1
|
Iatcu OC, Hamamah S, Covasa M. Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. Nutrients 2024; 16:3447. [PMID: 39458444 PMCID: PMC11510484 DOI: 10.3390/nu16203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, β-glucan, and Dendrobium officinale have been shown to improve gut microbial composition and support glycemic control in T2DM patients. These prebiotics can directly impact blood sugar levels while promoting the growth of beneficial bacteria, thus enhancing glycemic control. Studies have shown that T2DM patients often exhibit a decrease in beneficial butyrate-producing bacteria, like Roseburia and Faecalibacterium, and an increase in harmful bacteria, such as Escherichia and Prevotella. This review aims to explore the effects of different prebiotics on T2DM, their impact on gut microbiota composition, and the potential for personalized dietary interventions to optimize diabetes management and improve overall health outcomes.
Collapse
Affiliation(s)
- Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
2
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
3
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Cao H, Tian Q, Chu L, Gao Q. Effects of polyphenol on motor function in mice with Parkinson's disease: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024; 65:2859-2879. [PMID: 40346822 DOI: 10.1080/10408398.2024.2352541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Polyphenols have been reported to have a multi-targeted neuroprotective effect on Parkinson's disease (PD). However, there has been no comprehensive analysis of the effect of polyphenol therapy on improving motor symptoms in PD. We used keywords to search the electronic databases PubMed, Scopus, EBSCO, SpringerLink, China National Knowledge Infrastructure (CNKI), Wan Fang and Web of Science from the establishment of the database to April 2023. A randomized effects model systematic review and meta-analysis of 83 included studies were conducted to investigate the ameliorative effects of polyphenols on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in a rodent model of PD. The results showed that compared with PD control group, polyphenols significantly improved balance, exploration, vertical crawling, horizontal crawling, muscle strength and sensorimotor function motor dysfunction of rodents. Subgroup analysis showed that the types of polyphenols had different recovery effects on motor symptoms of PD. Oral polyphenol intervention was superior to intraperitoneal and intravenous administration. This meta-analysis provides comprehensive evidence for the prevention or treatment of Parkinson's motor symptoms with polyphenols and expands the idea of future clinical application of polyphenols.
Collapse
Affiliation(s)
- Hongdou Cao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liwen Chu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Minj J, Riordan J, Teets C, Fernholz-Hartman H, Tanggono A, Lee Y, Chauvin T, Carbonero F, Solverson P. Diet-Induced Rodent Obesity Is Prevented and the Fecal Microbiome Is Improved with Elderberry ( Sambucus nigra ssp. canadensis) Juice Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12555-12565. [PMID: 38776153 DOI: 10.1021/acs.jafc.4c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Anthocyanin-rich edible berries protect against diet-induced obesity in animal models. Prevention is mediated through the bidirectional relationship with the fecal microbiome, and gut-derived phenolic metabolite absorption increases with physical activity, which may influence bioactivity. The objective of this study was to test elderberry juice powder on the development of diet-induced obesity and its influence on the fecal microbiome alone or in combination with physical activity. Male C57BL/6J mice were assigned to one of four treatments, including (1) high-fat diet without wheel access; (2) high-fat diet with unlimited wheel access; (3) high-fat diet supplemented with 10% elderberry juice powder without wheel access; and (4) high-fat diet supplemented with 10% elderberry juice powder with unlimited wheel access. Body weight gain, fat pads, and whole-body fat content in mice fed elderberry juice were significantly less than in mice fed the control diet independent of wheel access. At the end of the study, active mice fed elderberry juice ate significantly more than active mice fed a control diet. There was no difference in the physical activity between active groups. Elderberry juice increasedBifidobacterium, promotedAkkermansia and Anaeroplasma, and prevented the growth of Desulfovibrio. Elderberry juice is a potent inhibitor of diet-induced obesity with action mediated by the gut microbiota.
Collapse
Affiliation(s)
- Jagrani Minj
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Joseph Riordan
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Christy Teets
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Hadyn Fernholz-Hartman
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Alfian Tanggono
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Yool Lee
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Theodore Chauvin
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Patrick Solverson
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
6
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
7
|
Liu Y, Fernandes I, Mateus N, Oliveira H, Han F. The Role of Anthocyanins in Alleviating Intestinal Diseases: A Mini Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5491-5502. [PMID: 38446808 DOI: 10.1021/acs.jafc.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Anthocyanins are phytonutrients with physiological activity belonging to the flavonoid family whose transport and absorption in the human body follow specific pathways. In the upper gastrointestinal tract, anthocyanins are rarely absorbed intact by active transporters, with most reaching the colon, where bacteria convert them into metabolites. There is mounting evidence that anthocyanins can be used for prevention and treatment of intestinal diseases, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and colorectal cancer (CRC), through the protective function on the intestinal epithelial barrier, immunomodulation, antioxidants, and gut microbiota metabolism. Dietary anthocyanins are summarized in this comprehensive review with respect to their classification and structure as well as their absorption and transport mechanisms within the gastrointestinal tract. Additionally, the review delves into the role and mechanism of anthocyanins in treating common intestinal diseases. These insights will deepen our understanding of the potential benefits of natural anthocyanins for intestinal disorders.
Collapse
Affiliation(s)
- Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Iva Fernandes
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China
- Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning 750104, China
| |
Collapse
|
8
|
Wu L, Park SH, Kim H. Direct and Indirect Evidence of Effects of Bacteroides spp. on Obesity and Inflammation. Int J Mol Sci 2023; 25:438. [PMID: 38203609 PMCID: PMC10778732 DOI: 10.3390/ijms25010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Metabolic disorders present a significant public health challenge globally. The intricate relationship between the gut microbiome, particularly Bacteroides spp. (BAC), and obesity, including their specific metabolic functions, remains partly unresolved. This review consolidates current research on BAC's role in obesity and lipid metabolism, with three objectives: (1) To summarize the gut microbiota's impact on obesity; (2) To assess BAC's efficacy in obesity intervention; (3) To explore BAC's mechanisms in obesity and lipid metabolism management. This review critically examines the role of BAC in obesity, integrating findings from clinical and preclinical studies. We highlight the changes in BAC diversity and concentration following successful obesity treatment and discuss the notable differences in BAC characteristics among individuals with varying obesity levels. Furthermore, we review recent preclinical studies demonstrating the potential of BAC in ameliorating obesity and related inflammatory conditions, providing detailed insights into the methodologies of these in vivo experiments. Additionally, certain BAC-derived metabolites have been shown to be involved in the regulation of host lipid metabolism-related pathways. The enhanced TNF production by dendritic cells following BAC administration, in response to LPS, also positions BAC as a potential adjunctive therapy in obesity management.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Rehabilitation Medicine of Korean Medicine, Ilsan Hospital of Dongguk University, Goyang 10326, Republic of Korea;
| | - Seo-Hyun Park
- Department of Rehabilitation Medicine of Korean Medicine, Bundang Hospital of Dongguk University, Seongnam 13601, Republic of Korea;
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Bundang Hospital of Dongguk University, Seongnam 13601, Republic of Korea;
| |
Collapse
|
9
|
Haș IM, Tit DM, Bungau SG, Pavel FM, Teleky BE, Vodnar DC, Vesa CM. Cardiometabolic Risk: Characteristics of the Intestinal Microbiome and the Role of Polyphenols. Int J Mol Sci 2023; 24:13757. [PMID: 37762062 PMCID: PMC10531333 DOI: 10.3390/ijms241813757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic diseases like hypertension, type 2 diabetes mellitus, atherosclerosis, and obesity have been associated with changes in the gut microbiota structure, or dysbiosis. The beneficial effect of polyphenols on reducing the incidence of this chronic disease has been confirmed by numerous studies. Polyphenols are primarily known for their anti-inflammatory and antioxidant properties, but they can also modify the gut microbiota. According to recent research, polyphenols positively influence the gut microbiota, which regulates metabolic responses and reduces systemic inflammation. This review emphasizes the prebiotic role of polyphenols and their impact on specific gut microbiota components in patients at cardiometabolic risk. It also analyzes the most recent research on the positive effects of polyphenols on cardiometabolic health. While numerous in vitro and in vivo studies have shown the interaction involving polyphenols and gut microbiota, additional clinical investigations are required to assess this effect in people.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Flavia Maria Pavel
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
10
|
Shu C, Wu S, Li H, Tian J. Health benefits of anthocyanin-containing foods, beverages, and supplements have unpredictable relation to gastrointestinal microbiota: A systematic review and meta-analysis of random clinical trials. Nutr Res 2023; 116:48-59. [PMID: 37336096 DOI: 10.1016/j.nutres.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Anthocyanins are a type of natural pigment that has numerous health benefits. In recent years, the interaction of anthocyanins with gastrointestinal (GI) microbiota has been presented as a viable paradigm for explaining anthocyanin activities. The current study performed a systematic review and meta-analysis to determine the potential modulation of GI microbiota by anthocyanins in human health improvement. Clinical trials were retrieved from PubMed, Cochrane, Web of Knowledge, China Biology Medicine, China National Knowledge Infrastructure, and ClinicalTrials.gov with no language restrictions. Eight clinical trials (252 participants) were selected from the 1121 identified studies and the relative phylum abundance extracted from the trials was analyzed using a random-effects model. Based on the analysis, anthocyanins had no effect on the relative abundance of Firmicutes (standard mean difference [SMD]: -0.46 [-1.25 to 0.34], P = .26), Proteobacteria (SMD, -0.32 [-0.73 to 0.09], P = .13), nor Actinobacteria (SMD, -0.19 [-0.50 to 0.12], P = 0.24), but influenced the abundance of Bacteroidetes (SMD, 0.84 [0.17 to 1.52], P = .01) when compared with placebo/control. No significant influence on the relative abundance was detected when the data were analyzed following the "posttreatment vs. pretreatment" strategy. Our preliminary analysis revealed that the effects of anthocyanins on human GI microbiota vary between studies and individuals, and at the current stage, the clinical trials regarding the effects of anthocyanin interventions on human GI microbiota are lacking. More trials with larger sample sizes are needed to promote the clinical application of anthocyanins.
