1
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Lee-Martínez SN, Luzardo-Ocampo I, Vergara-Castañeda HA, Vasco-Leal JF, Gaytán-Martínez M, Cuellar-Nuñez ML. Native corn (Zea mays L., cv. 'Elotes Occidentales') polyphenols extract reduced total cholesterol and triglycerides levels, and decreased lipid accumulation in mice fed a high-fat diet. Biomed Pharmacother 2024; 180:117610. [PMID: 39447534 DOI: 10.1016/j.biopha.2024.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Obesity is a complex disease with numerous molecular and metabolic implications that could be prevented through proper diet and lifestyle. Native corn is a promissory underutilized plant species containing bioactive compounds that could reduce the impact of obesity. This research aimed to characterize and evaluate the anti-obesogenic effect of a polyphenols-rich extract of native corn ('Elotes Occidentales') in HFD-fed mice. The powdered extract was administered using gelatins to C57BL/6 J mice randomly divided into four groups (n:8/group) for 13 weeks: standard diet (SD) group, HFD group, HFD+200 mg extract/kg body weight (BW), and HFD+400 mg extract/kg BW/day. Ellagic acid, chlorogenic acid, rutin, and kaempferol were the most abundant phenolics (2022.44-4028.43 µg/g). Among the HFD groups, the highest dose of the extracts promoted the lowest BW gain, and fasting triglycerides and cholesterol levels. Moreover, the HFD+400 mg/kg BW group showed the lowest epididymal and subcutaneous adipose tissue weight and adipocytes' diameter and area between the HFD-treated animals. The extract administration prevented hepatic lipid accumulation. Rutin demonstrated the highest in silico binding affinity with proteins from the AMPK pathway (ACACA, SIRT1, and SREBP1) (-6.70 to -8.70 kcal/mol). Results indicated beneficial effects in alleviating obesity-associated parameters in vivo due to bioactive compounds from native maize extracts.
Collapse
Affiliation(s)
- Sarah N Lee-Martínez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Ivan Luzardo-Ocampo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, 64700 N. L., Mexico; Tecnologico de Monterrey, School of Enginering and Sciences, Av. Gral. Ramon Corona 2514, Zapopan, 45201 Jal., Mexico.
| | - Haydé A Vergara-Castañeda
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Jose F Vasco-Leal
- Posgrado de Gestión Tecnológica e Innovación, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - M Liceth Cuellar-Nuñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México.
| |
Collapse
|
3
|
Zhu L, Zhan C, Yu X, Hu X, Gao S, Zang Y, Yao D, Wang C, Xu J. Extractions, Contents, Antioxidant Activities and Compositions of Free and Bound Phenols from Kidney Bean Seeds Represented by 'Yikeshu' Cultivar in Cold Region. Foods 2024; 13:1704. [PMID: 38890932 PMCID: PMC11171797 DOI: 10.3390/foods13111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
To thoroughly understand the profile of phenolic phytochemicals in kidney bean seeds cultivated in a cold region, the extractions, contents, antioxidant activities, compositions of free and bound phenols in the seed coat and cotyledon, and also relevant color attributes, were investigated. The results indicated that ultrasound-assisted extraction was an efficient method for free phenols. The bound phenols in seed coat and cotyledon were released more efficiently by alkali-acid and acid-alkali sequential hydrolysis, respectively. Under the optimized extractions, total phenols (TPC), flavonoids (TFC), and anthocyanins (TAC) ranged in 7.81-32.89 mg GAE/g dw, 3.23-15.65 mg RE/g dw, and 0-0.21 mg CE/g dw in the whole seeds of the five common kidney beans. There was a big difference in phenolic distribution between red and white seeds. From whole seed, the phenols in the four red cultivars mainly existed in free state (78.84%) and seed coat (71.56%), while the phenols in the white 'Sark' divided equally between free (51.18%) and bound (48.82%) states and consisted chiefly in cotyledon (81.58%). The correlation analyses showed that the antioxidant activities were significantly and positively correlated with TPC and TFC. The phenolic attributes were closely associated with the color of the seed coat. Red seeds had higher total contents of phenols than white seeds. TAC had a positively significant correlation with redness. Brightness and yellowness showed a negatively significant correlation with TPC, TFC, and antioxidant capacities, which were necessarily linked with redness degree and spot in red seeds. The spotted red 'Yikeshu' with the most outstanding performance on phenolic attributes was selected to analyze phenolic compounds with UHPLC-QE-MS. Among the 85 identified phenolics, 2 phenolic acids and 10 flavonoids were dominant. The characteristic phenolics in free and bound states were screened in both seed coat and cotyledon, respectively. The available information on the phenolic profile may expand the utilization of kidney beans as a nutritional ingredient in the food industry.
Collapse
Affiliation(s)
- Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (L.Z.); (C.Z.); (X.Y.); (S.G.); (Y.Z.); (D.Y.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
- Agri-Food Processing and Engineering Technology Research Center, Daqing 163319, China
| | - Chuan Zhan
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (L.Z.); (C.Z.); (X.Y.); (S.G.); (Y.Z.); (D.Y.)
| | - Xinchu Yu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (L.Z.); (C.Z.); (X.Y.); (S.G.); (Y.Z.); (D.Y.)
| | - Xixi Hu
- Daqing Branch, Heilongjiang Academy of Agricultural Sciences, Daqing 163319, China;
| | - Sibo Gao
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (L.Z.); (C.Z.); (X.Y.); (S.G.); (Y.Z.); (D.Y.)
| | - Yanqing Zang
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (L.Z.); (C.Z.); (X.Y.); (S.G.); (Y.Z.); (D.Y.)
| | - Di Yao
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (L.Z.); (C.Z.); (X.Y.); (S.G.); (Y.Z.); (D.Y.)
| | - Changyuan Wang
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (L.Z.); (C.Z.); (X.Y.); (S.G.); (Y.Z.); (D.Y.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Jingyu Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
4
|
Leitão AE, Roschel H, Oliveira-Júnior G, Genario R, Franco T, Monteiro CA, Martinez-Steele E. Association between ultra-processed food and flavonoid intakes in a nationally representative sample of the US population. Br J Nutr 2024; 131:1074-1083. [PMID: 37936338 DOI: 10.1017/s0007114523002568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Consumption of ultra-processed food (UPF) has been associated with several chronic diseases and poor diet quality. It is reasonable to speculate that the consumption of UPF negatively associates with flavonoid dietary intake; however, this assumption has not been previously examined. The present study aims to assess association between the dietary contribution of UPF and flavonoid intake in the US population aged 0 years and above. We performed a cross-sectional analysis of dietary data collected by 24-h recalls from 7640 participants participating in the National Health and Nutrition Examination Survey 2017-2018. Foods were classified according to the Nova classification system. The updated US Department of Agriculture (USDA) Database for the Flavonoid Content of Selected Foods (Release 3.3) database was used to estimate total and six classes of flavonoid intakes. Flavonoid intakes were compared across quintiles of dietary contribution of UPF (% of total energy intake) using linear regression models. The total and five out of six class flavonoid intakes decreased between 50 and 70 % across extreme quintiles of the dietary contribution of UPF (Pfor linear trend < 0·001); only isoflavones increased by over 260 %. Our findings suggest that consumption of UPF is associated with lower total and five of six class flavonoid intakes and with higher isoflavone intakes, supporting previous evidence of the negative impact of UPF consumption on the overall quality of the diet and health outcomes.
Collapse
Affiliation(s)
- Alice Erwig Leitão
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Gersiel Oliveira-Júnior
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Genario
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Tathiane Franco
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Augusto Monteiro
- Departament of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Center for Epidemiological Studies in Health and Nutrition, University of São Paulo, São Paulo, Brazil
| | - Euridice Martinez-Steele
- Departament of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Center for Epidemiological Studies in Health and Nutrition, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
6
|
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules 2024; 14:221. [PMID: 38397458 PMCID: PMC10887194 DOI: 10.3390/biom14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.); (S.K.); (B.S.)
| |
Collapse
|
7
|
Canedo-Reis NAP, de Oliveira Pereira FS, Ávila DS, Guerra CC, Flores da Silva L, Junges CH, Ferrão MF, Bergold AM. Grape juice reduces the effects of amyloid β aggregation phenotype and extends the longevity in Caenorhabditis elegans. Nutr Neurosci 2023; 26:1147-1158. [PMID: 36342065 DOI: 10.1080/1028415x.2022.2140394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of aggregated amyloid-β (Aβ) peptides. Several natural compounds have been proposed against this disease and grape products are among these. However, little is known about grape juice potential. Transgenic Caenorhabditis elegans (C. elegans) strains that express human Aβ have been used as an in vivo model for AD. METHODS In this study, we have exposed CL2006 worms to nine different juices obtained from different cultivars. RESULTS Cora, Bordo, Isabel, Isabel Precoce, BRS-Magna, BRS-Rubea and BRS-Violeta juices improved the behavioral phenotype (paralysis) that is caused by Aβ aggregation in the transgenic animals at the concentrations tested and no toxic effects were found. Some juices were also able to increase the worm's lifespan. We could not attribute lifespan increase and paralysis reduction with any specific compound found in the phytochemical analysis. DISCUSSION Our data indicate that the rich constitution of the juices is responsible for attenuating the phenotype caused by Aβ aggregation in C. elegans.
