1
|
Qiang J, Ding R, Kang C, Xiao T, Yan Y. Impact of waxy protein deletions on the crystalline structure and physicochemical properties of wheat V-type resistant starch (RS 5). Carbohydr Polym 2025; 347:122695. [PMID: 39486936 DOI: 10.1016/j.carbpol.2024.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
This study investigated the effects of waxy (Wx) protein on wheat V-type resistant starch (RS5) formation, molecular structure, and physicochemical properties. We discovered that waxy protein deletions led to a rise in B- and C-type starch granules, while reducing A-type starch granules, amylose, and slowly digestible starch contents. Further, dodecyl gallate (DG) addition significantly increased RS5 content, and molecular dynamics simulations indicated that amylose and DG can form stable complexes. Molecular docking indicated that DG could potentially aid in protecting wheat starch from digestion by human α-glucosidase. RS5 content was significantly reduced by waxy protein deletions. X-ray powder diffraction, Fourier-transform infrared spectroscopy, and laser confocal microscopy-Raman analyses revealed that waxy protein deletions decreased long-range crystalline structures and relative crystallinity and increased short-range crystalline structures,and full width at half maximum at 480 cm-1 of RS5. Pearson correlation analysis showed that RS5 content was highly correlated with its crystal structure, functional characteristics, and digestive characteristics. Principal component analysis revealed that five parameters (amylopectin, long-range crystalline structures, amylose, relative crystallinity, and RS5 content) had significant effect on the crystalline structure and functionality of RS5.
Collapse
Affiliation(s)
- Jian Qiang
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Run Ding
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Caiyun Kang
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Tongtong Xiao
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| |
Collapse
|
2
|
Ge Q, Yan Y, Luo Y, Teng T, Cao C, Zhao D, Zhang J, Li C, Chen W, Yang B, Yi Z, Chang T, Chen X. Dietary supplements: clinical cholesterol-lowering efficacy and potential mechanisms of action. Int J Food Sci Nutr 2024; 75:349-368. [PMID: 38659110 DOI: 10.1080/09637486.2024.2342301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
This review aims to analyse the efficacy of dietary supplements in reducing plasma cholesterol levels. Focusing on evidence from meta-analyses of randomised controlled clinical trials, with an emphasis on potential mechanisms of action as supported by human, animal, and cell studies. Certain dietary supplements including phytosterols, berberine, viscous soluble dietary fibres, garlic supplements, soy protein, specific probiotic strains, and certain polyphenol extracts could significantly reduce plasma total and low-density lipoprotein (LDL) cholesterol levels by 3-25% in hypercholesterolemic patients depending on the type of supplement. They tended to be more effective in reducing plasma LDL cholesterol level in hypercholesterolemic individuals than in normocholesterolemic individuals. These supplements worked by various mechanisms, such as enhancing the excretion of bile acids, inhibiting the absorption of cholesterol in the intestines, increasing the expression of hepatic LDL receptors, suppressing the activity of enzymes involved in cholesterol synthesis, and activating the adenosine monophosphate-activated protein kinase signalling pathway.
Collapse
Affiliation(s)
- Qian Ge
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yan
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yang Luo
- Ningxia Institute of Science and Technology Development Strategy and Information, Yinchuan, China
| | - Tai Teng
- Ningxia Guolong Hospital Co., LTD, Yinchuan, China
| | - Caixia Cao
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Danqing Zhao
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jing Zhang
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Caihong Li
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wang Chen
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Binkun Yang
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Zicheng Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tengwen Chang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Chen
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| |
Collapse
|
3
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
4
|
Wang N, Ding C, Xie Y, Meng J, Fan X, Fan D, Wan H, Jiang Z. Characteristics of Citrate-Esterified Starch and Enzymatically Debranched Starch and Their Effects on Diabetic Mice. Foods 2024; 13:1486. [PMID: 38790786 PMCID: PMC11120290 DOI: 10.3390/foods13101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chickpea has significant benefits as an adjuvant treatment for type 2 diabetes mellitus (T2DM). The properties of chickpea resistant starches (RSs) and their abilities to reduce T2DM symptoms and control intestinal flora were investigated. The RS content in citrate-esterified starch (CCS; 74.18%) was greater than that in pullulanase-modified starch (enzymatically debranched starch (EDS); 38.87%). Compared with those of native chickpea starch, there were noticeable changes in the granular structure and morphology of the two modified starches. The CCS showed surface cracking and aggregation. The EDS particles exhibited irregular layered structures. The expansion force of the modified starches decreased. The CCS and EDS could successfully lower blood glucose, regulate lipid metabolism, lower the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), reduce the expressions of interleukin-6 (IL-6) and interleuki n-10 (IL-10), and decrease diabetes-related liver damage. Moreover, the CCS and EDS altered the intestinal flora makeup in mice with T2DM. The abundance of Bacteroidota increased. Both types of chickpea RSs exhibited significant hypoglycaemic and hypolipidaemic effects, contributing to the reduction in inflammatory levels and the improvement in gut microbiota balance.
Collapse
Affiliation(s)
- Nannan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (N.W.)
| | - Changhe Ding
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (N.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yingying Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (N.W.)
| | - Jun Meng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (N.W.)
| | - Xing Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (N.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Duoduo Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (N.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Haowei Wan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (N.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhengqiang Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (N.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
5
|
Ouyang J, Wang C, Huang Q, Guan Y, Zhu Z, He Y, Jiang G, Xiong Y, Li X. Correlation between in vitro starch digestibility and starch structure/physicochemical properties in rice. Int J Biol Macromol 2024; 263:130316. [PMID: 38382778 DOI: 10.1016/j.ijbiomac.2024.130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Natural resistant starch (RS) in rice provides human health benefits, and its concentration in rice is influenced by the structure and physicochemical properties of starch. The native starch structures and physicochemical properties of three rice varieties, QR, BR58, and BR50, and their relationships to in vitro digestibility were studied. The starch granules in all three varieties were irregular or polyhedral in shape. There were a few oval granules and a few pinhole structures in QR, no oval granules but a higher number of pinholes in BR58, and no oval granules and pinholes in BR50. QR is a low-amylose (13.8 %), low-RS (0.2 %) variety. BR58 is a low-amylose (15.3 %), high-RS (6.5 %) variety. BR50 is a high-amylose (26.7 %), high-RS (8.3 %) variety. All three starches exhibited typical A-type diffraction patterns. Starch molecular weight, chain length distribution, starch branching degree, pasting capabilities, and thermal properties differed considerably between the rice starches. The RS contents of the rice starch varieties were positively correlated with AAC, Mw/Mn, Mz/Mn, peak 3, B, PTime, and Tp and negatively correlated with Mn, peak 2, DB, PV, and BD, according to Pearson's correlation analysis. These findings may be helpful for the breeding and development of high-RS rice varieties.
