap necrosis in the distal area due to ischemia injury is still challenging for its applications in plastic surgery. The complications of diabetes will further increase the risk of infection and necrosis. METHODS This study induced type 2 diabetes mellitus (T2DM) rats with a high-fat diet and STZ. The survival rate of the skin flap was observed by adding inorganic sodium nitrate to drinking water. Histology and immunohistochemistry were used to detect the damage to the skin flap. The nitrate content was measured by total nitric oxide and nitrate/nitrite parameter assay. Dihydroethidium and malondialdehyde (MDA) assays were used to value oxidative stress. Rat colon feces were collected for 16s rRNA gene sequence. RESULTS Our studies showed that nitrate administration leads to anti-obesity and anti-diabetic effects. Nitrate directly increased the survival area of skin flaps in diabetic rats and mean blood vessel density by enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. The 16s rRNA sequence revealed that nitrate may regulate the homeostasis of the gut microbiota and re-store energy metabolism. CONCLUSION Dietary nitrate has been shown to maintain the homeostasis of oxidative stress and gut microbiota to promote flap survival in rats with T2DM.
Collapse
Affiliation(s)
- Qifang Niu
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Delong Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wenwen Guo
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhien Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yang Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Bagheripour F, Jeddi S, Kashfi K, Ghasemi A. Anti-obesity and anti-diabetic effects of L-citrulline are sex-dependent. Life Sci 2024; 339:122432. [PMID: 38237764 DOI: 10.1016/j.lfs.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
AIMS Anti-diabetic and anti-obesity effects of L-citrulline (Cit) have been reported in male rats. This study determined sex differences in response to Cit in Wistar rats. MAIN METHODS Type 2 diabetes (T2D) was induced using a high-fat diet followed by low-dose of streptozotocin (30 mg/kg) injection. Male and female Wistar rats were divided into 4 groups (n = 6/group): Control, control+Cit, T2D, and T2D + Cit. Cit (4 g/L in drinking water) was administered for 8 weeks. Obesity indices were recorded, serum fasting glucose and lipid profile were measured, and glucose and pyruvate tolerance tests were performed during the Cit intervention. White (WAT) and brown (BAT) adipose tissues were weighted, and the adiposity index was calculated at the end of the study. KEY FINDINGS Cit was more effective in decreasing fasting glucose (18 % vs. 11 %, P = 0.0100), triglyceride (20 % vs. 14 %, P = 0.0173), and total cholesterol (16 % vs. 11 %, P = 0.0200) as well as decreasing gluconeogenesis and improving glucose tolerance, in females compared to male rats with T2D. Following Cit administration, decreases in WAT weight (16 % vs. 14 % for gonadal, 21 % vs. 16 % for inguinal, and 18 % vs. 13 % for retroperitoneal weight, all P < 0.0001) and increases in BAT weight (58 % vs. 19 %, for interscapular and 10 % vs. 7 % for axillary, all P < 0.0001) were higher in females than male rats with T2D. The decrease in adiposity index was also higher (11 % vs. 9 %, P = 0.0007) in females. SIGNIFICANCE The anti-obesity and anti-diabetic effects of Cit in rats are sex-dependent, with Cit being more effective in female than male rats.
Collapse
Affiliation(s)
- Fatemeh Bagheripour
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Bagheripour F, Jeddi S, Kashfi K, Ghasemi A. Metabolic effects of L-citrulline in type 2 diabetes. Acta Physiol (Oxf) 2023; 237:e13937. [PMID: 36645144 DOI: 10.1111/apha.13937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide. Decreased nitric oxide (NO) bioavailability is involved in the pathophysiology of T2D and its complications. L-citrulline (Cit), a precursor of NO production, has been suggested as a novel therapeutic agent for T2D. Available data from human and animal studies indicate that Cit supplementation in T2D increases circulating levels of Cit and L-arginine while decreasing circulating glucose and free fatty acids and improving dyslipidemia. The underlying mechanisms for these beneficial effects of Cit include increased insulin secretion from the pancreatic β cells, increased glucose uptake by the skeletal muscle, as well as increased lipolysis and β-oxidation, and decreased glyceroneogenesis in the adipose tissue. Thus, Cit has antihyperglycemic, antidyslipidemic, and antioxidant effects and has the potential to be used as a new therapeutic agent in the management of T2D. This review summarizes available literature from human and animal studies to explore the effects of Cit on metabolic parameters in T2D. It also discusses the possible mechanisms underlying Cit-induced improved metabolic parameters in T2D.
Collapse
Affiliation(s)
- Fatemeh Bagheripour
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Huang Y, Ashaolu TJ, Olatunji OJ. Micronized Dietary Okara Fiber: Characterization, Antioxidant, Antihyperglycemic, Antihyperlipidemic, and Pancreato-Protective Effects in High Fat Diet/Streptozotocin-Induced Diabetes Mellitus. ACS OMEGA 2022; 7:19764-19774. [PMID: 35722005 PMCID: PMC9202274 DOI: 10.1021/acsomega.2c01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Diabetes mellitus (DM) is a lifelong devastating and debilitating disease with serious chronic complications. Okara is a byproduct generated from soymilk or tofu production and it has been reported to have antioxidant and lipid-lowering effects. However, the antidiabetic effects and pancreatic β-cells' secretory functions of micronized okara fiber (MOF) have not been reported. Therefore, this study explored the antidiabetic effects and modulatory potentials of MOF on pancreatic β-cells' secretory functions in a high fat/high sugar/streptozotocin rat model of diabetes mellitus. Fiber-rich okara was prepared by removing fat and proteins from freshly obtained okara, followed by micronization. Fiber-rich okara was prepared, micronized, and characterized for hydrophobicity, thermal stability, structure-function relationship, and antioxidant potentials. We then established a rat model of DM and MOF and two doses (100 and 400 mg kg-1) were administered to see its anti-DM effect. Four weeks of MOF supplementation significantly reduced blood glucose, increased serum insulin level, improved hepatorenal functions, glucose tolerance, and regenerated pancreatic β-cells in the treated DM rats. Furthermore, MOF significantly improved the pancreatic antioxidant defense system by significantly elevating glutathione peroxidase, catalase, and superoxide dismutase activities while depleting the malonaldehyde level in the pancreas of the treated diabetic rats. Our results indicated that MOF ameliorated DM by impeding hyperglycemia, hyperlipidemia, and oxidative stress and enhancing the secretory functions of the beta cells, suggesting that MOF might be used as a protective nutrient in DM.
Collapse
Affiliation(s)
- Yanping Huang
- Department
of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei 230601, China
| | - Tolulope Joshua Ashaolu
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty
of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Opeyemi Joshua Olatunji
- Traditional
Thai Medical Research and Innovation Center, Faculty of Traditional
Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
7
|
Sayyar A, Oladi M, Hosseini M, Nakhaee S, Ataie Z, Farrokhfall K. Effect of red beetroot juice on oxidative status and islet insulin release in adult male rats. Diabetol Metab Syndr 2022; 14:58. [PMID: 35461298 PMCID: PMC9034606 DOI: 10.1186/s13098-022-00830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Beetroot is rich in inorganic nitrate and it has been shown that inorganic nitrate has beneficial effects on metabolic syndrome. This study aims to investigate the effect of red beetroot juice (RBJ) on carbohydrate metabolism in adult insulin-resistant rats. MATERIALS AND METHODS Sixteen male Wistar rats (32 weeks old) were divided into two equal groups: control and RBJ. Treatment with drinking water (control) and 100% RBJ (RBJ) was lasted for 5 weeks. At the end of the 4th week the intraperitoneal glucose tolerance test was performed and at the end of the study period animals were sacrificed and blood and tissue (aorta, heart, and liver) samples were collected. Furthermore, pancreatic islets were isolated and their insulin secretion activity was investigated in different glycemic conditions. RESULTS Compared to the control group, RBJ-treated rats showed lower blood glucose and insulin levels in the glucose tolerance test. Serum and tissue levels of nitric oxide in the RBJ group were significantly higher than those in the control group. The liver peroxidation and serum aspartate transaminase levels were significantly increased in the RBJ-treated animals compared to the control group. The islets of RBJ group exhibited lower insulin secretion, especially in 16.7 mM glucose concentration (supraphysiologic condition) than control group. CONCLUSIONS RBJ consumption improves glucose metabolism in rats via increasing nitric oxide metabolites in an insulin-independent manner. However, future studies are needed to minimize the potential hepatic adverse consequences.
Collapse
Affiliation(s)
- Armin Sayyar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Oladi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Zomorrod Ataie
- Health Clinical Science Research Center, Islamic Azad University, Zahedan Branch, Zahedan, Iran
- Student Research Committee, Islamic Azad University, Zahedan Branch, Zahedan, Iran
| | - Khadijeh Farrokhfall
- Experimental Medicine Laboratory, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
8
|
Xu S, Wang Y, Wang J, Geng W. Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods 2022; 11:foods11050754. [PMID: 35267387 PMCID: PMC8909623 DOI: 10.3390/foods11050754] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Kombucha, which is rich in tea polyphenols and organic acid, is a kind of acidic tea soup beverage fermented by acetic acid bacteria, yeasts, lactic acid bacteria. Kombucha has been reported to possess anti-diabetic activity, but the underlying mechanism was not well understood. In this study, a high-fat, high-sugar diet combined with streptozotocin (STZ) injection was used to induce T2DM model in mice. After four weeks of kombucha intervention, the physiological and biochemical index were measured to determine the diabetes-related indicators. High-throughput sequencing technology was used to analyze the changes in gut microbiota from the feces. The results showed that four weeks of kombucha intervention increased the abundance of SCFAs-producing bacteria and reduced the abundance of gram-negative bacteria and pathogenic bacteria. The improvement in gut microbiota reduced the damage of intestinal barrier, thereby reducing the displacement of lipopolysaccharide (LPS) and inhibiting the occurrence of inflammation and insulin resistance in vivo. In addition, the increased levels of SCFAs-producing bacteria, and thus increasing the SCFAs, improved islet β cell function by promoting the secretion of gastrointestinal hormones (GLP-1/PYY). This study methodically uncovered the hypoglycemic mechanism of kombucha through gut microbiota intervention, and the result suggested that kombucha may be introduced as a new functional drink for T2DM prevention and treatment.