Collapse
Affiliation(s)
| | - Flávia Suelen de Oliveira Pereira
- Programa de Pós-Graduação em Bioquímica, Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Daiana Silva Ávila
- Programa de Pós-Graduação em Bioquímica, Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Celito Crivellaro Guerra
- LACEM - Laboratório de Cromatografia e Espectrometria de Massas, Embrapa Uva e Vinho, Bento Gonçalves, Brazil
| | - Letícia Flores da Silva
- LACEM - Laboratório de Cromatografia e Espectrometria de Massas, Embrapa Uva e Vinho, Bento Gonçalves, Brazil
| | - Carlos Henrique Junges
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marco Flôres Ferrão
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Maria Bergold
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023; 12:3610. [PMID: 37835263 PMCID: PMC10572887 DOI: 10.3390/foods12193610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 Quakenbrück, Germany
| | | | - Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Nibedita Ghosh
- Department of Pharmacology, Girijananda Chowdhury University, Guwahati 781017, Assam, India;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
9
|
Shiraseb F, Hosseininasab D, Noori S, Ebrahimi S, Asjodi F, Ghaffarian-Ensaf R, Carnauba RA, Mirzaei K. Inflammatory biomarkers in overweight and obese Iranian women are associated with polyphenol intake. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:39. [PMID: 37147659 PMCID: PMC10161422 DOI: 10.1186/s41043-023-00376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/08/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND The evidence shows that obesity is associated with chronic inflammation in obese subjects. Polyphenols are a complex group of plant secondary metabolites that may play a role in reducing the risk of obesity and obesity-related diseases. Given the scarcity of evidence on the association between inflammatory markers and dietary polyphenols intake in overweight/obese Iranian women, the current study aims to investigate this link. METHOD The present cross-sectional study was conducted on 391 overweight and obese Iranian women aged 18-48 years (body mass index (BMI) ≥ 25 kg/m2). A 147-item food frequency questionnaire (FFQ) was used to assess dietary intake, as well as anthropometric indices including weight, height, waist circumference (WC), and hip circumference (HC) and biochemistry parameters including triglyceride (TG), total cholesterol (Chole), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), serum glutamic pyruvic transaminase (SGPT), serum glutamic-oxaloacetic transaminase (SGOT), galactin-3 (Gal-3), monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta (TGF-β), interleukin-1 beta (IL_1β), plasminogen activator inhibitor-1 (PA-I), serum leptin concentrations, and C-reactive protein of high sensitivity (hs-CRP) in all participants. The inflammatory markers were assessed using the enzyme-linked immunosorbent assay (ELISA). RESULT The findings revealed a significant negative association between flavonoids intake and MCP-1 (P = 0.024), lignans intake and MCP-1 (P = 0.017), and Gal-3 (P = 0.032). These significant associations were observed between other polyphenols intake and IL_1β (P = 0.014). There was also a significant positive association between other polyphenol intake and TGF-β (P = 0.008) and between phenolic acid intake and TGF-β (P = 0.014). CONCLUSION Our findings suggest that a high polyphenol intake may help individuals to reduce systemic inflammation. Further large studies involving participants of different ages and genders are highly warranted.
Collapse
Affiliation(s)
- Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Dorsa Hosseininasab
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Noori
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Ebrahimi
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Melbourne, VIC, Australia
| | - Foad Asjodi
- IFMARK, FIFA Medical Center of Excellence, Tehran, Iran
| | | | - Renata A Carnauba
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel) 2023; 12:antiox12020416. [PMID: 36829976 PMCID: PMC9952395 DOI: 10.3390/antiox12020416] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is a condition that leads to increased health problems associated with metabolic disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of plant origin that can be incorporated as functional food ingredients. This review presents recent developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential application of food-derived polyphenols as agents against obesity has been summarized. Literature evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes, modulate neurohormones/peptides involved in food intake, and their ability to improve the growth of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of polyphenols by gut microbes produces different metabolites with enhanced biological properties. Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional foods for treating obesity. Upcoming investigations need to explore novel techniques, such as nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at the target sites in the body.
Collapse
|
11
|
Hariri N, Darafshi Ghahroudi S, Jahangiri S, Ataie-Jafari A, Hosseinzadeh N, Abiri B, Saidpour A. Sumac (Rhus coriaria L.) powder supplementation has beneficial effects on appetite in overweight/obese women with depression: A randomized controlled trial. Complement Ther Clin Pract 2023; 51:101734. [PMID: 36753796 DOI: 10.1016/j.ctcp.2023.101734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Appetite disturbance is a common problem in obesity and depression. The beneficial effects of polyphenols in promoting satiety have been shown. This study aimed to investigate the effects of sumac supplementation along with calorie restricted diet (CRD) on appetite in overweight and obese women with depression. MATERIALS AND METHODS In this trial, 60 overweight and obese women with depression were randomly assigned to receive a CRD plus 3 g/day of either sumac or placebo for 12 weeks. The appetite score, serum levels of leptin, neuropeptide Y (NPY), insulin, fasting blood sugar (FBS), homeostasis model assessment of insulin resistance (HOMA-IR), and quantitative insulin sensitivity check index (QUICKI) were assessed at baseline and at the end of the study. RESULTS Sumac supplementation significantly reduced the appetite score (p = 0.02), serum levels of leptin (p = 0.03), NPY (p = 0.01), insulin (p = 0.03), FBS (p = 0.03), and HOMA-IR (p = 0.02) compared to the placebo group. QUICKI increased significantly in the sumac group compared to the placebo group (p = 0.009). CONCLUSION Sumac along with a CRD may have some beneficial effects on appetite through possible modulatory effects on leptin resistance, insulin sensitivity, and NPY levels in overweight and obese women with depression.
Collapse
Affiliation(s)
- Nastaran Hariri
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sahar Darafshi Ghahroudi
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asal Ataie-Jafari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Hosseinzadeh
- Faculty of Biostatistics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atoosa Saidpour
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Yarhosseini F, Darand M, Sangsefidi ZS, Mozaffari‐Khosravi H, Hosseinzadeh M. Does anthocyanins consumption affect weight and body composition? A systematic review and meta-analysis of randomized controlled trials. Obes Sci Pract 2023; 9:42-58. [PMID: 36789026 PMCID: PMC9913187 DOI: 10.1002/osp4.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Aims Anthocyanins (ACNs) are water-soluble plant pigments belong to flavonoids with beneficial effects on health and disease prevention. Some studies have examined the effect of ACNs on anthropometric and body composition indices, but the findings were inconsistent. This systematic review and meta-analysis aimed to investigate the effect of ACNs and sources rich in anthocyanins on body mass index (BMI), body weight (BW), waist circumference (WC), hip circumference (HC), waist-hip ratio (WHR), percentage of fat mass (PFM) and fat free mass (FFM). Methods PubMed, Web of Science, Scopus, and Google Scholar were searched with no limitation until May 2021 to find relevant randomized controlled clinical trials (RCT). The risk of bias was assessed utilizing Cochrane collaboration's tool. Weighted mean differences (WMD) and 95% confidence intervals (CIs) were obtained using a random effects model. Results A total of 31 RCTs (with 0.77-640 mg/day of ACNs supplementation for 28-90 days) with 1438 participants were included. No significant effect was found in BMI, WC, HC, WHR, PFM and FFM after ACNs consumption. Conclusions The results showed that ACNs did not significantly affect anthropometric and body composition parameters. Further high-quality RCTs are required to validate these findings.