Collapse
Affiliation(s)
- Chi Shu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866.
| | - Siyu Wu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| |
Collapse
|
11
|
Huang M, Cople-Rodrigues CDS, Waitzberg DL, Rocha IMGD, Curioni CC. Changes in the Gut Microbiota after the Use of Herbal Medicines in Overweight and Obese Individuals: A Systematic Review. Nutrients 2023; 15:2203. [PMID: 37432344 DOI: 10.3390/nu15092203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Herbal medicine is a low-cost treatment and has been increasingly applied in obesity treatment. Gut microbiota (GM) is strongly associated with obesity pathogenesis. METHODS We conducted a systematic review guided by the question: "Does the use of herbal medicine change the GM composition in obese individuals?" Randomized clinical trials with obese individuals assessing the effects of herbal medicine intervention in GM were retrieved from the Medline, Embase, Scopus, Web of Science, and Cochrane Library databases, including the Cochrane Controlled Trials Register. Two reviewers independently extracted data using standardized piloted data extraction forms and assessed the study-level risk of bias using an Excel template of the Cochrane "Risk of bias" tool 2-RoB 2. RESULTS We identified 1094 articles in the databases. After removing duplicates and reading the title and abstract, 14 publications were fully evaluated, of which seven publications from six studies were considered eligible. The herbs analyzed were Moringa oleifera, Punica granatum, Scutellaria baicalensis, Schisandra chinensis, W-LHIT and WCBE. The analysis showed that Schisandra chinensis and Scutellaria baicalensis had significant effects on weight loss herbal intervention therapy composed by five Chinese herbal medicines Ganoderma lucidum, Coptis chinensis, Astragalus membranaceus, Nelumbo nucifera gaertn, and Fructus aurantii (W-LHIT) and white common bean extract (WCBE) on GM, but no significant changes in anthropometry and laboratory biomarkers. CONCLUSIONS Herbal medicine modulates GM and is associated with increased genera in obese individuals.
Collapse
Affiliation(s)
- Miguel Huang
- Postgraduate Program in Food, Nutrition and Health (PPG-ANS), University of State of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | | | - Dan L Waitzberg
- Department of Gastroenterology, Faculdade de Medicina, LIM-35, Hospital das Clinicas HCFMUSP, School of Medicine, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Ilanna Marques Gomes da Rocha
- Department of Gastroenterology, Faculdade de Medicina, LIM-35, Hospital das Clinicas HCFMUSP, School of Medicine, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Cintia Chaves Curioni
- Department of Nutrition in Public Health, University of State of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
12
|
Zhang Q, Bai Y, Wang W, Li J, Zhang L, Tang Y, Yue S. Role of herbal medicine and gut microbiota in the prevention and treatment of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116127. [PMID: 36603782 DOI: 10.1016/j.jep.2022.116127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is a common metabolic dysfunction disease, which is highly correlated with the homeostasis of gut microbiota (GM). The dysregulation of GM on energy metabolism, immune response, insulin resistance and endogenous metabolites (e.g., short chain fatty acids and secondary bile acids) can affect the occurrence and development of obesity. Herbal medicine (HM) has particular advantages and definite therapeutic effects in the prevention and treatment of obesity, but its underlying mechanism is not fully clear. AIM OF THE STUDY In this review, the representative basic and clinical anti-obesity studies associated with the homeostasis of GM regulated by HM including active components, single herb and herbal formulae were summarized and discussed. We aim to provide a state of art reference for the mechanism research of HM in treating obesity and the further development of new anti-obesity drugs. MATERIALS AND METHODS The relevant information was collected by searching keywords (obesity, herbal medicine, prescriptions, mechanism, GM, short chain fatty acids, etc.) from scientific databases (CNKI, PubMed, SpringerLink, Web of Science, SciFinder, etc.). RESULTS GM dysbiosis did occur in obese patients and mice, whiles the intervention of GM could ameliorate the condition of obesity. HM (e.g., berberine, Ephedra sinica, Rehjnannia glutinosa, and Buzhong Yiqi prescription) has been proved to possess a certain regulation on GM and an explicit effect on obesity, but the exact mechanism of HM in improving obesity by regulating GM remains superficial. CONCLUSION GM is involved in HM against obesity, and GM can be a novel therapeutic target for treating obesity.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yaya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Wenxiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Jiajia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu Province, China.
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
13
|
Bai Z, Huang X, Wu G, Zhang Y, Xu H, Chen Y, Yang H, Nie S. Polysaccharides from small black soybean alleviating type 2 diabetes via modulation of gut microbiota and serum metabolism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
14
|
Polyphenols as Drivers of a Homeostatic Gut Microecology and Immuno-Metabolic Traits of Akkermansia muciniphila: From Mouse to Man. Int J Mol Sci 2022; 24:ijms24010045. [PMID: 36613488 PMCID: PMC9820369 DOI: 10.3390/ijms24010045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Akkermansia muciniphila is a mucosal symbiont considered a gut microbial marker in healthy individuals, as its relative abundance is significantly reduced in subjects with gut inflammation and metabolic disturbances. Dietary polyphenols can distinctly stimulate the relative abundance of A. muciniphila, contributing to the attenuation of several diseases, including obesity, type 2 diabetes, inflammatory bowel diseases, and liver damage. However, mechanistic insight into how polyphenols stimulate A. muciniphila or its activity is limited. This review focuses on dietary interventions in rodents and humans and in vitro studies using different phenolic classes. We provide critical insights with respect to potential mechanisms explaining the effects of polyphenols affecting A. muciniphila. Anthocyanins, flavan-3-ols, flavonols, flavanones, stilbenes, and phenolic acids are shown to increase relative A. muciniphila levels in vivo, whereas lignans exert the opposite effect. Clinical trials show consistent findings, and high intervariability relying on the gut microbiota composition at the baseline and the presence of multiple polyphenol degraders appear to be cardinal determinants in inducing A. muciniphila and associated benefits by polyphenol intake. Polyphenols signal to the AhR receptor and impact the relative abundance of A. muciniphila in a direct and indirect fashion, resulting in the restoration of intestinal epithelial integrity and homeostatic crosstalk with the gut microbiota by affecting IL-22 production. Moreover, recent evidence suggests that A. muciniphila participates in the initial hydrolysis of some polyphenols but does not participate in their complete metabolism. In conclusion, the consumption of polyphenol-rich foods targeting A. muciniphila as a pivotal intermediary represents a promising precision nutritional therapy to prevent and attenuate metabolic and inflammatory diseases.
Collapse
|
15
|
Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091700. [PMID: 36139775 PMCID: PMC9495581 DOI: 10.3390/antiox11091700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
A healthy gut provides the perfect habitat for trillions of bacteria, called the intestinal microbiota, which is greatly responsive to the long-term diet; it exists in a symbiotic relationship with the host and provides circulating metabolites, hormones, and cytokines necessary for human metabolism. The gut–heart axis is a novel emerging concept based on the accumulating evidence that a perturbed gut microbiota, called dysbiosis, plays a role as a risk factor in the pathogenesis of cardiovascular disease. Consequently, recovery of the gut microbiota composition and function could represent a potential new avenue for improving patient outcomes. Despite their low absorption, preclinical evidence indicates that polyphenols and their metabolites are transformed by intestinal bacteria and halt detrimental microbes’ colonization in the host. Moreover, their metabolites are potentially effective in human health due to antioxidant, anti-inflammatory, and anti-cancer effects. The aim of this review is to provide an overview of the causal role of gut dysbiosis in the pathogenesis of atherosclerosis, hypertension, and heart failure; to discuss the beneficial effects of polyphenols on the intestinal microbiota, and to hypothesize polyphenols or their derivatives as an opportunity to prevent and treat cardiovascular diseases by shaping gut eubiosis.
