1
|
Sajjad J, Morael J, Melo TG, Foley T, Murphy A, Keane J, Popov J, Stanton C, Dinan TG, Clarke G, Cryan JF, Collins JM, O'Mahony SM. Differential cortical aspartate uptake across the oestrous cycle is associated with changes in gut microbiota in Wistar-Kyoto rats. Neurosci Lett 2024; 847:138096. [PMID: 39716584 DOI: 10.1016/j.neulet.2024.138096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Pain and psychological stress are intricately linked, with sex differences evident in disorders associated with both systems. Glutamatergic signalling in the central nervous system is influenced by gonadal hormones via the hypothalamic-pituitary-adrenal axis and is central in pain research. Emerging evidence supports an important role for the gut microbiota in influencing pain signalling. Here, the functional activity of excitatory amino acid transporters (EAATs) in the anterior cingulate cortex (ACC) and lumbosacral spinal cord of male and female Wistar-Kyoto rats, an animal model of comorbid visceral hypersensitivity and enhanced stress responsivity, was investigated across the oestrous cycle. Correlations between the gut microbiota and changes in the functional activity of the central glutamatergic system were also investigated. EAAT function in the lumbosacral spinal cord was similar between males and females across the oestrous cycle. EAAT function was higher in the ACC of dioestrus females compared to proestrus and oestrus females. In males, aspartate uptake in the ACC positively correlated with Bacteroides, while aspartate uptake in the spinal cord positively correlated with the relative abundance of Lachnospiraceae NK4A136. Positive associations with aspartate uptake in the spinal cord were also observed for Alistipes and Bifidobacterium during oestrus, and Eubacterium coprostanoligenes during proestrus. Clostridium sensu stricto1 was negatively associated with aspartate uptake in the ACC in males and dioestrus females. These data indicate that glutamate metabolism in the ACC is oestrous stage-dependent and that short-chain fatty acid-producing bacteria are positively correlated with aspartate uptake in males and during specific oestrous stages in females.
Collapse
Affiliation(s)
- Jahangir Sajjad
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Jennifer Morael
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Thieza G Melo
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Amy Murphy
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - James Keane
- APC Microbiome Ireland, University College Cork, Ireland
| | - Jelena Popov
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - James M Collins
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
2
|
Le AA, Lauterborn JC, Jia Y, Cox CD, Lynch G, Gall CM. Metabotropic NMDAR Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. J Neurosci 2024; 44:e0438242024. [PMID: 39424366 PMCID: PMC11638816 DOI: 10.1523/jneurosci.0438-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
NMDA receptor (NMDAR)-mediated calcium influx triggers the induction and initial expression of long-term potentiation (LTP). Here we report that in male rodents, ion flux-independent (metabotropic) NMDAR signaling is critical for a third step in the production of enduring LTP, i.e., cytoskeletal changes that stabilize the activity-induced synaptic modifications. Surprisingly, females rely upon estrogen receptor alpha (ERα) for the metabotropic NMDAR operations used by males. Blocking NMDAR channels with MK-801 eliminated LTP expression in hippocampal field CA1 of both sexes but left intact theta burst stimulation (TBS)-induced actin polymerization within dendritic spines. A selective antagonist (Ro25-6981) of the NMDAR GluN2B subunit had minimal effects on synaptic responses but blocked actin polymerization and LTP consolidation in males only. Conversely, an ERα antagonist thoroughly disrupted TBS-induced actin polymerization and LTP in females while having no evident effect in males. In an episodic memory paradigm, Ro25-6981 prevented acquisition of spatial locations by males but not females, whereas an ERα antagonist blocked acquisition in females but not males. Sex differences in LTP consolidation were accompanied by pronounced differences in episodic memory in tasks involving minimal (for learning) cue sampling. Males did better on acquisition of spatial information whereas females had much higher scores than males on tests for acquisition of the identity of cues (episodic "what") and the order in which the cues were sampled (episodic "when"). We propose that sex differences in synaptic processes used to stabilize LTP result in differential encoding of the basic elements of episodic memory.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Julie C Lauterborn
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Yousheng Jia
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Conor D Cox
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Gary Lynch
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Christine M Gall
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Neurobiology and Behavior, University of California, Irvine, California 92697
| |
Collapse
|
3
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
4
|