Collapse
|
9
|
Oarada M, Okumura Y, Hirasaka K, Sugiura K, Tachibana N, Tsurusaki Y, Nikawa T. Dietary Sodium Nitrite Causes Similar Modifications to Splenic Inflammatory Gene Expression as a High-Fat Diet. J Nutr Sci Vitaminol (Tokyo) 2022; 67:404-416. [PMID: 34980719 DOI: 10.3177/jnsv.67.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sodium nitrite (NaNO2) is a widely used food additive. The present study compared the outcomes from intakes of dietary NaNO2 and a high-fat diet (HFD), and assessed their combined effects on inflammatory gene expression in the immune tissues of the mouse. In experiment I, mice were fed a standard low-fat diet (LFD) without or with NaNO2 (0.02 and 0.08%, w/w) for 11 wk. In experiment II, mice were fed an LFD without or with NaNO2 (0.02%) or HFD without or with NaNO2 (0.02%) for 11 wk. Inflammatory gene expression in the immune tissues was then measured. NaNO2 consumption and HFD feeding each resulted in increased splenic mRNAs for cell markers of neutrophils (Ngp, NE, Ly6g, Mpo) and eosinophils (Epo, Ear6), and an S100 family member (S100A8). In contrast, NaNO2 consumption and HFD feeding each resulted in decreased splenic mRNAs for cell markers of macrophages (Emr1, Itgax, CD68, CD206, Dectin-1, TLRs 4, 6, and 7), T- (CD3, CD4), NK- (CD56) and B-cells (CD20, CD40), pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-18, IL-10, TGF-β), interleukin receptor antagonists (IL1ra, IL6ra) and cell adhesion molecules (ICAM-1, VCAM-1). However, dietary NaNO2 combined with HFD feeding caused no further decrease in these transcript levels compared with dietary NaNO2 alone. These NaNO2- or HFD-induced modifications were less profound in the liver and abdominal adipose tissues than in the spleen. These findings indicate that dietary NaNO2 has similar modulatory effects to HFD feeding on splenic inflammatory genes.
Collapse
Affiliation(s)
- Motoko Oarada
- Faculty of Nutritional Science, Sagami Women's University
| | - Yuushi Okumura
- Faculty of Nutritional Science, Sagami Women's University
| | - Katsuya Hirasaka
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University
| | - Kosuke Sugiura
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School
| | | | | | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School
| |
Collapse
|
10
|
Bahadoran Z, Mirmiran P, Carlström M, Ghasemi A. Inorganic nitrate: A potential prebiotic for oral microbiota dysbiosis associated with type 2 diabetes. Nitric Oxide 2021; 116:38-46. [PMID: 34506950 DOI: 10.1016/j.niox.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022]
Abstract
Oral microbiota dysbiosis, concomitant with decreased abundance of nitrate (NO3-)-reducing bacteria, oral net nitrite (NO2-) production, and reduced nitric oxide (·NO) bioactivity, is associated with the development of cardiometabolic disorders. Therefore, restoring the oral microbiome to a health-associated state is suggested as a therapeutic approach to potentiate the NO3--NO2--·NO pathway and provide a backup resource for insufficient NO production in conditions including cardiovascular disease and type 2 diabetes mellitus (T2DM). The current review discusses how inorganic NO3- can improve the oral microbial community in patients with T2DM and act as a prebiotic. Both animal and human experiments indicated that inorganic NO3- modulates the oral microbiome by increasing the abundance of health-associated NO3--reducing bacteria (e.g., Neisseria and Rothia) and decreasing the plenty of species Prevotella and Veillonella, leading to oral NO2- accumulation and improved systemic ·NO availability. Supplementation with NO3- reduces caries- and periodontitis-associated bacteria and the pathogenic genus related to insulin resistance and glucose intolerance. In addition, inorganic NO3- may provide a more optimal environment for NO3- reductase activity in the oral cavity, as it increases salivary flow rate and prevents decreased pH by inhibiting acid-producing bacteria.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, Stockholm, SE-171 76, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Jeddi S, Gheibi S, Kashfi K, Ghasemi A. Sodium hydrosulfide has no additive effects on nitrite-inhibited renal gluconeogenesis in type 2 diabetic rats. Life Sci 2021; 283:119870. [PMID: 34352258 DOI: 10.1016/j.lfs.2021.119870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Increased renal and hepatic gluconeogenesis are important sources of fasting hyperglycemia in type 2 diabetes (T2D). The inhibitory effect of co-administration of sodium nitrite and sodium hydrosulfide (NaSH) on hepatic but not renal gluconeogenesis has been reported in rats with T2D. The present study aimed to determine the effects of co-administration of sodium nitrite and NaSH on the expression of genes involved in renal gluconeogenesis in rats with T2D. METHODS T2D was induced by a combination of a high-fat diet and low-dose streptozotocin (30 mg/kg). Male Wistar rats were divided into 5 groups (n = 6/group): Control, T2D, T2D + nitrite, T2D + NaSH, and T2D + nitrite+NaSH. Nitrite and NaSH were administered for nine weeks at a dose of 50 mg/L (in drinking water) and 0.28 mg/kg (daily intraperitoneal injection), respectively. Serum levels of urea and creatinine, and mRNA expressions of PEPCK, G6Pase, FBPase, PC, PI3K, AKT, PGC-1α, and FoxO1 in the renal tissue, were measured at the end of the study. RESULTS Nitrite decreased mRNA expression of PEPCK by 39%, G6Pase by 43%, FBPase by 41%, PC by 63%, PGC-1α by 45%, and FoxO1 by 27% in the renal tissue of rats with T2D; co-administration of nitrite and NaSH further decreases FoxO1, while had no additive effects on the tissue expression of the other genes. In addition, nitrite+NaSH decreased elevated serum urea levels by 58% and creatinine by 37% in rats with T2D. CONCLUSION The inhibitory effect of nitrite on gluconeogenesis in T2D rats is at least in part due to decreased mRNA expressions of renal gluconeogenic genes. Unlike effects on hepatic gluconeogenesis, co-administration of nitrite and NaSH has no additive effects on genes involved in renal gluconeogenesis in rats with T2D.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Lund University, Malmö, Sweden
| | - Khosrow Kashfi
- Department of Molecular, Cellular, Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Abbaszadeh F, Azizi S, Mobasseri M, Ebrahimi-Mameghani M. The effects of citrulline supplementation on meta-inflammation and insulin sensitivity in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetol Metab Syndr 2021; 13:52. [PMID: 33952324 PMCID: PMC8097832 DOI: 10.1186/s13098-021-00669-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study aimed to examine the effects of L-citrulline (l-CIT) on low-grade inflammation (meta-inflammation) and insulin sensitivity in type 2 diabetes (T2D) patients since it has exhibited hypoglycemic and anti-inflammatory effects in most animal studies. METHODS In this double-blind, placebo-controlled randomized clinical trial, 54 patients with T2D referred to specialized clinics of Tabriz University of Medical Sciences were assigned to L-CIT group (receiving orally one 3 g sachet of L-CIT daily before breakfast) or placebo group (receiving orally one 3 g sachet of microcrystalline cellulose daily before breakfast) for eight weeks. Serum levels of fasting blood glucose, hemoglobin A1c (HbA1c), CIT, monocyte chemoattractant protein 1 (MCP-1), interleukin-6 (IL-6), and toll-like receptor 4 (TLR-4) were determined. The quantitative insulin sensitivity check index (QUICKI) and homeostatic model assessment of β-cell function (HOMA-B) index were estimated at the baseline and post-intervention. RESULTS No significant difference was observed between the studied parameters at the baseline. L-CIT supplementation significantly reduced not only serum concentrations of fasting blood glucose but also HbA1c, serum IL-6 and TLR-4 levels in the L-CIT group (p < 0.05). Additionally, at the end of the study serum levels of CIT increased significantly in L-CIT group compared to the baseline and placebo group. Fasting blood glucose concentrations and HbA1c significantly decreased after the intervention compared to the placebo. There was no significant difference in serum IL-6, TLR-4, MCP-1 levels, as well as QUICKI and HOMA-B index between the two groups, even after adjusting for baseline variables and confounders. CONCLUSIONS Our findings revealed that, although L-CIT supplementation significantly reduced fasting blood glucose concentrations, HbA1c and increased serum levels of CIT. It seems it could not significantly improve insulin sensitivity and meta-inflammation biomarkers. Additional studies with longer duration and different doses of L-CIT are required. Trial registration The protocol of this clinical trial is registered at the Iranian Registry of Clinical Trials (registration no: IRCT20100209003320N16 at www.irct.ir ).
