1
|
Wu MC, Stoessl AJ. The Ethics of Placebo. Anesthesiol Clin 2024; 42:631-645. [PMID: 39443035 DOI: 10.1016/j.anclin.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This article reviews the ethical implications related to the use of placebos in clinical practice and clinical trials. We discuss evidence for placebo effects, the role of placebo in research and clinical practice, and related ethical issues. It also provides an overview of some of the new findings related to research involving placebos and the possible associated ethical challenges.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Department of Neurology, National Taiwan University Hospital, No.7, Chung Shan S. Road, Taipei City 100225, Taiwan; Department of Geriatrics and Gerontology, National Taiwan University Hospital, No.1, Changde Street, Taipei City 100229, Taiwan; Pacific Parkinson's Research Centre and Djavad Mowafaghian Centre for Brain Health and Division of Neurology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada.
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and Djavad Mowafaghian Centre for Brain Health and Division of Neurology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada.
| |
Collapse
|
2
|
Franciosa F, Acuña MA, Nevian NE, Nevian T. A cellular mechanism contributing to pain-induced analgesia. Pain 2024; 165:2517-2529. [PMID: 38968393 PMCID: PMC11474934 DOI: 10.1097/j.pain.0000000000003315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT The anterior cingulate cortex (ACC) plays a crucial role in the perception of pain. It is consistently activated by noxious stimuli and its hyperactivity in chronic pain indicates plasticity in the local neuronal network. However, the way persistent pain effects and modifies different neuronal cell types in the ACC and how this contributes to sensory sensitization is not completely understood. This study confirms the existence of 2 primary subtypes of pyramidal neurons in layer 5 of the rostral, agranular ACC, which we could classify as intratelencephalic (IT) and cortico-subcortical (SC) projecting neurons, similar to other cortical brain areas. Through retrograde labeling, whole-cell patch-clamp recording, and morphological analysis, we thoroughly characterized their different electrophysiological and morphological properties. When examining the effects of peripheral inflammatory pain on these neuronal subtypes, we observed time-dependent plastic changes in excitability. During the acute phase, both subtypes exhibited reduced excitability, which normalized to pre-inflammatory levels after day 7. Daily conditioning with nociceptive stimuli during this period induced an increase in excitability specifically in SC neurons, which was correlated with a decrease in mechanical sensitization. Subsequent inhibition of the activity of SC neurons projecting to the periaqueductal gray with in vivo chemogenetics, resulted in reinstatement of the hypersensitivity. Accordingly, it was sufficient to enhance the excitability of these neurons chemogenetically in the inflammatory pain condition to induce hypoalgesia. These findings suggest a cell type-specific effect on the descending control of nociception and a cellular mechanism for pain-induced analgesia. Furthermore, increased excitability in this neuronal population is hypoalgesic rather than hyperalgesic.
Collapse
Affiliation(s)
| | - Mario A. Acuña
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Thomas Nevian
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Stamp GE, Wadley AL, Iacovides S. Could Relationship-Based Learnt Beliefs and Expectations Contribute to Physiological Vulnerability of Chronic Pain? Making a Case to Consider Attachment in Pain Research. THE JOURNAL OF PAIN 2024; 25:104619. [PMID: 38945383 DOI: 10.1016/j.jpain.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/10/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Pain is an interpersonal and inherently social experience. Pain perception and administration of medical treatment all occur in a particular environmental and social context. Early environmental influences and early learning experiences and interactions condition the body's response to different threats (like pain), ultimately shaping the underlying neurophysiology. These early interactions and experiences also determine what situations are perceived as threatening, as well as our belief in our own ability to self-manage, and our belief in others to offer support, during perceived threats. These beliefs intrinsically drive the combination of behaviors that emerge in response to perceived threats, including pain. Such behaviors can be categorized into attachment styles. In this interdisciplinary review, we synthesize and summarize evidence from the neurobiological, psychobiological, psychosocial, and psychobehavioral fields, to describe how these beliefs are embedded in the brain's prediction models to generate a series of expectations/perceptions around the level of safety/threat in different contexts. As such, these beliefs may predict how one experiences and responds to pain, with potentially significant implications for the development and management of chronic pain. Little attention has been directed to the effect of adult attachment style on pain in research studies and in the clinical setting. Using interdisciplinary evidence, we argue why we think this interaction merits further consideration and research. PERSPECTIVE: This review explores the influence of attachment styles on pain perception, suggesting a link between social connections and chronic pain development. It aligns with recent calls to emphasize the social context in pain research and advocates for increased focus on adult attachment styles in research and clinical practice.
Collapse
Affiliation(s)
- Gabriella Elisabeth Stamp
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Antonia Louise Wadley
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stella Iacovides
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Habermann M, Strube A, Büchel C. How control modulates pain. Trends Cogn Sci 2024:S1364-6613(24)00257-2. [PMID: 39462693 DOI: 10.1016/j.tics.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Pain, an indicator of potential tissue damage, ideally falls under individual control. Although previous work shows a trend towards reduced pain in contexts where pain is controllable, there is a large variability across studies that is probably related to different aspects of control. We therefore outline a taxonomy of different aspects of control relevant to pain, sketch how control over pain can be integrated into a Bayesian pain model, and suggest changes in expectations and their precision as potential mechanisms. We also highlight confounding cognitive factors, particularly predictability, that emphasize the necessity for careful experimental designs. Finally, we describe the neurobiological underpinnings of how control affects pain processing in studies using different types of control, and highlight the roles of the anterior insula, middle frontal gyrus (MFG), and anterior cingulate cortex (ACC).
Collapse
Affiliation(s)
- Marie Habermann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Present Address: Center for Depression, Anxiety, and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Kong J. Brain and body: Implanting a placebo in the brain to alleviate pain. Curr Biol 2024; 34:R904-R906. [PMID: 39378850 DOI: 10.1016/j.cub.2024.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Placebo analgesia is well documented in human populations but remains relatively under-researched in rodent models. Now researchers have engineered robust circuit-based placebo analgesia in mice and identified pathways mediating the effect of expectations, offering new insights into harnessing placebo for pain management.
Collapse
Affiliation(s)
- Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
6
|
Ashar YK, Sun M, Knight K, Flood TF, Anderson Z, Kaptchuk TJ, Wager TD. Open-Label Placebo Injection for Chronic Back Pain With Functional Neuroimaging: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2432427. [PMID: 39259542 PMCID: PMC11391328 DOI: 10.1001/jamanetworkopen.2024.32427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Importance Chronic back pain (CBP) is a leading cause of disability. Placebo treatments often provide as much pain relief as bona fide treatments, such as steroid injections. Open-label (honestly prescribed) placebos (OLPs) may relieve CBP without deception, but OLP mechanisms remain poorly understood. Objective To investigate the long-term efficacy and neurobiological mechanisms of OLP for CBP. Design, Setting, and Participants A randomized clinical trial of CBP with longitudinal functional magnetic resonance imaging (MRI) comparing OLP with usual care, with 1-year follow-up, was conducted in a university research setting and a community orthopedic clinic. Participants were individuals aged 21 to 70 years with CBP. The trial was conducted from November 2017 to August 2018, with 1-year follow-up completed by November 2019. Data analysis was performed from April 2020 to May 2024. The primary analysis was conducted on an intention-to-treat sample. Interventions Participants randomized to OLP received a 1-time subcutaneous lumbar saline injection presented as placebo accompanied by information about the power of placebo to relieve pain, alongside their ongoing care. Usual care participants continued their ongoing care. Main Outcomes and Measures The primary outcome was pain intensity (0-10, with 0 indicating no pain and 10 the most intense) at 1 month posttreatment. Secondary outcomes included pain interference, depression, anxiety, anger, and sleep quality. Functional MRI was performed before and after treatment during evoked and spontaneous back pain. Results A total of 101 adults (52 [51.4%] females; mean [SD] age, 40.4 [15.4] years) with moderate severity CBP (mean [SD], 4.10 [1.25] intensity; duration, 9.7 [8.5] years) were enrolled. Compared with usual care, OLP reduced CBP intensity posttreatment (relative reduction, 0.61; Hedges g = 0.45; 95% CI, -0.89 to 0.04; P = .02). Through 1-year follow-up, pain relief did not persist, although significant benefits were observed for depression, anger, anxiety, and sleep disruption (Hedges g = 0.3-0.5; all P < .03). Brain responses to evoked back pain for OLP vs usual care increased in rostral anterior cingulate and ventromedial prefrontal cortex and decreased in somatomotor cortices and thalamus. During spontaneous pain, functional connectivity analyses identified OLP vs usual care increases in ventromedial prefrontal cortex connectivity to the rostral ventral medulla, a pain-modulatory brainstem nucleus. No adverse effects of treatment were reported by participants. Conclusions and Relevance In this randomized clinical trial of OLP vs usual care, a single nondeceptive placebo injection reduced CBP intensity for 1 month posttreatment and provided benefits lasting for at least 1 year posttreatment. Brain mechanisms of OLP in a clinical population overlap with those of deceptive placebos in healthy volunteers, including engagement of prefrontal-brainstem pain modulatory pathways. Trial Registration ClinicalTrials.gov Identifier: NCT03294148.
Collapse
Affiliation(s)
- Yoni K Ashar
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora
| | - Michael Sun
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Karen Knight
- Panorama Orthopedics and Spine Center, Golden, Colorado
| | - Thomas F Flood
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Zachary Anderson
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Ted J Kaptchuk
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
7
|
Chen C, Niehaus JK, Dinc F, Huang KL, Barnette AL, Tassou A, Shuster SA, Wang L, Lemire A, Menon V, Ritola K, Hantman AW, Zeng H, Schnitzer MJ, Scherrer G. Neural circuit basis of placebo pain relief. Nature 2024; 632:1092-1100. [PMID: 39048016 PMCID: PMC11358037 DOI: 10.1038/s41586-024-07816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.