Collapse
|
16
|
Abstract
Flavonoids are natural polyphenol secondary metabolites that are widely produced in planta. Flavonoids are ubiquities in human dietary intake and exhibit a myriad of health benefits. Flavonoids-induced biological activities are strongly influenced by their in situ availability in the human GI tract, as well as the levels of which are modulated by interaction with the gut bacteria. As such, assessing flavonoids–microbiome interactions is considered a key to understand their physiological activities. Here, we review the interaction between the various classes of dietary flavonoids (flavonols, flavones, flavanones, isoflavones, flavan-3-ols and anthocyanins) and gut microbiota. We aim to provide a holistic overview of the nature and identity of flavonoids on diet and highlight how flavonoids chemical structure, metabolism and impact on humans and their microbiomes are interconnected. Emphasis is placed on how flavonoids and their biotransformation products affect gut microbiota population, influence gut homoeostasis and induce measurable physiological changes and biological benefits.
Collapse
|
17
|
Wang X, Qi Y, Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11061212. [PMID: 35740109 PMCID: PMC9220293 DOI: 10.3390/antiox11061212] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, which are probably the most important secondary metabolites produced by plants, have attracted tremendous attention due to their health-promoting effects, including their antioxidant, anti-inflammatory, antibacterial, anti-adipogenic, and neuro-protective activities, as well as health properties. However, due to their complicated structures and high molecular weights, a large proportion of dietary polyphenols remain unabsorbed along the gastrointestinal tract, while in the large intestine they are biotransformed into bioactive, low-molecular-weight phenolic metabolites through the residing gut microbiota. Dietary polyphenols can modulate the composition of intestinal microbes, and in turn, gut microbes catabolize polyphenols to release bioactive metabolites. To better investigate the health benefits of dietary polyphenols, this review provides a summary of their modulation through in vitro and in vivo evidence (animal models and humans), as well as their possible actions through intestinal barrier function and gut microbes. This review aims to provide a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and host health.
Collapse
|
18
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
19
|
Medicinal Plants and Their Impact on the Gut Microbiome in Mental Health: A Systematic Review. Nutrients 2022; 14:nu14102111. [PMID: 35631252 PMCID: PMC9144835 DOI: 10.3390/nu14102111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Various neurocognitive and mental health-related conditions have been associated with the gut microbiome, implicating a microbiome–gut–brain axis (MGBA). The aim of this systematic review was to identify, categorize, and review clinical evidence supporting medicinal plants for the treatment of mental disorders and studies on their interactions with the gut microbiota. Methods: This review included medicinal plants for which clinical studies on depression, sleeping disorders, anxiety, or cognitive dysfunction as well as scientific evidence of interaction with the gut microbiome were available. The studies were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results: Eighty-five studies met the inclusion criteria and covered thirty mental health-related medicinal plants with data on interaction with the gut microbiome. Conclusion: Only a few studies have been specifically designed to assess how herbal preparations affect MGBA-related targets or pathways. However, many studies provide hints of a possible interaction with the MGBA, such as an increased abundance of health-beneficial microorganisms, anti-inflammatory effects, or MGBA-related pathway effects by gut microbial metabolites. Data for Panax ginseng, Schisandra chinensis, and Salvia rosmarinus indicate that the interaction of their constituents with the gut microbiota could mediate mental health benefits. Studies specifically assessing the effects on MGBA-related pathways are still required for most medicinal plants.
Collapse
|
20
|
Gong W, Zhang W, Chang C. Effect of Oral Chinese Herbal Preparations Regulating Intestinal Flora on Lipid Metabolism Disorders in Patients: A Meta-Analysis of Controlled Clinical Studies. Front Surg 2022; 9:892438. [PMID: 35592117 PMCID: PMC9110756 DOI: 10.3389/fsurg.2022.892438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
BackgroundLipid metabolism disorders can damage human health, and the changes in human intestinal flora are closely related to lipid metabolism disorders. Traditional Chinese medicine (TCM) can play a role in regulating intestinal flora and balancing intestinal microecology. In this meta-analysis, the role of oral preparations of TCM that regulate intestinal flora, in the prevention and treatment of lipid metabolism disorders, was systematically evaluated.MethodsThe databases CBM, Pubmed, Embase, CNKI, Wanfang, and Google Scholar were searched by rapid matching of keywords to obtain clinical controlled studies related to oral preparations of TCMs regulating intestinal flora. After screening and quality evaluation, meta-analysis was performed using Review Manager 5.3 software.ResultsTotal of 835 patients were enrolled in the 10 articles included in this study. Meta-analysis showed that TCM intervention could reduce the level of total cholesterol (TC) in patients with abnormal lipid metabolism [mean difference (MD) = −0.61, 95% confidence interval (95%CI) (−0.80, −0.42), p < 0.00001], reduce triacylglycerol (TG) level [MD = −0.46, 95%CI (−0.60, −0.33), p < 0.00001], increase high-density lipoprotein (HDL) level [MD = 0.25, 95%CI (0.17, 0.34), p < 0.00001], reduce the number of intestinal enterobacteria [MD = −0.64, 95%CI (−0.79, −0.49), p < 0.00001], reduce the number of enterococci [MD = −1.14, 95%CI (−1.66, −0.63), p < 0.00001], increase the number of intestinal lactobacillus [MD = 0.41, 95%CI (0.09, 0.74), p = 0.01], and increase the number of intestinal bifidobacteria [MD = 0.94, 95%CI (0.20, 1.68), p = 0.01].ConclusionThe application of oral preparations of TCMs that regulate intestinal flora, in the prevention and treatment of lipid metabolism disorders, can increase the colonization of beneficial bacteria in the intestine of patients, inhibit the growth of harmful bacteria, and restore the intestinal microecological balance, thus indirectly acting on the regulation of blood lipids in patients and contributing to the recovery of dyslipidemia.
Collapse
Affiliation(s)
- Wenqian Gong
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- *Correspondence: Wenqian Gong
| | - Wuguang Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Chunyang Chang
- Department of Emergency, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
21
|
Molinari R, Merendino N, Costantini L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: State-of-the-art. Biofactors 2022; 48:255-273. [PMID: 34397132 PMCID: PMC9291298 DOI: 10.1002/biof.1772] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The human intestine contains an intricate ecological community of bacteria, referred as the gut microbiota, which plays a pivotal role in the host homeostasis. Multiple factors could interfere with this delicate balance, thus causing a disruption of the microbiota equilibrium, the so called dysbiosis. Gut microbiota dysbiosis is involved in gastrointestinal and extra-intestinal metabolic diseases, as obesity and diabetes. Polyphenols, present in a broad range of plant foods, are known to have numerous health benefits; however, their beneficial effect on pre-existing dysbiosis is less clear. Indeed, in most of the conducted animal studies the administration of polyphenols or foods rich in polyphenols occurred simultaneously with the induction of the pathology to be examined, then analyzing the preventive action of the polyphenols on the onset of dysbiosis, while very low studies analyzed the modulatory activity of polyphenols on the pre-existing dysbiosis. For this reason, the present review aims to update the current information about the modulation of the pre-established gut microbiota dysbiosis by dietary phenolic compounds in a broad range of disorders in both animal studies and human trials, distinguishing the preventive or treatment approaches in animal studies. The described studies highlight that dietary polyphenols, exerting prebiotic-like effects, can modulate the pre-existing dysbiosis stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in both animal models and humans. Anyway, most of the conducted studies are related to obesity and metabolic syndrome, and so further studies are needed to understand this polyphenols' ability in relation to other pathologies.
Collapse
Affiliation(s)
- Romina Molinari
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| | - Nicolò Merendino
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| | - Lara Costantini
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| |
Collapse
|
22
|
Research Progress on the Pharmacological Action of Schisantherin A. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6420865. [PMID: 35190748 PMCID: PMC8858060 DOI: 10.1155/2022/6420865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
Schisantherin A (Sch A) is a dibenzocyclooctadiene lignan monomer isolated from the fruit of Schisandra chinensis (Turcz.) Baill. (S. chinensis). At present, many studies have shown that Sch A has a wide range of pharmacological effects, including its anti-Parkinson and anti-inflammatory effects and ability to protect the liver, protect against ischemia-reperfusion (I/R) injury, suppress osteoclast formation, and improve learning and memory. Its mechanism may be related to the antioxidant, anti-inflammatory, and antiapoptotic properties of Sch A through the MAPK, NF-κB, AKT/GSK3β, and PI3K/AKT pathways. This is the first review of the recent studies on the pharmacological mechanism of Sch A.