Collapse
Affiliation(s)
- Faezeh Yarhosseini
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mina Darand
- Department of Clinical NutritionSchool of Nutrition and Food ScienceFood Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Zohreh Sadat Sangsefidi
- Department of NutritionSchool of Public HealthNorth Khorasan University of Medical SciencesBojnurdIran
| | - Hassan Mozaffari‐Khosravi
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
13
|
Jeong EW, Dhungana SK, Yang YS, Baek Y, Seo JH, Kang BK, Jung CS, Han SI, Lee HG. Black and Yellow Soybean Consumption Prevents High-Fat Diet-Induced Obesity by Regulating Lipid Metabolism in C57BL/6 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6139667. [PMID: 37114142 PMCID: PMC10129420 DOI: 10.1155/2023/6139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
To evaluate the antiobesity effects of yellow and black soybean, C57BL/6 mice were provided with a normal diet, high-fat diet, HFD-containing yellow soybean powder (YS), and black soybean powder (BS) for six weeks. Compared with the HFD group, both YS and BS decreased body weight by 30.1% and 37.2% and fat in tissue by 33.3% and 55.8%, respectively. Simultaneously, both soybeans significantly reduced the serum triglyceride and total cholesterol levels and regulated the lipogenic mRNA expressions of Pparγ, Acc, and Fas genes in the liver, supporting reduced body adiposity. Furthermore, BS significantly increased Pgc-1α and Ucp1 mRNA expression levels in epididymal adipose tissue, indicating thermogenesis is the key mechanism of BS. Taken together, our findings suggest that both soybeans prevent high-fat diet-induced obesity in mice by regulating lipid metabolism, and BS, in particular, has a greater antiobesity potential than YS.
Collapse
Affiliation(s)
- Eun Woo Jeong
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Sanjeev Kumar Dhungana
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Yun Sun Yang
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeong-Hyun Seo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Beom-Kyu Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Chan-Sik Jung
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Sang-Ik Han
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
14
|
Kim SR, Park HJ, Jung UJ. Anti-adiposity and lipid-lowering effects of schisandrol A in diet-induced obese mice. J Food Biochem 2022; 46:e14501. [PMID: 36332134 DOI: 10.1111/jfbc.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Lignan schisandrol A (SolA) is known to have antioxidant and anti-inflammatory effects. However, the impact of SolA on obesity is poorly understood. To test the hypothesis that SolA has anti-obesity effects, C57BL/6J mice were fed a high-fat diet with or without SolA (0.006%, w/w) for 16 weeks. SolA decreased visceral fat mass (10%) by increasing energy expenditure and upregulating white adipose tissue thermogenic genes mRNA expression. Furthermore, SolA upregulated adipose Lpl mRNA expression and decreased plasma free fatty acid (FFA), triglyceride (TG), apolipoprotein (apo) B, aspartate aminotransferase levels and TG/HDL-cholesterol and apoB/apoA1 ratios as well as hepatic lipid droplets. Increased hepatic β-oxidation and fecal FFA and TG levels were observed in the SolA-supplemented mice, suggesting an association of its lipid-lowering effect with increased hepatic β-oxidation, fecal fat excretion and adipose Lpl. Conclusionally, this study provides evidence on the protective effects of SolA against adiposity, dyslipidemia and nonalcoholic fatty liver disease in obese mice.
Collapse
Affiliation(s)
- Sang Ryong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Hyo Jin Park
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, South Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, South Korea
| |
Collapse
|
15
|
Pomilio AB, Szewczuk NA, Duchowicz PR. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - update of human in vitro studies and clinical trials. Crit Rev Food Sci Nutr 2022; 64:2634-2672. [PMID: 36148839 DOI: 10.1080/10408398.2022.2124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are known to change ligand-receptor bindings, cell membrane permeability, and intracellular signaling pathways. The beneficial effects of dietary anthocyanins have been chronologically demonstrated in interventional and observational studies, including fourteen human chondrocyte studies and related cell culture assays, nineteen human clinical trials in osteoarthritis patients, seven in vivo obesity assays, nineteen in vitro assays in preadipocytes and related cells, and twenty-two clinical trials in overweight/obese subjects, which are critically discussed in this update. Strawberries, cherries, berries, pomegranate, tropical fruits, rosehip, purple rice, purple corn, red beans, and black soybean, together with cyanidin, delphinidin, malvidin, peonidin, some 3-O-glycosides, metabolites, and acylated anthocyanins from a potato cultivar have shown the best outcomes. The set of these five key tests and clinical trials, taken together, contributes to the understanding of the underlying mechanisms and pathways involved. Furthermore, this set shows the value of anthocyanins in counteracting the progression of osteoarthritis/obesity. The interplay between the inflammation of osteoarthritis and obesity, and the subsequent regulation/immunomodulation was performed through isolated and food anthocyanins. The antioxidant, anti-inflammatory, and immunomodulatory properties of anthocyanins explain the findings of the studies analyzed. However, further interventional studies should be conducted to finally establish the appropriate doses for anthocyanin supplementation, dose-response, and length of consumption, to include dietary recommendations for osteoarthritis/obese patients for preventive and management purposes.
Collapse
Affiliation(s)
- Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, CONICET, Área Hematología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas A Szewczuk
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| | - Pablo R Duchowicz
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| |
Collapse
|
16
|
Oliveira PS, Soares MSP, Bona NP, da Silva PG, Mendonça LT, Vieira A, Dal-Pizzol F, Vizzotto M, Lencina CL, Spanevello RM, Stefanello FM. Brazilian native fruit extracts act as preventive agents modulating the purinergic and cholinergic signalling in blood cells and serum in a rat model of metabolic syndrome. Arch Physiol Biochem 2022; 128:993-1000. [PMID: 32212985 DOI: 10.1080/13813455.2020.1743723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, we evaluated the effects of native fruit extracts on inflammatory and thromboregulatory parameters in animal model of metabolic syndrome (MetS) induced by highly palatable diet (HPD). Rats were divided into 4 experimental groups: standard chow, HPD, HPD and Psidium cattleianum extract, and HPD and Eugenia uniflora extract. HPD increased serum interleukin-6 (IL-6) levels. On the other hand, this change was prevented by extracts. HPD decreased NTPDase activity in lymphocytes and platelets and 5'-nucleotidase in platelets. Treatment with extracts prevented these changes. An increase in adenosine deaminase (ADA) activity was prevented by E. uniflora in lymphocytes and serum of rats. Fruit extracts prevented the increase in the activity of acetylcholinesterase (AChE) in lymphocytes and butyrylcholinesterase (BuChE) in serum induced by the HPD. Brazilian native fruit extracts have anti-inflammatory and antithrombotic effects, demonstrating therapeutic potential in the prevention of complications associated with MetS.
Collapse
Affiliation(s)
- Pathise Souto Oliveira
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Pontes Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Pâmela Gonçalves da Silva
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Lorenço Torres Mendonça
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Andriele Vieira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Marcia Vizzotto
- Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária de Clima Temperado, Pelotas, Brazil
| | - Claiton Leoneti Lencina
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
17
|
Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants (Basel) 2022; 11:antiox11030506. [PMID: 35326155 PMCID: PMC8944820 DOI: 10.3390/antiox11030506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants. For humans, a regular intake is associated with a reduced risk of several diseases. However, molecular instability reduces the absorption and bioavailability of these compounds. Anthocyanins are degraded by external factors such as the presence of light, oxygen, temperature, and changes in pH ranges. In addition, the digestion process contributes to chemical degradation, mainly through the action of intestinal microbiota. The intestinal microbiota has a fundamental role in the biotransformation and metabolization of several dietary compounds, thus modifying the chemical structure, including anthocyanins. This biotransformation leads to low absorption of intact anthocyanins, and consequently, low bioavailability of these antioxidant compounds. Several studies have been conducted to seek alternatives to improve stability and protect against intestinal microbiota degradation. This comprehensive review aims to discuss the existing knowledge about the structure of anthocyanins while discussing human absorption, distribution, metabolism, and bioavailability after the oral consumption of anthocyanins. This review will highlight the use of nanotechnology systems to overcome anthocyanin biotransformation by the intestinal microbiota, pointing out the safety and effectiveness of nanostructures to maintain molecular stability.