Collapse
Affiliation(s)
- Jie Ouyang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Chutao Wang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Qianlong Huang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Yusheng Guan
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Zichao Zhu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Yongxin He
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Gang Jiang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Ying Xiong
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Xianyong Li
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China.
| |
Collapse
|
6
|
Feng Q, Lin J, Niu Z, Wu T, Shen Q, Hou D, Zhou S. A Comparative Analysis between Whole Chinese Yam and Peeled Chinese Yam: Their Hypolipidemic Effects via Modulation of Gut Microbiome in High-Fat Diet-Fed Mice. Nutrients 2024; 16:977. [PMID: 38613011 PMCID: PMC11013417 DOI: 10.3390/nu16070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Chinese yam is a "medicine food homology" food with medical properties, but little is known about its health benefits on hyperlipidemia. Furthermore, the effect of peeling processing on the efficacy of Chinese yam is still unclear. In this study, the improvement effects of whole Chinese yam (WY) and peeled Chinese yam (PY) on high-fat-diet (HFD)-induced hyperlipidemic mice were explored by evaluating the changes in physiological, biochemical, and histological parameters, and their modulatory effects on gut microbiota were further illustrated. The results show that both WY and PY could significantly attenuate the HFD-induced obesity phenotype, accompanied by the mitigative effect on epididymis adipose damage and hepatic tissue injury. Except for the ameliorative effect on TG, PY retained the beneficial effects of WY on hyperlipemia. Furthermore, 16S rRNA sequencing revealed that WY and PY reshaped the gut microbiota composition, especially the bloom of several beneficial bacterial strains (Akkermansia, Bifidobacterium, and Faecalibaculum) and the reduction in some HFD-dependent taxa (Mucispirillum, Coriobacteriaceae_UCG-002, and Candidatus_Saccharimonas). PICRUSt analysis showed that WY and PY could significantly regulate lipid transport and metabolism-related pathways. These findings suggest that Chinese yam can alleviate hyperlipidemia via the modulation of the gut microbiome, and peeling treatment had less of an effect on the lipid-lowering efficacy of yam.
Collapse
Affiliation(s)
- Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Jinquan Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Zhitao Niu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Tong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.S.)
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.S.)
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.S.)
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| |
Collapse
|
7
|
Baptista NT, Dessalles R, Illner AK, Ville P, Ribet L, Anton PM, Durand-Dubief M. Harnessing the power of resistant starch: a narrative review of its health impact and processing challenges. Front Nutr 2024; 11:1369950. [PMID: 38571748 PMCID: PMC10987757 DOI: 10.3389/fnut.2024.1369950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Starch is a primary energy storage for plants, making it an essential component of many plant-based foods consumed today. Resistant starch (RS) refers to those starch fractions that escape digestion in the small intestine and reach the colon where they are fermented by the microflora. RS has been repeatedly reported as having benefits on health, but ensuring that its content remains in food processing may be challenging. The present work focuses on the impact RS on health and explores the different processes that may influence its presence in foods, thus potentially interfering with these effects. Clinical evidence published from 2010 to 2023 and studying the effect of RS on health parameters in adult populations, were identified, using PUBMED/Medline and Cochrane databases. The search focused as well on observational studies related to the effect of food processes on RS content. While processes such as milling, fermentation, cooking and heating seem to have a deleterious influence on RS content, other processes, such as cooling, cooking time, storage time, or water content, may positively impact its presence. Regarding the influence on health parameters, there is a body of evidence suggesting an overall significant beneficial effect of RS, especially type 1 and 2, on several health parameters such as glycemic response, insulin resistance index, bowel function or inflammatory markers. Effects are more substantiated in individuals suffering from metabolic diseases. The effects of RS may however be exerted differently depending on the type. A better understanding of the influence of food processes on RS can guide the development of dietary intake recommendations and contribute to the development of food products rich in RS.
Collapse
Affiliation(s)
| | | | - Anne-Kathrin Illner
- Transformations and Agroressources, Institut Polytechnique UniLaSalle, Université d’Artois, Beauvais, France
| | - Patrice Ville
- Department of Regulatory Department, University of Lesaffre International, Marcq-en-Baroeul, France
| | - Léa Ribet
- Transformations and Agroressources, Institut Polytechnique UniLaSalle, Université d’Artois, Beauvais, France
| | - Pauline M. Anton
- Transformations and Agroressources, Institut Polytechnique UniLaSalle, Université d’Artois, Beauvais, France
| | - Mickaël Durand-Dubief
- Discovery and Front-End Innovation, Lesaffre Institute of Science and Technology, Lille, France
| |
Collapse
|
8
|
Kang MS, Jang KA, Kim HR, Song S. Association of Dietary Resistant Starch Intake with Obesity and Metabolic Syndrome in Korean Adults. Nutrients 2024; 16:158. [PMID: 38201987 PMCID: PMC10780381 DOI: 10.3390/nu16010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Research findings on the relationship between dietary resistant starch (RS) intake and metabolic diseases using population-based data are very scarce. This study examined the association of dietary RS intake with obesity and metabolic syndrome in Korean adults. A total of 12,491 adults (5292 men and 7199 women) were selected from the 2016-2018 Korea National Health and Nutrition Examination Survey data. The individual RS intake (g) was calculated by linking the 1-day 24 h recall data with the RS content database for common Korean foods. Obesity was defined as a BMI ≥ 25.0 kg/m2. Metabolic syndrome was defined as having three or more of the following: abdominal obesity, elevated triglycerides, low HDL cholesterol, elevated fasting blood glucose, and elevated blood pressure. Odds ratios (ORs) with 95% confidence intervals (CIs) for obesity and metabolic syndrome across quartiles (Qs) of RS intake were calculated using multiple logistic regression analysis. In men, the highest quartile of RS intake showed a significantly lower OR for metabolic syndrome compared to the lowest quartile after adjusting for covariates (OR = 0.71, 95% CI = 0.56-0.92, p-trend = 0.0057). Dietary RS intake in men was also inversely associated with obesity (Q4 vs. Q1: OR = 0.80, 95% CI = 0.67-0.97, p-trend = 0.0329) and elevated triglycerides (Q4 vs. Q1: OR = 0.80, 95% CI = 0.66-0.98, p-trend = 0.0314). In women, RS intake was not associated with metabolic syndrome. Our findings may serve as useful data for developing guidelines for RS intake and conducting further cohort and clinical studies to investigate the health effects of RS.
Collapse
Affiliation(s)
- Min-Sook Kang
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, 166 Nongsaengmyeong-ro, Wanju-gun 55365, Republic of Korea; (M.-S.K.); (K.-A.J.); (H.-R.K.)
| | - Kyeong-A Jang
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, 166 Nongsaengmyeong-ro, Wanju-gun 55365, Republic of Korea; (M.-S.K.); (K.-A.J.); (H.-R.K.)
| | - Haeng-Ran Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, 166 Nongsaengmyeong-ro, Wanju-gun 55365, Republic of Korea; (M.-S.K.); (K.-A.J.); (H.-R.K.)
| | - SuJin Song
- Department of Food and Nutrition, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
9
|
Devarakonda SLS, Superdock DK, Ren J, Johnson LM, Loinard-González A(AP, Poole AC. Gut microbial features and dietary fiber intake predict gut microbiota response to resistant starch supplementation. Gut Microbes 2024; 16:2367301. [PMID: 38913541 PMCID: PMC11197919 DOI: 10.1080/19490976.2024.2367301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Resistant starch (RS) consumption can have beneficial effects on metabolic health, but the response, in terms of effects on the gut microbiota and host physiology, varies between individuals. Factors predicting the response to RS are not yet established and would be useful for developing precision nutrition approaches that maximize the benefits of dietary fiber intake. We sought to identify predictors of gut microbiota response to RS supplementation. We enrolled 76 healthy adults into a 7-week crossover study with 59 individuals completing the study. Participants consumed RS type 2 (RS2), RS type 4 (RS4), and digestible starch, for 10 d each with 5-d washout periods in between. We collected fecal and saliva samples and food records during each treatment period. We performed 16S rRNA gene sequencing and measured fecal short-chain fatty acids (SCFAs), salivary amylase (AMY1) gene copy number, and salivary amylase activity (SAA). Dietary fiber intake was predictive of the relative abundance of several amplicon sequence variants (ASVs) at the end of both RS treatments. AMY1-related metrics were not predictive of response to RS. SAA was only predictive of the relative abundance of one ASV after digestible starch supplementation. Interestingly, SCFA concentrations increased the most during digestible starch supplementation. Treatment order (the order of consumption of RS2 and RS4), alpha diversity, and a subset of ASVs were predictive of SCFA changes after RS supplementation. Based on our findings, dietary fiber intake and gut microbiome composition would be informative if assessed prior to recommending RS supplementation because these data can be used to predict changes in specific ASVs and fecal SCFA concentrations. These findings lay a foundation to support the premise that using a precision nutrition approach to optimize the benefits of dietary fibers such as RS could be an effective strategy to compensate for the low consumption of dietary fiber nationwide.