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Azizi
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Lost-in-Translation of Metabolic Effects of Inorganic Nitrate in Type 2 Diabetes: Is Ascorbic Acid the Answer? Int J Mol Sci 2021; 22:4735. [PMID: 33947005 PMCID: PMC8124635 DOI: 10.3390/ijms22094735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Beneficial metabolic effects of inorganic nitrate (NO3-) and nitrite (NO2-) in type 2 diabetes mellitus (T2DM) have been documented in animal experiments; however, this is not the case for humans. Although it has remained an open question, the redox environment affecting the conversion of NO3- to NO2- and then to NO is suggested as a potential reason for this lost-in-translation. Ascorbic acid (AA) has a critical role in the gastric conversion of NO2- to NO following ingestion of NO3-. In contrast to AA-synthesizing species like rats, the lack of ability to synthesize AA and a lower AA body pool and plasma concentrations may partly explain why humans with T2DM do not benefit from NO3-/NO2- supplementation. Rats also have higher AA concentrations in their stomach tissue and gastric juice that can significantly potentiate gastric NO2--to-NO conversion. Here, we hypothesized that the lack of beneficial metabolic effects of inorganic NO3- in patients with T2DM may be at least in part attributed to species differences in AA metabolism and also abnormal metabolism of AA in patients with T2DM. If this hypothesis is proved to be correct, then patients with T2DM may need supplementation of AA to attain the beneficial metabolic effects of inorganic NO3- therapy.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (Z.B.); (P.M.)
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (Z.B.); (P.M.)
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran
| |
Collapse
|
14
|
Ghasemi A, Afzali H, Jeddi S. Effect of oral nitrite administration on gene expression of SNARE proteins involved in insulin secretion from pancreatic islets of male type 2 diabetic rats. Biomed J 2021; 45:387-395. [PMID: 34326021 PMCID: PMC9250122 DOI: 10.1016/j.bj.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background Nitrite stimulates insulin secretion from pancreatic β-cells; however, the underlying mechanisms have not been completely addressed. The aim of this study is to determine effect of nitrite on gene expression of SNARE proteins involved in insulin secretion from isolated pancreatic islets in Type 2 diabetic Wistar rats. Methods Three groups of rats were studied (n = 10/group): Control, diabetes, and diabetes + nitrite, which treated with sodium nitrite (50 mg/L) for 8 weeks. Type 2 diabetes was induced using a low-dose of streptozotocin (25 mg/kg) combined with high-fat diet. At the end of the study, pancreatic islets were isolated and mRNA expressions of interested genes were measured; in addition, protein expression of proinsulin and C-peptide in pancreatic tissue was assessed using immunofluorescence staining. Results Compared with controls, in the isolated pancreatic islets of Type 2 diabetic rats, mRNA expression of glucokinase (59%), syntaxin1A (49%), SNAP25 (70%), Munc18b (48%), insulin1 (56%), and insulin2 (52%) as well as protein expression of proinsulin and C-peptide were lower. In diabetic rats, nitrite administration significantly increased gene expression of glucokinase, synaptotagmin III, syntaxin1A, SNAP25, Munc18b, and insulin genes as well as increased protein expression of proinsulin and C-peptide. Conclusion Stimulatory effect of nitrite on insulin secretion in Type 2 diabetic rats is at least in part due to increased gene expression of molecules involved in glucose sensing (glucokinase), calcium sensing (synaptotagmin III), and exocytosis of insulin vesicles (syntaxin1A, SNAP25, and Munc18b) as well as increased expression of insulin genes.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zhang X, Li J, Yang B, Leng Q, Li J, Wang X, Lu J, Olatunji OJ, Tang J. Alleviation of Liver Dysfunction, Oxidative Stress, and Inflammation Underlines the Protective Effects of Polysaccharides from Cordyceps cicadae on High Sugar/High Fat Diet-Induced Metabolic Syndrome in Rats. Chem Biodivers 2021; 18:e2100065. [PMID: 33738897 DOI: 10.1002/cbdv.202100065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the protective effects of two polysaccharides (CPA-1 and CPB-2) from Cordyceps cicadae against high fructose/high fat diet (HF/HFD) induced obesity and metabolic disorders in rats. Rats were either fed with normal diet or HF/HFD and treated with CPA-1 and CPB-2 (100 and 300 mg/kg) for 11 weeks. Administration of CPA-1 and CPB-2 significantly and dose dependently reduced body and liver weight, insulin and glucose tolerance, serum insulin and glucose levels. Furthermore, serum and hepatic lipid profiles, liver function enzymes and proinflammatory cytokines (TNF-α, IL-1β and IL-6) were markedly reduced. Additionally, CPA-1 and CPB-2 treatment alleviated hepatic oxidative stress by reducing lipid peroxidation level (MDA) and upregulating glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities as well as ameliorated histological alterations through the reduction of hepatic lipid accumulation. These results suggested that the polysaccharides from C. cicadae showed protective effects against HF/HFD induced metabolic disturbances and may be considered as a dietary supplement for treating obesity.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Medical Cosmetology, Linyi Central Hospital, Linyi, 276400, P. R. China
| | - Jinpeng Li
- Interventional Therapy Department Ward 1, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, P. R. China
| | - Bo Yang
- Department of Emergency, The People's Hospital of Zhaoyuan City, Zhaoyuan, 265400, P. R. China
| | - Qina Leng
- Urinary Surgery, The People's Hospital of Zhaoyuan City, Zhaoyuan, 265400, P. R. China
| | - Ji Li
- Department of Hepatobiliary Surgery, People's Hospital of Hechuan, Chongqing, 401520, P. R. China
| | - Xintuan Wang
- Department of Hepatobiliary Surgery, The First People's Hospital of Xianyang, Xianyang, 712000, P. R. China
| | - Junyao Lu
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, P. R. China
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, Bozhou, 236800, P. R. China
| |
Collapse
|
16
|
Jeong YJ, Park HY, Nam HK, Lee KW. Fermented Maillard Reaction Products by Lactobacillus gasseri 4M13 Alters the Intestinal Microbiota and Improves Dysfunction in Type 2 Diabetic Mice with Colitis. Pharmaceuticals (Basel) 2021; 14:299. [PMID: 33800583 PMCID: PMC8066505 DOI: 10.3390/ph14040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease is a chronic relapsing disease. Multiple factors can cause inflammatory bowel disease (IBD), including diet, imbalance of the immune system, and impaired intestinal barrier function. Type 2 diabetes mellitus is a complex and chronic metabolic disease caused by a combination of insulin resistance and an ineffective insulin secretory response. The co-occurrence of these two diseases, demonstrating interrelated effects within the gut microbiota, has been frequently reported. This study evaluated the effects of a fermented glycated conjugate of whey protein and galactose with Lactobacillus gasseri 4M13 (FMRP) to prevent type 2 diabetes mellitus with inflammatory bowel disease. C57BLKS/J- db/db mice were orally administered FMRP for 14 consecutive days and 2% dextran sulfate sodium (DSS) in water ad libitum for 5 days to induce colitis. FMRP-fed mice showed improved insulin secretion and symptoms of colitis. Compared to the DSS group, the FMRP group showed a decreased abundance of six bacterial genera and increased abundance of Alistipes and Hungateiclostridium. In cecal contents, the levels of short-chain fatty acids increased in the FMRP group compared to those in the DSS group. Continuous administration of FMRP thus may improve the homeostasis of not only insulin secretion and inflammation, but also the intestinal environment in inflammatory bowel disease and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yu-Jin Jeong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 02841, Korea; (Y.-J.J.); (H.-K.N.)
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea;
| | - Han-Kyul Nam
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 02841, Korea; (Y.-J.J.); (H.-K.N.)
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 02841, Korea; (Y.-J.J.); (H.-K.N.)
