1
|
Kikuchi T, Okamura T, Zhang MR. Numerical simulation method for the assessment of the effect of molar activity on the pharmacokinetics of radioligands in small animals. EJNMMI Radiopharm Chem 2024; 9:78. [PMID: 39570519 PMCID: PMC11582259 DOI: 10.1186/s41181-024-00308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND It is well recognized that the molar activity of a radioligand is an important pharmacokinetic parameter, especially in positron emission tomography (PET) of small animals. Occupation of a significant number of binding sites by radioligand molecules results in low radioligand accumulation in a target region (mass effect). Nevertheless, small-animal PET studies have often been performed without consideration of the molar activity or molar dose of radioligands. A simulation study would therefore help to assess the importance of the mass effect in small-animal PET. Here, we introduce a new compartmental model-based numerical method, which runs on commonly used spreadsheet software, to simulate the effect of molar activity or molar dose on the pharmacokinetics of radioligands. RESULTS Assuming a two-tissue compartmental model, time-concentration curves of a radioligand were generated using four simulation methods and the well-known Runge-Kutta numerical method. The values were compared with theoretical values obtained under an ultra-high molar activity condition (pseudo-first-order binding kinetics), a steady-state condition and an equilibrium condition (second-order binding kinetics). For all conditions, the simulation method using the simplest calculation yielded values closest to the theoretical values and comparable with those obtained using the Runge-Kutta method. To satisfy a maximum occupancy less than 5%, simulations showed that a molar activity greater than 150 GBq/μmol is required for a model radioligand when 20 MBq is administered to a 250 g rat and when the concentration of binding sites in target regions is greater than 1.25 nM. CONCLUSIONS The simulation method used in this study is based on a very simple calculation and runs on widely used spreadsheet software. Therefore, simulation of radioligand pharmacokinetics using this method can be performed on a personal computer and help to assess the importance of the mass effect in small-animal PET. This simulation method also enables the generation of a model time-activity curve for the evaluation of kinetic analysis methods.
Collapse
Affiliation(s)
- Tatsuya Kikuchi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Bai P, Bagdasarian FA, Xu Y, Wang Y, Wang Y, Gomm A, Zhou Y, Wu R, Wey HY, Tanzi RE, Zhang C, Lan Y, Wang C. Molecular Imaging of Alzheimer's Disease-Related Sigma-1 Receptor in the Brain via a Novel Ru-Mediated Aromatic 18F-deoxyfluorination Probe. J Med Chem 2024; 67:6207-6217. [PMID: 38607332 DOI: 10.1021/acs.jmedchem.3c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.
Collapse
Affiliation(s)
- Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Frederick A Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yanli Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yongle Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
3
|
Xu Y, Xu Y, Biby S, Kaur B, Liu Y, Bagdasarian FA, Wey HY, Tanzi R, Zhang C, Wang C, Zhang S. Design and Discovery of Novel NLRP3 Inhibitors and PET Imaging Radiotracers Based on a 1,2,3-Triazole-Bearing Scaffold. J Med Chem 2024; 67:555-571. [PMID: 38150705 PMCID: PMC11002996 DOI: 10.1021/acs.jmedchem.3c01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The NOD-like receptor (NLR) family pyrin-domain-containing 3 (NLRP3) inflammasome, an essential component of the innate immune system, has been emerging as a viable drug target and a potential biomarker for human diseases. In our efforts to develop novel small molecule NLRP3 inhibitors, a 1-(5-chloro-2-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole scaffold was designed via a rational approach based on our previous leads. Structure-activity relationship studies and biophysical studies identified a new lead compound 8 as a potent (IC50: 0.55 ± 0.16 μM), selective, and direct NLRP3 inhibitor. Positron emission tomography (PET) imaging studies of [11C]8 demonstrated its rapid and high brain uptake as well as fast washout in mice and rhesus macaque. Notably, plasma kinetic analysis of this radiotracer from the PET/magnetic resonance imaging studies in rhesus macaque suggested radiometabolic stability. Collectively, our data not only encourage further studies of this lead compound but also warrant further optimization to generate additional novel NLRP3 inhibitors and suitable central nervous system PET radioligands with translational promise.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Savannah Biby
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Baljit Kaur
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Frederick Andrew Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, McCane Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCane Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
4
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
5
|
Qiu L, Jiang H, Zhou C, Wang J, Yu Y, Zhao H, Huang T, Gropler R, Perlmutter JS, Benzinger TLS, Tu Z. Discovery of a Promising Fluorine-18 Positron Emission Tomography Radiotracer for Imaging Sphingosine-1-Phosphate Receptor 1 in the Brain. J Med Chem 2023; 66:4671-4688. [PMID: 36926861 PMCID: PMC11037415 DOI: 10.1021/acs.jmedchem.2c01752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is recognized as a novel therapeutic and diagnostic target in neurological disorders. We recently transferred the S1PR1 radioligand [11C]CS1P1 into clinical investigation for multiple sclerosis. Herein, we reported the design, synthesis and evaluation of novel F-18 S1PR1 radioligands. We combined the structural advantages of our two lead S1PR1 radioligands and synthesized 14 new S1PR1 compounds, then performed F-18 radiochemistry on the most promising compounds. Compound 6h is potent (IC50 = 8.7 nM) and selective for S1PR1. [18F]6h exhibited a high uptake in macaque brain (SUV > 3.0) and favorable brain washout pharmacokinetics in positron emission tomography (PET) study. PET blocking and displacement studies confirmed the specificity of [18F]6h in vivo. Radiometabolite analysis confirmed no radiometabolite of [18F]6h entered into the brain to confound the PET measurement. In summary, [18F]6h is a promising radioligand to image S1PR1 and worth translational clinical investigation for humans with brain disorders.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Charles Zhou
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Jinzhi Wang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Robert Gropler
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Joel S Perlmutter
- Department of Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
6
|
Cai L, Liow JS, Morse CL, Telu S, Davies R, Manly LS, Zoghbi SS, Chin FT, Innis RB, Pike VW. Candidate 3-benzazepine-1-ol type GluN2B receptor radioligands ( 11C-NR2B-Me enantiomers) have high binding in cerebellum but not to σ1 receptors. EJNMMI Res 2023; 13:28. [PMID: 37017827 PMCID: PMC10076467 DOI: 10.1186/s13550-023-00975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/12/2023] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION We recently reported 11C-NR2B-SMe ([S-methyl-11C](R,S)-7-thiomethoxy-3-(4-(4-methyl-phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol) and its enantiomers as candidate radioligands for imaging the GluN2B subunit within rat N-methyl-D-aspartate receptors. However, these radioligands gave unexpectedly high and displaceable binding in rat cerebellum, possibly due to cross-reactivity with sigma-1 (σ1) receptors. This study investigated 11C-labeled enantiomers of a close analogue (7-methoxy-3-(4-(p-tolyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol; NR2B-Me) of 11C-NR2B-SMe as new candidate GluN2B radioligands. PET was used to evaluate these radioligands in rats and to assess potential cross-reactivity to σ1 receptors. METHODS NR2B-Me was assayed for binding affinity and selectivity to GluN2B in vitro. 11C-NR2B-Me and its enantiomers were prepared by Pd-mediated treatment of boronic ester precursors with 11C-iodomethane. Brain PET scans were conducted after radioligand intravenous injection into rats. Various ligands for GluN2B receptors or σ1 receptors were administered at set doses in pre-blocking or displacement experiments to assess their impact on imaging data. 18F-FTC146 and enantiomers of 11C-NR2B-SMe were used for comparison. Radiometabolites from brain and plasma were measured ex vivo and in vitro. RESULTS NR2B-Me enantiomers showed high GluN2B affinity and selectivity in vitro. 11C-NR2B-Me enantiomers gave high early whole rat brain uptake of radioactivity, including high uptake in cerebellum, followed by slower decline. Radioactivity in brain at 30 min ex vivo was virtually all unchanged radioligand. Only less lipophilic radiometabolites appeared in plasma. When 11C-(R)-NR2B-Me was used, three high-affinity GluN2B ligands-NR2B-SMe, Ro25-6981, and CO101,244-showed increasing pre-block of whole brain radioactivity retention with increasing dose. Two σ1 receptor antagonists, FTC146 and BD1407, were ineffective pre-blocking agents. Together, these results strongly resemble those obtained with 11C-NR2B-SMe enantiomers, except that 11C-NR2B-Me enantiomers showed faster reversibility of binding. When 18F-FTC146 was used as a radioligand, FTC146 and BD1407 showed strong pre-blocking effects whereas GluN2B ligands showed only weak blocking effects. CONCLUSION 11C-NR2B-Me enantiomers showed specific binding to GluN2B receptors in rat brain in vivo. High unexpected specific binding in cerebellum was not due to σ1 receptors. Additional investigation is needed to identify the source of the high specific binding.
Collapse
Affiliation(s)
- Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA.
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Riley Davies
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Frederick T Chin
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Rm. PS049, Stanford, CA, 94305-584, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Li Q, Hu Q, Tang J, Fang Y, Liu C, Liu J, Qi M, Chen Z, Zhang L. Deuterated [ 18F]fluoroethyl tropane analogs as dopamine transporter probes: Synthesis and biological evaluation. Nucl Med Biol 2023; 118-119:108334. [PMID: 37028197 DOI: 10.1016/j.nucmedbio.2023.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
INTRODUCTION The dopamine transporter (DAT) is vitally correlated with Parkinson's disease (PD) and other neurodegenerative diseases. Non-invasive imaging of DAT contributes to early diagnosis and monitoring of related diseases. Recently, we reported a deuterated [18F]fluoroethyl tropane analogue [18F]FECNT-d4 as a potential DAT PET imaging agent. The objective of this work was to extend the investigation by comparing four deuterated [18F]fluoroethyl tropane derivatives ([18F]2a-d) to develop metabolically stable DAT radioligands. METHODS Four fluoroethyl substituted phenyl-tropane compounds 1a-d and deuterated compounds 2a-d were synthesized and their IC50 values to DAT were evaluated. The [18F]fluoroethyl ligands [18F]1a-d and [18F]2a-d were obtained from corresponding labeling precursors by one-step radio-labeling reactions and investigated in terms of lipophilicity and in vitro binding affinity studies. [18F]1d and [18F]2d were then selected for further evaluations by in vivo metabolism study, biodistribution, ex vivo autoradiography, and microPET imaging studies. RESULTS [18F]1a-d and [18F]2a-d were obtained in radiochemical yield of 11-32 % with molar activities of 28-54 GBq/μmol. The 1d and 2d exhibited relatively high affinity to DAT (IC50: 1.9-2.1 nM). Ex vivo autoradiography and microPET studies showed that [18F]2d selectively localized on DAT-rich striatal regions and the specific signal could be blocked by DAT inhibitor. Biodistribution results showed that [18F]2d consistently exhibited a higher ratio of the target to non-target (striatum/cerebellum) than [18F]1d. Furthermore, metabolism study indicated that the in vivo metabolic stability of [18F]2d was superior to that of [18F]1d. CONCLUSION Our findings suggested that the deuterated compound [18F]2d might be a potential probe for DAT PET imaging in the brain.