Collapse
Affiliation(s)
- Chong Chen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fatih Dinc
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
| | - Karen L Huang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander L Barnette
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Andrew Shuster
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrew Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Kimberly Ritola
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W Hantman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mark J Schnitzer
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
van der Meulen M, Rischer KM, González Roldán AM, Terrasa JL, Montoya P, Anton F. Age-related differences in functional connectivity associated with pain modulation. Neurobiol Aging 2024; 140:1-11. [PMID: 38691941 DOI: 10.1016/j.neurobiolaging.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Growing evidence suggests that aging is associated with impaired endogenous pain modulation, and that this likely underlies the increased transition from acute to chronic pain in older individuals. Resting-state functional connectivity (rsFC) offers a valuable tool to examine the neural mechanisms behind these age-related changes in pain modulation. RsFC studies generally observe decreased within-network connectivity due to aging, but its relevance for pain modulation remains unknown. We compared rsFC within a set of brain regions involved in pain modulation between young and older adults and explored the relationship with the efficacy of distraction from pain. This revealed several age-related increases and decreases in connectivity strength. Importantly, we found a significant association between lower pain relief and decreased strength of three connections in older adults, namely between the periaqueductal gray and right insula, between the anterior cingulate cortex (ACC) and right insula, and between the ACC and left amygdala. These findings suggest that the functional integrity of the pain control system is critical for effective pain modulation, and that its function is compromised by aging.
Collapse
Affiliation(s)
- Marian van der Meulen
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg.
| | - Katharina M Rischer
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| | - Ana María González Roldán
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Juan Lorenzo Terrasa
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Pedro Montoya
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Fernand Anton
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| |
Collapse
|
9
|
Schenk LA, Fadai T, Büchel C. How side effects can improve treatment efficacy: a randomized trial. Brain 2024; 147:2643-2651. [PMID: 38701224 DOI: 10.1093/brain/awae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
While treatment side effects may adversely impact patients, they could also potentially function as indicators for effective treatment. In this study, we investigated whether and how side effects can trigger positive treatment expectations and enhance treatment outcomes. In this pre-registered trial (DRKS00026648), 77 healthy participants were made to believe that they will receive fentanyl nasal sprays before receiving thermal pain in a controlled experimental setting. However, nasal sprays did not contain fentanyl, rather they either contained capsaicin to induce a side effect (mild burning sensation) or saline (inert). After the first session, participants were randomized to two groups and underwent functional MRI. One group continued to believe that the nasal sprays could contain fentanyl while the other group was explicitly informed that no fentanyl was included. This allowed for the independent manipulation of the side effects and the expectation of pain relief. Our results revealed that nasal sprays with a side effect lead to lower pain than inert nasal sprays without side effects. The influence of side effects on pain was dependent on individual beliefs about how side effects are related to treatment outcome, as well as on expectations about received treatment. Functional MRI data indicated an involvement of the descending pain modulatory system including the anterior cingulate cortex and the periaqueductal gray during pain after experiencing a nasal spray with side effects. In summary, our data show that mild side effects can serve as a signal for effective treatment thereby influencing treatment expectations and outcomes, which is mediated by the descending pain modulatory system. Using these mechanisms in clinical practice could provide an efficient way to optimize treatment outcome. In addition, our results indicate an important confound in clinical trials, where a treatment (with potential side effects) is compared to placebo.
Collapse
Affiliation(s)
- Lieven A Schenk
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tahmine Fadai
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
10
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Closed-Loop Infraslow Brain-Computer Interface can Modulate Cortical Activity and Connectivity in Individuals With Chronic Painful Knee Osteoarthritis: A Secondary Analysis of a Randomized Placebo-Controlled Clinical Trial. Clin EEG Neurosci 2024:15500594241264892. [PMID: 39056313 DOI: 10.1177/15500594241264892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Introduction. Chronic pain is a percept due to an imbalance in the activity between sensory-discriminative, motivational-affective, and descending pain-inhibitory brain regions. Evidence suggests that electroencephalography (EEG) infraslow fluctuation neurofeedback (ISF-NF) training can improve clinical outcomes. It is unknown whether such training can induce EEG activity and functional connectivity (FC) changes. A secondary data analysis of a feasibility clinical trial was conducted to determine whether EEG ISF-NF training can significantly alter EEG activity and FC between the targeted cortical regions in people with chronic painful knee osteoarthritis (OA). Methods. A parallel, two-arm, double-blind, randomized, sham-controlled clinical trial was conducted. People with chronic knee pain associated with OA were randomized to receive sham NF training or source-localized ratio ISF-NF training protocol to down-train ISF bands at the somatosensory (SSC), dorsal anterior cingulate (dACC), and uptrain pregenual anterior cingulate cortices (pgACC). Resting state EEG was recorded at baseline and immediate post-training. Results. The source localization mapping demonstrated a reduction (P = .04) in the ISF band activity at the left dorsolateral prefrontal cortex (LdlPFC) in the active NF group. Region of interest analysis yielded significant differences for ISF (P = .008), slow (P = .007), beta (P = .043), and gamma (P = .012) band activities at LdlPFC, dACC, and bilateral SSC. The FC between pgACC and left SSC in the delta band was negatively correlated with pain bothersomeness in the ISF-NF group. Conclusion. The EEG ISF-NF training can modulate EEG activity and connectivity in individuals with chronic painful knee osteoarthritis, and the observed EEG changes correlate with clinical pain measures.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Zhang G, Wang L, Wang J, Zeng J, Yu C. RNA sequencing of the thalamus and rostral ventral medulla in rats with chronic orofacial pain. J Neural Transm (Vienna) 2024; 131:739-753. [PMID: 38630191 DOI: 10.1007/s00702-024-02780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/11/2024] [Indexed: 06/27/2024]
Abstract
Diagnosing and treating chronic orofacial pain is challenging due to its complex structure and limited understanding of its causes and mechanisms. In this study, we used RNA sequencing to identify differentially expressed genes (DEGs) in the rostral ventral medulla (RVM) and thalamus of rats with persistent orofacial pain, aiming to explore its development. DEGs were functionally analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results showed a significant association between immune response and pain in this model. Key DEG mRNA expression trends were further validated using real-time quantitative polymerase chain reaction (RT-PCR), confirming their crucial roles in chronic orofacial pain. After injecting complete Freund's adjuvant (CFA) into the bilateral temporomandibular joint cavity for 14 days, we observed 293 upregulated genes and 14 downregulated genes in the RVM, and 1086 upregulated genes and 37 downregulated genes in the thalamus. Furthermore, we identified 27 common DEGs with altered expression (upregulation) in both the thalamus and RVM, including Cd74, C3, Cxcl13, C1qb, Itgal, Fcgr2b, C5ar1, and Tlr2, which are pain-associated genes. Protein-protein interaction (PPI) analysis using Cytoscape revealed the involvement of Toll-like receptors, complement system, differentiation clusters, and antigen presentation-related proteins in the interaction between the thalamus and RVM. The results of this study show that the immune system seems to have a more significant influence on chronic orofacial pain. There may be direct or indirect influence between the thalamus and RVM, which may participate in the regulation of chronic orofacial pain.
Collapse
Affiliation(s)
- Guangyan Zhang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Wang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jing Wang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
12
|
Kotikalapudi R, Kincses B, Zunhammer M, Schlitt F, Asan L, Schmidt-Wilcke T, Kincses ZT, Bingel U, Spisak T. Brain morphology predicts individual sensitivity to pain: a multicenter machine learning approach. Pain 2023; 164:2516-2527. [PMID: 37318027 PMCID: PMC10578427 DOI: 10.1097/j.pain.0000000000002958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/18/2023] [Accepted: 03/23/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT Sensitivity to pain shows a remarkable interindividual variance that has been reported to both forecast and accompany various clinical pain conditions. Although pain thresholds have been reported to be associated to brain morphology, it is still unclear how well these findings replicate in independent data and whether they are powerful enough to provide reliable pain sensitivity predictions on the individual level. In this study, we constructed a predictive model of pain sensitivity (as measured with pain thresholds) using structural magnetic resonance imaging-based cortical thickness data from a multicentre data set (3 centres and 131 healthy participants). Cross-validated estimates revealed a statistically significant and clinically relevant predictive performance (Pearson r = 0.36, P < 0.0002, R2 = 0.13). The predictions were found to be specific to physical pain thresholds and not biased towards potential confounding effects (eg, anxiety, stress, depression, centre effects, and pain self-evaluation). Analysis of model coefficients suggests that the most robust cortical thickness predictors of pain sensitivity are the right rostral anterior cingulate gyrus, left parahippocampal gyrus, and left temporal pole. Cortical thickness in these regions was negatively correlated to pain sensitivity. Our results can be considered as a proof-of-concept for the capacity of brain morphology to predict pain sensitivity, paving the way towards future multimodal brain-based biomarkers of pain.
Collapse
Affiliation(s)
- Raviteja Kotikalapudi
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
| | - Balint Kincses
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen, Germany
| | - Matthias Zunhammer
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen, Germany
| | - Frederik Schlitt
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen, Germany
| | - Livia Asan
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen, Germany
| | - Tobias Schmidt-Wilcke
- Institute for Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
- Neurocenter, District Hospital Mainkofen, Deggendorf, Germany
| | - Zsigmond T. Kincses
- Departments of Neurology and
- Radiology, University of Szeged, Szeged, Hungary
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen, Germany
| | - Tamas Spisak
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
| |
Collapse
|
13
|
Liu T, Yu CP. How Do Expectations Modulate Pain? A Motivational Perspective. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1508-1519. [PMID: 37369088 DOI: 10.1177/17456916231178701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Expectations can profoundly modulate pain experience, during which the periaqueductal gray (PAG) plays a pivotal role. In this article, we focus on motivationally evoked neural activations in cortical and brainstem regions both before and during stimulus administration, as has been demonstrated by experimental studies on pain-modulatory effects of expectations, in the hope of unraveling how the PAG is involved in descending and ascending nociceptive processes. This motivational perspective on expectancy effects on the perception of noxious stimuli sheds new light on psychological and neuronal substrates of pain and its modulation, thus having important research and clinical implications.