Collapse
|
23
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Sergeeva I, Kiseleva T, Pomozova V, Shkrabtak N, Frolova N, Vereshchagin A. Experimental Studies of the Effect of Schisandrachinensis Extract on the State of Adaptive Capabilities of Rats under Chronic and General Exposure to Cold. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211780. [PMID: 34831536 PMCID: PMC8619167 DOI: 10.3390/ijerph182211780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Currently, there is an objective need to create fortified food products that allow not only to provide the body with energy, but also to replenish the deficiency of essential nutrients. A generalization of the information published by Rospotrebnadzor and the Institute of Nutrition of the Russian Academy of Medical Sciences indicates a deficiency in the diet of Russians of vitamins C, group B and β-carotene and minerals, including calcium and iron, regardless of the season of the year. The identified deviations lead to a violation of the immune status, a decrease in the body’s resistance to infections, and other unfavorable environmental factors, leading to an increase in the level of morbidity and a decrease in working capacity. The main unfavorable climatic factor that the population of the Far Eastern region has to face is low freezing temperatures. Adaptation to cold exposure is a complex process that requires a long period and may be accompanied by functional disorders and morphological changes in body tissues. In connection with the above, the problem of increasing the adaptive capabilities of a person to unfavorable environmental factors by means of correcting daily nutrition, providing the body with essential macro- and micronutrients, which is important in the prevention of possible diseases, is of particular importance. This study is aimed at assessing the effect of Schisandrachinensis extract on the adaptive capacity of rats in conditions of chronic and general cold. It was found that the extracts obtained from the fruits of Schisandra chinensis are characterized by a high content of biologically active substances. In experiments with determining the duration of running on the treadmill, a distinct act-protective effect was observed with the introduction of Schisandra chinensis extracts at a dose of 150 mg/day, against the background of reduced resistance to physical activity due to cold exposure. It was found that exposure to cold significantly reduced the swimming resistance of rats on all days of the study. The introduction of Schisandra chinensis extract into the diet led to an increase in resistance to fatigue and an increase in the duration of swimming on all days of the experiment. Conclusions: in this experimental model, a gradually increasing effect of increasing the physical performance of rats was demonstrated with prolonged (28 days) intake of the developed drinks, which coincides with the literature data on a number of other adaptogens and indicates the presence of cumulative properties of biologically active substances of Schisandra extract.
Collapse
Affiliation(s)
- Irina Sergeeva
- Department of Technology of Food Products from Plant Raw Materials, Kemerovo State University, 650000 Kemerovo, Russia;
- Correspondence: ; Tel.: +7-3842-390-979
| | - Tatyana Kiseleva
- Department of Technology of Food Products from Plant Raw Materials, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Valentina Pomozova
- Scientific and Educational Center “Technologies for Innovative Development” Ural State Economic University, 620144 Yekaterinburg, Russia;
| | - Nataliy Shkrabtak
- Department of Life Safety, Amur State University, 675000 Blagoveshchensk, Russia; (N.S.); (N.F.)
| | - Nina Frolova
- Department of Life Safety, Amur State University, 675000 Blagoveshchensk, Russia; (N.S.); (N.F.)
| | | |
Collapse
|
25
|
Cassini C, Zatti PH, Angeli VW, Branco CS, Salvador M. Mutual effects of free and nanoencapsulated phenolic compounds on human microbiota. Curr Med Chem 2021; 29:3160-3178. [PMID: 34720074 DOI: 10.2174/0929867328666211101095131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Phenolic compounds (PC) have many health benefits such as antioxidant, anticarcinogenic, neuroprotective, and anti-inflammatory activities. All of these activities depend on their chemical structures and their interaction with biological targets in the body. PC occur naturally in polymerized form, linked to glycosides and requires metabolic transformation from their ingestion to their absorption. The gut microbiota can transform PC into more easily absorbed metabolites. The PC, in turn, have prebiotic and antimicrobial actions on the microbiota. Despite this, their low oral bioavailability still compromises biological performance. Therefore, the use of nanocarriers has been demonstrated to be a useful strategy to improve PC absorption and, consequently, their health effects. Nanotechnology is an excellent alternative able to overcome the limits of oral bioavailability of PC, since it offers protection from degradation during their passage through the gastrointestinal tract. Moreover, nanotechnology is also capable of promoting controlled PC release and modulating the interaction between PC and the microbiota. However, little is known about the impact of the nanotechnology on PC effects on the gut microbiota. This review highlights the use of nanotechnology for PC delivery on gut microbiota, focusing on the ability of such formulations to enhance oral bioavailability by applying nanocarriers (polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles). In addition, the effects of free and nanocarried PC or nanocarriers per se on gut microbiota are also described.
Collapse
Affiliation(s)
- Carina Cassini
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | | | | | - Catia Santos Branco
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | - Mirian Salvador
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| |
Collapse
|
26
|
Li Y, Ji X, Wu H, Li X, Zhang H, Tang D. Mechanisms of traditional Chinese medicine in modulating gut microbiota metabolites-mediated lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114207. [PMID: 34000365 DOI: 10.1016/j.jep.2021.114207] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The gut microbiome plays an important role in advancing the process of host lipid metabolism directly or indirectly. Traditional Chinese medicine (TCM) can improve the intestinal environment by intervening with gut microbiota metabolites to potentially regulate lipid levels. However, the underlying mechanisms remain unclear. Therefore, we examined the current databases to search for studies related to influence of TCM on the gut microbiota metabolites-mediated lipid metabolism. AIM OF THE STUDY This paper aims to review the TCM that could regulate lipid metabolism mediated by microbial metabolites and their pharmacological targets and provides perspectives for future investigation. METHODS Electronic databases including PubMed, Web of Science, EMBASE, the Cochrane Library, Chinese Biological Medicine Database, and China National Knowledge Infrastructure were searched up to April 2021 to identify eligible studies. RESULTS A total of 30 active compounds, five Chinese herbal formulae, and three proprietary Chinese medicines were included in this review. We found that TCM can effectively improve lipid metabolism by increasing short chain fatty acids (SCFA) levels, regulating bile acid (BA) metabolism, reducing the production of trimethylamine N-oxide (TMAO), alleviating the release of inflammatory factors, and altering branched-chain amino acids (BCAA) biosynthesis. This process is accompanied by changes in the structure of the gut microbiota, blood lipids, and expression of lipid metabolism genes. CONCLUSION In summary, studies on the regulation of lipid metabolism by microbial metabolites in TCM will provide a new approach for better management of dyslipidemia, which may facilitate future clinical treatments.
Collapse
Affiliation(s)
- Yingying Li
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinyu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haonan Wu
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huamin Zhang
- Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Danli Tang
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
27
|
Schisanhenol improves early porcine embryo development by regulating the phosphorylation level of MAPK. Theriogenology 2021; 175:34-43. [PMID: 34481228 DOI: 10.1016/j.theriogenology.2021.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
Schisanhenol (SAL), a biphenyl cyclooctene-type lignin compound which can be extracted and isolated from many plants of the Schisandra family, exhibits a variety of biological activities including anti chronic cough, night sweating, thirst, diabetes, and obesity. However, its effects on the female reproductive system are unclear. Previous studies showed that SAL had potential antioxidant activity in heart, liver, and brain. Therefore, we hypothesized that SAL could improve porcine early development by reducing oxidative stress. The purpose of this study was to investigate the effects of SAL on preimplantation porcine embryos and the potential mechanisms. In this study, we analyzed the effects of SAL on embryo quality, reactive oxygen species (ROS) accumulation, mitochondrial function, cell proliferation and apoptosis, and the activation of MAPK pathway. The results showed that 10 μM SAL significantly increased the blastocyst formation rate, proliferation ability, and mitochondrial activity while reducing ROS accumulation and apoptosis level. During this process, the phosphorylation levels of ERK1/2, JNK1/2/3, and p38 were decreased. In summary, 10 μM SAL improves porcine preimplantation embryo development by reducing ROS accumulation.
Collapse
|
28
|
Todorova V, Ivanov K, Delattre C, Nalbantova V, Karcheva-Bahchevanska D, Ivanova S. Plant Adaptogens-History and Future Perspectives. Nutrients 2021; 13:nu13082861. [PMID: 34445021 PMCID: PMC8398443 DOI: 10.3390/nu13082861] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Adaptogens are synthetic compounds (bromantane, levamisole, aphobazole, bemethyl, etc.) or plant extracts that have the ability to enhance the body’s stability against physical loads without increasing oxygen consumption. Extracts from Panax ginseng, Eleutherococcus senticosus, Rhaponticum carthamoides, Rhodiola rosea, and Schisandra chinensis are considered to be naturally occurring adaptogens and, in particular, plant adaptogens. The aim of this study is to evaluate the use of plant adaptogens in the past and now, as well as to outline the prospects of their future applications. The use of natural adaptogens by humans has a rich history—they are used in recovery from illness, physical weakness, memory impairment, and other conditions. About 50 years ago, plant adaptogens were first used in professional sports due to their high potential to increase the body’s resistance to stress and to improve physical endurance. Although now many people take plant adaptogens, the clinical trials on human are limited. The data from the meta-analysis showed that plant adaptogens could provide a number of benefits in the treatment of chronic fatigue, cognitive impairment, and immune protection. In the future, there is great potential to register medicinal products that contain plant adaptogens for therapeutic purposes.