| |
Collapse
|
17
|
Zhao LL, Makinde EA, Olatunji OJ. Protective effects of ethyl acetate extract from Shorea roxburghii against diabetes induced testicular damage in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:374-385. [PMID: 33058396 DOI: 10.1002/tox.23043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/15/2020] [Accepted: 10/03/2020] [Indexed: 05/06/2023]
Abstract
Diabetic mellitus is a chronic metabolic disorder that is associated with several complications including testicular dysfunction. This research investigated the protective action of the ethyl acetate extract from Shorea roxburghii (SRE) on diabetes induced testicular damage in rats. Diabetic rats were orally administered with SRE at doses of 100 and 400 mg/kg for 4 weeks. SRE improved the body weight gain, testes weight, testes index and increased serum concentration of testosterone. Furthermore, SRE increased the testicular antioxidant enzymes including superoxide dismutase, catalase and glutathione peroxidase. In addition, SRE ameliorated testicular inflammatory mediators such as myeloperoxidase, tumor necrosis factor alpha, interleukin 6, p38 MAPK and nuclear factor kappa B activation and decreased testicular cell apoptosis in the treated diabetic rats. SRE also raised sperm parameters after treatment of diabetic rats. Conclusively, our results suggested that SRE ameliorated diabetes induced testicular damage by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | | | | |
Collapse
|
18
|
Ameer OZ, Salman IM, Alwadi AY, Ouban A, Abu-Owaimer FM, AlSharari SD, Bukhari IA. Regional functional and structural abnormalities within the aorta as a potential driver of vascular disease in metabolic syndrome. Exp Physiol 2021; 106:771-788. [PMID: 33450088 DOI: 10.1113/ep089213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is aortic dysfunction, a significant contributor to cardiovascular disease in metabolic syndrome, expressed uniformly across both the thoracic and abdominal aorta? What is the main finding and its importance? Our study shows that, in the setting of metabolic syndrome, functional and structural deficits in the aorta are differentially expressed along its length, with the abdominal portion displaying more extensive vascular abnormalities. It is, therefore, likely that early interventional strategies targeting the abdominal aorta might alleviate cardiovascular pathologies driven by the metabolic syndrome. ABSTRACT The extent of vascular dysfunction associated with metabolic syndrome might vary along the length of the aorta. In this study, we investigated regional functional and structural changes in the thoracic and abdominal aorta of a rat model of metabolic syndrome, namely, high-fat diet (HFD) streptozotocin-induced diabetes mellitus (HFD-D). Four-week-old male Wistar albino rats were fed with either HFD or control diet (CD) for 10 weeks. At week 6, 40 mg/kg streptozotocin and its vehicle were injected i.p. into HFD and CD groups, respectively. At the end of the feeding period, rats were euthanised and aortic segments collected for assessment of vascular functional responses and histomorphometry. Tail-cuff systolic blood pressures (154 ± 6 vs. 110 ± 4 mmHg) and areas under the curve for oral glucose and i.p. insulin tolerance tests were greater in HFD-D versus CD rats. Abdominal aortic vasoconstriction in response to noradrenaline and KCl was greater in HFD-D compared with CD rats. Thoracic vasoconstrictor responses to noradrenaline, but not KCl, were greater in the HFD-D group. Abdominal, but not thoracic, endothelium-dependent vasorelaxation in response to acetylcholine was blunted in HFD-D relative to CD rats; however, nitric oxide-dependent vasorelaxation in HFD-D rats was impaired in both thoracic and abdominal segments. The abdominal aorta of HFD-D rats showed deranged interlamellar spacing and increased lipid plaque deposition. In conclusion, vascular dysfunction in metabolic syndrome is expressed differentially along the length of the aorta, with the abdominal aorta exhibiting increased susceptibility to vasoconstrictors and greater deficits in endothelium-dependent relaxation. These vascular functional abnormalities could potentially underlie the development of hypertensive cardiovascular disease associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Omar Z Ameer
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Ibrahim M Salman
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Aiman Y Alwadi
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | | | - Shakir D AlSharari
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ishfaq A Bukhari
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Bahadoran Z, Norouzirad R, Mirmiran P, Gaeini Z, Jeddi S, Shokri M, Azizi F, Ghasemi A. Effect of inorganic nitrate on metabolic parameters in patients with type 2 diabetes: A 24-week randomized double-blind placebo-controlled clinical trial. Nitric Oxide 2020; 107:58-65. [PMID: 33340674 DOI: 10.1016/j.niox.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
AIM In this randomized placebo-controlled clinical trial, effect of oral inorganic nitrate (NO3-) on metabolic parameters was assessed in patients with type 2 diabetes mellitus (T2DM). METHODS Seventy-four eligible patients with T2DM were randomly assigned to NO3--rich beetroot powder (5 g/d contains ~250 mg NO3-) and placebo groups to complete intervention over a 24-week period. Blood HbA1c, fasting serum glucose, insulin, C-peptide, as well as lipid profile were assessed at baseline and again at weeks 4, 12, and 24; indices of insulin resistance were also calculated. To assess safety of long-term oral NO3-, liver and renal function tests were measured. An intention-to-treat approach was used for data analysis. To compare effect of intervention over time between the groups (time×group), repeated measures generalized estimating equation (GEE) linear regression models were used. RESULTS Mean age of the participants was 54.0 ± 8.5 (47.9% were male) and mean duration of diabetes was 8.5 ± 6.1 years. A total of 64 patients (n = 35 in beetroot group and n = 29 in placebo group) completed at least two visits and were included in the analyses. No significant difference was observed between the groups for glycemic and lipid parameters over time. Liver and renal function tests, as safety outcome measures, showed no undesirable changes during the study follow-up. CONCLUSION Supplementation with inorganic NO3- had no effect on metabolic parameters in patients with T2DM.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- Department of Biochemistry, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Gaeini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Different Stages of Alveolar Bone Repair Process Are Compromised in the Type 2 Diabetes Condition: An Experimental Study in Rats. BIOLOGY 2020; 9:biology9120471. [PMID: 33339217 PMCID: PMC7766949 DOI: 10.3390/biology9120471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Type 2 diabetes (T2D) affects more than 90% of all patients diagnosed with diabetes, and among its risk factors, unhealthy eating habits are worth mentioning. With the notorious increase in the incidence of diabetic patients, there has also been an increase in surgical complications in dentistry, so this work presents a study model that mimics the T2D condition in rats, where animals receive a diet composed of foods rich in sugar and fat equivalent to the poor diet of the current population. The animals were submitted to dental extraction to perform analyzes at different stages of the alveolar bone. It is important to highlight that with the development of this experimental model it will be possible to simulate different conditions that are observed in clinics and in consequence and improve the characterization of the cellular responses involved in this complex condition of T2D. The scientific evidence presented in this study shows that T2D prolongs the local inflammatory process, which impairs the organization and maturation of collagen fibers, delaying bone formation and bone turnover. This fact implies in a series of disorders in dental practice, that would need to compensate in other ways, either with systemic medications or local therapies. Abstract The aim of this study was to analyze the stages of the alveolar bone repair in type 2 diabetic rats evaluating the mechanism of mineralization and bone remodeling processes after dental extraction. Forty-eight rats were divided into normoglycemic (NG) and type 2 diabetes (T2D) groups. The upper right incisor was extracted and after 3, 7, 14 and 42 days the animals were euthanized. The following analyses were performed: immunolabeling against antibodies TNFα, TGFβ, IL6, WNT, OCN and TRAP, collagen fibers maturation, microtomography and confocal microscopy. Data were submitted to statistical analysis. The immunolabeling analysis showed that the T2D presented a more pronounced alveolar inflammation than NG. Labeling of proteins responsible for bone formation and mineralization was higher in NG than T2D, which presented greater resorptive activity characterized by TRAP labeling. Also, T2D group showed a decrease in the amount of collagen fibers. Micro-CT analysis showed that T2D causes a decrease in bone volume percentage due to deficient trabecular parameters and higher porosity. The T2D bone dynamics show a loss in bone remodeling process. T2D prolongs the local inflammatory process, which impairs the organization and maturation of collagen fibers, delaying bone formation that generates impact on mineralization and bone turnover.
Collapse
|
21
|
Jeddi S, Gheibi S, Carlström M, Kashfi K, Ghasemi A. Long-term co-administration of sodium nitrite and sodium hydrosulfide inhibits hepatic gluconeogenesis in male type 2 diabetic rats: Role of PI3K-Akt-eNOS pathway. Life Sci 2020; 265:118770. [PMID: 33212150 DOI: 10.1016/j.lfs.2020.118770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE A deficiency in hydrogen sulfide (H2S) and nitric oxide (NO) contributes to the development of type 2 diabetes (T2D). An inhibitory effect on liver gluconeogenesis has been reported in rats with T2D with co-administration of sodium nitrite and sodium hydrosulfide (NaSH); the underlying mechanisms have however not yet been elucidated. The aim of this study is to determine the long-term effects of co-administering sodium nitrite and NaSH on expression of genes involved in liver gluconeogenesis in rats with T2D. METHODS T2D was induced using a high fat diet combined with low-dose of streptozotocin (30 mg/kg). Rats were divided into 5 groups (n = 7/group): Control, T2D, T2D + nitrite, T2D + NaSH, and T2D + nitrite+NaSH. Nitrite (50 mg/L) and NaSH (0.28 mg/kg) were administered for 9 weeks. Intraperitoneal pyruvate tolerance test (PTT) was performed at the end of the ninth week and mRNA expressions of PI3K, Akt, eNOS, PEPCK, G6Pase, and FBPase were measured in the liver. RESULTS Co-administration of nitrite and NaSH decreased elevated serum glucose concentrations during PTT. Compared to T2D + nitrite, co-administration of nitrite and NaSH resulted in significant increases in mRNA expression of PI3K, Akt, and eNOS and significant decreases in mRNA expression of G6Pase and FBPase but had no effect on PEPCK expression. CONCLUSION Long-term NaSH administration at low-dose, potentiated the inhibitory effects of nitrite on mRNA expression of key liver gluconeogenic enzymes in rats with T2D. This inhibitory effect of nitrite and NaSH co-administration on gluconeogenesis were associated with increased gene expression of PI3K, Akt, and eNOS in the liver.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Anand CR, Bhavya B, Jayakumar K, Harikrishnan VS, Gopala S. Inorganic nitrite alters mitochondrial dynamics without overt changes in cell death and mitochondrial respiration in cardiomyoblasts under hyperglycemia. Toxicol In Vitro 2020; 70:105048. [PMID: 33161133 DOI: 10.1016/j.tiv.2020.105048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
Inorganic nitrate or nitrite supplementation has been reported to demonstrate positive outcomes in rodent models of obesity and diabetes as well as in type 2 diabetic humans and even included in clinical trials pertaining to cardiovascular diseases in the recent decade. However, there are contrasting data regarding the useful and toxic effects of the anions. The primary scope of this study was to analyze the beneficial/detrimental alterations in redox status, mitochondrial dynamics and function, and cellular fitness in cardiomyoblasts inflicted by nitrite under hyperglycemic conditions compared with normoglycemia. Nitrite supplementation in H9c2 myoblasts under high glucose diminishes the Bcl-xL expression and mitochondrial ROS levels without significant initiation of cell death or decline in total ROS levels. Concomitantly, there are tendencies towards lowering of mitochondrial membrane potential, but without noteworthy changes in mitochondrial biogenesis and respiration. The study also revealed that under high glucose stress, nitrite may alter mitochondrial dynamics by Drp1 activation possibly via Akt1-Pim1 axis. Moreover, the study revealed differential effects of Drp1 silencing and/or nitrite under the above glycemic conditions. Overall, the study warrants more research regarding the effects of nitrite therapy in cardiac cells exposed to hyperglycemia.