Arzamendi MJ, Habibyan YB, Defaye M, Shute A, Baggio CH, Chan R, Ohland C, Bihan DG, Lewis IA, Sharkey KA, McCoy KD, Altier C, Geuking MB, Nasser Y. Sex-specific post-inflammatory dysbiosis mediates chronic visceral pain in colitis. Gut Microbes 2024; 16:2409207. [PMID: 39360560 PMCID: PMC11451282 DOI: 10.1080/19490976.2024.2409207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Despite achieving endoscopic remission, over 20% of inflammatory bowel disease (IBD) patients experience chronic abdominal pain. Visceral pain and the microbiome exhibit sex-dependent interactions, while visceral pain in IBD shows a sex bias. Our aim was to evaluate whether post-inflammatory microbial perturbations contribute to visceral hypersensitivity in a sex-dependent manner. METHODS Males, cycling females, ovariectomized, and sham-operated females were given dextran sodium sulfate to induce colitis and allowed to recover. Germ-free recipients received sex-appropriate and cross-sex fecal microbial transplants (FMT) from post-inflammatory donor mice. Visceral sensitivity was assessed by recording visceromotor responses to colorectal distention. The composition of the microbiota was evaluated via 16S rRNA gene V4 amplicon sequencing, while the metabolome was assessed using targeted (short chain fatty acids - SCFA) and semi-targeted mass spectrometry. RESULTS Post-inflammatory cycling females developed visceral hyperalgesia when compared to males. This effect was reversed by ovariectomy. Both post-inflammatory males and females exhibited increased SCFA-producing species, but only males had elevated fecal SCFA content. FMT from post-inflammatory females transferred visceral hyperalgesia to both males and females, while FMT from post-inflammatory males could only transfer visceral hyperalgesia to males. CONCLUSIONS Female sex, hormonal status as well as the gut microbiota play a role in pain modulation. Our data highlight the importance of considering biological sex in the evaluation of visceral pain.
Collapse
Affiliation(s)
- Maria J. Arzamendi
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasaman B. Habibyan
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam Shute
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristiane H. Baggio
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronald Chan
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Ohland
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominique G. Bihan
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A. Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D. McCoy
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christophe Altier
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Markus B. Geuking
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasmin Nasser
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Choi SR, Roh DH, Moon JY, Beitz AJ, Lee JH. Phase-specific differential regulation of mechanical allodynia in a murine model of neuropathic pain by progesterone. Front Pharmacol 2023; 14:1253901. [PMID: 38152690 PMCID: PMC10752602 DOI: 10.3389/fphar.2023.1253901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Progesterone has been shown to have neuroprotective capabilities against a wide range of nervous system injuries, however there are negative clinical studies that have failed to demonstrate positive effects of progesterone therapy. Specifically, we looked into whether progesterone receptors or its metabolizing enzymes, cytochrome P450c17 and 5α-reductase, are involved in the effects of progesterone on neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve in mice. Intrathecal progesterone administration during the induction phase of chronic pain enhanced mechanical allodynia development and spinal glial fibrillary acidic protein (GFAP) expression, and this enhancement was inhibited by administration of ketoconazole, a P450c17 inhibitor, but not finasteride, a 5α-reductase inhibitor. Furthermore, phospho-serine levels of P450c17 in the spinal cord were elevated on day 1 after CCI operation, but not on day 17. In contrast, intrathecal progesterone administration during the maintenance phase of chronic pain decreased the acquired pain and elevated GFAP expression; this inhibition was restored by finasteride administration, but not by ketoconazole. The modification of mechanical allodynia brought on by progesterone in CCI mice was unaffected by the administration of mifepristone, a progesterone receptor antagonist. Collectively, these findings imply that progesterone suppresses spinal astrocyte activation via 5α-reductase activity during the maintenance phase of chronic pain and has an analgesic impact on the mechanical allodynia associated with the growing neuropathy. Progesterone, however, stimulates spinal astrocytes during the induction stage of peripheral neuropathy and boosts the allodynic impact caused by CCI through early spinal P450c17 activation.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Young Moon
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Alvin J. Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Situmorang JH, Lin HH, Islam MS, Lai CC. Ovariectomy Exacerbates Acute Ethanol-Induced Tachycardia: Role of Nitric Oxide and NMDA Receptors in the Rostral Ventrolateral Medulla. Int J Mol Sci 2023; 24:5087. [PMID: 36982161 PMCID: PMC10049173 DOI: 10.3390/ijms24065087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Ethanol consumption influences cardiovascular functions. In humans, acute consumption of ethanol causes dose-dependent tachycardia. Our previous study showed that ethanol-induced tachycardia might involve decreased nitric oxide (NO) signaling in the brain's medulla. NMDA receptors, another important target of ethanol, are one of the upstream signals of nitric oxide. Reports showed the modulation of NMDA receptor function by estrogen or estrogen receptors. The present study aims to examine the hypothesis that depletion of estrogen by ovariectomy (OVX) might modulate ethanol-induced tachycardia by regulating NMDA receptor function and NO signaling in the cardiovascular regulatory nucleus of the brain. Ethanol (3.2 g/kg, 40% v/v, 10 mL/kg) or saline (10 mL/kg) was administered by oral gavage in sham or OVX female Sprague-Dawley (SD) rats. The blood pressure (BP) and heart rate (HR) were measured using the tail-cuff method. The levels of phosphoserine 896 of the GluN1 subunit (pGluN1-serine 896) and NMDA GluN1 subunits (GluN1) were determined by immunohistochemistry. The expressions of nitric oxide synthase (NOS) and estrogen receptors in the tissue were measured by Western blotting. Nitric oxide contents were measured as total nitrate-nitrite by colorimetric assay kit. In a 2-h observation, there was no significant change in BP between the saline and ethanol groups. However, compared with saline, ethanol caused an increase in HR (tachycardia) in sham control or OVX rats. Interestingly, ethanol produced more significant tachycardia in the OVX group than in the sham control group. Nitric oxide levels were lower in the area of the rostral ventrolateral medulla (RVLM) 60 min following ethanol administration in OVX compared with sham control, without significant changes in the expression of NOS and estrogen receptors (ERα and ERβ). In addition, a decrease in the immunoreactivity of pGluN1-serine 896, without significant changes in GluN1, was found in neurons of RVLM 40 min following ethanol administration in OVX compared with sham control. Our results suggest that depletion of estradiol (E2) by OVX might exacerbate the tachycardia following ethanol administration, the underlying mechanism of which might be associated with decreased NMDA receptor function and NO level in the RVLM.
Collapse
Affiliation(s)
- Jiro Hasegawa Situmorang
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong 16915, Indonesia
| | - Hsun-Hsun Lin
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Md Sharyful Islam
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chih-Chia Lai
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
7
|
Pan L, Li T, Wang R, Deng W, Pu H, Deng M. Roles of Phosphorylation of N-Methyl-D-Aspartate Receptor in Chronic Pain. Cell Mol Neurobiol 2023; 43:155-175. [PMID: 35032275 DOI: 10.1007/s10571-022-01188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Phosphorylation of N-methyl-D-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.
Collapse
Affiliation(s)
- Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tiansheng Li
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weiheng Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
8
|
Kaur S, Hickman TM, Lopez-Ramirez A, McDonald H, Lockhart LM, Darwish O, Averitt DL. Estrogen modulation of the pronociceptive effects of serotonin on female rat trigeminal sensory neurons is timing dependent and dosage dependent and requires estrogen receptor alpha. Pain 2022; 163:e899-e916. [PMID: 35121697 PMCID: PMC9288423 DOI: 10.1097/j.pain.0000000000002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The role of the major estrogen estradiol (E2) on orofacial pain conditions remains controversial with studies reporting both a pronociceptive and antinociceptive role of E2. E2 modulation of peripheral serotonergic activity may be one mechanism underlying the female prevalence of orofacial pain disorders. We recently reported that female rats in proestrus and estrus exhibit greater serotonin (5HT)-evoked orofacial nocifensive behaviors compared with diestrus and male rats. Further coexpression of 5HT 2A receptor mRNA in nociceptive trigeminal sensory neurons that express transient receptor potential vanilloid 1 ion channels contributes to pain sensitization. E2 may exacerbate orofacial pain through 5HT-sensitive trigeminal nociceptors, but whether low or high E2 contributes to orofacial pain and by what mechanism remains unclear. We hypothesized that steady-state exposure to a proestrus level of E2 exacerbates 5HT-evoked orofacial nocifensive behaviors in female rats, explored the transcriptome of E2-treated female rats, and determined which E2 receptor contributes to sensitization of female trigeminal sensory neurons. We report that a diestrus level of E2 is protective against 5HT-evoked orofacial pain behaviors, which increase with increasing E2 concentrations, and that E2 differentially alters several pain genes in the trigeminal ganglia. Furthermore, E2 receptors coexpressed with 5HT 2A and transient receptor potential vanilloid 1 and enhanced capsaicin-evoked signaling in the trigeminal ganglia through estrogen receptor α. Overall, our data indicate that low, but not high, physiological levels of E2 protect against orofacial pain, and we provide evidence that estrogen receptor α receptor activation, but not others, contributes to sensitization of nociceptive signaling in trigeminal sensory neurons.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | | | - Hanna McDonald
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204
| | | |
Collapse
|
9
|
Jiang FR, Hang L, Zhou Y, Feng Y, Yuan JY. Estrogen-gut microbiota interactions and irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2022; 30:511-520. [DOI: 10.11569/wcjd.v30.i12.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder with a complex pathogenesis that has a serious impact on the quality of life of patients. Abnormal visceral sensation, disordered gut motility, dysregulated immunity, and damaged intestinal barrier are thought to be involved in the pathogenesis of IBS. Female predisposition to IBS strongly suggests that sex hormones such as estrogen are involved in the development of IBS. In addition, dysbiosis of the intestinal flora is closely related to IBS. The interaction between estrogen and gut microbiota in IBS has not been fully elucidated. This review summarizes and evaluates the progress of related studies. Based on the new findings and shortcomings of current studies, we discuss the directions and issues that need to be resolved in future research.