Collapse
Affiliation(s)
| | | | - Jennifer Ren
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, USA
| | | | - Angela C. Poole
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Wang Z, Wang S, Xu Q, Kong Q, Li F, Lu L, Xu Y, Wei Y. Synthesis and Functions of Resistant Starch. Adv Nutr 2023; 14:1131-1144. [PMID: 37276960 PMCID: PMC10509415 DOI: 10.1016/j.advnut.2023.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023] Open
Abstract
Resistant starch (RS) has become a popular topic of research in recent years. Most scholars believe that there are 5 types of RS. However, accumulating evidence indicates that in addition to starch-lipid complexes, which are the fifth type of RS, complexes containing starch and other substances can also be generated. The physicochemical properties and physiologic functions of these complexes are worth exploring. New physiologic functions of several original RSs are constantly being discovered. Research shows that RS can provide health improvements in many patients with chronic diseases, including diabetes and obesity, and even has potential benefits for kidney disease and colorectal cancer. Moreover, RS can alter the short-chain fatty acids and microorganisms in the gut, positively regulating the body's internal environment. Despite the increase in its market demand, RS production remains limited. Upscaling RS production is thus an urgent requirement. This paper provides detailed insights into the classification, synthesis, and efficacy of RS, serving as a starting point for the future development and applications of RS based on the current status quo.
Collapse
Affiliation(s)
- Zhanggui Wang
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Shuli Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinhong Xu
- Department of Acupuncture and Massage, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Qi Kong
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Fei Li
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lin Lu
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Yibiao Xu
- Department of Neurosurgery, The Fifth People's Hospital of Huai 'an, Huai' an, China
| | - Yali Wei
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China; Department of Women's Health, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children's Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
11
|
García-Vázquez C, Ble-Castillo JL, Arias-Córdova Y, Ramos-García M, Olvera-Hernández V, Guzmán-Priego CG, Martínez-López MC, Jiménez-Domínguez G, Hernández-Becerra JA. Effects of resistant starch on glycemic response, postprandial lipemia and appetite in subjects with type 2 diabetes. Eur J Nutr 2023:10.1007/s00394-023-03154-4. [PMID: 37083722 DOI: 10.1007/s00394-023-03154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Resistant starch (RS) content has exhibited beneficial effects on glycemic control; however, few studies have investigated the effects of this substance on postprandial responses and appetite in subjects with type 2 diabetes (T2D). Here, we aimed to examine the effects of RS from two sources on glycemic response (GR), postprandial lipemia, and appetite in subjects with T2D. METHODS In a randomized and crossover study, 17 subjects with T2D consumed native banana starch (NBS), high-amylose maize starch (HMS) or digestible maize starch (DMS) for 4 days. On day 5, a 6-h oral meal tolerance test (MTT) was performed to evaluate glycemic and insulinemic responses as well as postprandial lipemia. Besides, subjective appetite assessment was measured using a visual analogue scale. RESULTS NBS induced a reduction on fasting glycemia, glycemia peak and insulinemic response during MTT. However, no modifications on postprandial lipemia were observed after RS treatments. Both NBS and HMS reduced hunger and increased satiety. CONCLUSION NBS supplementation induced more beneficial effects on glycemic metabolism than HMS even when all interventions were matched for digestible starch content. RS intake did not modify postprandial lipemia, however, positively affected subjective appetite rates. TRIAL REGISTRATION This trial was retrospectively registered at www.anzctr.org.au (ACTRN12621001382864) on October 11, 2021.
Collapse
Affiliation(s)
- Carlos García-Vázquez
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, Mexico
| | - Jorge L Ble-Castillo
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, Mexico.
| | - Yolanda Arias-Córdova
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, Mexico
| | - Meztli Ramos-García
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, Mexico
| | - Viridiana Olvera-Hernández
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, Mexico
| | - Crystell G Guzmán-Priego
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, Mexico
| | - Mirian C Martínez-López
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, Mexico
| | - Guadalupe Jiménez-Domínguez
- Departamento de Medicina Interna, Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, Mexico
| | | |
Collapse
|
12
|
Jang KA, Kim HA, Kang MS, Kim HR, Lee YJ, Song S. Development of a database to estimate dietary intake of resistant starch in Koreans. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
13
|
Chen X, Wang Z, Wang D, Kan J. Effects of resistant starch III on the serum lipid levels and gut microbiota of Kunming mice under high-fat diet. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Yang Q, Van Haute M, Korth N, Sattler S, Rose D, Juritsch A, Shao J, Beede K, Schmaltz R, Price J, Toy J, Ramer-Tait AE, Benson AK. The waxy mutation in sorghum and other cereal grains reshapes the gut microbiome by reducing levels of multiple beneficial species. Gut Microbes 2023; 15:2178799. [PMID: 37610979 PMCID: PMC9980621 DOI: 10.1080/19490976.2023.2178799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 08/25/2023] Open
Abstract
Waxy starches from cereal grains contain >90% amylopectin due to naturally occurring mutations that block amylose biosynthesis. Waxy starches have unique organoleptic characteristics (e.g. sticky rice) as well as desirable physicochemical properties for food processing. Using isogenic pairs of wild type sorghum lines and their waxy derivatives, we studied the effects of waxy starches in the whole grain context on the human gut microbiome. In vitro fermentations with human stool microbiomes show that beneficial taxonomic and metabolic signatures driven by grain from wild type parental lines are lost in fermentations of grain from the waxy derivatives and the beneficial signatures can be restored by addition of resistant starch. These undesirable effects are conserved in fermentations of waxy maize, wheat, rice and millet. We also demonstrate that humanized gnotobiotic mice fed low fiber diets supplemented with 20% grain from isogenic pairs of waxy vs. wild type parental sorghum have significant differences in microbiome composition and show increased weight gain. We conclude that the benefits of waxy starches on food functionality can have unintended tradeoff effects on the gut microbiome and host physiology that could be particularly relevant in human populations consuming large amounts of waxy grains.