Collapse
Affiliation(s)
- C R Anand
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Bharathan Bhavya
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - K Jayakumar
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| | - V S Harikrishnan
- Division of Laboratory Animal Sciences, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|
23
|
Li YS, Zhao CL, Li BL, Gao XF. Evaluating nitrite content changes in some Chinese home cooking with a newely-developed CDs diazotization spectrophotometry. Food Chem 2020; 330:127151. [DOI: 10.1016/j.foodchem.2020.127151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/04/2020] [Accepted: 05/24/2020] [Indexed: 12/28/2022]
|
24
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
25
|
Makinde EA, Radenahmad N, Zaman RU, Olatunji OJ. Fatty Acids and Sterol Rich Stem Back Extract of
Shorea Roxburghii
Attenuates Hyperglycemia, Hyperlipidemia, and Oxidative Stress in Diabetic Rats. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Nisaudah Radenahmad
- Department of Anatomy Faculty of Science Prince of Prince of Songkla University Hat Yai 90110 Thailand
| | - Raihan Uz Zaman
- Faculty of Thai Traditional Medicine Prince of Songkla University Hat Yai 90110 Thailand
| | | |
Collapse
|
26
|
Gheibi S, Ghasemi A. Insulin secretion: The nitric oxide controversy. EXCLI JOURNAL 2020; 19:1227-1245. [PMID: 33088259 PMCID: PMC7573190 DOI: 10.17179/excli2020-2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a gas that serves as a ubiquitous signaling molecule participating in physiological activities of various organ systems. Nitric oxide is produced in the endocrine pancreas and contributes to synthesis and secretion of insulin. The potential role of NO in insulin secretion is disputable - both stimulatory and inhibitory effects have been reported. Available data indicate that effects of NO critically depend on its concentration. Different isoforms of NO synthase (NOS) control this and have the potential to decrease or increase insulin secretion. In this review, the role of NO in insulin secretion as well as the possible reasons for discrepant findings are discussed. A better understanding of the role of NO system in the regulation of insulin secretion may facilitate the development of new therapeutic strategies in the management of diabetes.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Bahadoran Z, Mirmiran P, Carlström M, Norouzirad R, Jeddi S, Azizi F, Ghasemi A. Different Pharmacokinetic Responses to an Acute Dose of Inorganic Nitrate in Patients with Type 2 Diabetes. Endocr Metab Immune Disord Drug Targets 2020; 21:878-886. [PMID: 32787767 DOI: 10.2174/1871530320666200813135251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/21/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
AIM In this study, we aimed to compare the pharmacokinetics of nitrate (NO3) in patients with type 2 diabetes mellitus (T2DM) and healthy adults. Potential effects of salivary nitrate reductase (NR) activity on cardiometabolic responses to an acute dose of NO3 was also assessed. METHODS Nine healthy adults and nine T2DM patients were recruited to consume a NO3-rich breakfast (~410 mg NO3). Pharmacokinetics of NO3 were examined using repeated measurements of NOx (nitrate+ nitrite) concentrations of serum and saliva over 8 hours and NO3 concentrations of spot and 24-h urine samples. Cardiometabolic parameters, including serum levels of glucose, insulin, and triglycerides as well as blood pressure were also measured. RESULTS Compared to patients with T2DM, serum NOx concentration (Δ1= 16.7 vs. 4.4 μmol/L, P=0.057) of healthy subjects sharply increased within 1 hour after NO3 loading. Healthy subjects had a higher NR activity index, and higher peak salivary NO3 concentration with a lower time to peak. Diabetic patients with high- compared to low-NR values had a higher whole-body NOx exposure (103±31.4 vs. 58.9±22.1 μmol.h/L); they also showed a better glycemic response and more reduction of blood pressure following ingestion of a NO3-rich meal. CONCLUSION T2DM may be associated with a different pattern of NOx pharmacokinetics (especially salivary NOx metabolism). Salivary NR activity may have a critical role in postprandial metabolism of NO3, and diabetic patients with higher NR activity may take more advantages from NO3 supplementation.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Reza Norouzirad
- Department of Biochemistry, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Therapeutic Effects of 5,7-Dihydroxy-6-Oxoheptadecanoic Acid on Dysglycemia, Dyslipidemia, and Other Complications in Diabetic Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20937203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The current study aimed to investigate the therapeutic effects of 5,7-dihydroxy-6-oxoheptadecanoic acid (DHA) from Tiliacora triandra on rat models of type 2 diabetes mellitus (T2DM). T2DM was induced with a combination of high-fat diet/streptozotocin (HFD/STZ), and diabetic rats were treated with DHA (25 mg/kg) for 30 days. The body weight, fasting blood glucose (FBG), serum, and liver biochemical parameters, as well as histological evaluations of the liver and pancreas, were evaluated. Diabetic rats displayed a significant increase in FBG, serum lipid profiles (triglycerides, total cholesterol, and low-density lipoprotein cholesterol), liver function enzymes (aspartate transaminase, alkaline phosphatase, and alanine transaminase), creatinine, liver malondialdehyde (MDA), and myeloperoxidase (MPO) contents. Furthermore, insulin level and liver antioxidant enzyme activities (catalase [CAT], superoxide dismutase [SOD], and glutathione peroxidase [GSH-Px]) were significantly reduced in the diabetic rats. Whereas, treatment with DHA significantly reduced FBG, serum lipids, liver function enzymes, serum creatinine, liver MDA, and MPO contents. In addition, treatment with DHA significantly increased serum insulin level and liver SOD, CAT, and GSH-Px activities. In addition, DHA alleviated histopathological changes in the pancreas and liver caused by T2DM. These results portray the antidiabetic and antioxidative properties of DHA and can be considered as a potential treatment for T2DM.
Collapse
|
29
|
Afzali H, Khaksari M, Norouzirad R, Jeddi S, Kashfi K, Ghasemi A. Acidified nitrite improves wound healing in type 2 diabetic rats: Role of oxidative stress and inflammation. Nitric Oxide 2020; 103:20-28. [PMID: 32693171 DOI: 10.1016/j.niox.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Decreased nitric oxide bioavailability in skin contributes to impaired wound healing in type 2 diabetes (T2D). This study aims at determining effects of acidified nitrite on wound closure as well as inflammatory and antioxidants markers in wound tissue of rats with T2D. MAIN METHODS Skin wound was made on the back of rats 28 days after the induction of T2D (high-fat diet/low-dose of streptozotocin). Control and diabetic rats were subdivided into two subgroups: Untreated control (C), acidified nitrite-treated control (CN), untreated diabetes (D), and acidified nitrite-treated diabetes (DN). Acidified nitrite was applied once daily from day 3 to day 28 and the wounds were photographed for macroscopic changes. On days 3, 7, 14, 21, and 28 after wounding, wound levels of inflammatory and antioxidant markers were measured. RESULTS Half closure time (CT50%) was significantly lower in acidified nitrite-treated diabetic rats compared to untreated ones (5.1 vs. 8.0 days, P < 0.001). Inflammatory response was delayed in diabetic rats and persistent inflammatory response was observed at day 14 after wounding. Acidified nitrite application restored the inflammatory response and antioxidant levels to control values. CONCLUSIONS Acidified nitrite accelerated wound healing in rats with T2D by restoring delayed inflammatory response and augmentation of antioxidant defense.
Collapse
Affiliation(s)
- Hamideh Afzali
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Khaksari
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Design and Investigation of Penetrating Mechanism of Octaarginine-Modified Alginate Nanoparticles for Improving Intestinal Insulin Delivery. J Pharm Sci 2020; 110:268-279. [PMID: 32663595 DOI: 10.1016/j.xphs.2020.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022]
Abstract
The aim of the study is to design octaarginine (R8)-modified insulin-alginate nanoparticles (INS-SA/R8 NPs) as the oral insulin delivery system, and further investigate its penetrating mechanism. The characterization results indicated that the surface of INS-SA/R8 NPs was smooth and the average diameter was about 300 nm. INS-SA/R8 NPs exhibited a stronger stability in the simulated gastrointestinal fluids and had a better controlled release than unmodified alginate nanoparticles (INS-SA NPs). Moreover, INS-SA/R8 NPs group had the strongest insulin transport capacity and the largest amount of insulin uptake in all experimental groups. Most importantly, the improvement of insulin intestinal uptake was further confirmed in rat intestine in vivo, and its penetrating mechanism might be involved in the production of endogenous nitric oxide (NO) signal molecule. In addition, in vivo hypoglycemic studies showed that orally administrated INS-SA/R8 NPs produced a better hypoglycemic effect as compared with INS-SA NPs in diabetic rats. Meanwhile, from the cytotoxicity analysis, INS-SA/R8 NPs were safe for oral administration. Taken together, INS-SA/R8 NPs was a good oral insulin delivery system, which might also be suitable for other protein drugs.