Collapse
Affiliation(s)
- Feng-Ru Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
10
|
Abstract
N-methyl-d-aspartate receptors (NMDARs) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are excitatory neurotransmission receptors of the central nervous system and play vital roles in synaptic plasticity. Although not fully elucidated, visceral hypersensitivity is one of the most well-characterized pathophysiologic abnormalities of functional gastrointestinal diseases and appears to be associated with increased synaptic plasticity. In this study, we review the updated findings on the physiology of NMDARs and AMPARs and their relation to visceral hypersensitivity, which propose directions for future research in this field with evolving importance.
Collapse
|
11
|
Dedek A, Xu J, Lorenzo LÉ, Godin AG, Kandegedara CM, Glavina G, Landrigan JA, Lombroso PJ, De Koninck Y, Tsai EC, Hildebrand ME. Sexual dimorphism in a neuronal mechanism of spinal hyperexcitability across rodent and human models of pathological pain. Brain 2022; 145:1124-1138. [PMID: 35323848 PMCID: PMC9050559 DOI: 10.1093/brain/awab408] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
The prevalence and severity of many chronic pain syndromes differ across sex, and recent studies have identified differences in immune signalling within spinal nociceptive circuits as a potential mediator. Although it has been proposed that sex-specific pain mechanisms converge once they reach neurons within the superficial dorsal horn, direct investigations using rodent and human preclinical pain models have been lacking. Here, we discovered that in the Freund’s adjuvant in vivo model of inflammatory pain, where both male and female rats display tactile allodynia, a pathological coupling between KCC2-dependent disinhibition and N-methyl-D-aspartate receptor (NMDAR) potentiation within superficial dorsal horn neurons was observed in male but not female rats. Unlike males, the neuroimmune mediator brain-derived neurotrophic factor (BDNF) failed to downregulate inhibitory signalling elements (KCC2 and STEP61) and upregulate excitatory elements (pFyn, GluN2B and pGluN2B) in female rats, resulting in no effect of ex vivo brain-derived neurotrophic factor on synaptic NMDAR responses in female lamina I neurons. Importantly, this sex difference in spinal pain processing was conserved from rodents to humans. As in rodents, ex vivo spinal treatment with BDNF downregulated markers of disinhibition and upregulated markers of facilitated excitation in superficial dorsal horn neurons from male but not female human organ donors. Ovariectomy in female rats recapitulated the male pathological pain neuronal phenotype, with BDNF driving a coupling between disinhibition and NMDAR potentiation in adult lamina I neurons following the prepubescent elimination of sex hormones in females. This discovery of sexual dimorphism in a central neuronal mechanism of chronic pain across species provides a foundational step towards a better understanding and treatment for pain in both sexes.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, K1S 5B6 Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, K1Y 4M9 Ontario, Canada
| | - Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | - Antoine G Godin
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec G1E 1T2, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec G1V 0A6, Canada
| | - Chaya M Kandegedara
- Department of Neuroscience, Carleton University, K1S 5B6 Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, K1Y 4M9 Ontario, Canada
| | - Geneviève Glavina
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec G1E 1T2, Canada
| | | | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec G1E 1T2, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec G1V 0A6, Canada
| | - Eve C Tsai
- Neuroscience Program, Ottawa Hospital Research Institute, K1Y 4M9 Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ontario K1N 6N5, Canada.,Department of Surgery, Division of Neurosurgery, The Ottawa Hospital, Ontario K1Y 4E9, Canada
| | - Michael E Hildebrand
- Department of Neuroscience, Carleton University, K1S 5B6 Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, K1Y 4M9 Ontario, Canada
| |
Collapse
|
12