Collapse
Affiliation(s)
- Qingming Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qianyue Hu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jie Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meihui Qi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhengping Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China.
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
8
|
Tan Z, Haider A, Zhang S, Chen J, Wei J, Liao K, Li G, Wei H, Dong C, Ran W, Li Y, Li Y, Rong J, Li Y, Liang SH, Xu H, Wang L. Quantitative assessment of translocator protein (TSPO) in the non-human primate brain and clinical translation of [ 18F]LW223 as a TSPO-targeted PET radioligand. Pharmacol Res 2023; 189:106681. [PMID: 36746361 DOI: 10.1016/j.phrs.2023.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Translocator protein 18 kDa (TSPO) positron emission tomography (PET) can be harnessed for the non-invasive detection of macrophage-driven inflammation. [18F]LW223, a newly reported TSPO PET tracer which was insensitive to rs6971 polymorphism, showed favorable performance characteristics in a recent imaging study involving a rat myocardial infarction model. To enable quantitative neuroimaging with [18F]LW223, we conducted kinetic analysis in the non-human primate (NHP) brain. Further, we sought to assess the utility of [18F]LW223-based TSPO imaging in a first-in-human study. METHODS Radiosynthesis of [18F]LW223 was accomplished on an automated module, whereas molar activities, stability in formulation, lipophilicity and unbound free fraction (fu) of the probe were measured. Brain penetration and target specificity of [18F]LW223 in NHPs were corroborated by PET-MR imaging under baseline and pre-blocking conditions using the validated TSPO inhibitor, (R)-PK11195, at doses ranging from 5 to 10 mg/kg. Kinetic modeling was performed using one-tissue compartment model (1TCM), two-tissue compartment model (2TCM) and Logan graphical analyses, using dynamic PET data acquisition, arterial blood collection and metabolic stability testing. Clinical PET scans were performed in two healthy volunteers (HVs). Regional brain standard uptake value ratio (SUVr) was assessed for different time intervals. RESULTS [18F]LW223 was synthesized in non-decay corrected radiochemical yields (n.d.c. RCYs) of 33.3 ± 6.5% with molar activities ranging from 1.8 ± 0.7 Ci/µmol (n = 11). [18F]LW223 was stable in formulation for up to 4 h and LogD7.4 of 2.31 ± 0.13 (n = 6) and fu of 5.80 ± 1.42% (n = 6) were determined. [18F]LW223 exhibited good brain penetration in NHPs, with a peak SUV value of ca. 1.79 in the whole brain. Pre-treatment with (R)-PK11195 substantially accelerated the washout and attenuated the area under the time-activity curve, indicating in vivo specificity of [18F]LW223 towards TSPO. Kinetic modeling demonstrated that 2TCM was the most suitable model for [18F]LW223-based neuroimaging. Global transfer rate constants (K1) and total volumes of distribution (VT) were found to be 0.10 ± 0.01 mL/cm3/min and 2.30 ± 0.17 mL/cm3, respectively. Dynamic PET data analyses across distinct time windows revealed that the VT values were relatively stable after 60 min post-injection. In a preliminary clinical study with two healthy volunteers, [18F]LW223 exhibited good brain uptake and considerable tracer retention across all analyzed brain regions. Of note, an excellent correlation between SUVr with VT was obtained when assessing the time interval from 20 to 40 min post tracer injection (SUVr(20-40 min), R2 = 0.94, p < 0.0001), suggesting this time window may be suitable to estimate specific binding to TSPO in human brain. CONCLUSION Our findings indicate that [18F]LW223 is suitable for quantitative TSPO-targeted PET imaging in higher species. Employing state-of-the-art kinetic modeling, we found that [18F]LW223 was effective in mapping TSPO throughout the NHP brain, with best model fits obtained from 2TCM and Logan graphical analyses. Overall, our results indicate that [18F]LW223 exhibits favorable tracer performance characteristics in higher species, and this novel imaging tool may hold promise to provide effective neuroinflammation imaging in patients with neurological disease.
Collapse
Affiliation(s)
- Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou 510555, China
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
9
|
Koike T. Development of Specific PET Tracers for Central Nervous System Drug Targets. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited
| |
Collapse
|
10
|
van der Wildt B, Klockow JL, Miao Z, Reyes ST, Park JH, Shen B, Chin FT. Discovery of a CSF-1R inhibitor and PET tracer for imaging of microglia and macrophages in the brain. Nucl Med Biol 2022; 114-115:99-107. [PMID: 36371938 DOI: 10.1016/j.nucmedbio.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Colony stimulating factor 1 receptor (CSF-1R) is a kinase expressed on macrophages and microglia in the brain. It has been recognized as a potential drug and imaging target in treatment of neuroinflammatory diseases and glioblastoma. Despite several attempts, no validated CSF-1R PET tracer is currently available. The aim of this work was to develop a brain permeable CSF-1R PET tracer for non-invasive imaging of CSF-1R in vivo. Based on fragments of two potent and selective CSF-1R inhibitors, novel hybrid molecules were designed and synthesized. Affinity for human recombinant CSF-1R and selectivity over c-KIT and PDGFR-β was determined using a FRET based in vitro assay. Radiosynthesis was performed by fully automated [11C]CH3I methylation of the corresponding des-methyl precursor. PET imaging was performed at baseline, efflux transporter blocking and CSF-1R blocking conditions. Moreover, tracer distribution and blood and plasma radiometabolites were determined following injection in healthy mice. The most promising CSF-1R inhibitor, compound 4, showed high selectivity and high affinity for CSF-1R (IC50: 12 ± 3 nM) and no affinity for kinase family members c-KIT and PDGFR-beta. [11C]4 was obtained in good yield (15 ± 0.2 % decay corrected yield, (2.0 ± 0.26 GBq at end of synthesis) and excellent purity. The compound demonstrated high brain penetration and good metabolic stability (>2 %ID/g at 60 min post injection and 79 ± 8 % intact [11C]4 in brain at 60 min post injection) and no strong efflux transporter substrate behavior. Blocking CSF-1R prior to imaging with [11C]4 resulted in significant decrease in brain uptake. In conclusion, [11C]4 shows good potential as a novel PET tracer for imaging of CSF-1R in the CNS and future experiments in relevant animal models are warranted.
Collapse
Affiliation(s)
- Berend van der Wildt
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jessica L Klockow
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Zheng Miao
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Samantha T Reyes
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jun H Park
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Bin Shen
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
12
|
PET Imaging of the Neuropeptide Y System: A Systematic Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123726. [PMID: 35744852 PMCID: PMC9227365 DOI: 10.3390/molecules27123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) is a vastly studied biological peptide with numerous physiological functions that activate the NPY receptor family (Y1, Y2, Y4 and Y5). Moreover, these receptors are correlated with the pathophysiology of several diseases such as feeding disorders, anxiety, metabolic diseases, neurodegenerative diseases, some types of cancers and others. In order to deepen the knowledge of NPY receptors' functions and molecular mechanisms, neuroimaging techniques such as positron emission tomography (PET) have been used. The development of new radiotracers for the different NPY receptors and their subsequent PET studies have led to significant insights into molecular mechanisms involving NPY receptors. This article provides a systematic review of the imaging biomarkers that have been developed as PET tracers in order to study the NPY receptor family.
Collapse
|
13
|
Stéen EJL, Vugts DJ, Windhorst AD. The Application of in silico Methods for Prediction of Blood-Brain Barrier Permeability of Small Molecule PET Tracers. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:853475. [PMID: 39354992 PMCID: PMC11440968 DOI: 10.3389/fnume.2022.853475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 10/03/2024]
Abstract
Designing positron emission tomography (PET) tracers for targets in the central nervous system (CNS) is challenging. Besides showing high affinity and high selectivity for their intended target, these tracers have to be able to cross the blood-brain barrier (BBB). Since only a small fraction of small molecules is estimated to be able to cross the BBB, tools that can predict permeability at an early stage during the development are of great importance. One such tool is in silico models for predicting BBB-permeability. Thus far, such models have been built based on CNS drugs, with one exception. Herein, we sought to discuss and analyze if in silico predictions that have been built based on CNS drugs can be applied for CNS PET tracers as well, or if dedicated models are needed for the latter. Depending on what is taken into account in the prediction, i.e., passive diffusion or also active influx/efflux, there may be a need for a model build on CNS PET tracers. Following a brief introduction, an overview of a few selected in silico BBB-permeability predictions is provided along with a short historical background to the topic. In addition, a combination of previously reported CNS PET tracer datasets were assessed in a couple of selected models and guidelines for predicting BBB-permeability. The selected models were either predicting only passive diffusion or also the influence of ADME (absorption, distribution, metabolism and excretion) parameters. To conclude, we discuss the potential need of a prediction model dedicated for CNS PET tracers and present the key issues in respect to setting up a such a model.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Amsterdam Neuroscience, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Danielle J Vugts
- Amsterdam Neuroscience, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Albert D Windhorst
- Amsterdam Neuroscience, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
14
|
Discovery and development of brain-penetrant 18F-labeled radioligands for neuroimaging of the sigma-2 receptors. Acta Pharm Sin B 2022; 12:1406-1415. [PMID: 35530149 PMCID: PMC9069315 DOI: 10.1016/j.apsb.2021.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
We have discovered and synthesized a series of indole-based derivatives as novel sigma-2 (σ 2) receptor ligands. Two ligands with high σ 2 receptor affinity and subtype selectivity were then radiolabeled with F-18 in good radiochemical yields and purities, and evaluated in rodents. In biodistribution studies in male ICR mice, radioligand [18F]9, or 1-(4-(5,6-dimethoxyisoindolin-2-yl)butyl)-4-(2-[18F]fluoroethoxy)-1H-indole, was found to display high brain uptake and high brain-to-blood ratio. Pretreatment of animals with the selective σ 2 receptor ligand CM398 led to significant reductions in both brain uptake (29%-54%) and brain-to-blood ratio (60%-88%) of the radioligand in a dose-dependent manner, indicating high and saturable specific binding of [18F]9 to σ 2 receptors in the brain. Further, ex vivo autoradiography in male ICR mice demonstrated regionally heterogeneous specific binding of [18F]9 in the brain that is consistent with the distribution pattern of σ 2 receptors. Dynamic positron emission tomography imaging confirmed regionally distinct distribution and high levels of specific binding for [18F]9 in the rat brain, along with appropriate tissue kinetics. Taken together, results from our current study indicated the novel radioligand [18F]9 as the first highly specific and promising imaging agent for σ 2 receptors in the brain.