Collapse
|
18
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
19
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Yudina RS, Gordeeva EI, Shoeva OY, Tikhonova MA, Khlestkina EK. [Anthocyanins as functional food components]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:178-189. [PMID: 34901716 PMCID: PMC8627879 DOI: 10.18699/vj21.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022] Open
Abstract
Среди встречающихся в природе пигментов антоцианы являются, пожалуй, одной из наиболее изученных групп. Начиная с первых исследований о физико-химических свойствах антоцианов, проведенных еще
в XVII в. британским естествоиспытателем Р. Бойлем, наука об этих уникальных соединениях сделала огромный
шаг вперед. На сегодняшний день достаточно хорошо исследованы структура и функции антоцианов в растительных клетках, а путь их биосинтеза – один из самых полно охарактеризованных путей биосинтеза вторичных метаболитов как на биохимическом, так и на генетическом уровне. Наряду с этими фундаментальными
достижениями, мы начинаем осознавать потенциал антоцианов как соединений промышленного значения, как
пигментов самих по себе, а также в качестве компонентов функционального питания, способствующих предупреждению и снижению риска развития хронических заболеваний. Долгое время биологическая активность
антоцианов была недооценена, в частности, из-за данных об их низкой биодоступности. Однако в ходе исследований было показано, что в организме человека и животных эти соединения активно метаболизируются и
биодоступность, оцененная с учетом их метаболитов, превышала 12 %. Экспериментально подтверждено, что
антоцианы обладают антиоксидантными, противовоспалительными, гипогликемическими, антимутагенными,
антидиабетическими, противораковыми, нейропротекторными свойствами, а также полезны для здоровья
глаз. Однако проведенные исследования не всегда могут объяснить молекулярные механизмы действия антоцианов в организме человека. По некоторым данным, наблюдаемые эффекты объясняются действием не
антоцианов, а их метаболитов, которые, благодаря своей повышенной биодоступности, могут быть более биологически активными, чем исходные соединения. Высказывается также предположение о положительном эффекте на здоровье человека всего комплекса полифенольных соединений, поступающего в организм в составе
растительной пищи. В представленном обзоре суммированы результаты основных направлений исследований
антоцианов в качестве компонентов функционального питания. Отдельное внимание уделено результатам генетических исследований синтеза пигментов, данные которых приобретают особую важность в связи с актуализацией селекционных программ, направленных на повышение содержания антоцианов у культурных растений.
Ключевые слова: растения; пигменты; вторичные метаболиты; флавоноиды; антоцианы; регуляторные гены;
структурные гены; антиоксиданты; биологическая активность.
Collapse
Affiliation(s)
- R S Yudina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Gordeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O Yu Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Tikhonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - E K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
21
|
Aoi W, Iwasa M, Marunaka Y. Metabolic functions of flavonoids: From human epidemiology to molecular mechanism. Neuropeptides 2021; 88:102163. [PMID: 34098453 DOI: 10.1016/j.npep.2021.102163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Dietary flavonoid intake is associated with the regulation of nutrient metabolism in the living body. Observational and cohort studies have reported a negative association between flavonoid intake and the risk of metabolic and cardiovascular diseases. Several intervention trials in humans have also supported the benefits of dietary flavonoids. In experimental studies using animal models, a daily diet rich in typical flavonoids such as catechins, anthocyanin, isoflavone, and quercetin was shown to improve whole-body energy expenditure, mitochondrial activity, and glucose tolerance. For some flavonoids, molecular targets for the metabolic modulations have been suggested. Although the effect of flavonoids on neurons has been unclear, several flavonoids have been shown to regulate thermogenesis and feeding behavior through modulating autonomic and central nervous systems. Based on epidemiological and experimental studies, this review summarizes the evidence on the metabolic benefits of flavonoids and their potential mechanism of action in metabolic regulation.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.
| | - Masayo Iwasa
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan; Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; International Research Center for Food Nutrition and Safety, College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
22
|
Effects of Anthocyanins on Vascular Health. Biomolecules 2021; 11:biom11060811. [PMID: 34070757 PMCID: PMC8227852 DOI: 10.3390/biom11060811] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disorders are leading mortality causes worldwide, often with a latent evolution. Vascular health depends on endothelial function, arterial stiffness, and the presence of atherosclerotic plaques. Preventive medicine deserves special attention, focusing on modifiable cardiovascular risk factors, including diet. A diet rich in fruits and vegetables has well-known health benefits, especially due to its polyphenolic components. Anthocyanins, water-soluble flavonoid species, responsible for the red-blue color in plants and commonly found in berries, exert favorable effects on the endothelial function, oxidative stress, inhibit COX-1, and COX-2 enzymes, exert antiatherogenic, antihypertensive, antiglycation, antithrombotic, and anti-inflammatory activity, ameliorate dyslipidemia and arterial stiffness. The present review aims to give a current overview of the mechanisms involved in the vascular protective effect of anthocyanins from the human diet, considering epidemiological data, in vitro and in vivo preclinical research, clinical observational, retrospective, intervention and randomized studies, dietary and biomarker studies, and discussing preventive benefits of anthocyanins and future research directions.
Collapse
|
23
|
Liu J, Cao J, Li Y, Guo F. Beneficial Flavonoid in Foods and Anti-obesity Effect. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
De Felice E, Giaquinto D, Damiano S, Salzano A, Fabroni S, Ciarcia R, Scocco P, de Girolamo P, D’Angelo L. Distinct Pattern of NPY in Gastro-Entero-Pancreatic System of Goat Kids Fed with a New Standardized Red Orange and Lemon Extract (RLE). Animals (Basel) 2021; 11:ani11020449. [PMID: 33572145 PMCID: PMC7914828 DOI: 10.3390/ani11020449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In the last decades the European ban towards antibiotics resulted in an increase of the number of studies on the effects of natural feed additives, that can enhance the health of farm animals intended for human consumption. Polyphenols such as flavanones and anthocyanins (responsible of the red, purple or blue colors) are bioactive compounds found in fruits and vegetables. Polyphenols possess multiple pharmacological characteristics, like antioxidant, anti-inflammatory and immunostimulant properties. Although many of the biological effects of polyphenols are known, only a limited number of studies has been focused on the effects of their supplementation in ruminant diet. Therefore, we evaluated the effect of a diet supplemented with a standardized powder extract, red (blood) orange and lemon extract (RLE), rich in flavanones, anthocyanins and other polyphenols on the neuropeptide Y (NPY) distribution in the gastro–entero–pancreatic system of goat kids. In mammals, NPY occurs in both the central and peripheral nervous systems and it is involved in the control of different physiological processes, including food intake regulation. For the first time, we document that NPY is widely distributed in the abomasum, duodenum and pancreas of goat kids and that significantly increases in the abomasum and pancreas of RLE supplemented feed animals. Abstract The use of natural compounds as feed additive is also increasing in farm animals, thanks to the beneficial effect on both animals and consumers health. Here, we questioned whether natural extracts, such as red orange and lemon extract (RLE) rich in flavanones, anthocyanins, and other polyphenols, used as feed additives could display an effect on the neuropeptide Y (NPY) in the gastro–entero–pancreatic tract of goat kids. NPY is one of the most abundant neuropeptides in mammals, known for its orexigenic role although it is involved in many central and peripheral functions. We carried out immunohistochemical analyses on samples of abomasum, duodenum and pancreas collected from two experimental groups: one fed with standard diet and one with standard diet + RLE. For the first time we document NPY distribution in the abomasum, duodenum and pancreas of goats and observe the highest number of NPY positive cells in neuroendocrine cells of duodenum. Remarkably, upon RLE feed supplementation, NPY immunoreactive cells increased significantly in abomasal epithelium and pancreatic islets but not in duodenum, likely due to pH variation of abomasum and duodenum. Our observations represent a baseline for future studies on the interaction between neuropeptides and polyphenols, used as feed additive.
Collapse
Affiliation(s)
- Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (E.D.F.); (D.G.); (P.S.)
| | - Daniela Giaquinto
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (E.D.F.); (D.G.); (P.S.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
| | - Simona Fabroni
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 95024 Acireale, Italy;
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (E.D.F.); (D.G.); (P.S.)