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Hellman KM, Oladosu FA, Garrison EF, Roth GE, Dillane KE, Tu FF. Circulating sex steroids and bladder pain sensitivity in dysmenorrhea. Mol Pain 2021; 17:17448069211035217. [PMID: 34689649 DOI: 10.1177/17448069211035217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although elevated estradiol levels facilitate chronic pelvic pain in animal models, it remains to be determined whether sex steroid levels are altered in a cross-section of women with chronic pelvic pain (CPP) and those at-risk for developing CPP. We sought to determine if sex steroid levels are increased in women with menstrual pain and whether those changes were more extreme in two groups of women with worsened pelvic pain profiles: a) dysmenorrhea plus evidence of bladder pain sensitivity and b) bladder pain syndrome. Serum samples were collected during the mid-luteal phase to measure estradiol, progesterone, testosterone, and sex hormone-binding globulin. We also compared quantitative sensory testing profiles to evaluate how sex steroid differences influence proposed pain sensitivity mechanisms. Women with combined dysmenorrhea and bladder sensitivity had higher estradiol concentrations than controls (487 [IQR 390 - 641] vs 404 [336 - 467] pmol/L, p = 0.042). Bladder pain syndrome participants had greater sex hormone-binding globulin than controls (83 [71 - 108] vs 55 [42 - 76 nmol/L; p = 0.027). Levels of pain sensitivity and mood were different across the groups, but the only significant relationship to sex steroids was that sex hormone-binding globulin was correlated to somatic symptoms (r = 0.26, p = 0.03). These findings show women potentially at-risk for CPP and women with diagnosed CPP exhibit altered circulating levels of sex steroids. Because these hormonal differences appear to be independent of mood or pain sensitivity, the role of sex steroids in the emergence of CPP may be via sensitization of visceral afferents.
Collapse
Affiliation(s)
- Kevin M Hellman
- Department of Obstetrics & Gynecology, Northshore University HealthSystem, Evanston, IL, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Folabomi A Oladosu
- Department of Obstetrics & Gynecology, Northshore University HealthSystem, Evanston, IL, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Ellen F Garrison
- Department of Obstetrics & Gynecology, Northshore University HealthSystem, Evanston, IL, USA
| | - Genevieve E Roth
- Department of Obstetrics & Gynecology, Northshore University HealthSystem, Evanston, IL, USA
| | - Katlyn E Dillane
- Department of Obstetrics & Gynecology, Northshore University HealthSystem, Evanston, IL, USA
| | - Frank F Tu
- Department of Obstetrics & Gynecology, Northshore University HealthSystem, Evanston, IL, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Chen J, Li Q, Saliuk G, Bazhanov S, Winston JH. Estrogen and serotonin enhance stress-induced visceral hypersensitivity in female rats by up-regulating brain-derived neurotrophic factor in spinal cord. Neurogastroenterol Motil 2021; 33:e14117. [PMID: 33705592 DOI: 10.1111/nmo.14117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND We previously reported that female offspring of dams subjected to chronic prenatal stress (CPS) develop enhanced visceral hypersensitivity (VHS) following exposure to chronic stress in adult life that is mediated by up-regulation of spinal cord BDNF. The aims of this study were to examine the roles of estrogen receptor alpha (ERα) and an increase in spinal serotonin signaling in promoting this enhanced VHS in female rats and up-regulation of spinal cord BDNF transcription. METHODS Pregnant dams were exposed to chronic stress from E11 until delivery. At 8 weeks, a chronic adult stress (CAS) protocol was applied for nine days. KEY RESULTS Ovariectomy before CAS or treatment with letrozole before and during CAS significantly prevented the development of enhanced VHS in female CPS+CAS rats. Intrathecal application of ERα siRNA significantly reduced VHS, decreased lumbar-sacral spinal cord expression of both ERα and BDNF, and reversed pro-transcriptional epigenetic modifications at BDNF promoter lX. Cerebrospinal fluid serotonin levels and 5HT3A receptor expression in the LS spinal cord were both significantly increased in female CPS+CAS rats. During CAS, intrathecal infusion of alosetron significantly decreased VHS, reduced BDNF and ERα expression in the LS spinal cord, and attenuated RNA pol II and ERα binding to the BNDF core promoter IX. CONCLUSIONS & INFERENCES Serotonin-mediated activation of 5HT3A receptors in the spinal cord drives the development of enhanced female-specific VHS in our two hit CPS+CAS through up-regulation of spinal cord ERα.