Collapse
|
15
|
He Y, Schild M, Grether U, Benz J, Leibrock L, Heer D, Topp A, Collin L, Kuhn B, Wittwer M, Keller C, Gobbi LC, Schibli R, Mu L. Development of High Brain-Penetrant and Reversible Monoacylglycerol Lipase PET Tracers for Neuroimaging. J Med Chem 2022; 65:2191-2207. [PMID: 35089028 DOI: 10.1021/acs.jmedchem.1c01706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoacylglycerol lipase (MAGL) is one of the key enzymes in the endocannabinoid system. Inhibition of MAGL has been proposed as an attractive approach for the treatment of various diseases. In this study, we designed and successfully synthesized two series of piperazinyl pyrrolidin-2-one derivatives as novel reversible MAGL inhibitors. (R)-[18F]13 was identified through the preliminary evaluation of two carbon-11-labeled racemic structures [11C]11 and [11C]16. In dynamic positron-emission tomography (PET) scans, (R)-[18F]13 showed a heterogeneous distribution and matched the MAGL expression pattern in the mouse brain. High brain uptake and brain-to-blood ratio were achieved by (R)-[18F]13 in comparison with previously reported reversible MAGL PET radiotracers. Target occupancy studies with a therapeutic MAGL inhibitor revealed a dose-dependent reduction of (R)-[18F]13 accumulation in the mouse brain. These findings indicate that (R)-[18F]13 ([18F]YH149) is a highly promising PET probe for visualizing MAGL non-invasively in vivo and holds great potential to support drug development.
Collapse
Affiliation(s)
- Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Matthias Schild
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Jörg Benz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Lea Leibrock
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Andreas Topp
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Bernd Kuhn
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Matthias Wittwer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Luca C Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
16
|
Shimojo M, Ono M, Takuwa H, Mimura K, Nagai Y, Fujinaga M, Kikuchi T, Okada M, Seki C, Tokunaga M, Maeda J, Takado Y, Takahashi M, Minamihisamatsu T, Zhang M, Tomita Y, Suzuki N, Maximov A, Suhara T, Minamimoto T, Sahara N, Higuchi M. A genetically targeted reporter for PET imaging of deep neuronal circuits in mammalian brains. EMBO J 2021; 40:e107757. [PMID: 34636430 PMCID: PMC8591537 DOI: 10.15252/embj.2021107757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 01/27/2023] Open
Abstract
Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level.
Collapse
Affiliation(s)
- Masafumi Shimojo
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Maiko Ono
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Hiroyuki Takuwa
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Koki Mimura
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yuji Nagai
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Tatsuya Kikuchi
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Maki Okada
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Chie Seki
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Masaki Tokunaga
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Jun Maeda
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yuhei Takado
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Manami Takahashi
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Takeharu Minamihisamatsu
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Ming‐Rong Zhang
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yutaka Tomita
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | - Norihiro Suzuki
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | - Anton Maximov
- Department of NeuroscienceThe Scripps Research InstituteLa JollaCAUSA
| | - Tetsuya Suhara
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Takafumi Minamimoto
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Naruhiko Sahara
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| |
Collapse
|
17
|
Rong J, Mori W, Xia X, Schafroth MA, Zhao C, Van RS, Yamasaki T, Chen J, Xiao Z, Haider A, Ogasawara D, Hiraishi A, Shao T, Zhang Y, Chen Z, Pang F, Hu K, Xie L, Fujinaga M, Kumata K, Gou Y, Fang Y, Gu S, Wei H, Bao L, Xu H, Collier TL, Shao Y, Carson RE, Cravatt BF, Wang L, Zhang MR, Liang SH. Novel Reversible-Binding PET Ligands for Imaging Monoacylglycerol Lipase Based on the Piperazinyl Azetidine Scaffold. J Med Chem 2021; 64:14283-14298. [PMID: 34569803 PMCID: PMC9090218 DOI: 10.1021/acs.jmedchem.1c00747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a 33 kDa serine protease primarily responsible for hydrolyzing 2-arachidonoylglycerol into the proinflammatory eicosanoid precursor arachidonic acid in the central nervous system. Inhibition of MAGL constitutes an attractive therapeutic concept for treating psychiatric disorders and neurodegenerative diseases. Herein, we present the design and synthesis of multiple reversible MAGL inhibitor candidates based on a piperazinyl azetidine scaffold. Compounds 10 and 15 were identified as the best-performing reversible MAGL inhibitors by pharmacological evaluations, thus channeling their radiolabeling with fluorine-18 in high radiochemical yields and favorable molar activity. Furthermore, evaluation of [18F]10 and [18F]15 ([18F]MAGL-2102) by autoradiography and positron emission tomography (PET) imaging in rodents and nonhuman primates demonstrated favorable brain uptakes, heterogeneous radioactivity distribution, good specific binding, and adequate brain kinetics, and [18F]15 demonstrated a better performance. In conclusion, [18F]15 was found to be a suitable PET radioligand for the visualization of MAGL, harboring potential for the successful translation into humans.
Collapse
Affiliation(s)
- Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Xiaotian Xia
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chunyu Zhao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Richard S. Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Atsuto Hiraishi
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Fuwen Pang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yuancheng Gou
- Chemshuttle Incorporation, 1699 Huishan Blvd., Wuxi, Jiangsu 214174, China
| | - Yang Fang
- Chemshuttle Incorporation, 1699 Huishan Blvd., Wuxi, Jiangsu 214174, China
| | - Shuyin Gu
- Chemshuttle Incorporation, 1699 Huishan Blvd., Wuxi, Jiangsu 214174, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Liang Bao
- Chemshuttle Incorporation, 1699 Huishan Blvd., Wuxi, Jiangsu 214174, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Thomas L. Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
18
|
Jiang H, Joshi S, Liu H, Mansor S, Qiu L, Zhao H, Whitehead T, Gropler RJ, Wu GF, Cross AH, Benzinger TLS, Shoghi KI, Perlmutter JS, Tu Z. In Vitro and In Vivo Investigation of S1PR1 Expression in the Central Nervous System Using [ 3H]CS1P1 and [ 11C]CS1P1. ACS Chem Neurosci 2021; 12:3733-3744. [PMID: 34516079 PMCID: PMC8605766 DOI: 10.1021/acschemneuro.1c00492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is ubiquitously expressed among all tissues and plays key roles in many physiological and cellular processes. In the central nervous system (CNS), S1PR1 is expressed in different types of cells including neurons, astrocytes, and oligodendrocyte precursor cells. S1PR1 has been recognized as a novel therapeutic target in multiple sclerosis and other diseases. We previously reported a promising S1PR1-specific radioligand, [11C]CS1P1 (previously named [11C]TZ3321), which is under clinical investigation for human use. In the current study, we performed a detailed characterization of [3H]CS1P1 for its binding specificity to S1PR1 in CNS using autoradiography and immunohistochemistry in human and rat CNS tissues. Our data indicate that [3H]CS1P1 binds to S1PR1 in human frontal cortex tissue with a Kd of 3.98 nM and a Bmax of 172.5 nM. The distribution of [3H]CS1P1 in human and rat CNS tissues is consistent with the distribution of S1PR1 detected by immunohistochemistry studies. Our microPET studies of [11C]CS1P1 in a nonhuman primate (NHP) show a standardized uptake value of 2.4 in the NHP brain, with test-retest variability of 0.23% among six different NHPs. Radiometabolite analysis in the plasma samples of NHP and rat, as well as in rat brain samples, showed that [11C]CS1P1 was stable in vivo. Kinetic modeling studies using a two-compartment tissue model showed that the positron emission tomography (PET) data fit the model well. Overall, our study provides a detailed characterization of [3H]CS1P1 binding to S1PR1 in the CNS. Combined with our microPET studies in the NHP brain, our data suggest that [11C]CS1P1 is a promising radioligand for PET imaging of S1PR1 in the CNS.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Syahir Mansor
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Lin Qiu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Timothy Whitehead
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Gregory F. Wu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Anne H. Cross
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Kooresh I. Shoghi
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| |
Collapse
|
19
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
20
|
Hattori Y, Yamasaki T, Ohashi T, Miyanohana Y, Kusumoto T, Maeda R, Miyamoto M, Debori Y, Hata A, Zhang Y, Wakizaka H, Wakabayashi T, Fujinaga M, Yamashita R, Zhang MR, Koike T. Design, Synthesis, and Evaluation of 11C-Labeled 3-Acetyl-Indole Derivatives as a Novel Positron Emission Tomography Imaging Agent for Diacylglycerol Kinase Gamma (DGKγ) in Brain. J Med Chem 2021; 64:11990-12002. [PMID: 34347478 DOI: 10.1021/acs.jmedchem.1c00584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinase gamma (DGKγ) is a subtype of DGK enzyme, which catalyzes ATP-dependent conversion of diacylglycerol to phosphatidic acid. DGKγ, localized in the brain, plays an important role in the central nervous system. However, its function has not been widely investigated. Positron emission tomography (PET) imaging of DGKγ validates target engagement of therapeutic DGKγ inhibitors and investigates DGKγ levels under normal and disease conditions. In this study, we designed and synthesized a series of 3-acetyl indole derivatives as candidates for PET imaging agents for DGKγ. Among the synthesized compounds, 2-((3-acetyl-1-(6-methoxypyridin-3-yl)-2-methyl-1H-indol-5-yl)oxy)-N-methylacetamide (9) exhibited potent inhibitory activity (IC50 = 30 nM) against DGKγ and desirable physicochemical properties allowing efficient blood-brain barrier penetration and low levels of undesirable nonspecific binding. The radiolabeling of 9 followed by PET imaging of wild-type and DGKγ-deficient mice and rats indicated that [11C]9 ([11C]T-278) specifically binds to DGKγ and yields a high signal-to-noise ratio for DGKγ in rodent brains.