Collapse
Affiliation(s)
- Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (V.N.); (D.K.-B.); (S.I.)
- Correspondence:
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (V.N.); (D.K.-B.); (S.I.)
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France;
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Vanya Nalbantova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (V.N.); (D.K.-B.); (S.I.)
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (V.N.); (D.K.-B.); (S.I.)
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (V.N.); (D.K.-B.); (S.I.)
| |
Collapse
|
29
|
Lavefve L, Howard LR, Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct 2020; 11:45-65. [PMID: 31808762 DOI: 10.1039/c9fo01634a] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Berries are rich in phenolic compounds such as phenolic acids, flavonols and anthocyanins. These molecules are often reported as being responsible for the health effects attributed to berries. However, their poor bioavailability, mostly influenced by their complex chemical structures, raises the question of their actual direct impact on health. The products of their metabolization, however, may be the most bioactive compounds due to their ability to enter the blood circulation and reach the organs. The main site of metabolization of the complex polyphenols to smaller phenolic compounds is the gut through the action of microorganisms, and reciprocally polyphenols and their metabolites can also modulate the microbial populations. In healthy subjects, these modulations generally lead to an increase in Bifidobacterium, Lactobacillus and Akkermansia, therefore suggesting a prebiotic-like effect of the berries or their compounds. Finally, berries have been demonstrated to alleviate symptoms of gut inflammation through the modulation of pro-inflammatory cytokines and have chemopreventive effects towards colon cancer through the regulation of apoptosis, cell proliferation and angiogenesis. This review recapitulates the knowledge available on the interactions between berries polyphenols, gut microbiota and gut health and identifies knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura Lavefve
- Department of Food Science, University of Arkansas, USA
| | | | | |
Collapse
|
30
|
Zhu Y, Luo J, Yang Z, Miao Y. High-throughput sequencing analysis of differences in intestinal microflora between ulcerative colitis patients with different glucocorticoid response types. Genes Genomics 2020; 42:1197-1206. [PMID: 32844358 DOI: 10.1007/s13258-020-00986-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous investigations reported that the imbalance of intestinal microflora may be the initiation and promotion factor in the pathogenesis of inflammatory bowel disease such as ulcerative colitis (UC). Glucocorticoid is a very important class of regulatory molecules in the body. The response of different individuals to glucocorticoids can be divided into glucocorticoid sensitive, glucocorticoid resistance and glucocorticoid dependence. OBJECTIVE We aimed to investigate the differences in intestinal microflora composition and related metabolic pathways in UC patients with these three different glucocorticoid response types. METHODS The whole genomic DNA was extracted from fecal specimens. High-throughput sequencing technology was used to analyze the fecal 16S rRNA genome of UC patients with different glucocorticoid response types, and functional prediction was performed by PICRUSTs software. RESULTS The results showed that the intestinal microflora of the three groups were mainly composed of Firmicutes, Proteobacteria and Bacteroidetes. Although the species abundance and diversity of intestinal microflora in UC patients differed little among the three groups, the composition of intestinal microflora showed significant heterogeneity, which directly led to differences in the function of intestinal microbiota of UC patients with different glucocorticoid responses. Furthermore, of the 240 pathways, "PANTO-PWY: phosphopantothenate biosynthesis I", "COA-PWY-1: coenzyme A biosynthesis II (mammalian)" and "PWY-4242: pantothenate and coenzyme A biosynthesis III" were significantly different in the three groups. CONCLUSIONS These results indicate that UC patients with different glucocorticoids response types have different bacterial compositions and functions, which lays a foundation for further study of glucocorticoid resistance in UC patients.
Collapse
Affiliation(s)
- Yunzhen Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, People's Republic of China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, People's Republic of China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Kunming, 650500, People's Republic of China.
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, People's Republic of China.
| |
Collapse
|
31
|
Moorthy M, Chaiyakunapruk N, Jacob SA, Palanisamy UD. Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers: A systematic review of randomised controlled trials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Effect of Schisandra Chinensis Extract Supplementation on Quadriceps Muscle Strength and Fatigue in Adult Women: A Randomized, Double-Blind, Placebo-Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072475. [PMID: 32260466 PMCID: PMC7177795 DOI: 10.3390/ijerph17072475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022]
Abstract
The fruit of Schisandra chinensis (SC) is a well-known traditional herb used for pharmacological purposes in Asian countries (e.g., Korea, China, and Japan). In animal studies, SC extract supplementation had beneficial effects on muscle strength and lactate level. However, the effect of SC extract supplementation on skeletal muscle strength and lactate at rest in humans remains unclear. The purpose of this study was to evaluate the effect of SC extract supplementation on quadriceps muscle strength (QMS) and lactate at rest in adult women. Forty five healthy post-menopausal middle-aged women (61.9 ± 8.4 years) were randomly divided into the SC (n = 24) or the placebo group (n = 21). The SC group consumed 1000 mg of SC extract per day, whereas the placebo group consumed 1000 mg of starch per day for 12 weeks. The difference in muscle mass, physical function, and biomarkers and the relative changes between baseline and 12 weeks were evaluated. We used two-factor repeated measures analysis of variance (ANOVA) to determine interaction (group × time) effects for variables. Statistical significance was accepted at p < 0.05. In ANOVA results, QMS (p = 0.001) and lactate level (p = 0.038) showed significant interactions. With paired t-tests, QMS was significantly increased (p < 0.001) and lactate level at rest was significantly decreased (p < 0.05) after 12 weeks in the SC group. However, no interactions were found between the other variables. Supplementation of SC extract may help to improve QMS as well as decrease lactate level at rest in adult women. We believe that SC extract is a health supplement that can support healthy life in this population.
Collapse
|
33
|
Govers C, Berkel Kasikci M, van der Sluis AA, Mes JJ. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutr Rev 2019; 76:29-46. [PMID: 29087531 DOI: 10.1093/nutrit/nux039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Berries are generally considered beneficial to health. This health-promoting potential has mainly been ascribed to berries' phytochemical and vitamin content, and little attention has been paid to the potential benefits of berries for the digestive tract, despite this being the first point of contact. In vivo studies that described the health effects of berries on individual parts of the digestive tract (ie, the mouth, esophagus, stomach, small and large intestine, microbiome, and immune system) were reviewed. Immune effects were included because a large part of the immune system is located in the intestine. Beneficial health effects were mainly observed for whole berry extracts, not individual berry components. These effects ranged from support of the immune system and beneficial microbiota to reduction in the number and size of premalignant and malignant lesions. These results demonstrate the potency of berries and suggest berries can serve as a strong adjuvant to established treatments or therapies for a variety of gastrointestinal and immune-related illnesses.
Collapse
Affiliation(s)
- Coen Govers
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Muzeyyen Berkel Kasikci
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands.,Department of Food Engineering, Faculty of Engineering, Celal Bayar University, Manisa, Turkey
| | - Addie A van der Sluis
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| |
Collapse
|
34
|
Santos JG, Alves BC, Hammes TO, Dall'Alba V. Dietary interventions, intestinal microenvironment, and obesity: a systematic review. Nutr Rev 2019; 77:601-613. [PMID: 31188447 DOI: 10.1093/nutrit/nuz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CONTEXT Obesity has been linked to the intestinal microenvironment. Diet plays an important role in obesity and has been associated with microbiota. OBJECTIVE This systematic review sought to evaluate the scientific evidence on the effect of dietary modification, including supplementation with prebiotics and probiotics, on microbiota diversity in obesity. DATA SOURCES A systematic search was performed in the MEDLINE and EMBASE databases. Studies were considered eligible if they were clinical trials evaluating dietary intervention and microbiota, body weight, or clinical parameters in obesity. DATA EXTRACTION Data were extracted by 2 independent reviewers. RESULTS From 168 articles identified, 20 were included (n = 931 participants). Increased phyla abundance after food interventions was the main finding in relation to microbiota. Regarding the impact of interventions, increased insulin sensitivity, reduced levels of inflammatory markers, and reduced body mass index were shown in several studies. CONCLUSIONS Interventions that modulate microbiota, especially prebiotics, show encouraging results in treating obesity, improving insulin levels, inflammatory markers, and body mass index. Because the studies included in this review were heterogeneous, it is difficult to achieve conclusive and definitive results.