Collapse
Affiliation(s)
- Tao Liu
- The Second Teaching Hospital, University of Jilin
| | - Cui-Ping Yu
- Department of Basic Medicine, Changchun Medical College
| |
Collapse
|
14
|
Hector MS, Cheng JC, Hemington KS, Rogachov A, Kim JA, Osborne NR, Bosma RL, Fauchon C, Ayoub LJ, Inman R, Oh J, Anastakis DJ, Davis KD. Resilience is associated with cortical gray matter of the antinociceptive pathway in people with chronic pain. Biol Psychol 2023; 183:108658. [PMID: 37567549 DOI: 10.1016/j.biopsycho.2023.108658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Resilience is an important personal characteristic that influences health and recovery. Previous studies of chronic pain suggest that highly resilient people may be more effective at modulating their pain. Since brain gray matter in the antinociceptive pathway has also been shown to be abnormal in people with chronic pain, we examined whether resilience is related to gray matter in regions of interest (ROIs) of the antinociceptive pathway (rostral and subgenual anterior cingulate cortex (rACC, sgACC), anterior insula (aINS), dorsolateral prefrontal cortex (dlPFC)) normally and in people who are experiencing chronic pain. We extracted gray matter volume (GMV) and cortical thickness (CT) from 3T MRIs of 88 people with chronic pain (half males/females) and 86 healthy controls (HCs), who completed The Resilience Scale and Brief Pain Inventory. We found that resilience scores were significantly lower in people with chronic pain compared to HCs, whereas ROI GMV and CT were not different between groups. Resilience negatively correlated with average pain scores and positively correlated with GMV in the bilateral rACC, sgACC, and left dlPFC of people with chronic pain. Mediation analyses revealed that GMV in the right rACC and left sgACC partially co-mediated the relationship between resilience and average pain in people with chronic pain. The resilience-pain and some resilience-GMV relationships were sex-dependent. These findings suggest that the antinociceptive pathway may play a role in the impact of resilience on one's ability to modulate chronic pain. A better understanding of the brain-resilience relationship may help advance evidence-based approaches to pain management.
Collapse
Affiliation(s)
- Melinda S Hector
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Lizbeth J Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Robert Inman
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, Toronto, ON, Canada
| | - Dimitri J Anastakis
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Erlenwein J, Kästner A, Gram M, Falla D, Drewes AM, Przemeck M, Petzke F. Pain chronification impacts whole-brain functional connectivity in women with hip osteoarthritis during pain stimulation. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:1073-1085. [PMID: 37158606 DOI: 10.1093/pm/pnad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Previous neuroimaging studies have shown that patients with chronic pain display altered functional connectivity across distributed brain areas involved in the processing of nociceptive stimuli. The aim of the present study was to investigate how pain chronification modulates whole-brain functional connectivity during evoked clinical and tonic pain. METHODS Patients with osteoarthritis of the hip (n = 87) were classified into 3 stages of pain chronification (Grades I-III, Mainz Pain Staging System). Electroencephalograms were recorded during 3 conditions: baseline, evoked clinical hip pain, and tonic cold pain (cold pressor test). The effects of both factors (recording condition and pain chronification stage) on the phase-lag index, as a measure of neuronal connectivity, were examined for different frequency bands. RESULTS In women, we found increasing functional connectivity in the low-frequency range (delta, 0.5-4 Hz) across pain chronification stages during evoked clinical hip pain and tonic cold pain stimulation. In men, elevated functional connectivity in the delta frequency range was observed in only the tonic cold pain condition. CONCLUSIONS Across pain chronification stages, we found that widespread cortical networks increase their synchronization of delta oscillations in response to clinical and experimental nociceptive stimuli. In view of previous studies relating delta oscillations to salience detection and other basic motivational processes, our results hint at these mechanisms playing an important role in pain chronification, mainly in women.
Collapse
Affiliation(s)
- Joachim Erlenwein
- Department of Anesthesiology, Pain Clinic, University Medical Centre, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Anne Kästner
- Department of Anesthesiology, Pain Clinic, University Medical Centre, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Mikkel Gram
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Clinical Institute, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Michael Przemeck
- Department of Anesthesiology and Intensive Care, Annastift, 30625 Hannover, Germany
| | - Frank Petzke
- Department of Anesthesiology, Pain Clinic, University Medical Centre, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
16
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Crawford LS, Meylakh N, Macey PM, Macefield VG, Keay KA, Henderson LA. Stimulus-independent and stimulus-dependent neural networks underpin placebo analgesia responsiveness in humans. Commun Biol 2023; 6:569. [PMID: 37244947 DOI: 10.1038/s42003-023-04951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023] Open
Abstract
The neural circuits that regulate placebo analgesia responsivity are unknown, although engagement of brainstem pain modulatory regions is likely critical. Here we show in 47 participants that differences are present in neural circuit connectivity's in placebo responders versus non-responders. We distinguish stimulus-independent and stimulus-dependent neural networks that display altered connections between the hypothalamus, anterior cingulate cortex and midbrain periaqueductal gray matter. This dual regulatory system underpins an individual's ability to mount placebo analgesia.
Collapse
Affiliation(s)
- Lewis S Crawford
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, VIC, 3800, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
18
|
De Ridder D, Friston K, Sedley W, Vanneste S. A parahippocampal-sensory Bayesian vicious circle generates pain or tinnitus: a source-localized EEG study. Brain Commun 2023; 5:fcad132. [PMID: 37223127 PMCID: PMC10202557 DOI: 10.1093/braincomms/fcad132] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/14/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
Pain and tinnitus share common pathophysiological mechanisms, clinical features, and treatment approaches. A source-localized resting-state EEG study was conducted in 150 participants: 50 healthy controls, 50 pain, and 50 tinnitus patients. Resting-state activity as well as functional and effective connectivity was computed in source space. Pain and tinnitus were characterized by increased theta activity in the pregenual anterior cingulate cortex, extending to the lateral prefrontal cortex and medial anterior temporal lobe. Gamma-band activity was increased in both auditory and somatosensory cortex, irrespective of the pathology, and extended to the dorsal anterior cingulate cortex and parahippocampus. Functional and effective connectivity were largely similar in pain and tinnitus, except for a parahippocampal-sensory loop that distinguished pain from tinnitus. In tinnitus, the effective connectivity between parahippocampus and auditory cortex is bidirectional, whereas the effective connectivity between parahippocampus and somatosensory cortex is unidirectional. In pain, the parahippocampal-somatosensory cortex is bidirectional, but parahippocampal auditory cortex unidirectional. These modality-specific loops exhibited theta-gamma nesting. Applying a Bayesian brain model of brain functioning, these findings suggest that the phenomenological difference between auditory and somatosensory phantom percepts result from a vicious circle of belief updating in the context of missing sensory information. This finding may further our understanding of multisensory integration and speaks to a universal treatment for pain and tinnitus-by selectively disrupting parahippocampal-somatosensory and parahippocampal-auditory theta-gamma activity and connectivity.
Collapse
Affiliation(s)
- Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Sven Vanneste
- Correspondence to: Sven Vanneste Lab for Clinical & Integrative Neuroscience Global Brain Health Institute and Institute of Neuroscience Trinity College Dublin, College Green 2, Dublin D02 PN40, Ireland E-mail:
| |
Collapse
|
19
|
Büchel C. The role of expectations, control and reward in the development of pain persistence based on a unified model. eLife 2023; 12:81795. [PMID: 36972108 PMCID: PMC10042542 DOI: 10.7554/elife.81795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic, or persistent pain affects more than 10% of adults in the general population. This makes it one of the major physical and mental health care problems. Although pain is an important acute warning signal that allows the organism to take action before tissue damage occurs, it can become persistent and its role as a warning signal thereby inadequate. Although per definition, pain can only be labeled as persistent after 3 months, the trajectory from acute to persistent pain is likely to be determined very early and might even start at the time of injury. The biopsychosocial model has revolutionized our understanding of chronic pain and paved the way for psychological treatments for persistent pain, which routinely outperform other forms of treatment. This suggests that psychological processes could also be important in shaping the very early trajectory from acute to persistent pain and that targeting these processes could prevent the development of persistent pain. In this review, we develop an integrative model and suggest novel interventions during early pain trajectories, based on predictions from this model.
Collapse
Affiliation(s)
- Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Tu Y, Zhang L, Kong J. Placebo and nocebo effects: from observation to harnessing and clinical application. Transl Psychiatry 2022; 12:524. [PMID: 36564374 PMCID: PMC9789123 DOI: 10.1038/s41398-022-02293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Placebo and nocebo effects are salubrious benefits and negative outcomes attributable to non-specific symbolic components. Leveraging advanced experimental and analytical approaches, recent studies have elucidated complicated neural mechanisms that may serve as a solid basis for harnessing the powerful self-healing and self-harming capacities and applying these findings to improve medical practice and minimize the unintended exacerbation of symptoms in medical practice. We review advances in employing psychosocial, pharmacological, and neuromodulation approaches to modulate/harness placebo and nocebo effects. While these approaches show promising potential, translating these research findings into clinical settings still requires careful methodological, technical, and ethical considerations.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Libo Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Kong
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| |
Collapse
|
21
|
Targeting neural correlates of placebo effects. COGNITIVE, AFFECTIVE, & BEHAVIORAL NEUROSCIENCE 2022; 23:217-236. [PMID: 36517733 DOI: 10.3758/s13415-022-01039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 12/15/2022]
Abstract
Harnessing the placebo effects would prompt critical ramifications for research and clinical practice. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation and multifocal transcranial electric stimulation, could manipulate the placebo response by modulating the activity and excitability of its neural correlates. To identify potential stimulation targets, we conducted a meta-analysis to investigate placebo-associated regions in healthy volunteers, including studies with emotional components and painful stimuli. Using biophysical modeling, we identified NIBS solutions to manipulate placebo effects by targeting either a single key region or multiple connected areas. Moving to a network-oriented approach, we then ran a quantitative network mapping analysis on the functional connectivity profile of clusters emerging from the meta-analysis. As a result, we suggest a multielectrode optimized montage engaging the connectivity patterns of placebo-associated functional brain networks. These NIBS solutions hope to provide a starting point to actively control, modulate or enhance placebo effects in future clinical studies and cognitive enhancement studies.