Collapse
Affiliation(s)
- Yasushi Hattori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomohiro Ohashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuhei Miyanohana
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomokazu Kusumoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryouta Maeda
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maki Miyamoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuyuki Debori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akito Hata
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takeshi Wakabayashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryo Yamashita
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
21
|
Knight AC, Varlow C, Tong J, Vasdev N. In Vitro and In Vivo Evaluation of GSK-3 Radioligands in Alzheimer's Disease: Preliminary Evidence of Sex Differences. ACS Pharmacol Transl Sci 2021; 4:1287-1294. [PMID: 34423266 DOI: 10.1021/acsptsci.1c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a positron emission tomography (PET) imaging target with implications in the pathogenesis of Alzheimer's disease (AD). This preliminary study evaluates human AD and transgenic P301L mouse brain tissues using the GSK-3-targeting radiotracers [3H]PF-367 and [3H]OCM-44 in radioligand binding assays. A saturation analysis showed decreased GSK-3 density in female human AD compared to a normal healthy brain. Equivalence in density (B max), affinity (K d), and apparent affinity (K i) of both radiotracers was demonstrated to enable their interchangeability for in vitro evaluations of GSK-3 expression. An evaluation of P301L mouse brain by [3H]/[11C]OCM-44 delineated differences in the B max of GSK-3 between the control and transgenic mice within male subjects. PET imaging showed similar trends to those observed in vitro. Sex differences are revealed as a potential parameter to consider in the development of GSK-3-targeted diagnostics and therapeutics and could guide recruitment for clinical studies.
Collapse
Affiliation(s)
- Ashley C Knight
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
22
|
Patel S, Knight A, Krause S, Teceno T, Tresse C, Li S, Cai Z, Gouasmat A, Carroll VM, Barret O, Gottmukkala V, Zhang W, Xiang X, Morley T, Huang Y, Passchier J. Preclinical In Vitro and In Vivo Characterization of Synaptic Vesicle 2A-Targeting Compounds Amenable to F-18 Labeling as Potential PET Radioligands for Imaging of Synapse Integrity. Mol Imaging Biol 2021; 22:832-841. [PMID: 31728839 DOI: 10.1007/s11307-019-01428-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Current synaptic vesicle 2A (SV2A) positron emission tomography (PET) imaging agents include the nanomolar affinity probes [11C]UCB-J and [18F]UCB-H derived from the anti-epileptic drug levitaracetam (Keppra®). An industry-utilized "de-risking" approach was used to carry out initial pharmacological characterization and to assess potential next-generation candidates amenable to F-18 radiolabeling for preliminary evaluation. PROCEDURES Radioligand binding methods were employed in mammalian brain homogenates to determine the SV2A affinity (Kd) and maximal binding capacity (Bmax) of [3H]UCB-J. Novel leads were then screened to identify compounds minimally with comparable binding affinities with UCB-J in order to select a F-18-labeled candidate for subsequent in vivo assessment in rat. In parallel, mammalian brain tissue section autoradiography was performed to assess specific SV2A distribution. RESULTS [3H]UCB-J bound with high affinity to a single population of sites in the rat brain (Kd = 2.6 ± 0.25 nM; Bmax = 810 ± 25 fmol/mg protein) and control human cortex (Kd = 2.9 ± 0.54 nM; Bmax = 10,000 ± 640 fmol/mg protein). Distribution of specific SV2A binding was shown to be homogeneous throughout the rodent brain and primarily in gray matter regions of rodent and human brain sections. Analog screening identified MNI-1038, MNI-1126/SDM-8, and SDM-2 as having comparable binding affinities with the currently available PET ligands. Subsequent [18F]MNI-1126/[18F]SDM-8 dynamic micro-PET imaging in rats revealed in vivo uptake and accumulation in the brain with favorable kinetics. Chase studies using 30 mg/kg levetiracetam confirmed that in vivo brain uptake of [18F]MNI-1126/[18F]SDM-8 was reversible. CONCLUSIONS Taken together, these data suggest [18F]MNI-1126/[18F]SDM-8 (since renamed as [18F]SynVesT-1) characterized via an in vitro screening cascade provided a measurable in vivo SV2A specific signal in the rodent brain. This tracer as well as the close analog [18F]SDM-2 (since renamed as [18F]SynVesT-2) is currently undergoing further evaluation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shil Patel
- Codiak Biosciences, 500 Technology Square, 9th Floor, Cambridge, MA, 02139, USA.
| | - Ashley Knight
- Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Stephen Krause
- Eisai Inc., 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Tyler Teceno
- Eisai Inc., 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Cedric Tresse
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | | | - Vincent M Carroll
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Olivier Barret
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Vijay Gottmukkala
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianhong Xiang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China
| | - Thomas Morley
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | - Jan Passchier
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| |
Collapse
|
23
|
Ozenil M, Aronow J, Millard M, Langer T, Wadsak W, Hacker M, Pichler V. Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:530. [PMID: 34199622 PMCID: PMC8229778 DOI: 10.3390/ph14060530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Jonas Aronow
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| |
Collapse
|
24
|
Chen Z, Mori W, Rong J, Schafroth MA, Shao T, Van RS, Ogasawara D, Yamasaki T, Hiraishi A, Hatori A, Chen J, Zhang Y, Hu K, Fujinaga M, Sun J, Yu Q, Collier TL, Shao Y, Cravatt BF, Josephson L, Zhang MR, Liang SH. Development of a highly-specific 18F-labeled irreversible positron emission tomography tracer for monoacylglycerol lipase mapping. Acta Pharm Sin B 2021; 11:1686-1695. [PMID: 34221877 PMCID: PMC8245801 DOI: 10.1016/j.apsb.2021.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
As a serine hydrolase, monoacylglycerol lipase (MAGL) is principally responsible for the metabolism of 2-arachidonoylglycerol (2-AG) in the central nervous system (CNS), leading to the formation of arachidonic acid (AA). Dysfunction of MAGL has been associated with multiple CNS disorders and symptoms, including neuroinflammation, cognitive impairment, epileptogenesis, nociception and neurodegenerative diseases. Inhibition of MAGL provides a promising therapeutic direction for the treatment of these conditions, and a MAGL positron emission tomography (PET) probe would greatly facilitate preclinical and clinical development of MAGL inhibitors. Herein, we design and synthesize a small library of fluoropyridyl-containing MAGL inhibitor candidates. Pharmacological evaluation of these candidates by activity-based protein profiling identified 14 as a lead compound, which was then radiolabeled with fluorine-18 via a facile SNAr reaction to form 2-[18F]fluoropyridine scaffold. Good blood–brain barrier permeability and high in vivo specific binding was demonstrated for radioligand [18F]14 (also named as [18F]MAGL-1902). This work may serve as a roadmap for clinical translation and further design of potent 18F-labeled MAGL PET tracers.
Collapse
|
25
|
Hattori Y, Matsuda S, Baba R, Matsumiya K, Iwasaki S, Constantinescu CC, Morley TJ, Carroll VM, Papin C, Gouasmat A, Alagille D, Tamagnan G, Koike T. Design, Synthesis, and Evaluation of (2-Aminocyclopropyl)phenyl Derivatives as Novel Positron Emission Tomography Imaging Agents for Lysine-Specific Demethylase 1 in the Brain. J Med Chem 2021; 64:3780-3793. [PMID: 33729758 DOI: 10.1021/acs.jmedchem.0c01937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysregulation of histone H3 lysine 4 (H3K4) methylation is implicated in the pathogenesis of neurodevelopmental disorders. Lysine-specific demethylase 1 (LSD1) determines the methylation status of H3K4 through flavin adenine dinucleotide (FAD)-mediated histone demethylation. Therefore, LSD1 inhibition in the brain can be a novel therapeutic option for treating these disorders. Positron emission tomography (PET) imaging of LSD1 allows for investigating LSD1 expression levels under normal and disease conditions and validating target engagement of therapeutic LSD1 inhibitors. This study designed and synthesized (2-aminocyclopropyl)phenyl derivatives with irreversible binding to LSD1 as PET imaging agents for LSD1 in the brain. We optimized lipophilicity of the lead compound to minimize the risk of nonspecific binding and identified 1e with high selectivity over monoamine oxidase A and B, which are a family of FAD-dependent enzymes homologous to LSD1. PET imaging in a monkey showed a high uptake of [18F]1e to regions enriched with LSD1, indicating its specific binding to LSD1.