Collapse
Affiliation(s)
- Jinghong Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Qingjie Li
- Division of Gastroenterology and Hepatology, Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Genevieve Saliuk
- Division of Gastroenterology and Hepatology, Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Sonia Bazhanov
- Division of Gastroenterology and Hepatology, Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - John H Winston
- Division of Gastroenterology and Hepatology, Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
15
|
Kochi C, Salvi A, Atrooz F, Salim S. Simulated vehicle exhaust exposure induces sex-dependent behavioral deficits in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103660. [PMID: 33865999 DOI: 10.1016/j.etap.2021.103660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Chronic exposure to vehicle exhaust emissions are known to cause several adverse health effects. In this study, we examined the impact of several parameters of behavioral, cardiovascular and biochemical functions upon exposure of pro-oxidants CO2, NO2 and CO (simulated vehicle exhaust exposure: SVEE) in male and female rats. Adult rats were subjected to SVEE or ambient air in whole body chambers (5 h/day, 2 weeks). Male, but not female, rats developed memory deficits, and exhibited anxiety- and depression-like behavior, accompanied with significantly high levels of serum corticosterone, oxidative stress, and inflammatory markers (CRP and TNFα), associated with lower levels of total antioxidant capacity, glutathione, glyoxalase and superoxide dismutase (SOD) activities. Brain region-specific downregulation of Cu/Zn SOD, Mn SOD, GSR, PKCα, ERK1/2, CaMKIV, CREB, BDNF and NMDAR subunit protein expression were also observed in male, but not female, rats. Blood pressure, heart rate and eGFR were not negatively impacted by SVEE. Our results suggest that SVEE, through its pro-oxidant content, induces oxido-inflammation in susceptible brain regions in a sex-dependent manner.
Collapse
Affiliation(s)
- Camila Kochi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Ankita Salvi
- Translational Medicine Department, QPS, LLC, Newark, DE, United States
| | - Fatin Atrooz
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Samina Salim
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, United States.
| |
Collapse
|
16
|
Chen Q, Zhang W, Sadana N, Chen X. Estrogen receptors in pain modulation: cellular signaling. Biol Sex Differ 2021; 12:22. [PMID: 33568220 PMCID: PMC7877067 DOI: 10.1186/s13293-021-00364-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sensory perception and emotional disorders are disproportionally represented in men and women and are thus thought to be modulated by different sex hormones in various conditions. Among the most important hormones perceived to affect sensory processing and transduction is estrogen. Numerous previous researchers have endeavored to demonstrate that estrogen is capable of modulating the activity of sensory neurons in peripheral and central sites in female, male, or castrated animals. However, the underlying mechanisms of its modulation of neuronal activity are somewhat unclear. In the present review, we discuss the possible cellular and molecular mechanisms involved in the modulation of nociception by estrogen.
Collapse
Affiliation(s)
- Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenxin Zhang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Neeti Sadana
- Department of Anesthesiology & Perioperative Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, USA
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|
18
|
Li JH, Yang JL, Wei SQ, Li ZL, Collins AA, Zou M, Wei F, Cao DY. Contribution of central sensitization to stress-induced spreading hyperalgesia in rats with orofacial inflammation. Mol Brain 2020; 13:106. [PMID: 32723345 PMCID: PMC7385893 DOI: 10.1186/s13041-020-00645-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Temporomandibular disorder (TMD) is commonly comorbid with fibromyalgia syndrome (FMS). The incidence of these pain conditions is prevalent in women and prone to mental stress. Chronic pain symptoms in patients with FMS and myofascial TMD (mTMD) are severe and debilitating. In the present study, we developed a new animal model to mimic the comorbidity of TMD and FMS. In ovariectomized female rats, repeated forced swim (FS) stress induced mechanical allodynia and thermal hyperalgesia in the hindpaws of the 17β-estradiol (E2) treated rats with orofacial inflammation. Subcutaneous injection of E2, injection of complete Freund’s adjuvant (CFA) into masseter muscles or FS alone did not induce somatic hyperalgesia. We also found that the somatic hyperalgesia was accompanied by upregulation of GluN1 receptor and serotonin (5-hydroxytryptamine, 5-HT)3A receptor expression in the dorsal horn of spinal cord at L4-L5 segments. Intrathecal injection of N-methyl-D-aspartic acid receptor (NMDAR) antagonist 2-amino-5-phosphonovaleric acid (APV) or 5-HT3 receptor antagonist Y-25130 blocked stress-induced wide-spreading hyperalgesia. These results suggest that NMDAR-dependent central sensitization in the spinal dorsal horn and 5-HT-dependent descending facilitation contribute to the development of wide-spreading hyperalgesia in this comorbid pain model.