Collapse
Affiliation(s)
- Qinnan Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| | - Mallory Van Haute
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| | - Nate Korth
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
- Complex Biosystems Graduate Program, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Scott Sattler
- Wheat, Sorghum and Forage Research Unit, USDA-Agricultural Research Service, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Devin Rose
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anthony Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| | - Jing Shao
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| | - Kristin Beede
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| | - Robert Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| | - Jeff Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| | - John Toy
- Wheat, Sorghum and Forage Research Unit, USDA-Agricultural Research Service, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center at the University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
15
|
Wan J, Li X, Gu M, Li Q, Wang C, Yuan R, Li L, Li X, Ye S, Chen J. The association of dietary resistance starch intake with all-cause and cause-specific mortality. Front Nutr 2022; 9:1004667. [PMID: 36570138 PMCID: PMC9773073 DOI: 10.3389/fnut.2022.1004667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background Several studies have estimated daily intake of resistant starch (RS), but no studies have investigated the relationship of RS intake with mortality. Objective We aimed to examine associations between RS intake and all-cause and cause-specific mortality. Methods Data from US National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018 with 24-h dietary recall data was used in current study. The main exposure in this study was RS intake, and the main outcome was the mortality status of participants until December 31, 2019. The multivariable Cox proportional hazards regression models were developed to evaluate the hazard ratios (HRs) and 95% confidence interval (95% CI) of cardiovascular disease (CVD), cancer, and all-cause mortality associated with RS intake. Results A total of 42,586 US adults [mean (SD) age, 46.91 (16.88) years; 22,328 (52.43%) female] were included in the present analysis. During the 454,252 person-years of follow-up, 7,043 all-cause deaths occurred, including 1,809 deaths from CVD and 1,574 deaths from cancer. The multivariable-adjusted HRs for CVD, cancer, and all-cause mortality per quintile increase in RS intake were 1 (95%CI, 0.97-1.04), 0.96 (95%CI, 0.93-1), and 0.96 (95%CI, 0.95-0.98), respectively. The associations remained similar in the subgroup and sensitivity analyses. Conclusion Higher RS intake is significantly associated with lower cancer and all-cause mortality, but not significantly with CVD mortality. Future studies focusing on other populations with different food sources of RS and RS subtypes are needed to access the dose-response relationship and to improve global dietary recommendations.
Collapse
Affiliation(s)
- Jiang Wan
- Department of Epidemiology, Key Laboratory of Cardiovascular Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaocong Li
- Medical Research and Biometrics Center, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Gu
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Li
- Department of Nutrition, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuyun Wang
- Department of Nutrition, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Run Yuan
- Department of Nutrition, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Li
- Department of Nutrition, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Xiang Li
| | - Shaodong Ye
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Shaodong Ye
| | - Jichun Chen
- Department of Nutrition, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Jichun Chen
| |
Collapse
|
16
|
Wen JJ, Li MZ, Hu JL, Tan HZ, Nie SP. Resistant starches and gut microbiota. Food Chem 2022; 387:132895. [DOI: 10.1016/j.foodchem.2022.132895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023]
|
17
|
Santiago CMO, de Oliveira DG, Rocha‐Gomes A, Oliveira G, Bernardes EDO, Dias PL, Reis ÍG, Severiano CM, da Silva AA, Lessa MR, Dessimoni Pinto NAV, Riul TR. Unripe banana flour (
Musa cavendishii
) promotes increased hypothalamic antioxidant activity, reduced caloric intake, and abdominal fat accumulation in rats on a high‐fat diet. J Food Biochem 2022; 46:e14341. [DOI: 10.1111/jfbc.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Camilla M. O. Santiago
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Dalila G. de Oliveira
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Arthur Rocha‐Gomes
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Gabriel A. Oliveira
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Eduardo de Oliveira Bernardes
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Patrick L. Dias
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Ítalo G. Reis
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Cecília M. Severiano
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Alexandre A. da Silva
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Programa de Pós‐Graduação em Ciências da Saúde Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Mayara R. Lessa
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Nisia A. V. Dessimoni Pinto
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Tania R. Riul
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| |
Collapse
|
18
|
Dibakoane SR, Du Plessis B, Silva LD, Anyasi TA, Emmambux M, Mlambo V, Wokadala OC. Nutraceutical Properties of Unripe Banana Flour Resistant Starch: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siphosethu Richard Dibakoane
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
- Agro‐Processing and Postharvest Technologies Division Agricultural Research Council – Tropical and Subtropical Crops Nelspruit 1200 South Africa
| | - Belinda Du Plessis
- Tshwane University of Technology Department of Biotechnology and Food Technology Private Bag X680 Pretoria 0083 South Africa
| | - Laura Da Silva
- Tshwane University of Technology Department of Biotechnology and Food Technology Private Bag X680 Pretoria 0083 South Africa
| | - Tonna A. Anyasi
- Agro‐Processing and Postharvest Technologies Division Agricultural Research Council – Tropical and Subtropical Crops Nelspruit 1200 South Africa
| | - Mohammad Emmambux
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield 0028 South Africa
| | - Victor Mlambo
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
| |
Collapse
|
19
|
Suklaew PO, Han YC, Chusak C, Lin WC, Wu YH, Wang JS, Chang YC, Lin YJ, Zhuang SR, Chuang HJ, Adisakwattana S, Wang CK. Improvement in the metabolic markers of prediabetic subjects due to the partial substitution of Taiken9 rice by RD43 rice in their daily diet: a randomized clinical trial. Food Funct 2022; 13:5987-5995. [PMID: 35551341 DOI: 10.1039/d1fo03664e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although RD43 rice is characterized by high amounts of undigestible starch, its potential health benefits for prediabetic individuals remain unknown. Thus, the effect of regular consumption of RD43 rice on the glycemic response, body composition, and metabolic markers was investigated in a sample of 34 participants with prediabetes (aged from 32 to 68 years) who were randomly allocated to either the treatment or the control group. The first were required to consume RD43 rice (Glycemic Index [GI] = 78) containing 14.1 g of undigestible starch daily as a substitute for two meals per day while the second were given the Taiken9 rice (GI = 98) for 12 continuous weeks. The evaluations were performed at baseline, at the end of week 6 and 12, and at follow-up conducted two weeks after the intervention had ended. The results obtained at the week 12 assessment clearly showed a significant decrease in fasting plasma glucose, insulin, HbA1c, and HOMA-IR in the group that consumed RD43 rice. In addition, daily ingestion of RD43 rice markedly reduced body weight, Body Mass Index (BMI), total fat mass, and waist circumference at both week 6 and 12 compared with the baseline. When compared with the controls, the treatment group also exhibited a significant decrease in fasting plasma insulin and HOMA-IR at week 12. However, no significant inter- or intra-group differences in lipid profiles were detected. These findings suggest that RD43 rice could be a potential staple food with the capacity to improve glycemic control and body composition in prediabetic individuals.
Collapse
Affiliation(s)
- Phim On Suklaew
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Yi-Chun Han
- Department of Nutrition and Health Science, Fooyin University, No. 151, Jinxue road, Daliao District, Kaosiung, 831301, Taiwan
| | - Charoonsri Chusak
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wen-Chien Lin
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan.
| | - Yi-Hsiu Wu
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan.
| | - Jyun-Syong Wang
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan.
| | - Ya Chu Chang
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan.
| | - Yu-Ju Lin
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan.
| | - Shu-Ru Zhuang
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan.
| | - Hui-Ju Chuang
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan.
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan.
| |
Collapse
|
20
|
Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
21
|
Beneficial Effect of Kidney Bean Resistant Starch on Hyperlipidemia-Induced Acute Pancreatitis and Related Intestinal Barrier Damage in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092783. [PMID: 35566136 PMCID: PMC9100041 DOI: 10.3390/molecules27092783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Accumulating attention has been focused on resistant starch (RS) due to its blood-lipid-lowering activities. However, reports on the potential bioactivities of RS for preventing hyperlipidemia acute pancreatitis (HLAP) are limited. Therefore, in this study, an acute pancreatitis model was set up by feeding a hyperlipidemia diet to rats, and subsequently evaluating the anti-HLAP effect of RS in kidney beans. The results show that the IL-6, IL-1β, and TNF-α of serum in each RS group were decreased by 18.67-50.00%, 7.92-22.89%, and 8.06-34.04%, respectively, compared with the model group (MOD). In addition, the mRNA expression of tight junction protein ZO-1, occludin, and antibacterial peptides CRAMP and DEFB1 of rats in each RS group increased by 26.43-60.07%, 229.98-279.90%, 75.80-111.20%, and 77.86-109.07%, respectively. The height of the villi in the small intestine and the thickness of the muscle layer of rats were also increased, while the depth of the crypt decreased. The present study indicates that RS relieves intestinal inflammation, inhibits oxidative stress, and prevents related intestinal barrier damage. These results support the supplementation of RS as an effective nutritional intervention for HLAP and associated intestinal injury.