Collapse
Affiliation(s)
- Yasushi Hattori
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoru Matsuda
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Rina Baba
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouta Matsumiya
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinji Iwasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | | | - Thomas J Morley
- Invicro LLC, 60 Temple Street, Suite 8A, New Haven, Connecticut 06518, United States
| | - Vincent M Carroll
- Invicro LLC, 60 Temple Street, Suite 8A, New Haven, Connecticut 06518, United States
| | - Caroline Papin
- Invicro LLC, 60 Temple Street, Suite 8A, New Haven, Connecticut 06518, United States
| | - Alexandra Gouasmat
- Invicro LLC, 60 Temple Street, Suite 8A, New Haven, Connecticut 06518, United States
| | - David Alagille
- XingImaging LLC, 760 Temple Street, New Haven, Connecticut 06510, United States
| | - Gilles Tamagnan
- XingImaging LLC, 760 Temple Street, New Haven, Connecticut 06510, United States
| | - Tatsuki Koike
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
26
|
Obokata N, Seki C, Hirata T, Maeda J, Ishii H, Nagai Y, Matsumura T, Takakuwa M, Fukuda H, Minamimoto T, Kawamura K, Zhang MR, Nakajima T, Saijo T, Higuchi M. Synthesis and preclinical evaluation of [ 11C]MTP38 as a novel PET ligand for phosphodiesterase 7 in the brain. Eur J Nucl Med Mol Imaging 2021; 48:3101-3112. [PMID: 33674894 PMCID: PMC8426238 DOI: 10.1007/s00259-021-05269-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/17/2021] [Indexed: 11/08/2022]
Abstract
Purpose Phosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [11C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7. Methods [11C]MTP38 was radiosynthesized by 11C-cyanation of a bromo precursor with [11C]HCN. PET scans of rat and rhesus monkey brains and in vitro autoradiography of brain sections derived from these species were conducted with [11C]MTP38. In monkeys, dynamic PET data were analyzed with an arterial input function to calculate the total distribution volume (VT). The non-displaceable binding potential (BPND) in the striatum was also determined by a reference tissue model with cerebellar reference. Finally, striatal occupancy of PDE7 by an inhibitor was calculated in monkeys according to changes in BPND. Results [11C]MTP38 was synthesized with radiochemical purity ≥99.4% and molar activity of 38.6 ± 12.6 GBq/μmol. Autoradiography revealed high radioactivity in the striatum and its reduction by non-radiolabeled ligands, in contrast with unaltered autoradiographic signals in other regions. In vivo PET after radioligand injection to rats and monkeys demonstrated that radioactivity was rapidly distributed to the brain and intensely accumulated in the striatum relative to the cerebellum. Correspondingly, estimated VT values in the monkey striatum and cerebellum were 3.59 and 2.69 mL/cm3, respectively. The cerebellar VT value was unchanged by pretreatment with unlabeled MTP38. Striatal BPND was reduced in a dose-dependent manner after pretreatment with MTP-X, a PDE7 inhibitor. Relationships between PDE7 occupancy by MTP-X and plasma MTP-X concentration could be described by Hill’s sigmoidal function. Conclusion We have provided the first successful preclinical demonstration of in vivo PDE7 imaging with a specific PET radioligand. [11C]MTP38 is a feasible radioligand for evaluating PDE7 in the brain and is currently being applied to a first-in-human PET study. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05269-4.
Collapse
Affiliation(s)
- Naoyuki Obokata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
- Department of Molecular Neuroimaging, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan.
| | - Takeshi Hirata
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Takehiko Matsumura
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Misae Takakuwa
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Hajime Fukuda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Tatsuo Nakajima
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Takeaki Saijo
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
- Department of Molecular Neuroimaging, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
27
|
Pipal RW, Stout KT, Musacchio PZ, Ren S, Graham TJA, Verhoog S, Gantert L, Lohith TG, Schmitz A, Lee HS, Hesk D, Hostetler ED, Davies IW, MacMillan DWC. Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery. Nature 2020; 589:542-547. [PMID: 33238289 PMCID: PMC7856055 DOI: 10.1038/s41586-020-3015-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022]
Abstract
Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.
Collapse
Affiliation(s)
- Robert W Pipal
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Kenneth T Stout
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | - Sumei Ren
- Labeled Compound Synthesis Group, Department of Process R&D, MRL, Merck & Co., Rahway, NJ, USA
| | - Thomas J A Graham
- Cyclotron Facility, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Alexander Schmitz
- Cyclotron Facility, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hsiaoju S Lee
- Cyclotron Facility, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Hesk
- Labeled Compound Synthesis Group, Department of Process R&D, MRL, Merck & Co., Rahway, NJ, USA.,Department of Isotopic Chemistry, RTI International, Durham, NC, USA
| | | | - Ian W Davies
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
28
|
Shaw RC, Tamagnan GD, Tavares AAS. Rapidly (and Successfully) Translating Novel Brain Radiotracers From Animal Research Into Clinical Use. Front Neurosci 2020; 14:871. [PMID: 33117115 PMCID: PMC7559529 DOI: 10.3389/fnins.2020.00871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
The advent of preclinical research scanners for in vivo imaging of small animals has added confidence into the multi-step decision-making process of radiotracer discovery and development. Furthermore, it has expanded the utility of imaging techniques available to dissect clinical questions, fostering a cyclic interaction between the clinical and the preclinical worlds. Significant efforts from medicinal chemistry have also made available several high-affinity and selective compounds amenable for radiolabeling, that target different receptors, transporters and enzymes in vivo. This substantially increased the range of applications of molecular imaging using positron emission tomography (PET) or single photon emission computed tomography (SPECT). However, the process of developing novel radiotracers for in vivo imaging of the human brain is a multi-step process that has several inherent pitfalls and technical difficulties, which often hampers the successful translation of novel imaging agents from preclinical research into clinical use. In this paper, the process of radiotracer development and its relevance in brain research is discussed; as well as, its pitfalls, technical challenges and future promises. Examples of successful and unsuccessful translation of brain radiotracers will be presented.
Collapse
Affiliation(s)
- Robert C. Shaw
- BHF Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Adriana Alexandre S. Tavares
- BHF Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Rideout HJ, Chartier-Harlin MC, Fell MJ, Hirst WD, Huntwork-Rodriguez S, Leyns CEG, Mabrouk OS, Taymans JM. The Current State-of-the Art of LRRK2-Based Biomarker Assay Development in Parkinson's Disease. Front Neurosci 2020; 14:865. [PMID: 33013290 PMCID: PMC7461933 DOI: 10.3389/fnins.2020.00865] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Evidence is mounting that LRRK2 function, particularly its kinase activity, is elevated in multiple forms of Parkinson's disease, both idiopathic as well as familial forms linked to mutations in the LRRK2 gene. However, sensitive quantitative markers of LRRK2 activation in clinical samples remain at the early stages of development. There are several measures of LRRK2 activity that could potentially be used in longitudinal studies of disease progression, as inclusion/exclusion criteria for clinical trials, to predict response to therapy, or as markers of target engagement. Among these are levels of LRRK2, phosphorylation of LRRK2 itself, either by other kinases or via auto-phosphorylation, its in vitro kinase activity, or phosphorylation of downstream substrates. This is advantageous on many levels, in that multiple indices of elevated kinase activity clearly strengthen the rationale for targeting this kinase with novel therapeutic candidates, and provide alternate markers of activation in certain tissues or biofluids for which specific measures are not detectable. However, this can also complicate interpretation of findings from different studies using disparate measures. In this review we discuss the current state of LRRK2-focused biomarkers, the advantages and disadvantages of the current pallet of outcome measures, the gaps that need to be addressed, and the priorities that the field has defined.
Collapse
Affiliation(s)
- Hardy J. Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | | | | | | | | | | | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
30
|
Lu S, Haskali MB, Ruley KM, Dreyfus NJF, DuBois SL, Paul S, Liow JS, Morse CL, Kowalski A, Gladding RL, Gilmore J, Mogg AJ, Morin SM, Lindsay-Scott PJ, Ruble JC, Kant NA, Shcherbinin S, Barth VN, Johnson MP, Cuadrado M, Jambrina E, Mannes AJ, Nuthall HN, Zoghbi SS, Jesudason CD, Innis RB, Pike VW. PET ligands [ 18F]LSN3316612 and [ 11C]LSN3316612 quantify O-linked-β- N-acetyl-glucosamine hydrolase in the brain. Sci Transl Med 2020; 12:eaau2939. [PMID: 32404505 PMCID: PMC8494060 DOI: 10.1126/scitranslmed.aau2939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/11/2020] [Indexed: 12/22/2023]
Abstract
We aimed to develop effective radioligands for quantifying brain O-linked-β-N-acetyl-glucosamine (O-GlcNAc) hydrolase (OGA) using positron emission tomography in living subjects as tools for evaluating drug target engagement. Posttranslational modifications of tau, a biomarker of Alzheimer's disease, by O-GlcNAc through the enzyme pair OGA and O-GlcNAc transferase (OGT) are inversely related to the amounts of its insoluble hyperphosphorylated form. Increase in tau O-GlcNAcylation by OGA inhibition is believed to reduce tau aggregation. LSN3316612, a highly selective and potent OGA ligand [half-maximal inhibitory concentration (IC50) = 1.9 nM], emerged as a lead ligand after in silico analysis and in vitro evaluations. [3H]LSN3316612 imaged and quantified OGA in postmortem brains of rat, monkey, and human. The presence of fluorine and carbonyl functionality in LSN3316612 enabled labeling with positron-emitting fluorine-18 or carbon-11. Both [18F]LSN3316612 and [11C]LSN3316612 bound reversibly to OGA in vivo, and such binding was blocked by pharmacological doses of thiamet G, an OGA inhibitor of different chemotype, in monkeys. [18F]LSN3316612 entered healthy human brain avidly (~4 SUV) without radiodefluorination or adverse effect from other radiometabolites, as evidenced by stable brain total volume of distribution (VT) values by 110 min of scanning. Overall, [18F]LSN3316612 is preferred over [11C]LSN3316612 for future human studies, whereas either may be an effective positron emission tomography radioligand for quantifying brain OGA in rodent and monkey.