Collapse
|
22
|
Liu R, Qiao N, Shi S, Li S, Wang Y, Song J, Jia W. Deficits in ascending pain modulation pathways in breast cancer survivors with chronic neuropathic pain: A resting-state fMRI study. Front Neurol 2022; 13:959122. [PMID: 36570451 PMCID: PMC9772282 DOI: 10.3389/fneur.2022.959122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Breast cancer (BC) is the highest frequent malignancy in women globally. Approximately 25-60% of BC patients with chronic neuropathic pain (CNP) result from advances in treating BC. Since the CNP mechanism is unclear, the various treatment methods for CNP are limited. We aimed to explore the brain alternations in BC patients with CNP and the relationship between depression and CNP utilizing resting-state functional magnetic resonance imaging (rs-fMRI). Methods To collect the data, the female BC survivors with CNP (n = 20) and healthy controls (n = 20) underwent rs-fMRI. We calculated and compared the functional connectivity (FC) between the two groups using the thalamus and periaqueductal gray (PAG) as seed regions. Results Patients with BC showed increased depression and FC between the thalamus and primary somatosensory cortices (SI). Moreover, the Hospital Anxiety and Depression Scale-Depression (HADS-D) and pain duration were linked positively to the strength of FC from the thalamus to the SI. Furthermore, the thalamus-SI FC mediated the impact of pain duration on HADS-D. Conclusion In BC patients with CNP, the ascending pain regulation mechanism is impaired and strongly associated with chronic pain and accompanying depression. This research increased our knowledge of the pathophysiology of CNP in patients with BC, which will aid in determining the optimal therapeutic strategy for those patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China,*Correspondence: Rui Liu
| | - Na Qiao
- Department of Breast Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China,Department of Breast Surgery, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Shuwei Shi
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Suyao Li
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Yingman Wang
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jie Song
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Wenting Jia
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| |
Collapse
|
23
|
Atlas LY, Dildine TC, Palacios-Barrios EE, Yu Q, Reynolds RC, Banker LA, Grant SS, Pine DS. Instructions and experiential learning have similar impacts on pain and pain-related brain responses but produce dissociations in value-based reversal learning. eLife 2022; 11:e73353. [PMID: 36317867 PMCID: PMC9681218 DOI: 10.7554/elife.73353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Recent data suggest that interactions between systems involved in higher order knowledge and associative learning drive responses during value-based learning. However, it is unknown how these systems impact subjective responses, such as pain. We tested how instructions and reversal learning influence pain and pain-evoked brain activation. Healthy volunteers (n=40) were either instructed about contingencies between cues and aversive outcomes or learned through experience in a paradigm where contingencies reversed three times. We measured predictive cue effects on pain and heat-evoked brain responses using functional magnetic resonance imaging. Predictive cues dynamically modulated pain perception as contingencies changed, regardless of whether participants received contingency instructions. Heat-evoked responses in the insula, anterior cingulate, and other regions updated as contingencies changed, and responses in the prefrontal cortex mediated dynamic cue effects on pain, whereas responses in the brainstem's rostroventral medulla (RVM) were shaped by initial contingencies throughout the task. Quantitative modeling revealed that expected value was shaped purely by instructions in the Instructed Group, whereas expected value updated dynamically in the Uninstructed Group as a function of error-based learning. These differences were accompanied by dissociations in the neural correlates of value-based learning in the rostral anterior cingulate, thalamus, and posterior insula, among other regions. These results show how predictions dynamically impact subjective pain. Moreover, imaging data delineate three types of networks involved in pain generation and value-based learning: those that respond to initial contingencies, those that update dynamically during feedback-driven learning as contingencies change, and those that are sensitive to instruction. Together, these findings provide multiple points of entry for therapies designs to impact pain.
Collapse
Affiliation(s)
- Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- National Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Troy C Dildine
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- Department of Clinical Neuroscience, Karolinska InstitutetSolnaSweden
| | | | - Qingbao Yu
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Richard C Reynolds
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Lauren A Banker
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Shara S Grant
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Daniel S Pine
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
24
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Resting-state functional connectivity predicts motor cortex stimulation-dependent pain relief in fibromyalgia syndrome patients. Sci Rep 2022; 12:17135. [PMID: 36224244 PMCID: PMC9556524 DOI: 10.1038/s41598-022-21557-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
MRI-based resting-state functional connectivity (rsFC) has been shown to predict response to pharmacological and non-pharmacological treatments for chronic pain, but not yet for motor cortex transcranial magnetic stimulation (M1-rTMS). Twenty-seven fibromyalgia syndrome (FMS) patients participated in this double-blind, crossover, and sham-controlled study. Ten daily treatments of 10 Hz M1-rTMS were given over 2 weeks. Before treatment series, patients underwent resting-state fMRI and clinical pain evaluation. Significant pain reduction occurred following active, but not sham, M1-rTMS. The following rsFC patterns predicted reductions in clinical pain intensity after the active treatment: weaker rsFC of the default-mode network with the middle frontal gyrus (r = 0.76, p < 0.001), the executive control network with the rostro-medial prefrontal cortex (r = 0.80, p < 0.001), the thalamus with the middle frontal gyrus (r = 0.82, p < 0.001), and the pregenual anterior cingulate cortex with the inferior parietal lobule (r = 0.79, p < 0.001); and stronger rsFC of the anterior insula with the angular gyrus (r = - 0.81, p < 0.001). The above regions process the attentional and emotional aspects of pain intensity; serve as components of the resting-state networks; are modulated by rTMS; and are altered in FMS. Therefore, we suggest that in FMS, the weaker pre-existing interplay between pain-related brain regions and networks, the larger the pain relief resulting from M1-rTMS.
Collapse
Affiliation(s)
- Yuval Argaman
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- grid.413731.30000 0000 9950 8111Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- grid.18098.380000 0004 1937 0562Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
25
|
Brietzke C, Cesario JCS, Hettinga FJ, Pires FO. The reward for placebos: mechanisms underpinning placebo-induced effects on motor performance. Eur J Appl Physiol 2022; 122:2321-2329. [PMID: 36006479 DOI: 10.1007/s00421-022-05029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Different from the most popular thinking, the placebo effect is not a purely psychological phenomenon. A body of knowledge from multidisciplinary fields has shown that the expectation of a potential benefit when receiving a treatment induces a cascade of neurochemical-electrophysiological alterations in brain reward areas, including motor-related ones. Alterations in the dopamine, opioid, and glutamate metabolism are the neural representation converting reward-derived declarative forms into an attractive and wanted behavior, thereby changing the activation in reward subcortical and cortical structures involved in motor planning, motor execution, and emotional-cognitive attributes of decision-making. We propose that the expectation of receiving a treatment that is beneficial to motor performance triggers a cascade of activations in brain reward areas that travels from motor planning and motor command areas, passing through corticospinal pathways until driving the skeletal muscles, therefore facilitating the motor performance. Although alternative explanations cannot be totally ruled out, this mechanistic route is robust in explaining the results of placebo-induced effects on motor performance and could lead to novel insights and applications in the exercise sciences. Factors such as sex differences in reward-related mechanisms and aversion-induced nocebo effects should also be addressed.
Collapse
Affiliation(s)
- Cayque Brietzke
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.,Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil
| | - Julio Cesar Silva Cesario
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Flavio Oliveira Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil. .,Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil. .,Rehabilitation Sciences Program, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
Asan L, Bingel U, Kunkel A. [Neurobiological and neurochemical mechanisms of placebo analgesia]. Schmerz 2022; 36:205-212. [PMID: 35301592 PMCID: PMC9156503 DOI: 10.1007/s00482-022-00630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The efficacy of pain therapies can be substantially modulated by treatment expectations, which is reflected by the substantial placebo effects observed in pain (so called placebo analgesia). QUESTION What is currently known about the neurobiological and neurochemical mechanisms underlying placebo analgesia? MATERIALS AND METHODS A focused presentation of key publications in the field embedded in a structured overview of the mechanistic concepts and current theories according to recent evidence. RESULTS Experimental studies with functional neuroimaging showed that the effect of placebo analgesia is reflected by changes in brain activity related to pain processing and cognitive control. The important neurotransmitters involved include opioids and dopamine. CONCLUSION Placebo analgesia is associated with complex neurobiological and -physiological mechanisms. An advanced comprehension of these processes should be applied to optimize existing and future therapeutic approaches in pain therapy.
Collapse
Affiliation(s)
- Livia Asan
- Klinik für Neurologie und Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Unversitätsmedizin Essen, Hufelandstraße 55, 45147, Essen, Deutschland.
| | - Ulrike Bingel
- Klinik für Neurologie und Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Unversitätsmedizin Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - Angelika Kunkel
- Klinik für Neurologie und Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Unversitätsmedizin Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| |
Collapse
|
27
|
Bingel U, Wiech K, Ritter C, Wanigasekera V, Mhuircheartaigh R, Lee MC, Ploner M, Tracey I. Hippocampus mediates nocebo impairment of opioid analgesia through changes in functional connectivity. Eur J Neurosci 2022; 56:3967-3978. [PMID: 35537867 DOI: 10.1111/ejn.15687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
Abstract
The neural mechanisms underlying placebo analgesia have attracted considerable attention over the recent years. In contrast, little is known about the neural underpinnings of a nocebo-induced increase in pain. We previously showed that nocebo-induced hyperalgesia is accompanied by increased activity in the hippocampus that scaled with the perceived level of anxiety. As a key node of the neural circuitry of perceived threat and fear, the hippocampus has recently been proposed to coordinate defensive behaviour in a context-dependent manner. Such a role requires close interactions with other regions involved in the detection of and responses to threat. Here, we investigated the functional connectivity of the hippocampus during nocebo-induced hyperalgesia. Our results show an increase in functional connectivity between hippocampus and brain regions implicated in the processing of sensory-discriminative aspects of pain (posterior insula and primary somatosensory/motor cortex) as well as the periaqueductal gray (PAG). This nocebo-induced increase in connectivity scaled with an individual's increase in anxiety. Moreover, hippocampus connectivity with the amygdala was negatively correlated with the pain intensity reported during nocebo hyperalgesia relative to the placebo condition. Our findings suggest that the hippocampus links nocebo-induced anxiety to a heightened responsiveness to nociceptive input through changes in its crosstalk with pain-modulatory brain areas.