Collapse
|
31
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Makinde EA, Radenahmad N, Adekoya AE, Olatunji OJ. Tiliacora triandra extract possesses antidiabetic effects in high fat diet/streptozotocin-induced diabetes in rats. J Food Biochem 2020; 44:e13239. [PMID: 32281660 DOI: 10.1111/jfbc.13239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 02/04/2023]
Abstract
The antidiabetic properties of Tiliacora triandra ethanol extract in diabetic rats induced with high-fat diet (HFD)/streptozotocin (STZ) was investigated. Rats were fed with HFD for 4 weeks to induced insulin resistance, and thereafter administered with 35 mg/kg of STZ to induce diabetes. Diabetic rats received 100 and 400 mg/kg of T. triandra daily for 30 days. The body weight, blood glucose level, food and fluid intake were monitored. Furthermore, biochemical and histological assessment was performed to evaluate the hypoglycemic effect of the extract in the treated rats. T. triandra significantly decreased the blood glucose level, increased the body weight and insulin secretion. Furthermore, T. triandra attenuated hyperlipidemia, improved liver and kidney functions of treated diabetic rats. Thus, T. triandra could effectively attenuate diabetes and it complications. PRACTICAL APPLICATIONS: Tiliacora triandra is a common vegetable consumed in Thailand and Laos. It is traditionally employed in the treatment of fever, cancer, malaria, and diabetes. The extract from the aerial part was investigated for its antidiabetic properties. The results obtained provides important pharmacological information that supports the use of T. triandra in management of diabetes.
Collapse
Affiliation(s)
| | - Nisaudah Radenahmad
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | | | | |
Collapse
|
33
|
Zhang W, Meng J, Liu Q, Makinde EA, Lin Q, Olatunji OJ. Shorea roxburghii Leaf Extract Ameliorates Hyperglycemia Induced Abnormalities in High Fat/Fructose and Streptozotocin Induced Diabetic Rats. Chem Biodivers 2020; 17:e1900661. [PMID: 31981405 DOI: 10.1002/cbdv.201900661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the hypoglycemic effect of the methanol extract of Shorea roxburghii leaves (SRL) in high fat diet/high fructose solution (HFDHF) and streptozotocin (STZ) induced type 2 diabetes mellitus (T2DM) in rats as well as evaluating its ameliorative potentials in altered biochemical and hematological parameters in the treated rats. T2DM was induced in Sprague Dawley (SD) rats by feeding with HFDHF for 4 weeks and administering STZ (35 mg/kg, i. p.). Diabetic rats were given SRL extract at doses of 100 and 400 mg/kg for 30 days. The food and water intake were monitored on a daily basis, while the fasting blood glucose (FBG) levels and body weight were measured weekly. Biochemical and hematological parameters as well as histopathological studies of the pancreas were also evaluated. SRL significantly decreased FBG and improved the body weight, food and water intake of treated diabetic rats. Furthermore, biochemical and hematological parameters including liver and kidney function enzymes, lipid profiles, white blood and red blood cells parameters were markedly ameliorated by SRL. Histopathological analyses of the pancreas indicated reconstitution of β-cells architecture in SRL treated rats. The results of this study suggest that SRL has antidiabetic potential and can be considered for the treatment of T2DM.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330002, P. R. China
| | - Jie Meng
- Department of Endocrinology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330002, P. R. China
| | - Qian Liu
- Department of Endocrinology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330002, P. R. China
| | | | - Qing Lin
- Department of Cardiothoracic Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, P. R. China
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
34
|
Oghbaei H, Hamidian G, Alipour MR, Alipour S, Keyhanmanesh R. The effect of prolonged dietary sodium nitrate treatment on the hypothalamus-pituitary-gonadal axis and testicular structure and function in streptozotocin-induced diabetic male rats. Food Funct 2020; 11:2451-2465. [PMID: 32129362 DOI: 10.1039/c9fo00974d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the effect of prolonged dietary nitrate supplementation on the gonadotropin level, testicular histology and morphometry, expression of miR-34b and p53 mRNA, and spermatogenesis in streptozotocin-induced diabetic male rats. METHODS Fifty male Wistar rats were divided into 5 groups: Control (C), control + nitrate (CN), diabetes (D), diabetes + insulin (DI), and diabetes + nitrate (DN). Diabetes was induced using 45 mg kg-1 of streptozotocin intraperitoneally. Rats in the CN and DN groups were administered sodium nitrate in drinking water (100 mg L-1). NPH insulin (2-4 U d-1) was injected subcutaneously in the DI group for 2 months. Nitrate and insulin supplementation was started one month after confirmation of diabetes. RESULTS Nitrate supplementation in the DN group significantly increased the body weight (p < 0.05), sperm parameters (p < 0.001), indices of spermatogenesis (p < 0.001), and testis histopathology as well as decreased the blood glucose level (p < 0.001) compared to the untreated diabetic group, although it had no significant effect on testicular parameters, LH and FSH levels. Nitrate administration in the DN group also decreased miR-34b (p < 0.001) and p53 mRNA (p < 0.001) expression, and increased serum insulin and NOx levels compared to the untreated diabetic rats. CONCLUSIONS Chronic nitrate supplementation in streptozotocin-induced diabetic rats improved fertility parameters, which may be associated with increased miR-34b and decreased p53 mRNA.
Collapse
Affiliation(s)
- Hajar Oghbaei
- Department of physiology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | |
Collapse
|
35
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
36
|
Sodium nitrate preconditioning prevents progression of the neuropathic pain in streptozotocin-induced diabetes Wistar rats. J Diabetes Metab Disord 2020; 19:105-113. [PMID: 32550160 DOI: 10.1007/s40200-019-00481-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Purpose The purpose of the study was to evaluate the possible protective effects of low dose sodium nitrate preconditioning on the peripheral neuropathy in streptozotocin (STZ)-induced diabetic model. Methods Male Wistar rats were randomly divided into five groups: control (no intervention), control treated sodium nitrate (100 mg/L in drinking water), diabetic (no intervention), diabetic treated NPH insulin (2-4 U), and diabetic treated sodium nitrate (100 mg/L in drinking water). Diabetes was induced by intraperitoneal injection of STZ (60 mg/kg). All interventions were done for 60 days immediately following diabetes confirmation. Thermal and mechanical algesia thresholds were measured by means of hot-plate test, von Frey test, and tail-withdrawal test before the diabetic induction and after diabetes confirmation. At the end of the experiment, serum NOx level and serum insulin level were assessed. Blood glucose concentration and body weight have recorded at the base and duration of the experiment. Results Both hypoalgesia, hyperalgesia along with allodynia developed in diabetic rats. Significant alterations including, decrease in tail withdrawal latency (30th day), decreased mechanical threshold (60th day), and an increase in hot plate latency (61st day) were displayed in diabetic rats compared to control rats. Nitrate and insulin preconditioning produced protective effects against diabetes-induced peripheral neuropathy. Data analysis also showed a significant increase in glucose level as well as a considerable reduction in serum insulin and body weight of diabetic rats, which restored by both insulin and nitrate preconditioning. Conclusion Sodium nitrate preconditioning produces a protective effect in diabetic neuropathy, which may be mediated by its antihyperglycemic effects and increased serum insulin level.
Collapse
|
37
|
Zhao Q, Li L, Zhu Y, Hou D, Li Y, Guo X, Wang Y, Olatunji OJ, Wan P, Gong K. Kukoamine B Ameliorate Insulin Resistance, Oxidative Stress, Inflammation and Other Metabolic Abnormalities in High-Fat/High-Fructose-Fed Rats. Diabetes Metab Syndr Obes 2020; 13:1843-1853. [PMID: 32547146 PMCID: PMC7266517 DOI: 10.2147/dmso.s247844] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity is characterized by excessive body fat, insulin resistance and dyslipidemia, which increases the chances of developing chronic diseases like type 2 diabetes, cardiovascular diseases, hypertension, nonalcoholic fatty liver diseases, some types of cancers and neurodegenerative diseases. Kukoamine B (Kuk B) is a spermine alkaloid obtained from Lycium chinense, and it has been shown to possess antidiabetic, antioxidant and anti-inflammatory properties. In this study, we evaluated the therapeutic effect of Kuk B on high-fat diet/high-fructose (HFDFr)-induced insulin resistance and obesity in experimental rats. MATERIALS AND METHODS Rats were fed with either normal rat diet or HFDFr for 10 consecutive weeks. The groups that were fed with HFDFr received Kuk B (25 and 50 mg/kg) from the beginning of the 6th week to the 10th week. After treatment, the effect of Kuk B on body weight, food, water intake, insulin, blood glucose, serum biochemical parameters, hepatic oxidative stress (malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and proinflammatory cytokine (interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α)) levels was determined. Histopathological analysis of the liver tissues was also performed. RESULTS HFDFr-fed rats showed a significant increase in body weight, fasting blood glucose, insulin, lipid accumulation and liver function enzymes. In addition, HFDFr diet increased hepatic MDA, TNF-α, IL-1β and IL-6 and decreased hepatic SOD, CAT and GSH-Px activities. On the other hand, Kuk B significantly attenuated body weight, insulin resistance, lipid accumulation, oxidative stress and inflammation. CONCLUSION These results indicated that Kuk B showed protective effect against HFDFr-induced metabolic disorders by downregulating lipid accumulation, oxidative stress and inflammatory factors.