Collapse
Affiliation(s)
- Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Mohammad B Haskali
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | | | | | | | - Soumen Paul
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Aneta Kowalski
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | | | | | | | | | | | | | | | | | | | - Maria Cuadrado
- Lilly, S. A. Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Enrique Jambrina
- Lilly, S. A. Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1510, USA
| | | | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | | | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA.
| |
Collapse
|
31
|
Synthesis and pharmacokinetic study of a 11C-labeled cholesterol 24-hydroxylase inhibitor using 'in-loop' [ 11C]CO 2 fixation method. Bioorg Med Chem Lett 2020; 30:127068. [PMID: 32178974 DOI: 10.1016/j.bmcl.2020.127068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Cholesterol 24-hydroxylase, also known as CYP46A1 (EC 1.14.13.98), is a monooxygenase and a member of the cytochrome P450 family. CYP46A1 is specifically expressed in the brain where it controls cholesterol elimination by producing 24S-hydroxylcholesterol (24-HC) as the major metabolite. Modulation of CYP46A1 activity may affect Aβ deposition and p-tau accumulation by changing 24-HC formation, which thereafter serves as potential therapeutic pathway for Alzheimer's disease. In this work, we showcase the efficient synthesis and preliminary pharmacokinetic evaluation of a novel cholesterol 24-hydroxylase inhibitor 1 for use in positron emission tomography.
Collapse
|
32
|
Yu Q, Kumata K, Li H, Zhang Y, Chen Z, Zhang X, Shao T, Hatori A, Yamasaki T, Xie L, Hu K, Wang G, Josephson L, Sun S, Zhang MR, Liang SH. Synthesis and evaluation of 6-( 11C-methyl(4-(pyridin-2-yl)thiazol-2-yl)amino)benzo[d]thiazol-2(3H)-one for imaging γ-8 dependent transmembrane AMPA receptor regulatory protein by PET. Bioorg Med Chem Lett 2020; 30:126879. [PMID: 31879207 DOI: 10.1016/j.bmcl.2019.126879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) are a recently discovered family of proteins that modulate AMPA receptors activity. Based on a potent and selective TARP subtype γ-8 antagonist, 6-(methyl(4-(pyridin-2-yl)thiazol-2-yl)amino)benzo[d]thiazol-2(3H)-one (compound 9), we perform the radiosynthesis of its 11C-isotopologue 1 and conduct preliminary PET evaluation to test the feasibility of imaging TARP γ-8 dependent receptors in vivo.
Collapse
Affiliation(s)
- Qingzhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Katsushi Kumata
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hua Li
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Yiding Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Xiaofei Zhang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Akiko Hatori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kuan Hu
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Gangqiang Wang
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Nuclear Technology & Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Shaofa Sun
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Nuclear Technology & Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States.
| |
Collapse
|
33
|
Nadeem Q, Meola G, Braband H, Bolliger R, Blacque O, Hernández‐Valdés D, Alberto R. To Sandwich Technetium: Highly Functionalized Bis‐Arene Complexes [
99m
Tc(η
6
‐arene)
2
]
+
Directly from Water and [
99m
TcO
4
]
−. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qaisar Nadeem
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | - Giuseppe Meola
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | - Henrik Braband
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | - Robin Bolliger
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | - Olivier Blacque
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | | | - Roger Alberto
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| |
Collapse
|
34
|
Nadeem Q, Meola G, Braband H, Bolliger R, Blacque O, Hernández‐Valdés D, Alberto R. To Sandwich Technetium: Highly Functionalized Bis‐Arene Complexes [
99m
Tc(η
6
‐arene)
2
]
+
Directly from Water and [
99m
TcO
4
]
−. Angew Chem Int Ed Engl 2019; 59:1197-1200. [DOI: 10.1002/anie.201912994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Qaisar Nadeem
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | - Giuseppe Meola
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | - Henrik Braband
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | - Robin Bolliger
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | - Olivier Blacque
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| | | | - Roger Alberto
- Department of Chemistry University of Zurich Winterthurerstr. 190 8057 Zurich Switzerland
| |
Collapse
|
35
|
Zhang L, Butler CR, Maresca KP, Takano A, Nag S, Jia Z, Arakawa R, Piro JR, Samad T, Smith DL, Nason DM, O'Neil S, McAllister L, Schildknegt K, Trapa P, McCarthy TJ, Villalobos A, Halldin C. Identification and Development of an Irreversible Monoacylglycerol Lipase (MAGL) Positron Emission Tomography (PET) Radioligand with High Specificity. J Med Chem 2019; 62:8532-8543. [PMID: 31483137 DOI: 10.1021/acs.jmedchem.9b00847] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monoacylglycerol lipase (MAGL), a serine hydrolase extensively expressed throughout the brain, serves as a key gatekeeper regulating the tone of endocannabinoid signaling. Preclinically, inhibition of MAGL is known to provide therapeutic benefits for a number of neurological disorders. The availability of a MAGL-specific positron emission tomography (PET) ligand would considerably facilitate the development and clinical characterization of MAGL inhibitors via noninvasive and quantitative PET imaging. Herein, we report the identification of the potent and selective irreversible MAGL inhibitor 7 (PF-06809247) as a suitable radioligand lead, which upon radiolabeling was found to exhibit a high level of MAGL specificity; this enabled cross-species measurement of MAGL brain expression (Bmax), assessment of in vivo binding in the rat, and nonhuman primate PET imaging.
Collapse
Affiliation(s)
| | | | | | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| | - Zhisheng Jia
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| | | | | | | | | | | | | | | | | | | | | | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| |
Collapse
|
36
|
Chen Z, Shao T, Gao W, Fu H, Collier TL, Rong J, Deng X, Yu Q, Zhang X, Davenport AT, Daunais JB, Wey HY, Shao Y, Josephson L, Qiu WW, Liang S. Synthesis and Preliminary Evaluation of [ 11 C]GNE-1023 as a Potent PET Probe for Imaging Leucine-Rich Repeat Kinase 2 (LRRK2) in Parkinson's Disease. ChemMedChem 2019; 14:1580-1585. [PMID: 31365783 DOI: 10.1002/cmdc.201900321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Indexed: 12/19/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large protein involved in the pathogenesis of Parkinson's disease (PD). It has been demonstrated that PD is mainly conferred by LRRK2 mutations that bring about increased kinase activity. As a consequence, selective inhibition of LRRK2 may help to recover the normal functions of LRRK2, thereby serving as a promising alternative therapeutic target for PD treatment. The mapping of LRRK2 by positron emission tomography (PET) studies allows a thorough understanding of PD and other LRRK2-related disorders; it also helps to validate and translate novel LRRK2 inhibitors. However, no LRRK2 PET probes have yet been reported in the primary literature. Herein we present a facile synthesis and preliminary evaluation of [11 C]GNE-1023 as a novel potent PET probe for LRRK2 imaging in PD. [11 C]GNE-1023 was synthesized in good radiochemical yield (10 % non-decay-corrected RCY), excellent radiochemical purity (>99 %), and high molar activity (>37 GBq μmol-1 ). Excellent in vitro binding specificity of [11 C]GNE-1023 toward LRRK2 was demonstrated in cross-species studies, including rat and nonhuman primate brain tissues by autoradiography experiments. Subsequent whole-body biodistribution studies indicated limited brain uptake and urinary and hepatobiliary elimination of this radioligand. This study may pave the way for further development of a new generation of LRRK2 PET probes.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Wei Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Hualong Fu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Thomas Lee Collier
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiaoyun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Qingzhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Steven Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
37
|
A Bioluminescence Resonance Energy Transfer-Based Approach for Determining Antibody-Receptor Occupancy In Vivo. iScience 2019; 15:439-451. [PMID: 31121469 PMCID: PMC6529791 DOI: 10.1016/j.isci.2019.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Elucidating receptor occupancy (RO) of monoclonal antibodies (mAbs) is a crucial step in characterizing the therapeutic efficacy of mAbs. However, the in vivo assessment of RO, particularly within peripheral tissues, is greatly limited by current technologies. In the present study, we developed a bioluminescence resonance energy transfer (BRET)-based system that leverages the large signal:noise ratio and stringent energy donor-acceptor distance dependency to measure antibody RO in a highly selective and temporal fashion. This versatile and minimally invasive system enables longitudinal monitoring of the in vivo antibody-receptor engagement over several days. As a proof of principle, we quantified cetuximab-epidermal growth factor receptor binding kinetics using this system and assessed cetuximab RO in a tumor xenograft model. Incomplete ROs were observed, even at a supratherapeutic dose of 50 mg/kg, indicating that fractional target accessibility is achieved. The BRET-based imaging approach enables quantification of antibody in vivo RO and provides critical information required to optimize therapeutic mAb efficacy. Nano-BRET was used to longitudinally quantify cetuximab-binding kinetics to EGFR Incomplete EGFR occupancy in solid tumors was observed even at supratherapeutic doses A kinetic disassociation exists between plasma antibody and bound targets in tumors
Collapse
|
38
|
Stadulytė A, Alcaide-Corral CJ, Walton T, Lucatelli C, Tavares AAS. Analysis of PK11195 concentrations in rodent whole blood and tissue samples by rapid and reproducible chromatographic method to support target-occupancy PET studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:33-39. [PMID: 31005772 PMCID: PMC6522057 DOI: 10.1016/j.jchromb.2019.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
In Positron Emission Tomography (PET) research, it is important to assess not only pharmacokinetics of a radiotracer in vivo, but also of the drugs used in blocking/displacement PET studies. Typically, pharmacokinetic/pharmacodynamic (PK/PD) analyses of drugs used in rodent PET studies are based on population average pharmacokinetic profiles of the drugs due to limited blood volume withdrawal while simultaneously maintaining physiological homeostasis. This likely results in bias of PET data quantification, including unknown bias of target occupancy (TO) measurements. This study aimed to develop a High Performance Liquid Chromatography (HPLC) method for PK/PD quantification of drugs used in preclinical rodent PET research, specifically the translocator 18 kDa protein (TSPO) selective drug, PK11195, that used sub-millilitre blood volumes. The lowest detection limit for the proposed HPLC method ranged between 7.5 and 10 ng/mL depending on the method used to calculate the limit of detection, and the measured average relative standard deviation for intermediate precision was equal to 17.2%. Most importantly, we were able to demonstrate a significant difference between calculated PK11195 concentrations at 0.5, 1, 2, 3, 5, 15 and 30 min post-administration and individually measured whole blood levels (significance level range from p < 0.05 to p < 0.001; one-way ANOVA, Dunnet's post hoc test, p < 0.05). The HPLC method developed here uses sub-millilitre sample volumes to reproducibly assess PK/PD of PK11195 in rodent blood. This study highlights the importance of individually measured PK/PD drug concentrations when quantifying the TO from blocking/displacement rodent PET experiments.