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
- Correspondence:
| | - Livia D’Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
| |
Collapse
|
25
|
|
26
|
Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E, Martorell M, Tonelli C, Petroni K, Docea AO, Calina D, Maroyi A. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front Pharmacol 2020; 11:1300. [PMID: 32982731 PMCID: PMC7479177 DOI: 10.3389/fphar.2020.01300] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are natural phenolic pigments with biological activity. They are well-known to have potent antioxidant and antiinflammatory activity, which explains the various biological effects reported for these substances suggesting their antidiabetic and anticancer activities, and their role in cardiovascular and neuroprotective prevention. This review aims to comprehensively analyze different studies performed on this class of compounds, their bioavailability and their therapeutic potential. An in-depth look in preclinical, in vitro and in vivo, and clinical studies indicates the preventive effects of anthocyanins on cardioprotection, neuroprotection, antiobesity as well as their antidiabetes and anticancer effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Debora Zorzan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehtap Kilic
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nouran M. Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
27
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
28
|
Shang A, Gan RY, Xu XY, Mao QQ, Zhang PZ, Li HB. Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Crit Rev Food Sci Nutr 2020; 61:2061-2077. [PMID: 32462901 DOI: 10.1080/10408398.2020.1769548] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, obesity has become a global public health issue. It is closely associated with the occurrence of several chronic diseases, such as diabetes and cardiovascular diseases. Some edible and medicinal plants show anti-obesity activity, such as fruits, vegetables, spices, legumes, edible flowers, mushrooms, and medicinal plants. Numerous studies have indicated that these plants are potential candidates for the prevention and management of obesity. The major anti-obesity mechanisms of plants include suppressing appetite, reducing the absorption of lipids and carbohydrates, inhibiting adipogenesis and lipogenesis, regulating lipid metabolism, increasing energy expenditure, regulating gut microbiota, and improving obesity-related inflammation. In this review, the anti-obesity activity of edible and medicinal plants was summarized based on epidemiological, experimental, and clinical studies, with related mechanisms discussed, which provided the basis for the research and development of slimming products. Further studies should focus on the exploration of safer plants with anti-obesity activity and the identification of specific anti-obesity mechanisms.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Sivamaruthi BS, Kesika P, Chaiyasut C. The Influence of Supplementation of Anthocyanins on Obesity-Associated Comorbidities: A Concise Review. Foods 2020; 9:foods9060687. [PMID: 32466434 PMCID: PMC7353506 DOI: 10.3390/foods9060687] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Anthocyanins are water-soluble plant pigments, and based on their chemical structure (nature, position, and the number of sugar moieties attached; the number of hydroxyl groups; acylation of sugars with acids) about 635 different anthocyanins have been identified and reported from plants. Cyanidin, peonidin, pelargonidin, petunidin, and malvidin are the commonly found anthocyanidins (aglycon forms of anthocyanins) in edible plants out of almost 25 anthocyanidins that are identified (based on the position of methoxyl and hydroxyl groups in the rings) in nature. Anthocyanins are known for numerous health benefits including anti-diabetes, anti-obesity, anti-inflammatory bowel disease, anti-cancer, etc. Obesity can be defined as excessive or abnormal adipose tissue and body mass, which increases the risk of developing chronic diseases such as diabetes, cardiovascular diseases, cancers, etc. The manuscript summarizes the recent updates in the effects of anthocyanins supplementation on the health status of obese subjects, and briefly the results of in vitro and in vivo studies. Several studies confirmed that the consumption of anthocyanins-rich food improved obesity-associated dysbiosis in gut microbiota and inflammation in adipose tissue. Anthocyanin consumption prevents obesity in healthy subjects, and aids in maintaining or reducing the body weight of obese subjects, also improving the metabolism and energy balance. Though preclinical studies proved the beneficial effects of anthocyanins such as the fact that daily intake of anthocyanin rich fruits and vegetables might aid weight maintenance in every healthy individual, Juҫara pulp might control the inflammatory status of obesity, Queen garnet plum juice reduced the blood pressure and risk factors associated with metabolic disorders, and highbush organic blueberries improved the metabolism of obese individuals, we don't have an established treatment procedure to prevent or manage the over-weight condition and its comorbidities. Thus, further studies on the optimum dose, duration, and mode of supplementation of anthocyanins are required to develop an anthocyanins-based clinical procedure.
Collapse
|
30
|
Gomes JVP, Rigolon TCB, Souza MSDS, Alvarez-Leite JI, Lucia CMD, Martino HSD, Rosa CDOB. Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition 2019; 66:192-202. [DOI: 10.1016/j.nut.2019.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
|
31
|
Jayarathne S, Stull AJ, Park OH, Kim JH, Thompson L, Moustaid-Moussa N. Protective Effects of Anthocyanins in Obesity-Associated Inflammation and Changes in Gut Microbiome. Mol Nutr Food Res 2019; 63:e1900149. [PMID: 31389663 DOI: 10.1002/mnfr.201900149] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Obesity is a complex disease and a major public health epidemic. Chronic, low-grade inflammation is a common underlying feature of obesity and associated metabolic diseases; adipose tissue is a major contributor to this systemic inflammation. Evidence shows that obesity-associated inflammation may originate from gut dysfunction, including changes in intestinal bacteria or microbiome profiles. Increasingly, food and plant bioactive compounds with antioxidant and anti-inflammatory properties are proposed to ameliorate obesity-associated inflammation. Among these, the health-promoting effects of anthocyanin-rich foods are of interest here. Specifically, this review summarizes the reported benefits of anthocyanins in obesity-associated inflammation and underlying molecular mechanisms, including the role of gut microbiome and cell signaling pathways regulated by anthocyanins both in vivo and in vitro.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - April J Stull
- Department of Human Ecology, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Oak-Hee Park
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Leslie Thompson
- Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA.,Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
32
|
Balbi MDA, Crivellenti LC, Zuccolotto DCC, Franco LJ, Sartorelli DS. The relationship of flavonoid intake during pregnancy with excess body weight and gestational diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:241-249. [PMID: 31166364 PMCID: PMC10522197 DOI: 10.20945/2359-3997000000143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/08/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the relationship of flavonoid intake during pregnancy with maternal excessive body weight and gestational diabetes mellitus (GDM). SUBJECTS AND METHODS A cross-sectional study was conducted among 785 adult women in singleton pregnancies, and data were collected at the time of the oral glucose tolerance test. For the body mass index (BMI) classification according to the gestational age, the criteria of Atalah was used, and the diagnosis of GDM was based on the World Health Organization of 2014. Two 24-hour dietary recalls were obtained, and the usual intake was determined by the Multiple Source Method. Adjusted multinomial logistic regression was used to investigate the relationship of the flavonoids with overweight and obesity, and adjusted non-conditional logistic regression for the relationship of the flavonoids with GDM. RESULTS The mean (SD) age of the women was 28 (5) years, 32.1% were overweight, 24.6% were obese and 17.7% were diagnosed with GDM. The median (P25, P75) of total flavonoid intake was 50 (31,75) mg/day. Considering the eutrophic women as the reference, the pregnant women with a higher total flavonoid intake [OR 0.62 (95% CI 0.38; 0.96)] and anthocyanidin intake [OR 0.62 (95% CI 0.40; 0.99)] were less likely to be obese when compared to the women with lower intakes. No association of the flavonoids intake with overweight or GDM was found. CONCLUSION A very low intake of flavonoids was observed. The data suggest that the intake of foods naturally rich in total flavonoids and anthocyanidin has a beneficial role regarding obesity among pregnant women.