Collapse
Affiliation(s)
- Quan Zhao
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Linhai Li
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Yu Zhu
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Dezhi Hou
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Yuejin Li
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Xiaodong Guo
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Yongzhi Wang
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | | | - Ping Wan
- Department of Digestive Internal Medicine, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
- Ping Wan Department of Digestive Internal Medicine, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China Email
| | - Kunmei Gong
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
- Correspondence: Kunmei Gong Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China Email
| |
Collapse
|
38
|
Zych M, Wojnar W, Borymski S, Szałabska K, Bramora P, Kaczmarczyk-Sedlak I. Effect of Rosmarinic Acid and Sinapic Acid on Oxidative Stress Parameters in the Cardiac Tissue and Serum of Type 2 Diabetic Female Rats. Antioxidants (Basel) 2019; 8:E579. [PMID: 31771099 PMCID: PMC6943504 DOI: 10.3390/antiox8120579] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are one of the most common complications of type 2 diabetes. They are considered the leading cause of death among diabetics. One of the mechanisms underlying diabetic cardiovascular complications is oxidative stress. Many phenolic acids are regarded as antioxidants. The aim of the study was to investigate the effect of rosmarinic acid (RA) and sinapic acid (SA) on oxidative stress parameters in the cardiac tissue and serum of type 2 diabetic female rats. Additionally, the effect of these compounds on glucose homeostasis and lipid profile in the serum was evaluated. Type 2 diabetes was induced with high-fat diet and streptozotocin. RA at the doses of 10 and 50 mg/kg and SA at the doses of 5 and 25 mg/kg were administrated orally for 28 days. Untreated diabetic rats exhibited unfavorable changes in glucose metabolism and lipid profile. Changes in the enzymatic and non-enzymatic markers indicated the onset of oxidative stress in these animals. The results showed that the higher doses of the tested phenolic acids-50 mg/kg of RA and 25 mg/kg of SA-revealed beneficial effects on oxidative stress in the cardiac tissue of diabetic rats.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| | - Sławomir Borymski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Katarzyna Szałabska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| | - Piotr Bramora
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| |
Collapse
|
39
|
Hydrogen sulfide potentiates the favorable metabolic effects of inorganic nitrite in type 2 diabetic rats. Nitric Oxide 2019; 92:60-72. [PMID: 31479766 DOI: 10.1016/j.niox.2019.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/17/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Decreased nitric oxide (NO) bioavailability and hydrogen sulfide (H2S) deficiency have been linked with the pathophysiology of type 2 diabetes (T2D). Restoration of NO levels by nitrite have been associated with favorable metabolic effects in T2D. Moreover, H2S can potentiate the effects of NO in the cardiovascular system. The aim of this study was to determine the effects of long-term co-administration of sodium nitrite and sodium hydrosulfide (NaSH) on carbohydrate metabolism in type 2 diabetic rats. METHODS T2D was induced using chronic high fat diet (HFD) feeding combined with low dose streptozotocin (STZ) regimen. Rats were divided into 5 groups (N = 10/group): Control, T2D, T2D + nitrite, T2D + NaSH, and T2D + nitrite + NaSH. Nitrite (50 mg/L in drinking water) and NaSH (0.28 mg/kg, daily i. p. injection) were administered for 9 weeks. Fasting serum glucose, insulin, lipid profile, liver function tests, and oxidative stress indices were measured. Intraperitoneal glucose tolerance test (GTT) was performed at the end of the eighth week, and three days later, intraperitoneal pyruvate tolerance test (PTT) was done. Protein levels and mRNA expression of glucose transporter type 4 (GLUT4) in soleus muscle and epididymal adipose tissue as well as mRNA expression of H2S-producing enzymes in the liver, soleus muscle, and epididymal adipose tissue were measured at the end of the study. RESULTS Compared to the controls, HFD and STZ treated rats developed metabolic dysfunction. Nitrite treatment improved carbohydrate metabolism, liver function, and oxidative stress indices whereas NaSH treatment per se had no significant effects. However, co-administration of NaSH and nitrite resulted in further improvement in serum insulin level, GTT, PTT, liver function, oxidative stress, protein level and mRNA expression of GLUT4, as well as mRNA expression of H2S-producing enzymes in diabetic rats. CONCLUSION Low dose of NaSH per se had no effect on carbohydrate metabolism while it potentiated the favorable metabolic effects of inorganic nitrite in type 2 diabetic rats. These favorable effects were associated with decreased oxidative stress and increased GLUT4 expression in insulin-sensitive tissues as well as improvement of liver function.
Collapse
|
40
|
Ni Z, Guo L, Liu F, Olatunji OJ, Yin M. Allium tuberosum alleviates diabetic nephropathy by supressing hyperglycemia-induced oxidative stress and inflammation in high fat diet/streptozotocin treated rats. Biomed Pharmacother 2019; 112:108678. [DOI: 10.1016/j.biopha.2019.108678] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022] Open
|
41
|
Norouzirad R, Ghanbari M, Bahadoran Z, Abdollahifar MA, Rasouli N, Ghasemi A. Hyperoxia improves carbohydrate metabolism by browning of white adipocytes in obese type 2 diabetic rats. Life Sci 2019; 220:58-68. [DOI: 10.1016/j.lfs.2019.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/20/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
|
42
|
Beneficial treatment effects of dietary nitrate supplementation on testicular injury in streptozotocin-induced diabetic male rats. Reprod Biomed Online 2019; 39:357-371. [PMID: 30952494 DOI: 10.1016/j.rbmo.2018.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023]
Abstract
RESEARCH QUESTION Do low doses of dietary nitrate help to attenuate the progression of diabetic reproductive disorders in streptozotocin-induced diabetic male rats? DESIGN Fifty male Wistar rats were divided into five groups: controls receiving distilled water; controls receiving 100 mg/l nitrate in distilled water; diabetic rats receiving distilled water; diabetic rats receiving insulin 2-4 U/day of neutral protamine hagedorn insulin; and diabetic rats receiving 100 mg/l nitrate in distilled water. Diabetes was induced by 45 mg/kg streptozotocin. Nitrate and insulin treatment were started 4 weeks after diabetes induction for 8 weeks. Serum insulin, nitrogen oxide, stereology of testis, apoptosis, sperm parameters, and mRNA expression of Pdcd4, Pacs2, p53 and miR-449a were assessed at the end of the study. RESULTS Blood glucose, apoptotic index of seminiferous tubules and expression of p53, Pdcd4, and Pacs2 mRNA were significantly higher in the diabetic rats (P < 0.001). Decreased body weight, serum insulin and nitrogen oxide level, and miR-449a were observed in the diabetic group (P < 0.01 for insulin; P < 0.001 for others). Most sperm parameters and stereological results differed between diabetic and control rats; nitrate recovered almost all these alterations, including dead spermatozoa, sperm motility grade, sperm deformity index, spermatozoa with damaged DNA, malformations in abnormal spermatozoa, total volume of seminiferous tubule, germinal epithelium, capsule, lumen, interstitial tissue, seminiferous tubule diameter, germinal epithelium height, the number of spermatogenic, Sertoli and Leydig cells. CONCLUSIONS Treatment with sodium nitrate could modulate apoptosis, which is a major cause of diabetic testicular disorder. These experiments suggest that nitric oxide plays an important role in the function of the reproductive system.
Collapse
|
43
|
Oghbaei H, Alipour MR, Hamidian G, Ahmadi M, Ghorbanzadeh V, Keyhanmanesh R. Two months sodium nitrate supplementation alleviates testicular injury in streptozotocin-induced diabetic male rats. Exp Physiol 2018; 103:1603-1617. [DOI: 10.1113/ep087198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Hajar Oghbaei
- Department of physiology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Reza Alipour
- Tuberculosis and Lung Diseases Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences; Faculty of Veterinary Medicine; University of Tabriz; Tabriz Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Vajihe Ghorbanzadeh
- Razi herbal medicines research center; Lorestan University of medical sciences; Khorramabad Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
44
|
Keyhanmanesh R, Hamidian G, Alipour MR, Ranjbar M, Oghbaei H. Protective effects of sodium nitrate against testicular apoptosis and spermatogenesis impairments in streptozotocin-induced diabetic male rats. Life Sci 2018; 211:63-73. [PMID: 30205097 DOI: 10.1016/j.lfs.2018.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/13/2022]
Abstract
AIMS As nitric oxide (NO) production is essential for insulin signaling, glucose uptake, endothelial function, and regulation of apoptosis, the loss of bioavailable NO may be a mechanism underlying the development of diabetes complication. Dietary nitrate acts as a substrate for NO generation, thus serving as a physiological source of NO. This study evaluated the therapeutic effects of nitrate supplementation on the apoptosis-induced testicular disorders in diabetic rats. MAIN METHODS Fifty male Wistar rats were divided into five groups; control, control with 100 mg/L nitrate in distilled drinking water, diabetes, diabetes treated with 2-4 U/day NPH insulin, diabetes treated with 100 mg/L nitrate in distilled drinking water. After 8 weeks, blood samples, testis, and epididymis were collected to assess the apoptosis process and the stereology of testis tissue, sperm motility, morphology and DNA fragmentation, and also mRNA expression of miR-449a, p53, Pdcd4, and Pacs2 mRNA, as well as serum glucose, insulin, and NOx levels were investigated. KEY FINDINGS The results of this study indicated that nitrate treatment ameliorated the sperm parameters, testicular morphometrical and stereological alterations, reduced blood glucose, the number of TUNEL positive cells and tubules, and testicular expressions of p53, Pdcd4, and Pacs2 mRNA as well as increased body weight, serum insulin and NOx levels, and testicular expression of miR-449a in streptozotocin-induced diabetic rats. SIGNIFICANCE Our in vivo evidence revealed that nitrate treatment may has a favorable effect as an exogenous NO donor on experimental diabetic testicular damages in which NO bioavailability is impaired.