Collapse
Affiliation(s)
- Agnė Stadulytė
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK.
| | - Carlos José Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| | - Tashfeen Walton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Christophe Lucatelli
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Adriana Alexandre S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| |
Collapse
|
39
|
Chen Z, Mori W, Deng X, Cheng R, Ogasawara D, Zhang G, Schafroth MA, Dahl K, Fu H, Hatori A, Shao T, Zhang Y, Yamasaki T, Zhang X, Rong J, Yu Q, Hu K, Fujinaga M, Xie L, Kumata K, Gou Y, Chen J, Gu S, Bao L, Wang L, Collier TL, Vasdev N, Shao Y, Ma JA, Cravatt BF, Fowler C, Josephson L, Zhang MR, Liang SH. Design, Synthesis, and Evaluation of Reversible and Irreversible Monoacylglycerol Lipase Positron Emission Tomography (PET) Tracers Using a "Tail Switching" Strategy on a Piperazinyl Azetidine Skeleton. J Med Chem 2019; 62:3336-3353. [PMID: 30829483 DOI: 10.1021/acs.jmedchem.8b01778] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that degrades 2-arachidonoylglycerol (2-AG) in the endocannabinoid system (eCB). Selective inhibition of MAGL has emerged as a potential therapeutic approach for the treatment of diverse pathological conditions, including chronic pain, inflammation, cancer, and neurodegeneration. Herein, we disclose a novel array of reversible and irreversible MAGL inhibitors by means of "tail switching" on a piperazinyl azetidine scaffold. We developed a lead irreversible-binding MAGL inhibitor 8 and reversible-binding compounds 17 and 37, which are amenable for radiolabeling with 11C or 18F. [11C]8 ([11C]MAGL-2-11) exhibited high brain uptake and excellent binding specificity in the brain toward MAGL. Reversible radioligands [11C]17 ([11C]PAD) and [18F]37 ([18F]MAGL-4-11) also demonstrated excellent in vivo binding specificity toward MAGL in peripheral organs. This work may pave the way for the development of MAGL-targeted positron emission tomography tracers with tunability in reversible and irreversible binding mechanisms.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Chemistry, School of Science , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , China
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Genwei Zhang
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Michael A Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Kuan Hu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Yuancheng Gou
- ChemShuttle, Inc. , 1699 Huishan Blvd. , Wuxi , Jiangsu 214174 , China
| | - Jingjin Chen
- ChemShuttle, Inc. , 1699 Huishan Blvd. , Wuxi , Jiangsu 214174 , China
| | - Shuyin Gu
- ChemShuttle, Inc. , 1699 Huishan Blvd. , Wuxi , Jiangsu 214174 , China
| | - Liang Bao
- ChemShuttle, Inc. , 1699 Huishan Blvd. , Wuxi , Jiangsu 214174 , China
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Thomas Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Jun-An Ma
- Department of Chemistry, School of Science , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , China
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Christopher Fowler
- Department of Pharmacology and Clinical Neuroscience , Umeå University , SE-901 87 Umeå , Sweden
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| |
Collapse
|
40
|
Hattori Y, Aoyama K, Maeda J, Arimura N, Takahashi Y, Sasaki M, Fujinaga M, Seki C, Nagai Y, Kawamura K, Yamasaki T, Zhang MR, Higuchi M, Koike T. Design, Synthesis, and Evaluation of (4R)-1-{3-[2-(18F)Fluoro-4-methylpyridin-3-yl]phenyl}-4-[4-(1,3-thiazol-2-ylcarbonyl)piperazin-1-yl]pyrrolidin-2-one ([18F]T-401) as a Novel Positron-Emission Tomography Imaging Agent for Monoacylglycerol Lipase. J Med Chem 2019; 62:2362-2375. [DOI: 10.1021/acs.jmedchem.8b01576] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yasushi Hattori
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazunobu Aoyama
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jun Maeda
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Naoto Arimura
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuko Takahashi
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masako Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Fujinaga
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Chie Seki
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Yuji Nagai
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Tatsuki Koike
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
41
|
Jiang D, Lu X, Li Z, Rydberg N, Zuo C, Peng F, Hua F, Guan Y, Xie F. Increased Vesicular Monoamine Transporter 2 (VMAT2) and Dopamine Transporter (DAT) Expression in Adolescent Brain Development: A Longitudinal Micro-PET/CT Study in Rodent. Front Neurosci 2019; 12:1052. [PMID: 30697146 PMCID: PMC6340981 DOI: 10.3389/fnins.2018.01052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Brain development and maturation in adolescence is a complex process with active changes of metabolic and neurotransmission pathways. Positron emission tomography (PET) is a useful imaging modality for tracking metabolic and functional changes in adolescent brain. In this study, changes of glucose metabolism, expression of vesicular monoamine transporter 2 and dopamine transporter during adolescent brain development in rats were investigated with PET/CT. Methods: A longitudinal PET/CT study of age-dependent changes of VMAT2, DAT and glucose metabolism in adolescent brain was conducted in a group of Wistar rats (n = 6) post sequential intravenous injection of 18F-PF-(+)-DTBZ, 11C-CFT, and 18F-FDG, respectively. PET acquisition was performed at 2, 4, 9, and 12 months of age. Radiotracer uptake in different brain regions, including the striatum, cerebellum, and hippocampus, were quantified and recorded as Standardized uptake value (SUV) and striatal specific uptake ratio (SUVR: SUV in brain regions/SUV in cerebellum). Results: Variable uptake of 18F-PF-(+)-DTBZ and 11C-CFT were detected, with highest level uptake in the striatum and accumbens. There was significant age-dependent increase of 18F-PF-(+)-DTBZ and 11C-CFT uptake in the striatum from 2 months of age (SUV: 1.36 ± 0.22, 1.37 ± 0.39, respectively), to 4 months (SUV: 2.22 ± 0.29, 2.04 ± 0.33), 9 months (1.98 ± 0.34, 2.09 ± 0.18), 12 months (SUV: 1.93 ± 0.19, 2.00 ± 0.17) of age, SUV of 18F-FDG also increased from 2 months of age to older ages (SUV in the striatum: 3.71 ± 0.78 at 2 month, 5.28 ± 0.81, 5.14 ± 0.73, 4.94 ± 0.50 at 4, 9, 12 month, respectively). Conclusion: Age-dependent increases of striatal of 18F-FDG, 18F-PF-(+)-DTBZ, and 11C-CFT uptake were detected in rats from 2 to 4 month of age, demonstrating striatal development presents over the first 4 months of age. Four months of age can be considered a safe threshold to launch brain disease studies for exclusion of confusion of continuing tissue development. These findings support further investigation of age-dependent changes in expression of DAT, VMAT2, and glucose metabolism for their potential use as a new imaging biomarker for study of brain development and functional maturation.
Collapse
Affiliation(s)
- Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuhong Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Nicklas Rydberg
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyu Peng
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Fu H, Chen Z, Josephson L, Li Z, Liang SH. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem 2019; 62:403-419. [PMID: 30110164 PMCID: PMC6393217 DOI: 10.1021/acs.jmedchem.8b00714] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission within the mammalian central nervous system. iGluRs exist as three main groups: N-methyl-d-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and kainate receptors. The past decades have witnessed a remarkable development of PET tracers targeting different iGluRs including NMDARs and AMPARs, and several of the tracers have advanced to clinical imaging studies. Here, we assess the recent development of iGluR PET probes, focusing on tracer design, brain kinetics, and performance in PET imaging studies. Furthermore, this review will not only present challenges in the tracer development but also provide novel approaches in conjunction with most recent drug discovery efforts on these iGluRs, including subtype-selective NMDAR and transmembrane AMPAR regulatory protein modulators and positive allosteric modulators (PAMs) of AMPARs. These approaches, if successful as PET tracers, may provide fundamental knowledge to understand the roles of iGluR receptors under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| |
Collapse
|
43
|
Singh P, Shrestha S, Cortes-Salva MY, Jenko KJ, Zoghbi SS, Morse CL, Innis RB, Pike VW. 3-Substituted 1,5-Diaryl-1 H-1,2,4-triazoles as Prospective PET Radioligands for Imaging Brain COX-1 in Monkey. Part 1: Synthesis and Pharmacology. ACS Chem Neurosci 2018; 9:2610-2619. [PMID: 29678105 DOI: 10.1021/acschemneuro.8b00102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cyclooxygenase-1 (COX-1) is a key enzyme in the biosynthesis of proinflammatory thromboxanes and prostaglandins and is found in glial and neuronal cells within brain. COX-1 expression is implicated in numerous neuroinflammatory states. We aim to find a direct-acting positron emission tomography (PET) radioligand for imaging COX-1 in human brain as a potential biomarker of neuroinflammation and for serving as a tool in drug development. Seventeen 3-substituted 1,5-diaryl-1 H-1,2,4-triazoles were prepared as prospective COX-1 PET radioligands. From this set, three 1,5-(4-methoxyphenyl)-1 H-1,2,4-triazoles, carrying a 3-methoxy (5), 3-(1,1,1-trifluoroethoxy) (20), or 3-fluoromethoxy substituent (6), were selected for radioligand development, based mainly on their high affinities and selectivities for inhibiting human COX-1, absence of carboxyl group, moderate computed lipophilicities, and scope for radiolabeling with carbon-11 ( t1/2 = 20.4 min) or fluorine-18 ( t1/2 = 109.8 min). Methods were developed for producing [11C]5, [11C]20, and [ d2-18F]6 from hydroxy precursors in a form ready for intravenous injection for prospective evaluation in monkey with PET.