Collapse
Affiliation(s)
- Mariana de Andrade Balbi
- Universidade de São PauloUniversidade de São PauloFaculdade de Medicina de Ribeirão Preto (FMRP)Programa de Pós-Graduação em Saúde PúblicaRibeirão PretoSPBrasilPrograma de Pós-Graduação em Saúde Pública, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil
| | - Lívia Castro Crivellenti
- Universidade de São PauloUniversidade de São PauloFaculdade de Medicina de Ribeirão Preto (FMRP)Programa de Pós-Graduação em Saúde PúblicaRibeirão PretoSPBrasilPrograma de Pós-Graduação em Saúde Pública, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil
| | - Daniela Cristina Candelas Zuccolotto
- Universidade de São PauloUniversidade de São PauloFaculdade de Medicina de Ribeirão Preto (FMRP)Programa de Pós-Graduação em Saúde PúblicaRibeirão PretoSPBrasilPrograma de Pós-Graduação em Saúde Pública, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil
| | - Laércio Joel Franco
- Universidade de São PauloUniversidade de São PauloFaculdade de Medicina de Ribeirão Preto (FMRP)Departamento de Medicina SocialRibeirão PretoSPBrasilDepartamento de Medicina Social, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil
| | - Daniela Saes Sartorelli
- Universidade de São PauloUniversidade de São PauloFaculdade de Medicina de Ribeirão Preto (FMRP)Departamento de Medicina SocialRibeirão PretoSPBrasilDepartamento de Medicina Social, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil
| |
Collapse
|
33
|
Ikram M, Saeed K, Khan A, Muhammad T, Khan MS, Jo MG, Rehman SU, Kim MO. Natural Dietary Supplementation of Curcumin Protects Mice Brains against Ethanol-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment via Nrf2/TLR4/RAGE Signaling. Nutrients 2019; 11:E1082. [PMID: 31096703 PMCID: PMC6566393 DOI: 10.3390/nu11051082] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of the current study was to explore the underlying neuroprotective mechanisms of curcumin (50 mg/kg, for six weeks) against ethanol (5 mg/kg i.p., for six weeks) induced oxidative stress and inflammation-mediated cognitive dysfunction in mice. According to our findings, ethanol triggered reactive oxygen species (ROS), apoptosis, neuroinflammation, and memory impairment, which were significantly inhibited with the administration of curcumin, as assessed by ROS, lipid peroxidation (LPO), and Nrf2/HO-1 (nuclear factor erythroid 2-related factor 2/Heme-oxygenase-1) expression in the experimental mice brains. Moreover, curcumin regulated the expression of the glial cell markers in ethanol-treated mice brains, as analyzed by the relative expression TLR4 (Toll like Receptor 4), RAGE (Receptor for Advanced Glycations End products), GFAP (Glial fibrillary acidic protein), and Iba-1 (Ionized calcium binding adaptor molecule 1), through Western blot and confocal microscopic analysis. Moreover, our results showed that curcumin downregulated the expression of p-JNK (Phospo c-Jun N-Terminal Kinase), p-NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells), and its downstream targets, as assessed by Western blot and confocal microscopic analysis. Finally, the expression of synaptic proteins and the behavioral results also supported the hypothesis that curcumin may inhibit memory dysfunction and behavioral alterations associated with ethanol intoxication. Altogether, to the best of our knowledge, we believe that curcumin may serve as a potential, promising, and cheaply available neuroprotective compound against ethanol-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Kamran Saeed
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Amjad Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Tahir Muhammad
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Muhammad Sohail Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Min Gi Jo
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
34
|
Li H, Kim UH, Yoon JH, Ji HS, Park HM, Park HY, Jeong TS. Suppression of Hyperglycemia and Hepatic Steatosis by Black-Soybean-Leaf Extract via Enhanced Adiponectin-Receptor Signaling and AMPK Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:90-101. [PMID: 30541285 DOI: 10.1021/acs.jafc.8b04527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yellow-soybean-leaf extract includes kaempferol glycosides and pheophorbides that reduce obesity and plasma glucose levels. This study researched the molecular mechanisms underlying the glucose-lowering effect of the extract of black-soybean leaves (EBL), which mainly contains quercetin glycosides and isorhamnetin glycosides, in mice with high-fat-diet (HFD)-induced obesity and diabetes and in HepG2 cells. Twelve weeks of EBL supplementation decreased body weight and fasting glucose, glycated hemoglobin, insulin, triglyceride, and nonesterified fatty acid levels. Histological analyses manifested that EBL suppressed hepatic steatosis. Interestingly, EBL significantly improved plasma adiponectin levels and increased adiponectin-receptor-gene ( AdipoR1 and AdipoR2) expression in the liver. EBL restored the effects of HFD on hepatic AMP-activated protein kinase (AMPK) and on the family of peroxisome proliferator-activated receptors (PPARα, PPARδ, and PPARγ), which are associated with fatty acid metabolism and are downstream of the adiponectin receptors. Hence, EBL effectively diminished hyperglycemia and hepatic steatosis through enhancing adiponectin-induced signaling and AMPK activation in the liver.
Collapse
Affiliation(s)
- Hua Li
- Industrial Biomaterials Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Un-Hee Kim
- Industrial Biomaterials Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Jeong-Hyun Yoon
- Industrial Biomaterials Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Hyeon-Seon Ji
- Industrial Biomaterials Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Hye-Mi Park
- Industrial Biomaterials Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Ho-Yong Park
- Industrial Biomaterials Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Tae-Sook Jeong
- Industrial Biomaterials Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| |
Collapse
|
35
|
Jamar G, Santamarina AB, Mennitti LV, Cesar HDC, Oyama LM, de Rosso VV, Pisani LP. Bifidobacterium spp. reshaping in the gut microbiota by low dose of juçara supplementation and hypothalamic insulin resistance in Wistar rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
36
|
McCarty MF, Assanga SBI. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med Hypotheses 2018; 118:114-120. [PMID: 30037596 DOI: 10.1016/j.mehy.2018.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Higher dietary intakes of anthocyanins have been linked epidemiologically to decreased risk for metabolic syndrome, type 2 diabetes and cardiovascular events; clinical trials and rodent studies evaluating ingestion of anthocyanin-rich extracts confirm favorable effects of these agents on endothelial function and metabolic syndrome. However, these benefits of anthocyanins are lost in rats whose gut microbiome has been eliminated with antibiotic treatment - pointing to bacterial metabolites of anthocyanins as the likely protective agents. A human pharmacokinetic assessment of orally administered cyanidin-3-O-glucoside, a prominent anthocyanin, has revealed that, whereas this compound is minimally absorbed, ferulic acid (FA) is one of its primary metabolites that appears in plasma. FA is a strong antioxidant and phase 2 inducer that has exerted marked anti-inflammatory effects in a number of rodent and cell culture studies; in particular, FA is highly protective in rodent models of diet-induced weight gain and metabolic syndrome. FA, a precursor for lignan synthesis, is widely distributed in plant-based whole foods, mostly in conjugated form; whole grains are a notable source. Coffee ingestion boosts plasma FA owing to gastrointestinal metabolism of chlorogenic acid. Hence, it is reasonable to suspect that FA mediates some of the broad health benefits that have been associated epidemiologically with frequent consumption of whole grains, anthocyanins, coffee, and unrefined plant-based foods. The molecular basis of the anti-inflammatory effects of FA may have been clarified by a recent study demonstrating that FA can target the adaptor protein MyD88; this plays an essential role in pro-inflammatory signaling by most toll-like receptors and interleukin-1β. If feasible oral intakes of FA can indeed down-regulate MyD88-dependent signaling, favorable effects of FA on neurodegeneration, hypothalamic inflammation, weight gain, adipocyte and beta cell function, adiponectin secretion, vascular health, and cartilage and bone integrity can be predicted. Since FA is well tolerated, safe, and natural, it may have great potential as a protective nutraceutical, and clinical trials evaluating its effects are needed.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 811 B Nahant Ct., San Diego, CA 92109, USA.
| | | |
Collapse
|
37
|
Abstract
Propose Obesity is a fast growing epidemic worldwide. During obesity, the increase in adipose tissue mass arise from two different mechanisms, namely, hyperplasia and hypertrophy. Hyperplasia which is the increase in adipocyte number is characteristic of severe obese patients. Recently, there has been much interest in targeting adipogenesis as therapeutic strategy against obesity. Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Methods Presently, we provide a review of key studies evaluating the effects of dietary flavonoids in different stages of adipocyte development with a particular emphasis on the investigations that explore the underlying mechanisms of action of these compounds in human or animal cell lines as well as animal models. Results Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Although most of the studies reveal anti-adipogenic effect of flavonoids, some flavonoids demonstrated proadipogenic effect in mesenchymal stem cells or preadipocytes. Conclusion The anti-adipogenic effect of flavonoids is mainly via their effect on regulation of several pathways such as induction of apoptosis, suppression of key adipogenic transcription factors, activation of AMPK and Wnt pathways, inhibition of clonal expansion, and cell-cycle arrest.
Collapse
|
38
|
Paturi G, Butts CA, Monro JA, Hedderley D. Effects of Blackcurrant and Dietary Fibers on Large Intestinal Health Biomarkers in Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:54-60. [PMID: 29388158 DOI: 10.1007/s11130-018-0652-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study examined the effects of anthocyanin-rich blackcurrant extract and dietary fibers individually and their combinations on biomarkers of large intestinal health in rats. After six weeks of feeding, rats fed diets with blackcurrant gained significantly less body weight and reduced their food intake resulting in a lower food efficiency compared with those rats fed control diets. Combining dietary fiber (apple or broccoli) with blackcurrant in the diet was more effective in reducing the body weight gain and food intake. Cecal bacterial populations and short-chain fatty acids differed between the experimental diets. Blackcurrants significantly altered the bacterial populations by increasing the abundance of Bacteroides-Prevotella-Porphyromonas group and Lactobacillus spp., while decreasing the abundance of Bifidobacterium spp. and Clostridium perfringens. Propionic acid concentrations were increased by the diets with blackcurrant. Butyric acid concentrations were increased by dietary fiber supplementation. Dietary fiber increased the number of goblet cells in the colon. Diets with blackcurrant were more effective in altering the biomarkers of large intestinal health than those without blackcurrant.