Collapse
Affiliation(s)
- Ulrike Bingel
- Department of Neurology, Center of Translational Neuro- and Behavioural Sciences, Hufelandstraße 55, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Christoph Ritter
- Department of Neurology, Center of Translational Neuro- and Behavioural Sciences, Hufelandstraße 55, University Medicine Essen, University Duisburg-Essen, Essen, Germany.,Brain Imaging Facility, Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Vishvarani Wanigasekera
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Roisin Mhuircheartaigh
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Mater Misericordiae University Hospital, Eccles St., University College Dublin, Dublin, Ireland
| | - Michael C Lee
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Markus Ploner
- Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
28
|
Tonic pain alters functional connectivity of the descending pain modulatory network involving amygdala, periaqueductal gray, parabrachial nucleus and anterior cingulate cortex. Neuroimage 2022; 256:119278. [PMID: 35523367 PMCID: PMC9250649 DOI: 10.1016/j.neuroimage.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Resting state functional connectivity (FC) is widely used to assess functional brain alterations in patients with chronic pain. However, reports of FC accompanying tonic pain in pain-free persons are rare. A network we term the Descending Pain Modulatory Network (DPMN) is implicated in healthy and pathologic pain modulation. Here, we evaluate the effect of tonic pain on FC of specific nodes of this network: anterior cingulate cortex (ACC), amygdala (AMYG), periaqueductal gray (PAG), and parabrachial nuclei (PBN). METHODS In 50 pain-free participants (30F), we induced tonic pain using a capsaicin-heat pain model. functional MRI measured resting BOLD signal during pain-free rest with a 32°C thermode and then tonic pain where participants experienced a previously warm temperature combined with capsaicin. We evaluated FC from ACC, AMYG, PAG, and PBN with correlation of self-report pain intensity during both states. We hypothesized tonic pain would diminish FC dyads within the DPMN. RESULTS Of all hypothesized FC dyads, only PAG and subgenual ACC was weakly altered during pain (F=3.34; p=0.074; pain-free>pain d=0.25). After pain induction sACC-PAG FC became positively correlated with pain intensity (R=0.38; t=2.81; p=0.007). Right PBN-PAG FC during pain-free rest positively correlated with subsequently experienced pain (R=0.44; t=3.43; p=0.001). During pain, this connection's FC was diminished (paired t=-3.17; p=0.0026). In whole-brain analyses, during pain-free rest, FC between left AMYG and right superior parietal lobule and caudate nucleus were positively correlated with subsequent pain. During pain, FC between left AMYG and right inferior temporal gyrus negatively correlated with pain. Subsequent pain positively correlated with right AMYG FC with right claustrum; right primary visual cortex and right temporo-occipitoparietal junction Conclusion: We demonstrate sACC-PAG tonic pain FC positively correlates with experienced pain and resting right PBN-PAG FC correlates with subsequent pain and is diminished during tonic pain. Finally, we reveal PAG- and right AMYG-anchored networks which correlate with subsequently experienced pain intensity. Our findings suggest specific connectivity patterns within the DPMN at rest are associated with subsequently experienced pain and modulated by tonic pain. These nodes and their functional modulation may reveal new therapeutic targets for neuromodulation or biomarkers to guide interventions.
Collapse
|
29
|
Tinnermann A, Sprenger C, Büchel C. Opioid analgesia alters corticospinal coupling along the descending pain system in healthy participants. eLife 2022; 11:74293. [PMID: 35471139 PMCID: PMC9042228 DOI: 10.7554/elife.74293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Opioids are potent analgesic drugs with widespread cortical, subcortical, and spinal targets. In particular, the central pain system comprising ascending and descending pain pathways has high opioid receptor densities and is thus crucial for opioid analgesia. Here, we investigated the effects of the opioid remifentanil in a large sample (n = 78) of healthy male participants using combined corticospinal functional MRI. This approach offers the possibility to measure BOLD responses simultaneously in the brain and spinal cord, allowing us to investigate the role of corticospinal coupling in opioid analgesia. Our data show that opioids altered activity in regions involved in pain processing such as somatosensory regions, including the spinal cord and pain modulation such as prefrontal regions. Moreover, coupling strength along the descending pain system, that is, between the anterior cingulate cortex, periaqueductal gray, and spinal cord, was stronger in participants who reported stronger analgesia during opioid treatment while participants that received saline showed reduced coupling when experiencing less pain. These results indicate that coupling along the descending pain pathway is a potential mechanism of opioid analgesia and can differentiate between opioid analgesia and unspecific reductions in pain such as habituation.
Collapse
Affiliation(s)
- Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Max Planck School of Cognition, Leipzig, Germany
| | - Christian Sprenger
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Max Planck School of Cognition, Leipzig, Germany
| |
Collapse
|
30
|
Wiech K, Eippert F, Vandekerckhove J, Zaman J, Placek K, Tuerlinckx F, Vlaeyen JWS, Tracey I. Cortico-Brainstem Mechanisms of Biased Perceptual Decision-Making in the Context of Pain. THE JOURNAL OF PAIN 2022; 23:680-692. [PMID: 34856408 DOI: 10.1016/j.jpain.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Prior expectations can bias how we perceive pain. Using a drift diffusion model, we recently showed that this influence is primarily based on changes in perceptual decision-making (indexed as shift in starting point). Only during unexpected application of high-intensity noxious stimuli, altered information processing (indexed as increase in drift rate) explained the expectancy effect on pain processing. Here, we employed functional magnetic resonance imaging to investigate the neural basis of both these processes in healthy volunteers. On each trial, visual cues induced the expectation of high- or low-intensity noxious stimulation or signaled equal probability for both intensities. Participants categorized a subsequently applied electrical stimulus as either low- or high-intensity pain. A shift in starting point towards high pain correlated negatively with right dorsolateral prefrontal cortex activity during cue presentation underscoring its proposed role of "keeping pain out of mind". This anticipatory right dorsolateral prefrontal cortex signal increase was positively correlated with periaqueductal gray (PAG) activity when the expected high-intensity stimulation was applied. A drift rate increase during unexpected high-intensity pain was reflected in amygdala engagement and increased functional connectivity between amygdala and PAG. Our findings suggest involvement of the PAG in both decision-making bias and altered information processing to implement expectancy effects on pain. PERSPECTIVE: Modulation of pain through expectations has been linked to changes in perceptual decision-making and altered processing of afferent information. Our results suggest involvement of the dorsolateral prefrontal cortex, amygdala, and periaqueductal gray in these processes.
Collapse
Affiliation(s)
- Katja Wiech
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Falk Eippert
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joachim Vandekerckhove
- Department of Cognitive Sciences, University of California, Irvine, California; Research Group of Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium
| | - Jonas Zaman
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | - Katerina Placek
- Takeda Pharmaceuticals, Statistics and Quantitative Sciences, Cambridge, Massachusetts
| | - Francis Tuerlinckx
- Research Group of Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium
| | - Johan W S Vlaeyen
- Research Group Health Psychology, KU Leuven, Leuven, Belgium; Research Group Experimental Health Psychology, Maastricht University, Maastricht, Netherlands
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
31
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Clinical Effects of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Are Associated With Changes in Resting-State Functional Connectivity in Patients With Fibromyalgia Syndrome. THE JOURNAL OF PAIN 2022; 23:595-615. [PMID: 34785365 DOI: 10.1016/j.jpain.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
In this double-blinded, sham-controlled, counterbalanced, and crossover study, we investigated the potential neuroplasticity underlying pain relief and daily function improvements following repetitive transcranial magnetic stimulation of the motor cortex (M1-rTMS) in fibromyalgia syndrome (FMS) patients. Specifically, we used magnetic resonance imaging (MRI) to examine changes in brain structural and resting-state functional connectivity (rsFC) that correlated with improvements in FMS symptomology following M1-rTMS. Twenty-seven women with FMS underwent real and sham treatment series, each consisting of 10 daily treatments of 10Hz M1-rTMS over 2 weeks, with a washout period in between. Before and after each series, participants underwent anatomical and resting-state functional MRI scans and questionnaire assessments of FMS-related clinical pain and functional and psychological burdens. The expected reductions in FMS-related symptomology following M1-rTMS occurred with the real treatment only and correlated with rsFC changes in brain areas associated with pain processing and modulation. Specifically, between the ventromedial prefrontal cortex and the M1 (t = -5.54, corrected P = .002), the amygdala and the posterior insula (t = 5.81, corrected P = .044), and the anterior and posterior insula (t = 6.01, corrected P = .029). Neither treatment significantly changed brain structure. Therefore, we provide the first evidence of an association between the acute clinical effects of M1-rTMS in FMS and functional alterations of brain areas that have a significant role in the experience of chronic pain. Structural changes could potentially occur over a more extended treatment period. PERSPECTIVE: We show that the neurophysiological mechanism of the improvement in fibromyalgia symptoms following active, but not sham, rTMS applied to M1 involves changes in resting-state functional connectivity in sensory, affective and cognitive pain processing brain areas, thus substantiating the essence of fibromyalgia syndrome as a treatable brain-based disorder.