Collapse
Affiliation(s)
- Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Minoo Ranjbar
- Department of Midwifery, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Hajar Oghbaei
- Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
45
|
Bakhtiarzadeh F, Siavoshi F, Gheibi S, Kashfi K, Samadi R, Jeddi S, Ghasemi A. Effects of long-term oral nitrate administration on adiposity in normal adult female rats. Life Sci 2018; 210:76-85. [PMID: 30118772 DOI: 10.1016/j.lfs.2018.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/04/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Nitric oxide (NO) deficiency is associated with obesity. Nitrate could act as a substrate for production of NO and is a novel therapeutic agent in obesity. This study aims at determining effects of long-term nitrate administration on obesity indices in normal adult female rats. METHODS Female Wistar rats were divided into four groups (n = 10/each): i.e. control group received tap water and three treatment groups received water containing 50, 100 and 150 mg/L sodium nitrate for 6 months. Body weight (g) was measured monthly; naso-anal length (cm) and obesity indices including body mass index (BMI), Lee index, abdominal and thoracic circumferences were determined every two months. Both white adipose tissue (WAT) and brown adipose tissue (BAT) were weighted and then adiposity index was calculated. In addition, level of NOx (nitrate + nitrite) in serum and adipose tissues were measured at the end of the study. RESULTS Compared to controls, body weights and naso-anal length were significantly (P < 0.001) lower in all nitrate-treated rats. Compared to controls, nitrate-treated rats had also lower adiposity indices, BMI, Lee index, abdominal and thoracic circumferences (13%, 17% and 22% for BMI and 5%, 6% and 8% for lee index at dose 50, 100, and 150 mg/L, respectively). In addition, nitrate administration increased NOx levels in serum and adipose tissues. CONCLUSIONS Long-term nitrate administration has favorable effects on adiposity. It increases brown and decreases white adipose tissues in normal female rats; these observations could potentially help in management of obesity.
Collapse
Affiliation(s)
- Fatemeh Bakhtiarzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Siavoshi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Roghaieh Samadi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Sohrabipour S, Sharifi MR, Sharifi M, Talebi A, Soltani N. Effect of magnesium sulfate administration to improve insulin resistance in type 2 diabetes animal model: using the hyperinsulinemic-euglycemic clamp technique. Fundam Clin Pharmacol 2018; 32:603-616. [PMID: 29869808 DOI: 10.1111/fcp.12387] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 05/08/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022]
Abstract
This study attempted to elucidate the possible mechanism of magnesium sulfate (MgSO4 ) administration on reducing insulin resistance in type 2 diabetic rats. Fifty Wistar rats were divided into five groups: NDC was fed the normal diet, CD received high-fat diet with 35 mg/kg of streptozotocin, CD-Mg animals received MgSO4 via drinking water, CD-Ins1, and CD-Ins2 animals treated with low or high dose of insulin. Body weight and blood glucose levels were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test, and metabolic cage assessment were performed monthly. After 12 weeks, the hyperinsulinemic-euglycemic clamp was performed for all animals and blood sample was taken to measure glycated hemoglobin (HbA1c), plasma insulin, glucagon, calcium, and magnesium levels. Liver and gastrocnemius muscle were isolated to measure glucagon receptor (GR), Glucose 6 phosphatase (G6Pase), Phosphoenolpyruvate carboxykinase (Pepck) and Glucose transporter 4 (Glut4) genes expression and GLUT4 protein translocation into the cell membrane. Consuming of high-fat diet generated insulin-resistant rats. Magnesium or insulin therapy altered insulin resistance, blood glucose, IPGTT, gluconeogenesis pathway, GR, body weight, the percentage of body fat, and HbA1C in diabetic rats. Administrations of MgSO4 or insulin in Type 2 diabetes mellitus animals increase GLUT4 gene and protein expression. Mg could improve glucose tolerance via stimulation of Glut4 gene expression and translocation and also suppression of the gluconeogenesis pathway and GR gene expression. Mg also increased glucose infusion rate and displayed beneficial effects in the treatment of glucose metabolism and improved insulin resistance.
Collapse
Affiliation(s)
- Shahla Sohrabipour
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar, Abbas, Iran
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Department of Clinical Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
47
|
Abstract
Nitric oxide (NO), generated from L-arginine and oxygen by NO synthases, is a pleiotropic signaling molecule involved in cardiovascular and metabolic regulation. More recently, an alternative pathway for the formation of this free radical has been explored. The inorganic anions nitrate (NO3-) and nitrite (NO2-), originating from dietary and endogenous sources, generate NO bioactivity in a process involving seemingly symbiotic oral bacteria and host enzymes in blood and tissues. The described cardio-metabolic effects of dietary nitrate from experimental and clinical studies include lowering of blood pressure, improved endothelial function, increased exercise performance, and reversal of metabolic syndrome, as well as antidiabetic effects. The mechanisms underlying the salutary metabolic effects of nitrate are being revealed and include interaction with mitochondrial respiration, activation of key metabolic regulatory pathways, and reduction of oxidative stress. Here we review the recent advances in the nitrate-nitrite-NO pathway, focusing on metabolic effects in health and disease.
Collapse
|
48
|
Effect of long-term nitrite administration on browning of white adipose tissue in type 2 diabetic rats: A stereological study. Life Sci 2018; 207:219-226. [PMID: 29898382 DOI: 10.1016/j.lfs.2018.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/27/2018] [Accepted: 06/09/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Nitric oxide (NO) deficiency is associated with obesity and type 2 diabetes. Nitrite, a NO donor, is considered as a new therapeutic agent in diabetes. This study aims at determining effects of long-term nitrite administration on browning of white adipose tissue (WAT) in type 2 diabetic rats. METHODS Male rats were divided into 4 groups: Control, control + nitrite, diabetes, and diabetes + nitrite. Sodium nitrite (50 mg/L in drinking water) was administered for 3 months. Body weight was measured weekly. Fasting serum levels of glucose and nitric oxide metabolites (NOx) were measured monthly. Histological evaluations and measurement of cyclic guanosine monophosphate (cGMP) and NOx levels in adipose tissue were done at the end of the study. RESULTS Nitrite decreased serum glucose concentration and body weight gain in diabetic rats by 27.6% and 37.9%, respectively. In diabetic rats, nitrite increased NOx and cGMP levels in inguinal WAT by 95.7% and 33.1%, respectively. Numerical density in WAT of nitrite-treated diabetic rats was higher than in diabetic ones (995 ± 83 vs. 2513 ± 256 cell/mm3, P < 0.001); in addition, total surface area (4.84 ± 0.32 vs. 44.26 ± 9.7, mm2, P < 0.001) and volume of inguinal beige adipose tissue (7.2 ± 0.49 vs. 66.4 ± 14.51 mm3, <0.001) were higher in nitrite-treated diabetic rats compared to diabetic ones. CONCLUSIONS Favorable effects of long-term nitrite administration in obese type 2 diabetic rats is, at least in part, due to browning of WAT and also associated with increased NOx and cGMP level in adipose tissue. These findings may have potential applications for management of diabesity.
Collapse
|
49
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. Nitric Oxide 2018; 75:27-41. [PMID: 29432804 DOI: 10.1016/j.niox.2018.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/18/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Supplementation with inorganic nitrate to boost the nitrate-nitrite-nitric oxide (NO) pathway, may act as a potential therapeutic agent in diabetes. The aim of this study was to determine the effects of nitrate on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in obese type 2 diabetic rats. METHODS Male Wistar rats were divided into 4 groups: Control, control + nitrate, diabetes, and diabetes + nitrate. Diabetes was induced using a high-fat diet and low-dose of streptozotocin. Sodium nitrate (100 mg/L in drinking water) was administered simultaneously for two months. Serum levels of fasting glucose, insulin, and lipid profiles were measured every 2-weeks. Glycated hemoglobin (HbA1c) was measured monthly. Serum thiobarbituric reactive substances (TBARS) level and catalase activity were measured before and after treatment. At the end of the study, glucose, pyruvate, and insulin tolerance tests were done. Glucose-stimulated insulin secretion (GSIS) and insulin content from isolated pancreatic islets were also assessed; mRNA expression of iNOS as well as mRNA expression and protein levels of GLUT4 in insulin-sensitive tissues, and serum IL-1β were determined. RESULTS Nitrate supplementation in diabetic rats significantly improved glucose tolerance, lipid profiles, and catalase activity as well as decreased gluconeogenesis, fasting glucose, insulin, and IL-1β; although it had no significant effect on GSIS, islet insulin content, HbA1c, and serum TBARS. Compared to the controls, in diabetic rats, mRNA expression and protein levels of GLUT4 were significantly lower in the soleus muscle (54% and 34%, respectively) and epididymal adipose tissue (67% and 41%, respectively). In diabetic rats, nitrate administration increased GLUT4 mRNA expression and protein levels in both soleus muscle (215% and 17%, respectively) and epididymal adipose tissue (344% and 22%, respectively). In diabetic rats, nitrate significantly decreased elevated iNOS mRNA expression in both the soleus muscle and epididymal adipose tissue. CONCLUSION Chronic nitrate supplementation in obese type 2 diabetic rats improved glucose tolerance, insulin resistance, and dyslipidemia; these favorable effects were associated with increased mRNA and protein expression of GLUT4 and decreased mRNA expression of iNOS in insulin-sensitive tissues, and with decreased gluconeogenesis, inflammation, and oxidative stress.
Collapse
|