Collapse
Affiliation(s)
- Johnny G Santos
- Graduate Program in Food, Nutrition and Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna C Alves
- Graduate Program: Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thais O Hammes
- Nutrition and Dietetics Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. V. Dall'Alba is with Department of Nutrition, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Valesca Dall'Alba
- Graduate Program in Food, Nutrition and Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program: Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Nutrition and Dietetics Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. V. Dall'Alba is with Department of Nutrition, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Zhang Z, Xu H, Zhao H, Geng Y, Ren Y, Guo L, Shi J, Xu Z. Edgeworthia gardneri (Wall.) Meisn. water extract improves diabetes and modulates gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111854. [PMID: 30954614 DOI: 10.1016/j.jep.2019.111854] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Chinese folk medicine, the flower of Edgeworthia gardneri (Wall.) Meisn. is used to treat various metabolic diseases, such as hyperglycemia, hypertension, and hyperlipidemia. AIM OF THE STUDY This study aimed to explore the antidiabetes potential of the flower of E. gardneri and investigate whether it can benefit the entire gut bacteria community. MATERIALS AND METHODS Chemical constituents of the extract were analyzed by UHPLC-Q Exactive Mass Spectrometer (UHPLC-QE-MS). The antidiabetes effect of the water extract (WAE) of the flower of E. gardneri was evaluated in diabetic mice induced by high-fat diet (HFD) and streptozotocin (STZ) (six groups, n = 8) daily at doses of 1, 2, and 3 g/kg for 4 weeks. The gut microbiota was analyzed using high-throughput 16S rRNA gene sequencing. Short-chain fatty acids (SCFAs) in the fecal were also investigated. RESULTS UHPLC-QE-MS analysis identified 29 compounds, including five alkaloids, six coumarins, four flavonoids, 11 organic acids, and three additional compounds, in the WAE. Results showed that the high dose of WAE considerably decreased the blood glucose level by 30.0%. Furthermore, E. gardneri significantly ameliorated insulin resistance and lipid metabolism dysfunction and repaired islet, hepatic, and white fat and colon histology in diabetic mice. Diabetic mice treated with WAE showed apparent changes in the structure and composition of the gut microbiota. WAE reversed the changes in Clostridiales, Lachnospiraceae, S24-7, Rikenellaceae, and Dorea in diabetic mice. The correlation analysis indicated that key OTUs were related to diabetes indices. The amounts of SCFAs, including acetic, propionic, and valeric acids, were significantly high in WAE-treated diabetic groups. CONCLUSIONS E. gardneri treatment improved the glucose metabolism and reshaped the unbalanced gut microbiota of diabetic mice. Our study provides evidence for application of E. gardneri to treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Hongyu Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Hui Zhao
- Tiebet Yuewang Pharmacopoeia Ecological Tibetan Medicine Technology Co.,Ltd., Tiebet, 850000, PR China.
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Yilin Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Lin Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Zhenghong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
36
|
Zhang CH, Sheng JQ, Sarsaiya S, Shu FX, Liu TT, Tu XY, Ma GQ, Xu GL, Zheng HX, Zhou LF. The anti-diabetic activities, gut microbiota composition, the anti-inflammatory effects of Scutellaria-coptis herb couple against insulin resistance-model of diabetes involving the toll-like receptor 4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:202-214. [PMID: 30807814 DOI: 10.1016/j.jep.2019.02.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria-coptis herb couple (SC) is one of the well-known herb couples in many traditional Chinese compound formulas used for the treatment of diabetes mellitus (DM), which has been used to treat DM for thousands of years in China. AIM OF THE STUDY Few studies have confirmed in detail the anti-diabetic activities of SC in vivo and in vitro. The present investigations aimed to evaluate the anti-diabetic activity of SC in type 2 diabetic KK-Ay mice and in RAW264.7 macrophages to understand its possible mechanism. MATERIALS AND METHODS High-performance liquid chromatography with ultraviolet detection (HPLC-UV) and LC-LTQ-Orbitrap Pro mass spectrometry were used to analyze the active ingredients of SC extracts and control the quality. A type 2 diabetic KK-Ay mice model was established by high-fat diet. Body weight, fasting blood glucose levels, fasting blood insulin levels, glycosylated hemoglobin and glycosylated serum protein were measured. The effects of SC on total cholesterol (TC), high-density lipoprotein (HDL) and triglyceride (TG) levels were examined. The lipopolysaccharide (LPS), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α) levels were measured. Gut microbial communities were assayed by polymerase chain reaction (PCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) methods. The expressions of Toll-like receptor 4 (TLR4) and MyD88 protein in the colons were measured by western blot. In RAW264.7 macrophages, IL-6, TNF-α, TLR4 and MyD88 protein levels were measured by enzyme-linked immunosorbent assay (ELISA) kits or western blot, and the mRNA expression of IL-6, TNF-α and TLR4 was examined by the real time PCR. RESULTS The present results showed that the SC significantly increased blood HDL and significantly reduced fasting blood glucose, fasting blood insulin, glycosylated hemoglobin, glycosylated serum protein, TC, TG, LPS, IL-6 and TNF-α levels (P < 0.05 or P < 0.01) in type-2 diabetic KK-Ay mice. Furthermore, SC could regulate the structure of intestinal flora. Additionally, the expressions of TLR4 and MyD88 protein in the colons were significantly decreased in the model group (P < 0.05 or P < 0.01). However, SC had no significant effect on weight gain. In RAW264.7 macrophages, SC containing serum (SC-CS) (5%, 10% and 20%) significantly decreased IL-6, TNF-α, TLR4 and MyD88 protein levels and the mRNA expression of IL-6, TNF-α and TLR4 (P < 0.05 or P < 0.01). CONCLUSIONS The anti-diabetic effects of SC were attributed to its regulation of intestinal flora and anti-inflammation involving the TLR4 signaling pathway. These findings provide a new insight into the anti-diabetic application for SC in clinical settings and display the potential of SC in the treatment of DM.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Jun-Qing Sheng
- College of Life Science, Nanchang University, Nanchang 330031, PR China.
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, PR China; Department of Microbiology, Sri Satya Sai University of Technology and Medical Sciences, Sehore, Madhya Pradesh, India
| | - Fu-Xing Shu
- Bioresource Institute Of Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Tong-Tong Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Xiu-Ying Tu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Guang-Qiang Ma
- College of Life Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Guo-Liang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Hong-Xiang Zheng
- College of Humanities of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Li-Fen Zhou
- Large precise instruments shared services center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| |
Collapse
|
37
|
Qi Y, Chen L, Gao K, Shao Z, Huo X, Hua M, Liu S, Sun Y, Li S. Effects of Schisandra chinensis polysaccharides on rats with antibiotic-associated diarrhea. Int J Biol Macromol 2019; 124:627-634. [DOI: 10.1016/j.ijbiomac.2018.11.250] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
|
38
|
Mafra D, Borges N, Alvarenga L, Esgalhado M, Cardozo L, Lindholm B, Stenvinkel P. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients 2019; 11:496. [PMID: 30818761 PMCID: PMC6471287 DOI: 10.3390/nu11030496] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota imbalance is common in patients with chronic kidney disease (CKD) and associates with factors such as increased circulating levels of gut-derived uremic toxins, inflammation, and oxidative stress, which are linked to cardiovascular disease and increased morbimortality. Different nutritional strategies have been proposed to modulate gut microbiota, and could potentially be used to reduce dysbiosis in CKD. Nutrients like proteins, fibers, probiotics, and synbiotics are important determinants of the composition of gut microbiota and specific bioactive compounds such as polyphenols present in nuts, berries. and fruits, and curcumin, may also play a key role in this regard. However, so far, there are few studies on dietary components influencing the gut microbiota in CKD, and it is therefore not possible to conclude which nutrients should be prioritized in the diet of patients with CKD. In this review, we discuss some nutrients, diet patterns and bioactive compounds that may be involved in the modulation of gut microbiota in CKD and provide the background and rationale for studies exploring whether nutritional interventions with these dietary components could be used to alleviate the gut dysbiosis in patients with CKD.