Collapse
Affiliation(s)
- Yuval Argaman
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
32
|
De Ridder D, Vanneste S, Smith M, Adhia D. Pain and the Triple Network Model. Front Neurol 2022; 13:757241. [PMID: 35321511 PMCID: PMC8934778 DOI: 10.3389/fneur.2022.757241] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Acute pain is a physiological response that causes an unpleasant sensory and emotional experience in the presence of actual or potential tissue injury. Anatomically and symptomatically, chronic pathological pain can be divided into three distinct but interconnected pathways, a lateral “painfulness” pathway, a medial “suffering” pathway and a descending pain inhibitory circuit. Pain (fullness) can exist without suffering and suffering can exist without pain (fullness). The triple network model is offering a generic unifying framework that may be used to understand a variety of neuropsychiatric illnesses. It claims that brain disorders are caused by aberrant interactions within and between three cardinal brain networks: the self-representational default mode network, the behavioral relevance encoding salience network and the goal oriented central executive network. A painful stimulus usually leads to a negative cognitive, emotional, and autonomic response, phenomenologically expressed as pain related suffering, processed by the medial pathway. This anatomically overlaps with the salience network, which encodes behavioral relevance of the painful stimuli and the central sympathetic control network. When pain lasts longer than the healing time and becomes chronic, the pain- associated somatosensory cortex activity may become functionally connected to the self-representational default mode network, i.e., it becomes an intrinsic part of the self-percept. This is most likely an evolutionary adaptation to save energy, by separating pain from sympathetic energy-consuming action. By interacting with the frontoparietal central executive network, this can eventually lead to functional impairment. In conclusion, the three well-known pain pathways can be combined into the triple network model explaining the whole range of pain related co-morbidities. This paves the path for the creation of new customized and personalized treatment methods.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- *Correspondence: Dirk De Ridder
| | - Sven Vanneste
- School of Psychology, Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Mark Smith
- Neurofeedbackservices of New York, New York, NY, United States
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Fazeli MS, McIntyre L, Huang Y, Chevalier X. Intra-articular placebo effect in the treatment of knee osteoarthritis: a survey of the current clinical evidence. Ther Adv Musculoskelet Dis 2022; 14:1759720X211066689. [PMID: 35126683 PMCID: PMC8808023 DOI: 10.1177/1759720x211066689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/23/2021] [Indexed: 01/06/2023] Open
Abstract
Knee osteoarthritis (KOA) is a debilitating disease characterized by chronic pain, stiffness, and decreased mobility. Intra-articular injectable therapies show good clinical efficacy in improving symptoms; however, these therapies and their comparators (intra-articular saline) have been associated with a large underlying placebo effect. We aimed to describe the existing evidence on the challenges, hypotheses, and potential solutions to mitigate the intra-articular placebo effect in clinical trials in KOA. A targeted literature review was conducted by searching Embase, MEDLINE®, and CENTRAL using predefined study selection criteria. All eligible studies identified were extracted for relevant data, and results were narratively summarized. Forty-three studies were included following screening. Challenges associated with the intra-articular placebo effect included its ability to mask the comparative efficacy of active treatments in trials (n = 7 studies), long-lasting effects (up to 6 months; n = 3), and substantial variation of placebo effect sizes across populations (n = 3). Hypotheses for the mechanism of the placebo effect included aspiration of synovial fluid during administration (n = 6) and dilution of inflammatory mediators (n = 2). Factors affecting the placebo effect size were more invasive routes of administration (e.g., injection versus oral; n = 4) and patient expectations (n = 2). Proposed solutions included the suggestion for readers to weigh the relevance of clinical trial evidence against the presence of large underlying placebo effects (n = 9), discontinuation of intra-articular saline as an appropriate placebo (n = 5), and inclusion of 'no treatment' or sham injection as a control (n = 4). The intra-articular placebo effect is a well-documented occurrence in KOA clinical trials, and it is suggested that it be accounted for when designing randomized controlled trials. Awareness and understanding of the intra-articular placebo effect in KOA are required for fair interpretation of clinical trial evidence.
Collapse
Affiliation(s)
- Mir Sohail Fazeli
- Evidinno Outcomes Research Inc., 1750 Davie Street, Suites 601 & 602, Vancouver, BC V6G 1W3, Canada
| | | | - Yili Huang
- Northwell Health, New Hyde Park, NY, USA
| | - Xavier Chevalier
- Hôpital Henri Mondor, Université Paris XII, UPEC, Créteil, France
| |
Collapse
|
34
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
35
|
Peek AL, Leaver AM, Foster S, Puts NA, Oeltzschner G, Henderson L, Galloway G, Ng K, Refshauge K, Rebbeck T. Increase in ACC GABA+ levels correlate with decrease in migraine frequency, intensity and disability over time. J Headache Pain 2021; 22:150. [PMID: 34903165 PMCID: PMC8903525 DOI: 10.1186/s10194-021-01352-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background An imbalance between inhibitory and excitatory neurometabolites has been implicated in chronic pain. Prior work identified elevated levels of Gamma-aminobutyric acid + macromolecules (“GABA+”) using magnetic resonance spectroscopy (MRS) in people with migraine. What is not understood is whether this increase in GABA+ is a cause, or consequence of living with, chronic migraine. Therefore, to further elucidate the nature of the elevated GABA+ levels reported in migraine, this study aimed to observe how GABA+ levels change in response to changes in the clinical characteristics of migraine over time. Methods We observed people with chronic migraine (ICHD-3) over 3-months as their treatment was escalated in line with the Australian Pharmaceutical Benefits Scheme (PBS). Participants underwent an MRS scan and completed questionnaires regarding migraine frequency, intensity (HIT-6) and disability (WHODAS) at baseline and following the routine 3 months treatment escalation to provide the potential for some participants to recover. We were therefore able to monitor changes in brain neurochemistry as clinical characteristics potentially changed over time. Results The results, from 18 participants who completed both baseline and follow-up measures, demonstrated that improvements in migraine frequency, intensity and disability were associated with an increase in GABA+ levels in the anterior cingulate cortex (ACC); migraine frequency (r = − 0.51, p = 0.03), intensity (r = − 0.51, p = 0.03) and disability (r = − 0.53, p = 0.02). However, this was not seen in the posterior cingulate gyrus (PCG). An incidental observation found those who happened to have their treatment escalated with CGRP-monoclonal antibodies (CGRP-mAbs) (n = 10) had a greater increase in ACC GABA+ levels (mean difference 0.54 IU IQR [0.02 to 1.05], p = 0.05) and reduction in migraine frequency (mean difference 10.3 IQR [2.52 to 18.07], p = 0.01) compared to those who did not (n = 8). Conclusion The correlation between an increase in ACC GABA+ levels with improvement in clinical characteristics of migraine, suggest previously reported elevated GABA+ levels may not be a cause of migraine, but a protective mechanism attempting to suppress further migraine attacks. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01352-1.
Collapse
Affiliation(s)
- Aimie L Peek
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia. .,NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Brisbane, Queensland, Australia.
| | - Andrew M Leaver
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia
| | - Sheryl Foster
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,Department of Radiology, Westmead Hospital, Hawkesbury Road, Westmead, New South Wales, 2145, Australia
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, London, UK
| | - Georg Oeltzschner
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Luke Henderson
- School of Medical Sciences, Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Graham Galloway
- The University of Queensland, St Lucia, Queensland, 4072, Australia.,Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Karl Ng
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,Department of Neurology, Royal North Shore Hospital, Reserve Road, St Leonards, New South Wales, 2065, Australia
| | - Kathryn Refshauge
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia
| | - Trudy Rebbeck
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Paul K, Tik M, Hahn A, Sladky R, Geissberger N, Wirth EM, Kranz GS, Pfabigan DM, Kraus C, Lanzenberger R, Lamm C, Windischberger C. Give me a pain that I am used to: distinct habituation patterns to painful and non-painful stimulation. Sci Rep 2021; 11:22929. [PMID: 34824311 PMCID: PMC8617189 DOI: 10.1038/s41598-021-01881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Pain habituation is associated with a decrease of activation in brain areas related to pain perception. However, little is known about the specificity of these decreases to pain, as habituation has also been described for other responses like spinal reflexes and other sensory responses. Thus, it might be hypothesized that previously reported reductions in activation are not specifically related to pain habituation. For this reason, we performed a 3 T fMRI study using either painful or non-painful electrical stimulation via an electrode attached to the back of the left hand. Contrasting painful vs. non-painful stimulation revealed significant activation clusters in regions well-known to be related to pain processing, such as bilateral anterior and posterior insula, primary/secondary sensory cortices (S1/S2) and anterior midcingulate cortex (aMCC). Importantly, our results show distinct habituation patterns for painful (in aMCC) and non-painful (contralateral claustrum) stimulation, while similar habituation for both types of stimulation was identified in bilateral inferior frontal gyrus (IFG) and contralateral S2. Our findings thus distinguish a general habituation in somatosensory processing (S2) and reduced attention (IFG) from specific pain and non-pain related habituation effects where pain-specific habituation effects within the aMCC highlight a change in affective pain perception.
Collapse
Affiliation(s)
- Katharina Paul
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Martin Tik
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Nicole Geissberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Eva-Maria Wirth
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniela M Pfabigan
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Behavioural Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
37
|
Brainstem Mechanisms of Pain Modulation: A within-Subjects 7T fMRI Study of Placebo Analgesic and Nocebo Hyperalgesic Responses. J Neurosci 2021; 41:9794-9806. [PMID: 34697093 DOI: 10.1523/jneurosci.0806-21.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants (N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG-RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn.SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.