Collapse
Affiliation(s)
- Gunaranjan Paturi
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - John A Monro
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| |
Collapse
|
39
|
Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Sebastian RS, Wilkinson Enns C, Goldman JD, Moshfegh AJ. Dietary Flavonoid Intake Is Inversely Associated with Cardiovascular Disease Risk as Assessed by Body Mass Index and Waist Circumference among Adults in the United States. Nutrients 2017; 9:E827. [PMID: 28767062 PMCID: PMC5579620 DOI: 10.3390/nu9080827] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022] Open
Abstract
Although flavonoids may confer anti-inflammatory and anti-oxidant benefits, no research has examined if flavonoid intake is related to cardiovascular disease (CVD) risk defined by anthropometric measures in the USA population. This study sought to determine whether flavonoid intake is associated with combined body mass index (BMI) and waist circumference (WC) measures indicative of high, very high, or extremely high ("high+") risk for CVD, using one day of 24-h recall data from adult (≥20 years) participants in What We Eat in America, National Health and Nutrition Examination Survey 2007-2010. Individuals were divided into categories of intake of total flavonoids and each flavonoid class, and adjusted estimates of the percentages at high+ CVD risk (based on BMI and WC, as per National Heart, Lung, and Blood Institute guidelines) were calculated. Inverse linear trends were found in percentages of adults at high+ CVD risk by intake of total flavonoids, anthocyanidins, flavan-3-ols, and flavanones (p < 0.01). For individuals in the highest (versus the lowest) intake category of anthocyanidins, flavan-3-ols, and flavanones, relative risk and confidence intervals (RR and CI, respectively) were 0.86 (99% CI: 0.79, 0.93), 0.88 (99% CI: 0.79, 0.98), and 0.89 (99% CI: 0.80, 0.98), respectively. Research is needed to determine whether the inverse relationships found in this study are applicable to CVD endpoints at the population level.
Collapse
Affiliation(s)
- Rhonda S Sebastian
- USDA, Agricultural Research Service, Food Surveys Research Group, 10300 Baltimore Avenue, BARC-West, Bldg 005, Rm 102, Beltsville, MD 20705-2350, USA.
| | - Cecilia Wilkinson Enns
- USDA, Agricultural Research Service, Food Surveys Research Group, 10300 Baltimore Avenue, BARC-West, Bldg 005, Rm 102, Beltsville, MD 20705-2350, USA.
| | - Joseph D Goldman
- USDA, Agricultural Research Service, Food Surveys Research Group, 10300 Baltimore Avenue, BARC-West, Bldg 005, Rm 102, Beltsville, MD 20705-2350, USA.
| | - Alanna J Moshfegh
- USDA, Agricultural Research Service, Food Surveys Research Group, 10300 Baltimore Avenue, BARC-West, Bldg 005, Rm 102, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
41
|
Black carrot ( Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Jamar G, Estadella D, Pisani LP. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors 2017; 43:507-516. [PMID: 28504479 DOI: 10.1002/biof.1365] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/15/2022]
Abstract
Obesity is characterized by low-grade inflammation and a number of metabolic disorders. Distal gut microbes' content (microbiota) is not yet fully understood but evidence shows that it is influenced by internal and external factors that modulate its composition and function. The evidence that gut microbiota composition can differ between healthy and obese individuals, as well as for those who maintain specific dietary habits, has led to the study of this environmental factor as a key link between the pathophysiology of obesity and gut microbiota. Data obtained about the role of anthocyanins (ACNs) in microbiota may lead to different strategies to manipulate bacterial populations and promote health. Anthocyanins have been identified as modulators of gut microbiota that contribute to obesity control and these bioactive compounds should be considered to have a prebiotic action. This review addresses the relevance of knowledge about the influence of anthocyanins-rich food consumption on microbiota, and their health-promoting potential in the pathophysiology of obesity. © 2017 BioFactors, 43(4):507-516, 2017.
Collapse
Affiliation(s)
- Giovana Jamar
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Débora Estadella
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | | |
Collapse
|
43
|
Ganesan K, Xu B. A Critical Review on Polyphenols and Health Benefits of Black Soybeans. Nutrients 2017; 9:E455. [PMID: 28471393 PMCID: PMC5452185 DOI: 10.3390/nu9050455] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/23/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Polyphenols are plant secondary metabolites containing antioxidant properties, which help to protect chronic diseases from free radical damage. Dietary polyphenols are the subject of enhancing scientific interest due to their possible beneficial effects on human health. In the last two decades, there has been more interest in the potential health benefits of dietary polyphenols as antioxidant. Black soybeans (Glycine max L. Merr) are merely a black variety of soybean containing a variety of phytochemicals. These phytochemicals in black soybean (BSB) are potentially effective in human health, including cancer, diabetes, cardiovascular diseases, cerebrovascular diseases, and neurodegenerative diseases. Taking into account exploratory study, the present review aims to provide up-to-date data on health benefit of BSB, which helps to explore their therapeutic values for future clinical settings. All data of in vitro and in vivo studies of BSB and its impact on human health were collected from a library database and electronic search (Science Direct, PubMed, and Google Scholar). The different pharmacological information was gathered and orchestrated in a suitable spot on the paper.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519085, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519085, China.
| |
Collapse
|
44
|
Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation 2016; 13:286. [PMID: 27821173 PMCID: PMC5100309 DOI: 10.1186/s12974-016-0752-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood. Here, we report for the first time the mechanism of glutamate-induced oxidative damage, neuroinflammation, and neuroprotection by polyphenolic anthocyanins in PND7. Methods PND7 rat brains, SH-SY5Y, and BV2 cells treated either alone with glutamate or in combination with anthocyanins and compound C were examined with Western blot and immunofluorescence techniques. Additionally, reactive oxygen species (ROS) assay and other ELISA kit assays were employed to know the therapeutic efficacy of anthocyanins against glutamate. Results A single injection of glutamate to developing rats significantly increased brain glutamate levels, activated and phosphorylated AMPK induction, and inhibited nuclear factor-E2-related factor 2 (Nrf2) after 2, 3, and 4 h in a time-dependent manner. In contrast, anthocyanin co-treatment significantly reduced glutamate-induced AMPK induction, ROS production, neuroinflammation, and neurodegeneration in the developing rat brain. Most importantly, anthocyanins increased glutathione (GSH and GSSG) levels and stimulated the endogenous antioxidant system, including Nrf2 and heme oxygenase-1 (HO-1), against glutamate-induced oxidative stress. Interestingly, blocking AMPK with compound C in young rats abolished glutamate-induced neurotoxicity. Similarly, all these experiments were replicated in SH-SY5Y cells by silencing AMPK with siRNA, which suggests that AMPK is the key mediator in glutamate-induced neurotoxicity. Conclusions Here, we report for the first time that anthocyanins can potentially decrease glutamate-induced neurotoxicity in young rats. Our work demonstrates that glutamate is toxic to the developing rat brain and that anthocyanins can minimize the severity of glutamate-induced neurotoxicity in an AMPK-dependent manner. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0752-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Faiz Ul Amin
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mehtab Khan
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Noman Abid
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Shafiq Ur Rehman
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Tae Hyun Kim
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Min Woo Kim
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeong Ok Kim
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
45
|