Collapse
|
22
|
Walsh SK, Lucey A, Walter J, Zannini E, Arendt EK. Resistant starch-An accessible fiber ingredient acceptable to the Western palate. Compr Rev Food Sci Food Saf 2022; 21:2930-2955. [PMID: 35478262 DOI: 10.1111/1541-4337.12955] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
Dietary fiber intakes in Western societies are concerningly low and do not reflect global recommended dietary fiber intakes for chronic disease prevention. Resistant starch (RS) is a fermentable dietary fiber that has attracted research interest. As an isolated ingredient, its fine particle size, relatively bland flavor, and white appearance may offer an appealing fiber source to the Western palate, accustomed to highly refined, processed grains. This review aims to provide a comprehensive insight into the current knowledge (classification, production methods, and characterization methods), health benefits, applications, and acceptability of RS. It further discusses the present market for commercially available RS ingredients and products containing ingredients high in RS. The literature currently highlights beneficial effects for dietary RS supplementation with respect to glucose metabolism, satiety, blood lipid profiles, and colonic health. An exploration of the market for commercial RS ingredients indicates a diverse range of products (from isolated RS2, RS3, and RS4) with numerous potential applications as partial or whole substitutes for traditional flour sources. They may increase the nutritional profile of a food product (e.g., by increasing the fiber content and lowering energy values) without significantly compromising its sensory and functional properties. Incorporating RS ingredients into staple food products (such as bread, pasta, and sweet baked goods) may thus offer an array of nutritional benefits to the consumer and a highly accessible functional ingredient to be greater exploited by the food industry.
Collapse
Affiliation(s)
- Sarah Kate Walsh
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Alice Lucey
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jens Walter
- APC Microbiome Institute, Cork, Ireland.,School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| |
Collapse
|
23
|
Rahim MS, Kumar V, Mishra A, Fandade V, Kumar V, Kiran kondepudi K, Bishnoi M, Roy J. High resistant starch mutant wheat ‘TAC 35’ reduced glycemia and ameliorated high fat diet induced metabolic dysregulation in mice. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Wei Y, Zhang X, Meng Y, Wang Q, Xu H, Chen L. The Effects of Resistant Starch on Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis. Nutr Cancer 2022; 74:2337-2350. [PMID: 35188032 DOI: 10.1080/01635581.2021.2019284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yali Wei
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiyu Zhang
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Yan Meng
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Qian Wang
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Hongzhao Xu
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Liyong Chen
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
25
|
Zeng Y, Ali MK, Du J, Li X, Yang X, Yang J, Pu X, Yang L, Hong J, Mou B, Li L, Zhou Y. Resistant Starch in Rice: Its Biosynthesis and Mechanism of Action Against Diabetes-Related Diseases. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yawen Zeng
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Kazim Ali
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Juan Du
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xia Li
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaomeng Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Jiazhen Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaoying Pu
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li’E Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jingan Hong
- Clinical Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Bo Mou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yan Zhou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
26
|
Nugraheni M, Purwanti S, Ekawatiningsih P. Impact of Analog Rice Derived from Different Composite Flours from Tubers, Germinated Legumes, and Cereals on Improving Serum Markers in Alloxan-Induced Diabetic Rats. Prev Nutr Food Sci 2021; 26:296-306. [PMID: 34737990 PMCID: PMC8531424 DOI: 10.3746/pnf.2021.26.3.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
This study aimed to evaluate the consumption of four types of analog rice made from different composite flours in alloxan-induced diabetic rats. Forty-two male Wistar rats were divided into seven groups and fed different food for six weeks: normal standard food (NSF), diabetic standard food (DSF), diabetic commercial rice (DCR), and diabetic analog rice (DAR) I∼IV. Total phenolic, dietary fiber, and resistant starch contents were evaluated in every analog and commercial type of rice. The parameters studied were fasting blood glucose, homeostatic model assessment (HOMA) insulin resistance (IR), HOMA β, lipid profile, atherogenic indexes (AI), weight changes, serum insulin and antioxidant activities. Total phenol, dietary fiber, and resistant starch were higher for analog rice IV than the other three analog rice. In addition, analog rice IV had a greater ability to lower fasting blood glucose, total cholesterol, triglycerides, and low-density lipoprotein levels. High density lipoprotein levels increased in all groups fed analog rice, and all diabetic rats fed four types of analog rice had improved weight, antioxidant activity, serum insulin levels, HOMA IR, HOMA β, and AI. Commercial rice consumption did not improve glucose or lipids profiles, antioxidant activity, serum insulin level, HOMA IR, HOMA β, or AI in diabetic mice. These results show that the four types of analog rice significantly improved serum markers in diabetic rats.
Collapse
Affiliation(s)
- Mutiara Nugraheni
- Culinary Art Vocational Education, Faculty of Engineering, Yogyakarta State University, Yogyakarta 55281, Indonesia
| | - Sutriyati Purwanti
- Culinary Art Vocational Education, Faculty of Engineering, Yogyakarta State University, Yogyakarta 55281, Indonesia
| | - Prihastuti Ekawatiningsih
- Culinary Art Vocational Education, Faculty of Engineering, Yogyakarta State University, Yogyakarta 55281, Indonesia
| |
Collapse
|
27
|
Romero-Luna HE, Peredo-Lovillo AG, Jiménez-Fernández M. Probiotic and Potentially Probiotic Bacteria with Hypocholesterolemic Properties. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haydee Eliza Romero-Luna
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior De Xalapa, Tecnológico Nacional De México, Xalapa Enríquez, Veracruz, México
| | - Audry Gustavo Peredo-Lovillo
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior De Xalapa, Tecnológico Nacional De México, Xalapa Enríquez, Veracruz, México
| | - Maribel Jiménez-Fernández
- Departamento de Estabilidad de Alimentos, Centro De Investigación Y Desarrollo En Alimentos. Universidad Veracruzana. Dr. Castelazo Ayala S/n Industrial Ánimas, Xalapa, Veracruz, México
| |
Collapse
|
28
|
Teichmann J, Cockburn DW. In vitro Fermentation Reveals Changes in Butyrate Production Dependent on Resistant Starch Source and Microbiome Composition. Front Microbiol 2021; 12:640253. [PMID: 33995299 PMCID: PMC8117019 DOI: 10.3389/fmicb.2021.640253] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
One of the primary benefits associated with dietary resistant starch (RS) is the production of butyrate by the gut microbiome during fermentation of this fiber in the large intestine. The ability to degrade RS is a relatively rare trait among microbes in the gut, seemingly confined to only a few species, none of which are butyrate producing organisms. Thus, production of butyrate during RS fermentation requires a network of interactions between RS degraders and butyrate producers. This is further complicated by the fact that there are multiple types of RS that differ in their structural properties and impacts on the microbiome. Human dietary intervention trials with RS have shown increases in fecal butyrate levels at the population level but with individual to individual differences. This suggests that interindividual differences in microbiome composition dictate butyrate response, but the factors driving this are still unknown. Furthermore, it is unknown whether a lack of increase in butyrate production upon supplementation with one RS is indicative of a lack of butyrate production with any RS. To shed some light on these issues we have undertaken an in vitro fermentation approach in an attempt to mimic RS fermentation in the colon. Fecal samples from 10 individuals were used as the inoculum for fermentation with 10 different starch sources. Butyrate production was heterogeneous across both fecal inocula and starch source, suggesting that a given microbiome is best suited to produce butyrate only from a subset of RS sources that differs between individuals. Interestingly, neither the total amount of RS degraders nor butyrate producers seemed to be limiting for any individual, rather the membership of these sub-populations was more important. While none of the RS degrading organisms were correlated with butyrate levels, Ruminococcus bromii was strongly positively correlated with many of the most important butyrate producers in the gut, though total butyrate production was strongly influenced by factors such as pH and lactate levels. Together these results suggest that the membership of the RS degrader and butyrate producer communities rather than their abundances determine the RS sources that will increase butyrate levels for a given microbiome.