Collapse
Affiliation(s)
- Denise Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Natália Borges
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Livia Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Marta Esgalhado
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Ludmila Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
39
|
Potential of Schisandra chinensis (Turcz.) Baill. in Human Health and Nutrition: A Review of Current Knowledge and Therapeutic Perspectives. Nutrients 2019; 11:nu11020333. [PMID: 30720717 PMCID: PMC6412213 DOI: 10.3390/nu11020333] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022] Open
Abstract
Schisandra chinensis (Turcz.) Baill. (SCE) is a plant with high potential for beneficial health effects, confirmed by molecular studies. Its constituents exert anti-cancer effects through the induction of cell cycle arrest and apoptosis, as well as inhibition of invasion and metastasis in cancer cell lines and experimental animals. SCE displays antimicrobial effects against several pathogenic strains. It has anti-diabetic potential, supported by hypoglycemic activity. A diet rich in SCE improves pancreatic functions, stimulates insulin secretion, and reduces complications in diabetic animals. SCE prevents lipid accumulation and differentiation of preadipocytes, indicating its anti-obesity potential. SCE exerts a protective effect against skin photoaging, osteoarthritis, sarcopenia, senescence, and mitochondrial dysfunction, and improves physical endurance and cognitive/behavioural functions, which can be linked with its general anti-aging potency. In food technology, SCE is applied as a preservative, and as an additive to increase the flavour, taste, and nutritional value of food. In summary, SCE displays a variety of beneficial health effects, with no side effects. Further research is needed to determine the molecular mechanisms of SCE action. First, the constituents responsible for its beneficial effects should be isolated and identified, and recommended as preventative nutritional additives, or considered as therapeutics.
Collapse
|
40
|
Ejtahed HS, Soroush AR, Siadat SD, Hoseini-Tavassol Z, Larijani B, Hasani-Ranjbar S. Targeting obesity management through gut microbiota modulation by herbal products: A systematic review. Complement Ther Med 2019; 42:184-204. [DOI: 10.1016/j.ctim.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/17/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023] Open
|
41
|
Wu XM, Tan RX. Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 2019; 36:788-809. [DOI: 10.1039/c8np00041g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This highlight reviews the interaction processes between gut microbiota and ethnomedicine constituents, which may conceptualize future therapeutic strategies.
Collapse
Affiliation(s)
- Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
- State Key Laboratory of Pharmaceutical Biotechnology
| |
Collapse
|
42
|
Santhakumar AB, Battino M, Alvarez-Suarez JM. Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food Chem Toxicol 2018; 113:49-65. [DOI: 10.1016/j.fct.2018.01.022] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 01/05/2023]
|
43
|
Pallister T, Jackson MA, Martin TC, Zierer J, Jennings A, Mohney RP, MacGregor A, Steves CJ, Cassidy A, Spector TD, Menni C. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Sci Rep 2017; 7:13670. [PMID: 29057986 PMCID: PMC5651863 DOI: 10.1038/s41598-017-13722-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
Reduced gut microbiome diversity is associated with multiple disorders including metabolic syndrome (MetS) features, though metabolomic markers have not been investigated. Our objective was to identify blood metabolite markers of gut microbiome diversity, and explore their relationship with dietary intake and MetS. We examined associations between Shannon diversity and 292 metabolites profiled by the untargeted metabolomics provider Metabolon Inc. in 1529 females from TwinsUK using linear regressions adjusting for confounders and multiple testing (Bonferroni: P < 1.71 × 10-4). We replicated the top results in an independent sample of 420 individuals as well as discordant identical twin pairs and explored associations with self-reported intakes of 20 food groups. Longitudinal changes in circulating levels of the top metabolite, were examined for their association with food intake at baseline and with MetS at endpoint. Five metabolites were associated with microbiome diversity and replicated in the independent sample. Higher intakes of fruit and whole grains were associated with higher levels of hippurate cross-sectionally and longitudinally. An increasing hippurate trend was associated with reduced odds of having MetS (OR: 0.795[0.082]; P = 0.026). These data add further weight to the key role of the microbiome as a potential mediator of the impact of dietary intake on metabolic status and health.
Collapse
Affiliation(s)
- Tess Pallister
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Matthew A Jackson
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Tiphaine C Martin
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Jonas Zierer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Amy Jennings
- Department of Nutrition & Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Alexander MacGregor
- Department of Nutrition & Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Aedin Cassidy
- Department of Nutrition & Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
44
|
Seganfredo FB, Blume CA, Moehlecke M, Giongo A, Casagrande DS, Spolidoro JVN, Padoin AV, Schaan BD, Mottin CC. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes Rev 2017; 18:832-851. [PMID: 28524627 DOI: 10.1111/obr.12541] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/14/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Imbalances in the gut microbiota, the bacteria that inhabit the intestines, are central to the pathogenesis of obesity. This systematic review assesses the association between the gut microbiota and weight loss in overweight/obese adults and its potential manipulation as a target for treating obesity. This review identified 43 studies using the keywords 'overweight' or 'obesity' and 'microbiota' and related terms; among these studies, 17 used dietary interventions, 11 used bariatric surgery and 15 used microbiota manipulation. The studies differed in their methodologies as well as their intervention lengths. Restrictive diets decreased the microbiota abundance, correlated with nutrient deficiency rather than weight loss and generally reduced the butyrate producers Firmicutes, Lactobacillus sp. and Bifidobacterium sp. The impact of surgical intervention depended on the given technique and showed a similar effect on butyrate producers, in addition to increasing the presence of the Proteobacteria phylum, which is related to changes in the intestinal absorptive surface, pH and digestion time. Probiotics differed in strain and duration with diverse effects on the microbiota, and they tended to reduce body fat. Prebiotics had a bifidogenic effect and increased butyrate producers, likely due to cross-feeding interactions, contributing to the gut barrier and improving metabolic outcomes. All of the interventions under consideration had impacts on the gut microbiota, although they did not always correlate with weight loss. These results show that restrictive diets and bariatric surgery reduce microbial abundance and promote changes in microbial composition that could have long-term detrimental effects on the colon. In contrast, prebiotics might restore a healthy microbiome and reduce body fat.
Collapse
Affiliation(s)
- F B Seganfredo
- Medicine and Health Sciences Post-Graduate Program, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - C A Blume
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M Moehlecke
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A Giongo
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - D S Casagrande
- Centro de Obesidade e Síndrome Metabólica, Hospital São Lucas da PUCRS, Porto Alegre, Brazil
| | - J V N Spolidoro
- Faculty of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - A V Padoin
- Medicine and Health Sciences Post-Graduate Program, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Obesidade e Síndrome Metabólica, Hospital São Lucas da PUCRS, Porto Alegre, Brazil.,Faculty of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - B D Schaan
- Faculty of Medicine and Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C C Mottin
- Medicine and Health Sciences Post-Graduate Program, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Obesidade e Síndrome Metabólica, Hospital São Lucas da PUCRS, Porto Alegre, Brazil.,Faculty of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
45
|
Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct 2017; 7:1788-96. [PMID: 26757793 DOI: 10.1039/c5fo01096a] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epidemiological studies have shown protective effects of fruits and vegetables (F&V) in lowering the risk of developing cardiovascular diseases (CVD) and cancers. Plant-derived dietary fibre (non-digestible polysaccharides) and/or flavonoids may mediate the observed protective effects particularly through their interaction with the gut microbiota. The aim of this study was to assess the impact of fruit and vegetable (F&V) intake on gut microbiota, with an emphasis on the role of flavonoids, and further to explore relationships between microbiota and factors associated with CVD risk. In the study, a parallel design with 3 study groups, participants in the two intervention groups representing high-flavonoid (HF) and low flavonoid (LF) intakes were asked to increase their daily F&V intake by 2, 4 and 6 portions for a duration of 6 weeks each, while a third (control) group continued with their habitual diet. Faecal samples were collected at baseline and after each dose from 122 subjects. Faecal bacteria enumeration was performed by fluorescence in situ hybridisation (FISH). Correlations of dietary components, flavonoid intake and markers of CVD with bacterial numbers were also performed. A significant dose X treatment interaction was only found for Clostidium leptum-Ruminococcus bromii/flavefaciens with a significant increase after intake of 6 additional portions in the LF group. Correlation analysis of the data from all 122 subjects independent from dietary intervention indicated an inhibitory role of F&V intake, flavonoid content and sugars against the growth of potentially pathogenic clostridia. Additionally, we observed associations between certain bacterial populations and CVD risk factors including plasma TNF-α, plasma lipids and BMI/waist circumference.