Collapse
|
38
|
Qiu J, Du M, Yang J, Lin Z, Qin N, Sun X, Li L, Zou R, Wei J, Wu B, Liu J, Zhang Z. The brain's structural differences between postherpetic neuralgia and lower back pain. Sci Rep 2021; 11:22455. [PMID: 34789811 PMCID: PMC8599674 DOI: 10.1038/s41598-021-01915-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
The purpose is to explore the brain's structural difference in local morphology and between-region networks between two types of peripheral neuropathic pain (PNP): postherpetic neuralgia (PHN) and lower back pain (LBP). A total of 54 participants including 38 LBP and 16 PHN patients were enrolled. The average pain scores were 7.6 and 7.5 for LBP and PHN. High-resolution structural T1 weighted images were obtained. Both grey matter volume (GMV) and morphological connectivity (MC) were extracted. An independent two-sample t-test with false discovery rate (FDR) correction was used to identify the brain regions where LBP and PHN patients showed significant GMV difference. Next, we explored the differences of MC network between LBP and PHN patients and detected the group differences in network properties by using the two-sample t-test and FDR correction. Compared with PHN, LBP patients had significantly larger GMV in temporal gyrus, insula and fusiform gyrus (p < 0.05). The LBP cohort had significantly stronger MC in the connection between right precuneus and left opercular part of inferior frontal gyrus (p < 0.05). LBP patients had significantly stronger degree in left anterior cingulate gyrus and left rectus gyrus (p < 0.05) while had significantly weaker degree than PHN patients in left orbital part of middle frontal gyrus, left supplementary motor area and left superior parietal lobule (p < 0.05). LBP and PHN patients had significant differences in the brain's GMV, MC, and network properties, which implies that different PNPs have different neural mechanisms concerning pain modulation.
Collapse
Affiliation(s)
- Jianxing Qiu
- grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034 China
| | - Mengjiao Du
- grid.263488.30000 0001 0472 9649School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Junzhe Yang
- grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034 China
| | - Zengmao Lin
- grid.411472.50000 0004 1764 1621Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Naishan Qin
- grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034 China
| | - Xiaowei Sun
- grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034 China
| | - Linling Li
- grid.263488.30000 0001 0472 9649School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Rushi Zou
- grid.263488.30000 0001 0472 9649School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Juan Wei
- GE Healthcare China, Beijing, China
| | - Bing Wu
- GE Healthcare China, Beijing, China
| | - Jing Liu
- Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034, China.
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China. .,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China. .,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China. .,Peng Cheng Laboratory, Shenzhen, China.
| |
Collapse
|
39
|
Ho JT, Krummenacher P, Lesur MR, Saetta G, Lenggenhager B. Real Bodies Not Required? Placebo Analgesia and Pain Perception in Immersive Virtual and Augmented Reality. THE JOURNAL OF PAIN 2021; 23:625-640. [PMID: 34780993 DOI: 10.1016/j.jpain.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Pain represents an embodied experience, wherein inferences are not only drawn from external sensory inputs, but also from bodily states. Previous research has demonstrated that a placebo administered to an embodied rubber hand can effectively induce analgesia, providing first evidence that placebos can work even when applied to temporarily embodied, artificial body parts. Using a heat pain paradigm, the present study investigates placebo analgesia and pain perception during virtual embodiment. We examined whether a virtual placebo (a sham heat protective glove) can successfully induce analgesia, even when administered to a virtual body. The analgesic efficacy of the virtual placebo to the real hand (augmented reality setting) or virtual hand (virtual reality setting) was compared to a physical placebo administered to the own, physical body (physical reality setting). Furthermore, pain perception and subjective embodiment were compared between settings. In this mixed design experiment, healthy participants (n=48) were assigned to either an analgesia-expectation or control-expectation group, where subjective and objective pain was measured at pre- and post-intervention time points. Results demonstrated that pre-intervention pain intensity was lower in the virtual reality setting, and that participants in the analgesia-expectation condition, after the intervention, exhibited significantly higher pain thresholds, and lower pain intensity and unpleasantness ratings than control-expectation participants, independent of the setting. Our findings show that a virtual placebo can elicit placebo analgesia comparable to that of a physical placebo, and that administration of a placebo does not necessitate physical bodily interaction to produce analgesic responses.
Collapse
Affiliation(s)
- Jasmine T Ho
- University of Zurich, Department of Psychology, Binzmühlestrasse 14, Box 9, 8050 Zurich, Switzerland
| | - Peter Krummenacher
- University of Zurich, Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, Psychotherapy and Psychosomatics, 8032 Zurich, Switzerland
| | | | | | | |
Collapse
|
40
|
Peciña M, Chen J, Lyew T, Karp JF, Dombrovski AY. μ Opioid Antagonist Naltrexone Partially Abolishes the Antidepressant Placebo Effect and Reduces Orbitofrontal Cortex Encoding of Reinforcement. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1002-1012. [PMID: 33684624 PMCID: PMC8419202 DOI: 10.1016/j.bpsc.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Like placebo analgesia, the antidepressant placebo effect appears to involve cortical and subcortical endogenous opioid signaling, yet the mechanism through which opioid release affects mood remains unclear. The orbitofrontal cortex (OFC)-which integrates various attributes of a stimulus to predict associated outcomes-has been implicated in placebo effects and is rich in μ opioid receptors. We hypothesized that naltrexone blockade of μ opioid receptors would blunt OFC-dependent antidepressant placebo effects. METHODS Twenty psychotropic-free patients with major depressive disorder completed a randomized, double-blind, placebo-controlled crossover study of 1 oral dose of 50 mg of naltrexone or matching placebo immediately before completing 2 sessions of the antidepressant placebo functional magnetic resonance imaging task. This task manipulates placebo-associated expectancies and their reinforcement while assessing expected and actual mood improvement. RESULTS Behaviorally, manipulations of antidepressant placebo expectancies and their reinforcement had positive, interactive effects on participants' expectancy and mood ratings. The high-expectancy condition recruited the dorsolateral and ventrolateral prefrontal cortex, as well as dorsal attention stream regions. Interestingly, increased dorsolateral and ventrolateral prefrontal cortex brain responses appeared to attenuate the antidepressant placebo effect. The administration of 1 oral dose of naltrexone, compared with placebo, partially abolished the interaction of the expectancy and reinforcement manipulation on mood and blocked reinforcement-induced responses in the right central OFC. CONCLUSIONS Our results show preliminary evidence for the role of μ opioid central OFC modulation in antidepressant placebo effects by positively biasing the value of placebo based on reinforcement and enhancing subsequent hedonic experiences.
Collapse
Affiliation(s)
- Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Jiazhou Chen
- National Institutes of Health, Bethesda, Maryland; The Faculty of Brain Sciences, Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Thandi Lyew
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jordan F Karp
- Department of Psychiatry, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
41
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Coppieters MW, Rehn B, Plinsinga ML. Patient expectations about a clinical diagnostic test may influence the clinician's test interpretation. Musculoskelet Sci Pract 2021; 54:102387. [PMID: 33991785 DOI: 10.1016/j.msksp.2021.102387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND With medical information widely available, patients often have preconceived ideas regarding diagnostic procedures and management strategies. OBJECTIVES To investigate whether expectations, such as beliefs about the source of symptoms and knowledge about diagnostic tests, influence pain perception during a clinical diagnostic test. DESIGN Cross-sectional study. METHODS Pain was induced by intramuscular hypertonic saline infusion in the thenar muscles. In line with sample size calculations, fifteen participants were included. All participants received identical background information regarding basic median nerve biomechanics and basic concepts of differential diagnosis via mechanical loading of painful structures. Based on different explanations about the origin of their induced pain, half of the participants believed (correctly) they had 'muscle pain' and half believed (incorrectly) they had 'nerve pain'. Pain intensity and size of the painful area were evaluated in five different positions of the median nerve neurodynamic test (ULNT1 MEDIAN). Data were analysed with two-way analyses of variance. RESULTS /findings: Changes in pain in the ULNT1 MEDIAN positions were different between the 'muscle pain' and 'nerve pain' group (p < 0.001). In line with their expectations, the 'muscle pain' group demonstrated no changes in pain throughout the test (p > 0.38). In contrast, pain intensity (p ≤ 0.003) and size of the painful area (p ≤ 0.03) increased and decreased in the 'nerve pain' group consistent with their expectations and the level of mechanical nerve loading. CONCLUSION Pain perception during a clinical diagnostic test may be substantially influenced by pain anticipation. Moreover, pain was more aligned with beliefs and expectations than with the actual pathobiological process.
Collapse
Affiliation(s)
- Michel W Coppieters
- Menzies Health Institute Queensland, Griffith University, Brisbane & Gold Coast, Australia; Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Börje Rehn
- Department of Community Medicine and Rehabilitation, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Melanie L Plinsinga
- Menzies Health Institute Queensland, Griffith University, Brisbane & Gold Coast, Australia
| |
Collapse
|
43
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
44
|
Osborne NR, Anastakis DJ, Kim JA, El-Sayed R, Cheng JC, Rogachov A, Hemington KS, Bosma RL, Fauchon C, Davis KD. Sex-Specific Abnormalities and Treatment-Related Plasticity of Subgenual Anterior Cingulate Cortex Functional Connectivity in Chronic Pain. FRONTIERS IN PAIN RESEARCH 2021; 2:673538. [PMID: 35295450 PMCID: PMC8915549 DOI: 10.3389/fpain.2021.673538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.
Collapse
Affiliation(s)
- Natalie R. Osborne
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dimitri J. Anastakis
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Junseok Andrew Kim
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rima El-Sayed
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C. Cheng
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S. Hemington
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L. Bosma
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Camille Fauchon
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Karen D. Davis
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- *Correspondence: Karen D. Davis
| |
Collapse
|
45
|
Yang H, Yang X, Liu H, Long H, Hu H, Wang Q, Huang R, Shan D, Li K, Lai W. Placebo modulation in orthodontic pain: a single-blind functional magnetic resonance study. LA RADIOLOGIA MEDICA 2021; 126:1356-1365. [PMID: 34160776 DOI: 10.1007/s11547-021-01374-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The mechanism of orthodontic pain modulation with a placebo remains largely unknown. This study aimed to investigate the placebo modulation of brain activity associated with orthodontic pain using functional magnetic resonance imaging (fMRI). METHODS This longitudinal fMRI experiment recruited 23 volunteers and a self-contrast method was used. At first time, the participants were scanned without placebo (first period), followed by a 30-day washout, the participants were scanned again with placebo administration (second period). Orthodontic pain was caused by orthodontic separators placement between the lower right molars for both two periods. 24 h after placement, the MRI scans were taken, including a bite/non-bite task fMRI and a resting-state fMRI. A generalized linear model was used to identify pain-regulating network from task fMRI. Functional connectivity analysis of pain-related brain regions was performed to study the placebo effect on connectivity of pain-regulating networks using resting-state fMRI. RESULTS The results of brain activation patterns were largely similar under placebo and non-placebo conditions. Under the non-placebo condition, the activities in multiple brain regions, including the pre-central gyrus, superior frontal gyrus, superior parietal lobule, and supramarginal gyrus, were significantly higher than that of the placebo condition. However, the anterior cingulate cortex (ACC) was activated under the non-placebo condition but not in the placebo one. The functional connectivities between ACC and orbitofrontal cortex, and the dorsolateral prefrontal cortex and orbitofrontal cortex were reduced under placebo condition. CONCLUSION Participants demonstrated similar brain activation patterns for orthodontic pain with or without placebos. With placebo, reduced activation in primary sensory cortex and decreased activation in ACC indicated that ACC could be fundamental in analgesia.