Collapse
Affiliation(s)
- June Teichmann
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Darrell W Cockburn
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
29
|
Miketinas DC, Shankar K, Maiya M, Patterson MA. Usual Dietary Intake of Resistant Starch in US Adults from NHANES 2015-2016. J Nutr 2020; 150:2738-2747. [PMID: 32840627 DOI: 10.1093/jn/nxaa232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Resistant starch (RS) confers many health benefits, mostly due to nonenzymatic human digestion and gut microbiota fermentation capacity. The usual intake of naturally occurring dietary RS in US adults is unclear. OBJECTIVES This study estimated usual daily RS intake in grams per 1000 kcal in US adults by sex, age, and ethnic group, as well as the most frequent food category contributing to RS intake using data from the NHANES 2015-2016. METHODS RS content of foods consumed was matched with Food and Nutrient Database for Dietary Studies food codes. The National Cancer Institute method was used to estimate adults' usual RS intake from 2 24-h dietary recalls. Day 1 RS contribution from food groups to overall RS intake was ranked for the total sample, across age-sex categories, and across ethnic groups. RESULTS In total, 5139 US adults (48.4% male) had a mean daily usual intake of RS of 1.9 ± 0.0 g/(1000 kcal⋅d). Males and females had a similar intake of RS [2.0 ± 0.0 g compared with 1.9 ± 0.0 g/(1000 kcal⋅d)] with no differences between sexes within the same age category. When comparing ethnic groups within each age category, the non-Hispanic white males and females had significantly lower RS intake than all other ethnic groups [range: 1.7-1.8 compared with 2.1-2.3 g RS/(1000 kcal⋅d), respectively], with no differences among the other ethnic groups. French fries and other fried white potatoes, rice, and beans, peas, and legumes were the most frequently consumed food categories contributing to RS intake in all adults. CONCLUSIONS US adults should improve the intake of natural RS food sources. Increasing RS intake will improve gastrointestinal health as a prebiotic and potentially increase insulin sensitivity with adequate consumption (e.g., ∼15 g/d).
Collapse
Affiliation(s)
- Derek C Miketinas
- Department of Nutrition and Food Sciences, Texas Woman's University Institute for Health Sciences, Houston, TX, USA
| | - Kavitha Shankar
- Department of Nutrition and Food Sciences, Texas Woman's University Institute for Health Sciences, Houston, TX, USA
| | - Madhura Maiya
- Department of Nutrition and Food Sciences, Texas Woman's University Institute for Health Sciences, Houston, TX, USA.,Office of Research and Sponsored Programs, Texas Woman's University, Houston, TX, USA
| | - Mindy A Patterson
- Department of Nutrition and Food Sciences, Texas Woman's University Institute for Health Sciences, Houston, TX, USA.,Institute for Women's Health, Texas Woman's University Institute for Health Sciences, Houston, TX, USA
| |
Collapse
|
30
|
Patterson MA, Maiya M, Stewart ML. Resistant Starch Content in Foods Commonly Consumed in the United States: A Narrative Review. J Acad Nutr Diet 2020; 120:230-244. [PMID: 32040399 DOI: 10.1016/j.jand.2019.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
Resistant starch (RS; types 1 to 5) cannot be digested in the small intestine and thus enters the colon intact, with some types capable of being fermented by gut microbes. As a fiber, types 1, 2, 3, and 5 are found naturally in foods, while types 2, 3, and 4 can be added to foods as a functional ingredient. This narrative review identifies RS content in whole foods commonly consumed in the United States. Scientific databases (n=3) were searched by two independent researchers. Ninety-four peer-reviewed articles published between 1982 and September 2018 were selected in which the RS was quantified and the food preparation method before analysis was suitable for consumption. The RS from each food item was adjusted for moisture if the RS value was provided as percent dry weight. Each food item was entered into a database according to food category, where the weighted mean±weighted standard deviation was calculated. The range of RS values and overall sample size for each food category were identified. Breads, breakfast cereals, snack foods, bananas and plantains, grains, pasta, rice, legumes, and potatoes contain RS. Foods that have been cooked then chilled have higher RS than cooked foods. Foods with higher amylose concentrations have higher RS than native varieties. The data from this database will serve as a resource for health practitioners to educate and support patients and clients interested in increasing their intake of RS-rich foods and for researchers to formulate dietary interventions with RS foods and examine associated health outcomes.
Collapse
|
31
|
Butyrate generated by gut microbiota and its therapeutic role in metabolic syndrome. Pharmacol Res 2020; 160:105174. [PMID: 32860943 DOI: 10.1016/j.phrs.2020.105174] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) and the associated incidence of cardiovascular disease and type 2 diabetes represents a significant contributor to morbidity and mortality worldwide. Butyrate, a short-chain fatty acid produced by the gut microbiome, has long been known to promote growth in farmed animals and more recently has been reported to improve body weight and composition, lipid profile, insulin sensitivity and glycaemia in animal models of MetS. In vitro studies have examined the influence of butyrate on intestinal cells, adipose tissue, skeletal muscle, hepatocytes, pancreatic islets and blood vessels, highlighting genes and pathways that may contribute to its beneficial effects. Butyrate's influences in these cells have been attributed primarily to its epigenetic effects as a histone deacetylase inhibitor, as well as its role as an agonist of free fatty acid receptors, but clear mechanistic evidence is lacking. There is also uncertainty whether results from animal studies can translate to human trials due to butyrate's poor systemic availability and rapid clearance. Hitherto, several small-scale human clinical trials have failed to show significant benefits in MetS patients. Further trials are clearly needed, including with formulations designed to improve butyrate's availability. Regardless, dietary intervention to increase the rate of butyrate production may be a beneficial addition to current treatment. This review outlines the current body of evidence on the suitability of butyrate supplementation for MetS, looking at mechanistic effects on the various components of MetS and highlighting gaps in the knowledge and roadblocks to its use in humans.
Collapse
|
32
|
Lotfollahi Z, Mello APDQ, Costa ES, Oliveira CLP, Damasceno NRT, Izar MC, Neto AMF. Green-banana biomass consumption by diabetic patients improves plasma low-density lipoprotein particle functionality. Sci Rep 2020; 10:12269. [PMID: 32704082 PMCID: PMC7378544 DOI: 10.1038/s41598-020-69288-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/09/2020] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to investigate the effects of 6-months consumption of green-banana biomass on the LDL particle functionality in subjects with type 2 diabetes. Subjects (n = 39, mean age 65 years old) of both sexes with diabetes (HbA1c ≥ 6·5%) were randomized to receive nutritional support plus green-banana biomass (40 g) (n = 21) or diet alone (n = 18) for 6-months. Non-linear optical responses of LDL solutions from these participants were studied by Z-scan technique. UV-visible spectrophotometer was used to measure the absorbance of the LDL samples. Small Angle X-ray Scattering and Dynamic Light Scattering experiments were used to look for any structural changes in LDL samples and to determine their size distribution. The Lipoprint test was used to determine the LDL sub-fractions in terms of distribution and size. Consumption of green-banana biomass, reduced total- (p = 0.010), non-HDL-cholesterol (p = 0.043), glucose (p = 0.028) and HbA1c (p = 0.0007), and also improved the protection of the LDL particle against oxidation, by the increase in carotenoids content in the particles (p = 0.007). This higher protection against modifications may decrease the risk of developing cardiovascular disease. These benefits of the green-banana biomass encourage the use of resistant starches with potential clinical applications in individuals with pre-diabetes and diabetes.