Collapse
Affiliation(s)
- Annett Klinder
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK. and Clinic of Orthopaedics, University Medicine Rostock, Rostock, Germany
| | - Qing Shen
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Susanne Heppel
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Julie A Lovegrove
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Kieran M Tuohy
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK. and Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| |
Collapse
|
46
|
Wu J, Jia J, Liu L, Yang F, Fan Y, Zhang S, Yan D, Bu R, Li G, Gao Y, Chen Y. Schisandrin B displays a protective role against primary pulmonary hypertension by targeting transforming growth factor β1. ACTA ACUST UNITED AC 2016; 11:148-157.e1. [PMID: 28117274 DOI: 10.1016/j.jash.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/09/2016] [Accepted: 12/18/2016] [Indexed: 01/28/2023]
Abstract
Pulmonary arterial smooth muscle cells (PASMCs) in the medial layer of the vessel wall are involved in vessel homeostasis, but also for pathologic vascular remodeling in diverse diseases, such as pulmonary arterial hypertension (PAH). Pulmonary vascular remodeling in PAH results in vascular disorders, but its underlying molecular mechanisms are still not to be fully disclosed. In this study, we investigated the expression and function of the transforming growth factor (TGF)-β1 in human PASMC cultured under the condition of hypoxia and elucidated the effect of schisandra chinensis and its active ingredients on proliferation, migration, and apoptosis in human PASMCs. We demonstrated that schisandrin B (Sch.B) alleviated the severity of PAH in PASMCs cultured under the condition of hypoxia. Significant upregulation of TGF-β1 was observed in hypoxia-induced human PASMCs. Interestingly, administration of Sch.B substantially attenuated TGF-β1 level in these PASMCs. In order to elucidate Sch.B function, the hypoxia-induced human PASMC was stimulated with Sch.B or cotreatment with TGF-β1 in vitro. In agreement with its TGF-β1-reducing effect, Sch B relieved human PASMCs migration and promoted the apoptosis of human PASMCs, by activation of TGF-β1 downstream signal pathways in PASMCs. In contrast, co-treatment with TGF-β1 promoted human PASMC proliferation and migration and inhibited the apoptosis of human PASMC, which can attenuate the protective role of Sch.B in human PASMC. Taken collectively, these findings suggest that the vascular relaxation evoked by Sch.B was mediated by direct effect on vascular smooth muscle cell via TGF-β1 downstream signal pathways.
Collapse
Affiliation(s)
- Jianjun Wu
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Jia
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Liu
- Department of Anesthesiology, The Third Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Cardiovascular Medicine Research, Harbin, Heilongjiang, China
| | - Fan Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuhua Fan
- Department of Pharmacy, Harbin Medical University, Harbin, China
| | - Sen Zhang
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongxia Yan
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Bu
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangnan Li
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhui Gao
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanjun Chen
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
47
|
Chiu HF, Chen YJ, Lu YY, Han YC, Shen YC, Venkatakrishnan K, Wang CK. Regulatory efficacy of fermented plant extract on the intestinal microflora and lipid profile in mildly hypercholesterolemic individuals. J Food Drug Anal 2016; 25:819-827. [PMID: 28987358 PMCID: PMC9328888 DOI: 10.1016/j.jfda.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 02/08/2023] Open
Abstract
In recent years, the use of fermented plant products to protect against various metabolic syndromes has been increasing enormously. The objective of this study was to check the regulatory efficacy of fermented plant extract (FPE) on intestinal microflora, lipid profile, and antioxidant status in mildly hypercholesterolemic volunteers. Forty-four mildly hypercholesterolemic individuals (cholesterol 180–220 mg/dL) were recruited and assigned to two groups: experimental or placebo. Volunteers were requested to drink either 60 mL of FPE or placebo for 8 weeks. Anthropometric measurements were done in the initial, 4th, 8th, and 10th weeks. The anthropometric parameters such as body weight, body fat, and body mass index were markedly lowered (p < 0.05) on FPE intervention participants. Moreover, the total antioxidant capacity and total phenolics in plasma were considerably increased along with a reduction (p < 0.05) in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c) after FPE supplementation. Participants who drank FPE showed a pronounced increase (p < 0.05) in the number of beneficial bacteria such as Bifidobacterium spp. and Lactobacillus spp., whereas the number of harmful bacteria such as Escherichia coli and Clostridium perfringens (p < 0.05) were concomitantly reduced. Furthermore, the lag time of LDL oxidation was substantially ameliorated in FPE-administered group, thus indicating its antioxidative and cardioprotective properties. Treatment with FPE substantially improved the intestinal microflora and thereby positively regulated various physiological functions by lowering the anthropometric parameters, TC, and LDL-c, and remarkably elevated the antioxidant capacity and lag time of LDL oxidation. Therefore, we recommended FPE beverage for combating hypercholesterolemia.
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Well-being, Taichung,
Taiwan, ROC
| | - Yen-Jung Chen
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - Yan-Ying Lu
- Department of Neurology, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - Yi-Chun Han
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - You-Cheng Shen
- School of Health Diet and Industry Management, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - Kamesh Venkatakrishnan
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City,
Taiwan, ROC
- Corresponding author. School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, Taiwan, ROC. E-mail address: (C.-K. Wang)
| |
Collapse
|
48
|
Schisandrin B: A Double-Edged Sword in Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6171658. [PMID: 27847552 PMCID: PMC5101399 DOI: 10.1155/2016/6171658] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/13/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver lesions ranging from hepatic steatosis, nonalcoholic steatohepatitis, hepatic cirrhosis, and hepatocellular carcinoma. The high global prevalence of NAFLD has underlined the important public health implications of this disease. The pathogenesis of NAFLD involves the abnormal accumulation of free fatty acids, oxidative stress, endoplasmic reticulum (ER) stress, and a proinflammatory state in the liver. Schisandrin B (Sch B), an active dibenzooctadiene lignan isolated from the fruit of Schisandra chinensis (a traditional Chinese herb), was found to possess antihyperlipidemic, antioxidant, anti-ER stress, and anti-inflammatory activities in cultured hepatocytes in vitro and in rodent livers in vivo. Whereas a long-term, low dose regimen of Sch B induces an antihyperlipidemic response in obese mice fed a high fat diet, a single bolus high dose of Sch B increases serum/hepatic lipid levels in mice. This differential action of Sch B is likely related to a dose/time-dependent biphasic response on lipid metabolism in mice. The hepatoprotection afforded by Sch B against oxidative stress, ER stress, and inflammation has been widely reported. The ensemble of results suggests that Sch B may offer potential as a therapeutic agent for NAFLD. The optimal dose and duration of Sch B treatment need to be established in order to ensure maximal efficacy and safety when used in humans.
Collapse
|
49
|
Xu WT, Nie YZ, Yang Z, Lu NH. The crosstalk between gut microbiota and obesity and related metabolic disorders. Future Microbiol 2016; 11:825-36. [PMID: 27192213 DOI: 10.2217/fmb-2015-0024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Obesity and related metabolic diseases are currently a threat to global public health. The occurrence and development of these conditions result from the combined effects of multiple factors. The human gut is a diverse and vibrant microecosystem, and its composition and function are a focus of research in the fields of life science and medicine. An increasing amount of evidence indicates that interactions between the gut microbiota and their genetic predispositions or dietary changes may be key factors that contribute to obesity and other metabolic diseases. Defining the mechanisms by which the gut microbiota influence obesity and related chronic metabolic diseases will bring about revolutionary changes that will enable practitioners to prevent and control metabolic diseases by targeting the gut microbiota.
Collapse
Affiliation(s)
- Wen-Ting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
50
|
Oh B, Kim BS, Kim JW, Kim JS, Koh SJ, Kim BG, Lee KL, Chun J. The Effect of Probiotics on Gut Microbiota during the Helicobacter pylori Eradication: Randomized Controlled Trial. Helicobacter 2016; 21:165-74. [PMID: 26395781 DOI: 10.1111/hel.12270] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori causes chronic gastritis, gastroduodenal ulcers, and gastric cancer, and has been treated with two antibiotics (amoxicillin and clarithromycin) and proton-pump inhibitors (PPIs). However, antibiotic treatment alters the indigenous gut microbiota to cause side effects. Therefore, the effects of probiotic supplementation on therapy have been studied. Although several studies have covered the probiotics' effects, details about the gut microbiota changes after H. pylori eradication have not been evaluated. Therefore, we analyzed the influences of antibiotics and their combination with probiotics on the composition of the gut microbiota using high-throughput sequencing. METHODS Subjects were divided into two groups. The antibiotics group was treated with general therapy, and the probiotics group with general therapy and probiotic supplementation. Fecal samples were collected from all subjects during treatments, and the influences on gut microbiota were analyzed by 16S rRNA gene-pyrosequencing. RESULTS Three phyla, Firmicutes, Bacteroidetes, and Proteobacteria, were predominant in the gut microbiota of all subjects. After treatment, the relative abundances of Firmicutes were reduced, whereas those of Proteobacteria were increased in both groups. However, the changed proportions of the gut microbiota in the antibiotics group were higher than those in the probiotics group. In addition, the increase in the levels of antibiotic-resistant bacteria was higher in the antibiotics group than in the probiotics one. CONCLUSION Probiotic supplementation can reduce the antibiotic-induced alteration and imbalance of the gut microbiota composition. This effect may restrict the growth of antibiotic-resistant bacteria in the gut and improve the H. pylori eradication success rate.
Collapse
Affiliation(s)
- Bumjo Oh
- Department of Family Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Bong-Soo Kim
- Department of Life Sciences, Hallym University, Chuncheon, Korea
| | - Ji Won Kim
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Seung Kim
- Department of Family Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Joon Koh
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong Gwan Kim
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul, Korea.,Chunlab Inc., Seoul, Korea
| |
Collapse
|