Collapse
Affiliation(s)
- Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China.,Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China.,Department of Neural and Pain Sciences, University of Maryland School of Dentistry; the UM Center to Advance Chronic Pain Research, 650 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Jia-Le Yang
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry; the UM Center to Advance Chronic Pain Research, 650 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Zhuo-Lin Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Anna A Collins
- Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Min Zou
- Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Feng Wei
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry; the UM Center to Advance Chronic Pain Research, 650 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
19
|
Fei L, Wang Y. microRNA‐495 reduces visceral sensitivity in mice with diarrhea‐predominant irritable bowel syndrome through suppression of the PI3K/AKT signaling pathway via PKIB. IUBMB Life 2020; 72:1468-1480. [PMID: 32187820 DOI: 10.1002/iub.2270] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/16/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Lifeng Fei
- Department of PhysiotherapyLinyi People's Hospital Linyi China
| | - Yanjing Wang
- Department of Children's RehabilitationLinyi People's Hospital Linyi China
| |
Collapse
|
20
|
Sun LH, Zhang WX, Xu Q, Wu H, Jiao CC, Chen XZ. Estrogen modulation of visceral pain. J Zhejiang Univ Sci B 2020; 20:628-636. [PMID: 31273960 DOI: 10.1631/jzus.b1800582] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is commonly accepted that females and males differ in their experience of pain. Gender differences have been found in the prevalence and severity of pain in both clinical and animal studies. Sex-related hormones are found to be involved in pain transmission and have critical effects on visceral pain sensitivity. Studies have pointed out the idea that serum estrogen is closely related to visceral nociceptive sensitivity. This review aims to summarize the literature relating to the role of estrogen in modulating visceral pain with emphasis on deciphering the potential central and peripheral mechanisms.
Collapse
Affiliation(s)
- Li-Hong Sun
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Wen-Xin Zhang
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qi Xu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Hui Wu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Cui-Cui Jiao
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xin-Zhong Chen
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
21
|
" Bridging the Gap" Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int J Mol Sci 2019; 21:ijms21010296. [PMID: 31906252 PMCID: PMC6982247 DOI: 10.3390/ijms21010296] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, ‘sex’ and ‘gender’ are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs’ identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/gender-specific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. “Being a male or being a female” is indeed important from a health point of view and it is no longer possible to avoid “sex and gender lens” when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward.
Collapse
|
22
|
Nasser SA, Afify EA. Sex differences in pain and opioid mediated antinociception: Modulatory role of gonadal hormones. Life Sci 2019; 237:116926. [PMID: 31614148 DOI: 10.1016/j.lfs.2019.116926] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Sex-related differences in pain and opioids has been the focus of many researches. It is demonstrated that women experience greater clinical pain, lower pain threshold and tolerance, more sensitivity and distress to experimentally induced pain compared to men. Sex differences in response to opioid treatment revealed inconsistent results. However, the etiology of these disparities is not fully elucidated. It is, therefore, conceivable now that this literature merits to be revisited comprehensively. Possible multifaceted factors seem to be associated. These include neuroanatomical, hormonal, neuroimmunological, psychological, social and cultural aspects and comorbidities. This review aims at providing an overview of the substantial literature documenting the sex differences in pain and analgesic response to opioids from animal and human studies within the context of the modulatory effects of the aforementioned factors. A detailed and critical discussion of the cellular and molecular signaling pathways underlying the modulatory actions of gonadal hormones in the sexual dimorphism in pain processing and opioid analgesia is extensively presented. It is indicated that sexual dimorphic activation of certain brain regions contributes to differential pain sensitivity between females and males. Plausible crosstalk between sex hormones and neuroimmunological signaling pertinent to toll-like and purinergic receptors is uncovered as causal cues underlying sexually dimorphic pain and opioid analgesia. Conceivably, a thorough understanding of these factors may aid in sex-related advancement in pain therapeutic management.