Collapse
Affiliation(s)
- Zahra Lotfollahi
- Complex Fluids Group, Instituto de Física, Universidade de São Paulo, Rua Do Matão, 1371, Butantã, São Paulo, SP, CEP: 05508-090, Brazil
| | | | - Edna S Costa
- Federal University of São Paulo, São Paulo, Brazil
| | - Cristiano L P Oliveira
- Complex Fluids Group, Instituto de Física, Universidade de São Paulo, Rua Do Matão, 1371, Butantã, São Paulo, SP, CEP: 05508-090, Brazil
| | | | | | - Antonio Martins Figueiredo Neto
- Complex Fluids Group, Instituto de Física, Universidade de São Paulo, Rua Do Matão, 1371, Butantã, São Paulo, SP, CEP: 05508-090, Brazil.
| |
Collapse
|
33
|
Bendiks ZA, Knudsen KEB, Keenan MJ, Marco ML. Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutr Res 2020; 77:12-28. [PMID: 32251948 DOI: 10.1016/j.nutres.2020.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
Resistant starch type 2 (RS2), a dietary fiber comprised solely of glucose, has been extensively studied in clinical trials and animal models for its capacity to improve metabolic and systemic health. Because the health modulatory effects of RS2 and other dietary fibers are thought to occur through modification of the gut microbiome, those studies frequently include assessments of RS2-mediated changes to intestinal microbial composition and function. In this review, we identify the conserved responses of the gut microbiome among 13 human and 35 animal RS2 intervention studies. Consistent outcomes of RS2 interventions include reductions in bacterial α-diversity; increased production of lumenal short-chain fatty acids; and enrichment of Ruminococcus bromii, Bifidobacterium adolescentis, and other gut taxa. Different taxa are usually responsive in animal models, and many RS2-mediated changes to the gut microbiome vary within and between studies. The root causes for this variation are examined with regard to methodological and analytical differences, host genetics and age, species differences (eg, human, animal), health status, intervention dose and duration, and baseline microbial composition. The significant variation found for this single dietary compound highlights the challenges in targeting the gut microbiome to improve health with dietary interventions. This knowledge on RS2 also provides opportunities to improve the design of nutrition studies targeting the gut microbiome and to ultimately identify the precise mechanisms via which dietary fiber benefits human health.
Collapse
Affiliation(s)
- Zachary A Bendiks
- Department of Food Science & Technology, University of California-Davis, Davis, CA.
| | - Knud E B Knudsen
- Department of Animal Science, Aarhus University, 8830, Tjele, Denmark.
| | - Michael J Keenan
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA.
| | - Maria L Marco
- Department of Food Science & Technology, University of California-Davis, Davis, CA.
| |
Collapse
|
34
|
Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol 2020; 61:66-71. [DOI: 10.1016/j.copbio.2019.10.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
|
35
|
Watkins BA. Nutrition Research: new direction and scope are refining the Journal. Nutr Res 2020; 71:1-7. [PMID: 31896395 DOI: 10.1016/j.nutres.2019.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022]
|
36
|
Gao C, Rao M, Huang W, Wan Q, Yan P, Long Y, Guo M, Xu Y, Xu Y. Resistant starch ameliorated insulin resistant in patients of type 2 diabetes with obesity: a systematic review and meta-analysis. Lipids Health Dis 2019; 18:205. [PMID: 31760943 PMCID: PMC6875042 DOI: 10.1186/s12944-019-1127-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistant starch (RS) is a starch that can be fermented by the microbial flora within gut lumen. Insulin resistance (IR) is a pathophysiological condition related to diabetes and obesity. RS could reduce blood glucose and ameliorate IR in animals, but its effect in human population is controversial. OBJECTIVE The authors conducted a systematic literature review to evaluate the effect of RS diet supplement on ameliorating IR in patients with T2DM and simple obesity. METHODS Databases that supplemented with RS in ameliorating IR in T2DM and simple obesity were queried for studies on or before August 15, 2018. Parameters including fasting insulin, fasting glucose, body mass index (BMI), homeostatic model assessment (HOMA) etc. were extracted from studies to systemically evaluate effects of RS. RESULTS The database search yielded 14 parallel or crossover studies that met the inclusion criteria. The results indicated that there was no significant difference in the amelioration of BMI, HOMA-%S and HOMA-%B in T2DM patients between RS and the non-RS supplementation. However, the fasting blood glucose, fasting insulin and HOMA-IR in T2DM with obesity who supplemented RS were lower than control group, and the subgroup analysis according to the dose of RS supplementation was inconsistency. There was no significant difference between RS and non-RS supplements in patients with simple obesity. CONCLUSION RS supplementation can ameliorate IR in T2DM, especially for the patients of T2DM with obesity, but not in simple obesity.
Collapse
Affiliation(s)
- Chenlin Gao
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Mingyue Rao
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qin Wan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pijun Yan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Long
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Man Guo
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Youhua Xu
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Yong Xu
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
37
|
Jiang F, Du C, Jiang W, Wang L, Du SK. The preparation, formation, fermentability, and applications of resistant starch. Int J Biol Macromol 2019; 150:1155-1161. [PMID: 31739041 DOI: 10.1016/j.ijbiomac.2019.10.124] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023]
Abstract
Resistant starch (RS) cannot be digested in the small intestine but can be fermented by microflora in the colon. To meet the demand for RS, effective methods and advanced equipment for preparing RS have emerged, but further development is needed. RS contents are affected by different prepared methods, starch source and certain nutrients such as protein, phenols, and hydrocolloids interacted with RS. As a beneficial fermentation substrate, RS modifies and stabilizes the intestinal flora to balance the intestinal environment and improve intestinal tract health and function. RS is also a kind of ingredient with potential physiological function, even better than that dietary fiber, but also in terms of providing various health benefits. RS has good food-processing characteristics as well and can thus be widely used in the food industry.
Collapse
Affiliation(s)
- Fan Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunwei Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenqian Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
38
|
Eshghi F, Bakhshimoghaddam F, Rasmi Y, Alizadeh M. Effects of Resistant Starch Supplementation on Glucose Metabolism, Lipid Profile, Lipid Peroxidation Marker, and Oxidative Stress in Overweight and Obese Adults: Randomized, Double-Blind, Crossover Trial. Clin Nutr Res 2019; 8:318-328. [PMID: 31720257 PMCID: PMC6826060 DOI: 10.7762/cnr.2019.8.4.318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
Obesity is a substantial public health challenge across the globe. The use of resistant starch has been proposed as a probable management strategy for complications of obesity. We investigated the effects of resistant starch intake on lipid profiles, glucose metabolism, antioxidant status, lipid peroxidation marker, blood pressure, and anthropometric variables in subjects with overweight or obesity. In this 12-week, randomized, double-blind, placebo-controlled, 2 × 2 crossover trial, 21 Participants (mean age, 35 ± 7.0 years; body mass index, 32.4 ± 3.5 kg/m2) were given 13.5 g Hi-Maize 260 or placebo daily for 4 weeks, separated by a 4-week washout period. Changes in total antioxidant status (p = 0.04) and serum concentrations of insulin in 52.4% participants with insulin levels above 16 µIU/mL at the baseline (p = 0.04) were significantly different in the three phases. In addition, the mean of serum high-density lipoprotein cholesterol after the intervention was significantly higher than after baseline value (p = 0.04). We found no significant differences in serum concentrations of total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, fasting blood sugar, insulin, homeostatic model assessment of insulin resistance, quantitative insulin sensitivity check index, superoxide dismutase activity, malondialdehyde, blood pressure, and anthropometric variables in the three phases of baseline, after intervention with resistant starch and after placebo. Resistant starch consumption improved serum insulin concentrations, lipid profiles, and antioxidant status in subjects with overweight or obesity.