Collapse
Affiliation(s)
- Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Stal Shrestha
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Michelle Y. Cortes-Salva
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Kimberly J. Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Cheryl L. Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
44
|
Design, synthesis and biological evaluation of 1,4-Diazobicylco[3.2.2]nonane derivatives as α7-Nicotinic acetylcholine receptor PET/CT imaging agents and agonists for Alzheimer's disease. Eur J Med Chem 2018; 159:255-266. [PMID: 30296684 DOI: 10.1016/j.ejmech.2018.09.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022]
Abstract
α7-Nicotinic acetylcholine receptor (α7-nAChR) agonists are promising therapeutic drug candidates for treating the cognitive impairment associated with Alzheimer's disease (AD). Thus, a novel class of derivatives of 1,4-diazobicylco[3.2.2]nonane has been synthesized and evaluated as α7-nAChR ligands. Five of them displayed high binding affinity (Ki = 0.001-25 nM). In particular, the Ki of 14 was 0.0069 nM, which is superior to that of the most potent ligand that was previously reported by an order of magnitude. Four of them had high selectivity for α7-nAChRs over α4β2-nAChRs and no significant hERG (human ether-a-go-go-related gene) inhibition. Their agonist activity was also discussed preliminarily. One of the compounds, 15 (Ki = 2.98 ± 1.41 nM), was further radiolabeled with 18F to afford [18F]15 for PET imaging, which exhibited high initial brain uptake (11.60 ± 0.14%ID/g at 15 min post injection), brain/blood value (9.57 at 30 min post injection), specific labeling of α7-nAChRs and fast clearance from the brain. Blocking studies demonstrated that [18F]15 was α7-nAChR selective. In addition, micro-PET/CT imaging in normal rats further indicated that [18F]15 had obvious accumulation in the brain. Therefore, [18F]15 was proved to be a potential PET radiotracer for α7-nAChR imaging.
Collapse
|
45
|
Chen Z, Mori W, Zhang X, Yamasaki T, Dunn PJ, Zhang G, Fu H, Shao T, Zhang Y, Hatori A, Ma L, Fujinaga M, Xie L, Deng X, Li H, Yu Q, Rong J, Josephson L, Ma JA, Shao Y, Tomita S, Zhang MR, Liang SH. Synthesis, pharmacology and preclinical evaluation of 11C-labeled 1,3-dihydro-2H-benzo[d]imidazole-2-ones for imaging γ8-dependent transmembrane AMPA receptor regulatory protein. Eur J Med Chem 2018; 157:898-908. [PMID: 30145376 DOI: 10.1016/j.ejmech.2018.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022]
Abstract
a-Amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are implicated in the pathology of neurological diseases such as epilepsy and schizophrenia. As pan antagonists for this target are often accompanied with undesired effects at high doses, one of the recent drug discovery approaches has shifted to subtype-selective AMPA receptor (AMPAR) antagonists, specifically, via modulating transmembrane AMPAR regulatory proteins (TARPs). The quantification of AMPARs by positron emission tomography (PET) would help obtain insights into disease conditions in the living brain and advance the translational development of AMPAR antagonists. Herein we report the design, synthesis and preclinical evaluation of a series of TARP γ-8 antagonists, amenable for radiolabeling, for the development of subtype-selective AMPAR PET imaging agents. Based on the pharmacology evaluation, molecular docking studies and physiochemical properties, we have identified several promising lead compounds 3, 17-19 and 21 for in vivo PET studies. All candidate compounds were labeled with [11C]COCl2 in high radiochemical yields (13-31% RCY) and high molar activities (35-196 GBq/μmol). While tracers 30 ([11C]17) &32 ([11C]21) crossed the blood-brain barrier and showed heterogeneous distribution in PET studies, consistent with TARP γ-8 expression, high nonspecific binding prevented further evaluation. To our delight, tracer 31 ([11C]3) showed good in vitro specific binding and characteristic high uptake in the hippocampus in rat brain tissues, which provides the guideline for further development of a new generation subtype selective TARP γ-8 dependent AMPAR tracers.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA; Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wakana Mori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Patrick J Dunn
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yiding Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Longle Ma
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Masayuki Fujinaga
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hua Li
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jun-An Ma
- Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
46
|
Bongarzone S, Gee AD. BACE1: Now We Can See You. J Med Chem 2018; 61:3293-3295. [DOI: 10.1021/acs.jmedchem.8b00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Salvatore Bongarzone
- School of Biomedical Engineering & Imaging Sciences, 4th Floor Lambeth Wing, St Thomas’ Hospital, King’s College London, London SE1 7EH, United Kingdom
| | - Antony D. Gee
- School of Biomedical Engineering & Imaging Sciences, 4th Floor Lambeth Wing, St Thomas’ Hospital, King’s College London, London SE1 7EH, United Kingdom
| |
Collapse
|
47
|
Cheng R, Mori W, Ma L, Alhouayek M, Hatori A, Zhang Y, Ogasawara D, Yuan G, Chen Z, Zhang X, Shi H, Yamasaki T, Xie L, Kumata K, Fujinaga M, Nagai Y, Minamimoto T, Svensson M, Wang L, Du Y, Ondrechen MJ, Vasdev N, Cravatt BF, Fowler C, Zhang MR, Liang SH. In Vitro and in Vivo Evaluation of 11C-Labeled Azetidinecarboxylates for Imaging Monoacylglycerol Lipase by PET Imaging Studies. J Med Chem 2018; 61:2278-2291. [PMID: 29481079 PMCID: PMC5966020 DOI: 10.1021/acs.jmedchem.7b01400] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Monoacylglycerol lipase (MAGL) is the principle enzyme for metabolizing endogenous cannabinoid ligand 2-arachidonoyglycerol (2-AG). Blockade of MAGL increases 2-AG levels, resulting in subsequent activation of the endocannabinoid system, and has emerged as a novel therapeutic strategy to treat drug addiction, inflammation, and neurodegenerative diseases. Herein we report a new series of MAGL inhibitors, which were radiolabeled by site-specific labeling technologies, including 11C-carbonylation and spirocyclic iodonium ylide (SCIDY) radiofluorination. The lead compound [11C]10 (MAGL-0519) demonstrated high specific binding and selectivity in vitro and in vivo. We also observed unexpected washout kinetics with these irreversible radiotracers, in which in vivo evidence for turnover of the covalent residue was unveiled between MAGL and azetidine carboxylates. This work may lead to new directions for drug discovery and PET tracer development based on azetidine carboxylate inhibitor scaffold.
Collapse
Affiliation(s)
- Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Longle Ma
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gengyang Yuan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Hang Shi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Mona Svensson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
48
|
Tang D, Fujinaga M, Hatori A, Zhang Y, Yamasaki T, Xie L, Mori W, Kumata K, Liu J, Manning HC, Huang G, Zhang MR. Evaluation of the novel TSPO radiotracer 2-(7-butyl-2-(4-(2-([ 18F]fluoroethoxy)phenyl)-5-methylpyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide in a preclinical model of neuroinflammation. Eur J Med Chem 2018; 150:1-8. [PMID: 29505933 DOI: 10.1016/j.ejmech.2018.02.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022]
Abstract
Translocator Protein (18 kDa, TSPO) is regarded as a useful biomarker for neuroinflammation imaging. TSPO PET imaging could be used to understand the role of neuroinflammation in brain diseases and as a tool for evaluating novel therapeutic effects. As a promising TSPO probe, [18F]DPA-714 is highly specific and offers reliable quantification of TSPO in vivo. In this study, we further radiosynthesized and evaluated another novel TSPO probe, 2-(7-butyl-2-(4-(2-[18F]fluoroethoxy)phenyl)-5-methylpyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ([18F]VUIIS1018A), which features a 700-fold higher binding affinity for TSPO than that of [18F]DPA-714. We evaluated the performance of [18F]VUIIS1018A using dynamic in vivo PET imaging, radiometabolite analysis, in vitro autoradiography assays, biodistribution analysis, and blocking assays. In vivo study using this probe demonstrated high signal-to-noise ratio, binding potential (BPND), and binding specificity in preclinical neuroinflammation studies. Taken together, these findings indicate that [18F]VUIIS1018A may serve as a novel TSPO PET probe for neuroinflammation imaging.
Collapse
Affiliation(s)
- Dewei Tang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jianjun Liu
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China; Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institute for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China.
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
49
|
Patel S, Schmidt K, Hesterman J, Hoppin J. Advancing Drug Discovery and Development Using Molecular Imaging (ADDMI): an Interest Group of the World Molecular Imaging Society and an Inaugural Session on Positron Emission Tomography (PET). Mol Imaging Biol 2018; 19:348-356. [PMID: 28417265 DOI: 10.1007/s11307-017-1085-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multi-modality molecular imaging techniques have expanded the role of imaging biomarkers in the pharmaceutical industry and are beginning to streamline the drug discovery and development process. The World Molecular Imaging Society (WMIS) serves as a forum for discussing innovative and exploratory multi-modal, interdisciplinary molecular imaging research with a mission of bridging the gap between pathology and in vivo imaging. To formalize the role of the WMIS in pharmaceutical research efforts, members of the society have formed an interest group entitled Advancing Drug Discovery and Development using Molecular Imaging (ADDMI). The ADDMI interest group launched their efforts at the 2016 World Molecular Imaging Congress by hosting a session of invited lectures on translational positron emission tomography (PET) imaging in the central nervous system. This article provides a synopsis of those lectures and frames the role of translational imaging biomarker strategies in the drug discovery and development process.
Collapse
Affiliation(s)
- Shil Patel
- Eisai AiM Institute, 4 Corporate Drive, Andover, MA, USA.
| | | | | | | |
Collapse
|
50
|
Zhang L, Chen L, Dutra JK, Beck EM, Nag S, Takano A, Amini N, Arakawa R, Brodney MA, Buzon LM, Doran SD, Lanyon LF, McCarthy TJ, Bales KR, Nolan CE, O’Neill BT, Schildknegt K, Halldin C, Villalobos A. Identification of a Novel Positron Emission Tomography (PET) Ligand for Imaging β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE-1) in Brain. J Med Chem 2018; 61:3296-3308. [DOI: 10.1021/acs.jmedchem.7b01769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lei Zhang
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Laigao Chen
- Clinical & Translational Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Jason K. Dutra
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Elizabeth M. Beck
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Michael A. Brodney
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Leanne M. Buzon
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Shawn D. Doran
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Lorraine F. Lanyon
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Timothy J. McCarthy
- Clinical & Translational Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Kelly R. Bales
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Charles E. Nolan
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Brian T. O’Neill
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Klaas Schildknegt
- Pharmaceutical Sciences, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Anabella Villalobos
- Medicinal Synthesis Technologies, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|