Collapse
Affiliation(s)
- Hong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., ChengduSichuan, 610041, China.,School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Xin Yang
- Department of Stomatology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - He Liu
- China-Japan Friendship Hospital, BeiJing, China
| | - Hu Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., ChengduSichuan, 610041, China
| | - Huimin Hu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., ChengduSichuan, 610041, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., ChengduSichuan, 610041, China
| | - Renhuan Huang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, ShangHai, China
| | - Di Shan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., ChengduSichuan, 610041, China
| | - Kaiming Li
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA, 92507, USA.
| | - Wenli Lai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., ChengduSichuan, 610041, China.
| |
Collapse
|
46
|
Hartmann H, Riva F, Rütgen M, Lamm C. Placebo Analgesia Does Not Reduce Empathy for Naturalistic Depictions of Others' Pain in a Somatosensory Specific Way. Cereb Cortex Commun 2021; 2:tgab039. [PMID: 34296184 PMCID: PMC8276832 DOI: 10.1093/texcom/tgab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
The shared representations account postulates that sharing another's pain recruits underlying brain functions also engaged during first-hand pain. Critically, direct causal evidence for this was mainly shown for affective pain processing, while the contribution of somatosensory processes to empathy remains controversial. This controversy may be explained, however, by experimental paradigms that did not direct attention towards a specific body part, or that did not employ naturalistic depictions of others' pain. In this preregistered functional magnetic resonance imaging study, we aimed to test whether causal manipulation of first-hand pain affects empathy for naturalistic depictions of pain in a somatosensory-matched manner. Forty-five participants underwent a placebo analgesia induction in their right hand and observed pictures of other people's right and left hands in pain. We found neither behavioral nor neural evidence for somatosensory-specific modulation of pain empathy. However, exploratory analyses revealed a general effect of the placebo on empathy, and higher brain activity in bilateral anterior insula when viewing others' right hands in pain (i.e., corresponding to one's own placebo hand). These results refine our knowledge regarding the neural mechanisms of pain empathy, and imply that the sharing of somatosensory representations seems to play less of a causal role than the one of affective representations.
Collapse
Affiliation(s)
- Helena Hartmann
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Federica Riva
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
47
|
Abstract
Classical conditioning and expectations are well-known underlying mechanisms of placebo hypoalgesia. Only little is known about their differential effect in adults, however, and even less in children. Previous studies in children evoked placebo hypoalgesia either with expectations alone or in combination with classical conditioning and revealed conflicting results. Furthermore, these studies investigated children of different ages making it even more difficult to draw conclusions. This study tried to disentangle classical conditioning and expectations by investigating them separately. To examine age effects, n = 172 children (6-9, 10-13, and 14-17 years) as well as n = 32 adults (> = 18 years) were tested using a heat pain paradigm investigating the effectiveness of creams some of which were bogusly introduced as analgesic. In addition to subjective pain intensity ratings, peripheral physiological measures were recorded. Results showed a successful induction of placebo hypoalgesia by both mechanisms for pain ratings and heart rate acceleration. Placebo hypoalgesia was particularly pronounced in children younger than 14 years. Furthermore, placebo hypoalgesia was more marked in children whose mothers raised the expectations. It was also stronger in participants who noticed a strong pain reduction during learning trials. These results encourage the use of placebo effect in clinical practice, particularly for younger children. They underline the relevance of an initial pain reduction and encourage the inclusion of parents in treatment.
Collapse
|
48
|
Sevel L, Boissoneault J, Alappattu M, Bishop M, Robinson M. Training endogenous pain modulation: a preliminary investigation of neural adaptation following repeated exposure to clinically-relevant pain. Brain Imaging Behav 2021; 14:881-896. [PMID: 30617786 DOI: 10.1007/s11682-018-0033-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analgesic treatments that aim to eliminate pain display marginal success in relieving chronic pain and may increase pain vulnerability. Repeated exposure to pain may result in increased pain modulation via engagement of anti-nociceptive brain regions. It was hypothesized that repeated exposure to delayed onset muscle soreness (DOMS) would result in increased pain modulatory capacity (PMC) via functional neural adaptation. 23 healthy participants completed Baseline and Follow Up resting-state fMRI and quantitative sensory testing (QST) visits 40 days apart. Participants were randomized to two groups: A Repeated DOMS Group (RD Group) that received four, weekly DOMS inductions and a Control Group that received one baseline induction. Daily pain ratings were collected for seven days post-induction, as were quantitative sensory testing (QST) metrics at baseline and Follow Up. Regional functional connectivity (FC) was estimated among areas involved in pain modulation. Seed and network FC was estimated among areas involved in pain modulation and sensory processing. Changes in FC were compared between groups. The RD Group displayed significant reductions in post-DOMS pain ratings and significant changes in thermal QST measures. RD Group participants displayed greater adaptation in nucleus accumbens-medial prefrontal cortex (NAc-mPFC) FC and in sensorimotor network (SMN) connectivity with the dorsomedial, ventromedial, and rostromedial prefrontal cortices. Changes in SMN-PFC connectivity correlated with reductions in post-DOMS affective distress. Results suggest that repeated exposure to clinically-relevant pain results in adaptations among brain regions involved in pain modulation. Repeated exposure to clinically-relevant pain may serve as a mechanism to increase PMC via inhibition of emotional valuation of painful stimuli.
Collapse
Affiliation(s)
- Landrew Sevel
- Osher Center for Integrative Medicine at Vanderbilt, Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center, Suite 380, 3401 West End Avenue, Nashville, TN, 37203, USA.
| | - Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Meryl Alappattu
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Mark Bishop
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Michael Robinson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Ofoghi Z, Rohr CS, Dewey D, Bray S, Yeates KO, Noel M, Barlow KM. Functional connectivity of the anterior cingulate cortex with pain-related regions in children with post-traumatic headache. CEPHALALGIA REPORTS 2021. [DOI: 10.1177/25158163211009477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Post-traumatic headaches (PTH) are common following mild traumatic brain injury (mTBI). There is evidence of altered central pain processing in adult PTH; however, little is known about how children with PTH process pain. The anterior cingulate cortex (ACC) plays a critical role in descending central pain modulation. In this study, we explored whether the functional connectivity (FC) of the ACC is altered in children with PTH. Methods: In this case-control study, we investigated resting-state FC of 5 ACC seeds (caudal, dorsal, rostral, perigenual, and subgenual) in children with PTH ( n = 73) and without PTH ( n = 29) following mTBI, and healthy controls ( n = 27). Post-concussion symptoms were assessed using the Post-Concussion Symptom Inventory and the Child Health Questionnaire. Resting-state functional Magnetic Resonance Imaging (fMRI) data were used to generate maps of ACC FC. Group-level comparisons were performed within a target mask comprised of pain-related regions using FSL Randomise. Results: We found decreased FC between the right perigenual ACC and the left cerebellum, and increased FC between the right subgenual ACC and the left dorsolateral prefrontal cortex in children with PTH compared to healthy controls. The ACC FC in children without PTH following mTBI did not differ from the group with PTH or healthy controls. FC between rostral and perigenual ACC seeds and the cerebellum was increased in children with PTH with pre-injury headaches compared to those with PTH without pre-injury headaches. There was a positive relationship between PTH severity and rostral ACC FC with the bilateral thalamus, right hippocampus and periaqueductal gray. Conclusions: Central pain processing is altered in children with PTH. Pre-existing headaches help to drive this process. Trial registration: The PlayGame Trial was registered in ClinicalTrials.gov database ( ClinicalTrials.gov Identifier: NCT01874847).
Collapse
Affiliation(s)
- Zahra Ofoghi
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christiane S Rohr
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre at the Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Karen M Barlow
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Paediatric Neurology Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Cho C, Deol HK, Martin LJ. Bridging the Translational Divide in Pain Research: Biological, Psychological and Social Considerations. Front Pharmacol 2021; 12:603186. [PMID: 33935700 PMCID: PMC8082136 DOI: 10.3389/fphar.2021.603186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
A gap exists between translating basic science research into effective pain therapies in humans. While preclinical pain research has primarily used animal models to understand biological processes, a lesser focus has been toward using animal models to fully consider other components of the pain experience, such as psychological and social influences. Herein, we provide an overview of translational studies within pain research by breaking them down into purely biological, psychological and social influences using a framework derived from the biopsychosocial model. We draw from a wide landscape of studies to illustrate that the pain experience is highly intricate, and every attempt must be made to address its multiple components and interactors to aid in fully understanding its complexity. We highlight our work where we have developed animal models to assess the cognitive and social effects on pain modulation while conducting parallel experiments in people that provide proof-of-importance for human pain modulation. In some instances, human pain research has sparked the development of novel animal models, with these animal models used to better understand the complexity of phenomena considered to be uniquely human such as placebo responses and empathy.
Collapse
Affiliation(s)
- Chulmin Cho
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Harashdeep K Deol
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|