Vivarelli F, Canistro D, Sapone A, De Nicola GR, Babot Marquillas C, Iori R, Antonazzo IC, Gentilini F, Paolini M. Raphanus sativus cv. Sango Sprout Juice Decreases Diet-Induced Obesity in Sprague Dawley Rats and Ameliorates Related Disorders. PLoS One 2016; 11:e0150913. [PMID: 26987061 PMCID: PMC4795736 DOI: 10.1371/journal.pone.0150913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/21/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Obesity is recognized as a leading global health problem, correlated with an increased risk for several chronic diseases. One strategy for weight control management includes the use of vegetables rich in bioactive compounds to counteract weight gain, improve the antioxidant status and stimulate lipid catabolism. AIM OF THE STUDY The aim of this study was to investigate the role of Raphanus sativus Sango sprout juice (SSJ), a Brassica extraordinarily rich in anthocyanins (AC) and isothiocyanates (ITCs), in a non-genetic model of obesity (high fat diet-HFD induced). METHODS Control groups were fed with HFD or regular diet (RD). After a 10-week period, animals were assigned to experimental units and treated by gavage for 28 days as follows: HFD and RD control groups (rats fed HFD or RD and treated with vehicle only) and HFD-treated groups (rats fed HFD and treated with 15, 75 or 150 mg/kg b.w. of SSJ). Body weight and food consumption were recorded and serum lipid profile was measured (total cholesterol, triglycerides, and non-esterified fatty acids). Hepatic phase-I, phase-II as well as antioxidant enzymatic activities were assessed. RESULTS SSJ lowered total cholesterol level, food intake and liver weight compared with HFD rodents. SSJ at medium dose proved effective in reducing body-weight (~19 g reduction). SSJ was effective in up-regulating the antioxidant enzymes catalase, NAD(P)H quinone reductase, oxidised glutathione reductase and superoxide dismutase, which reached or exceeded RD levels, as well as the phase II metabolic enzyme UDP-glucuronosyl transferase (up to about 43%). HFD up-regulated almost every cytochrome P450 isoform tested, and a mild down-regulation to baseline was observed after SSJ intervention. CONCLUSION This work reveals, for the first time, the antioxidant, hypolipidemic and antiobesity potential of SSJ, suggesting its use as an efficient new functional food/nutraceutical product.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea Sapone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria-Centro di ricerca per le colture industriali (CRA-CIN), Bologna, Italy
| | - Clara Babot Marquillas
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria-Centro di ricerca per le colture industriali (CRA-CIN), Bologna, Italy
| | - Ippazio Cosimo Antonazzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fabio Gentilini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Bertoia ML, Rimm EB, Mukamal KJ, Hu FB, Willett WC, Cassidy A. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ 2016; 352:i17. [PMID: 26823518 PMCID: PMC4730111 DOI: 10.1136/bmj.i17] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To examine whether dietary intake of specific flavonoid subclasses (including flavonols, flavones, flavanones, flavan-3-ols, anthocyanins, and flavonoid polymers) is associated with weight change over time. DESIGN Three prospective cohort studies. SETTING Health professionals in the United States. PARTICIPANTS 124,086 men and women participating in the Health Professionals Follow-up Study (HPFS), Nurses' Health Study (NHS), and Nurses' Health Study II (NHS II). MAIN OUTCOME MEASURE Self reported change in weight over multiple four year time intervals between 1986 and 2011. RESULTS Increased consumption of most flavonoid subclasses, including flavonols, flavan-3-ols, anthocyanins, and flavonoid polymers, was inversely associated with weight change over four year time intervals, after adjustment for simultaneous changes in other lifestyle factors including other aspects of diet, smoking status, and physical activity. In the pooled results, the greatest magnitude of association was observed for anthocyanins (-0.23 (95% confidence interval -0.30 to -0.15) lbs per additional standard deviation/day, 10 mg), flavonoid polymers (-0.18 (-0.28 to -0.08) lbs per additional SD/day, 138 mg), and flavonols (-0.16 (-0.26 to -0.06) lbs per additional SD/day, 7 mg). After additional adjustment for fiber intake, associations remained significant for anthocyanins, proanthocyanidins, and total flavonoid polymers but were attenuated and no longer statistically significant for other subclasses. CONCLUSIONS Higher intake of foods rich in flavonols, flavan-3-ols, anthocyanins, and flavonoid polymers may contribute to weight maintenance in adulthood and may help to refine dietary recommendations for the prevention of obesity and its potential consequences.
Collapse
Affiliation(s)
- Monica L Bertoia
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston
| | - Kenneth J Mukamal
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA Department of Medicine, Beth Israel Deaconess Medical Center, Boston
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston
| | - Aedín Cassidy
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
47
|
Anthocyanins Reversed D-Galactose-Induced Oxidative Stress and Neuroinflammation Mediated Cognitive Impairment in Adult Rats. Mol Neurobiol 2016; 54:255-271. [DOI: 10.1007/s12035-015-9604-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
|
48
|
Matsukawa T, Inaguma T, Han J, Villareal MO, Isoda H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J Nutr Biochem 2015; 26:860-7. [PMID: 25940979 DOI: 10.1016/j.jnutbio.2015.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
Abstract
Black soybean is a health food has been reported to have antidiabetes effect. The onset of diabetes is closely associated with adipocyte differentiation, and at present, the effect of black soybean on adipocyte differentiation is unknown. Here, we investigated the antidiabetes effect of black soybean, and its anthocyanin cyanidin-3-glucoside (Cy3G), on adipocyte differentiation. Orally administered black soybean seed coat extract (BSSCE) reduced the body and white adipose tissue (WAT) weight of db/db mice accompanied by a decrease in the size of adipocytes in WAT. Furthermore, 3T3-Ll cells treated with BSSCE and Cy3G were observed to differentiate into smaller adipocytes which correlated with increased PPARγ and C/EBPα gene expressions, increased adiponectin secretion, decreased tumor necrosis factor-α secretion, activation of insulin signalling and increased glucose uptake. C2C12 myotubes cultured with conditioned medium, obtained from 3T3-L1 adipocyte cultures treated with Cy3G, also showed significantly increased expression of PGC-1α, SIRT1 and UCP-3 genes. Here we report that BSSCE, as well as its active compound Cy3G, has antidiabetes effects on db/db mice by promoting adipocyte differentiation. This notion is supported by BSSCE and Cy3G inducing the differentiation of 3T3-L1 preadipocytes into smaller, insulin-sensitive adipocytes, and it induced the activation of skeletal muscle metabolism. This is the first report on the modulation effect of Cy3G on adipocyte differentiation.
Collapse
Affiliation(s)
- Toshiya Matsukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Tetsuya Inaguma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Junkyu Han
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Myra O Villareal
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan.
| |
Collapse
|
49
|
Protective Effect of Lupeol Against Lipopolysaccharide-Induced Neuroinflammation via the p38/c-Jun N-Terminal Kinase Pathway in the Adult Mouse Brain. J Neuroimmune Pharmacol 2015; 11:48-60. [DOI: 10.1007/s11481-015-9623-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
|
50
|
Sebastian RS, Wilkinson Enns C, Goldman JD, Martin CL, Steinfeldt LC, Murayi T, Moshfegh AJ. A New Database Facilitates Characterization of Flavonoid Intake, Sources, and Positive Associations with Diet Quality among US Adults. J Nutr 2015; 145:1239-48. [PMID: 25948787 PMCID: PMC4442120 DOI: 10.3945/jn.115.213025] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epidemiologic studies demonstrate inverse associations between flavonoid intake and chronic disease risk. However, lack of comprehensive databases of the flavonoid content of foods has hindered efforts to fully characterize population intakes and determine associations with diet quality. OBJECTIVES Using a newly released database of flavonoid values, this study sought to describe intake and sources of total flavonoids and 6 flavonoid classes and identify associations between flavonoid intake and the Healthy Eating Index (HEI) 2010. METHODS One day of 24-h dietary recall data from adults aged ≥ 20 y (n = 5420) collected in What We Eat in America (WWEIA), NHANES 2007-2008, were analyzed. Flavonoid intakes were calculated using the USDA Flavonoid Values for Survey Foods and Beverages 2007-2008. Regression analyses were conducted to provide adjusted estimates of flavonoid intake, and linear trends in total and component HEI scores by flavonoid intake were assessed using orthogonal polynomial contrasts. All analyses were weighted to be nationally representative. RESULTS Mean intake of flavonoids was 251 mg/d, with flavan-3-ols accounting for 81% of intake. Non-Hispanic whites had significantly higher (P < 0.001) intakes of total flavonoids (275 mg/d) than non-Hispanic blacks (176 mg/d) and Hispanics (139 mg/d). Tea was the primary source (80%) of flavonoid intake. Regardless of whether the flavonoid contribution of tea was included, total HEI score and component scores for total fruit, whole fruit, total vegetables, greens and beans, seafood and plant proteins, refined grains, and empty calories increased (P < 0.001) across flavonoid intake quartiles. CONCLUSIONS A new database that permits comprehensive estimation of flavonoid intakes in WWEIA, NHANES 2007-2008; identification of their major food/beverage sources; and determination of associations with dietary quality will lead to advances in research on relations between flavonoid intake and health. Findings suggest that diet quality, as measured by HEI, is positively associated with flavonoid intake.
Collapse
Affiliation(s)
- Rhonda S Sebastian
- Food Surveys Research Group, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | | | | | | | | | | | | |
Collapse
|