Collapse
Affiliation(s)
- Fereshteh Eshghi
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Farnush Bakhshimoghaddam
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Alizadeh
- Department of Nutrition, Food and Beverages Safety Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
39
|
Halajzadeh J, Milajerdi A, Reiner Ž, Amirani E, Kolahdooz F, Barekat M, Mirzaei H, Mirhashemi SM, Asemi Z. Effects of resistant starch on glycemic control, serum lipoproteins and systemic inflammation in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled clinical trials. Crit Rev Food Sci Nutr 2019; 60:3172-3184. [PMID: 31661295 DOI: 10.1080/10408398.2019.1680950] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this systematic review and meta-analysis was to evaluate the effects of resistant starch (RS) on glycemic status, serum lipoproteins and inflammatory markers in patients with metabolic syndrome (MetS) and related disorders. Two independent authors systematically searched online database including EMBASE, Scopus, PubMed, Cochrane Library, and Web of Science from inception until 30 April 2019. Cochrane Collaboration risk of bias tool was applied to assess the methodological quality of included trials. The heterogeneity among the included studies was assessed using Cochrane's Q test and I-square (I2) statistic. Data were pooled using a random-effects model and weighted mean difference (WMD) was considered as the overall effect size. Nineteen trials were included in this meta-analysis. Administration of RS resulted in significant reduction in fasting plasma glucose (FPG) (14 studies) (WMD: -4.28; 95% CI: -7.01, -1.55), insulin (12 studies) (WMD: -1.95; 95% CI: -3.22, -0.68), and HbA1C (8 studies) (WMD: -0.60; 95% CI: -0.95, -0.24). When pooling data from 13 studies, a significant reduction in total cholesterol levels (WMD: -8.19; 95% CI: -15.38, -1.00) and LDL-cholesterol (WMD: -8.57; 95% CI: -13.48, -3.66) were found as well. Finally, RS administration was associated with a significant decrease in tumor necrosis factor alpha (TNF-α) (WMD: -2.02; 95% CI: -3.14, -0.90). This meta-analysis showed beneficial effects of RS on improving FPG, insulin, HbA1c, total cholesterol, LDL-cholesterol and TNF-α levels in patients with MetS and related disorders, but it did not affect HOMA-IR, triglycerides, HDL-cholesterol, CRP and IL-6 levels.
Collapse
Affiliation(s)
- Jamal Halajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maraghe University of Medical Science, Maraghe, Iran
| | - Alireza Milajerdi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Maryam Barekat
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
García-Vázquez C, Ble-Castillo JL, Arias-Córdova Y, Córdova-Uscanga R, Tovilla-Zárate CA, Juárez-Rojop IE, Olvera-Hernández V, Alvarez-Villagomez CS, Nolasco-Coleman AM, Díaz-Zagoya JC. Effects of Resistant Starch Ingestion on Postprandial Lipemia and Subjective Appetite in Overweight or Obese Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203827. [PMID: 31614418 PMCID: PMC6843443 DOI: 10.3390/ijerph16203827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
Reports surrounding the role of resistant starch (RS) on postprandial lipemia in humans are scarce. The aim of the present study is to examine the effects of resistant starch on the postprandial lipemic response, subjective measures of appetite, and energy intake in overweight and obese subjects. In a randomized, single-blind, crossover study, 14 overweight/obese participants ate a high-fat breakfast (679 kcal, 58% from fat) and a supplement with native banana starch (NBS), high-amylose maize starch (HMS), or digestible maize starch (DMS) on three separate occasions. All supplements provided were matched by the available carbohydrate content, and the RS quantity in NBS and HMS supplements was identical. Appetite was estimated using visual analogue scale (VAS) and an ad libitum test meal. Postprandial glycemia, triglycerides, cholesterol, high-density lipoprotein (HDL) cholesterol, and insulin excursions did not differ between treatments. Subjective appetite measures of satiety were significantly increased after HMS; however, no effects on energy intake were observed during the ad libitum test meal. These findings suggest that a single acute dose of RS cannot be expected to improve postprandial lipemia in subjects with overweight or obesity on a high-fat meal. However, the potential benefits of long-term supplementation should not be ruled out based on these results.
Collapse
Affiliation(s)
- Carlos García-Vázquez
- Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco 86150, Mexico.
| | - Jorge L Ble-Castillo
- Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco 86150, Mexico.
| | - Yolanda Arias-Córdova
- Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco 86150, Mexico.
| | - Rubén Córdova-Uscanga
- Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco 86150, Mexico.
| | - Carlos A Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco 86650, Mexico.
| | - Isela E Juárez-Rojop
- Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco 86150, Mexico.
| | - Viridiana Olvera-Hernández
- Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco 86150, Mexico.
| | - Carina S Alvarez-Villagomez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Tabasco 86150, Mexico.
| | - Ana M Nolasco-Coleman
- Unidad de Medicina Familiar No. 39, Instituto Mexicano del Seguro Social, Villahermosa, Tabasco 86070, Mexico.
| | - Juan C Díaz-Zagoya
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Cd. de México 04510, Mexico.
| |
Collapse
|
41
|
Roman L, Martinez MM. Structural Basis of Resistant Starch (RS) in Bread: Natural and Commercial Alternatives. Foods 2019; 8:E267. [PMID: 31331021 PMCID: PMC6678428 DOI: 10.3390/foods8070267] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Bread is categorized as having a high amount of rapidly digested starch that may result in a rapid increase in postprandial blood glucose and, therefore, poor health outcomes. This is mostly the result of the complete gelatinization that starch undergoes during baking. The inclusion of resistant starch (RS) ingredients in bread formulas is gaining prominence, especially with the current positive health outcomes attributed to RS and the apparition of novel RS ingredients in the market. However, many RS ingredients contain RS structures that do not resist baking and, therefore, are not suitable to result in a meaningful RS increase in the final product. In this review, the structural factors for the resistance to digestion and hydrothermal processing of RS ingredients are reviewed, and the definition of each RS subtype is expanded to account for novel non-digestible structures recently reported. Moreover, the current in vitro digestion methods used to measure RS content are critically discussed with a view of highlighting the importance of having a harmonized method to determine the optimum RS type and inclusion levels for bread-making.
Collapse
Affiliation(s)
- Laura Roman
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mario M Martinez
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
42
|
Li T, Teng H, An F, Huang Q, Chen L, Song H. The beneficial effects of purple yam (Dioscorea alata L.) resistant starch on hyperlipidemia in high-fat-fed hamsters. Food Funct 2019; 10:2642-2650. [DOI: 10.1039/c8fo02502a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we investigated the interventional effect of resistant starch (RS) obtained from purple yam (Dioscorea alata L.) on regulating lipid metabolism and gut microbiota in hyperlipidemic hamsters.
Collapse
Affiliation(s)
- Tao Li
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
- College of Food Science and Nutritional Engineering
| | - Hui Teng
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Fengping An
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Qun Huang
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Lei Chen
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Hongbo Song
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch
| |
Collapse
|