Collapse
Affiliation(s)
- Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
23
|
Zhang YX, Yang M, Liang F, Li SQ, Yang JS, Huo FQ, Yan CX. The pronociceptive role of 5-HT 6 receptors in ventrolateral orbital cortex in a rat formalin test model. Neurochem Int 2019; 131:104562. [PMID: 31580911 DOI: 10.1016/j.neuint.2019.104562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
Recent studies have shown the 5-HT6 receptors are expressed in regions which are important in pain processing such as the cortex, amygdala, thalamus, PAG, spinal cord and dorsal root ganglia (DRG), suggesting a putative role of 5-HT6 receptors in pain modulation. The ventrolateral orbital cortex (VLO) is part of an endogenous analgesic system, consisting of the spinal cord - thalamic nucleus submedius (Sm) - VLO - periaqueductal gray (PAG) - spinal cord loop. The present study assessed the possible role of 5-HT6 receptors in the VLO in formalin-induced inflammatory pain model. Firstly we found that microinjection of selective 5-HT6 receptor agonists EMD-386088 (5 μg in 0.5 μl) and WAY-208466 (8 μg in 0.5 μl) both augmented 5% formalin-induced nociceptive behavior. Microinjection of selective 5-HT6 receptor antagonist SB-258585 (1,2 and 4 μg in 0.5 μl) significantly reduced formalin-induced flinching. Besides, the pronociceptive effects of EMD-386088 and WAY-208466 were dramatically reduced by SB-258585, implicating 5-HT6 receptor mechanisms in mediating these responses. In addition, the pronociceptive effect of EMD-386088 was also prevented by the adenylate cyclase (AC) inhibitor SQ-22536 (2 nmol in 0.5 μl) and the protein kinase A (PKA) inhibitor H89 (10 nmol in 0.5 μl), respectively. We further confirmed the above results with quantification of spinal c-fos expression. Taken together, our results suggested that 5-HT6 receptors play a pronociceptive role in the VLO in the rat formalin test due to its activation of AC - PKA pathway. Therefore, cerebral cortical 5-HT6 receptors could be a new target to develop analgesic drugs.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Mei Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Feng Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Shao-Qing Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Jing-Si Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China.
| |
Collapse
|
24
|
Bisphenol A Regulates Sodium Ramp Currents in Mouse Dorsal Root Ganglion Neurons and Increases Nociception. Sci Rep 2019; 9:10306. [PMID: 31312012 PMCID: PMC6635372 DOI: 10.1038/s41598-019-46769-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/05/2019] [Indexed: 12/02/2022] Open
Abstract
17β-Estradiol mediates the sensitivity to pain and is involved in sex differences in nociception. The widespread environmental disrupting chemical bisphenol A (BPA) has estrogenic activity, but its implications in pain are mostly unknown. Here we show that treatment of male mice with BPA (50 µg/kg/day) during 8 days, decreases the latency to pain behavior in response to heat, suggesting increased pain sensitivity. We demonstrate that incubation of dissociated dorsal root ganglia (DRG) nociceptors with 1 nM BPA increases the frequency of action potential firing. SCN9A encodes the voltage-gated sodium channel Nav1.7, which is present in DRG nociceptors and is essential in pain signaling. Nav1.7 and other voltage-gated sodium channels in mouse DRG are considered threshold channels because they produce ramp currents, amplifying small depolarizations and enhancing electrical activity. BPA increased Nav-mediated ramp currents elicited with slow depolarizations. Experiments using pharmacological tools as well as DRG from ERβ−/− mice indicate that this BPA effect involves ERα and phosphoinositide 3-kinase. The mRNA expression and biophysical properties other than ramp currents of Nav channels, were unchanged by BPA. Our data suggest that BPA at environmentally relevant doses affects the ability to detect noxious stimuli and therefore should be considered when studying the etiology of pain conditions.
Collapse
|
25
|
Accioly NE, Guedes RCA. Neonatal treatment with ovarian hormones and suckling among distinct litter sizes: Differential effects on recognition memory and spreading depression at adulthood. Nutr Neurosci 2019; 22:174-184. [PMID: 28891432 DOI: 10.1080/1028415x.2017.1358472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Ovarian hormones (OH) and early malnutrition may affect the developing brain, with repercussions on behavioral and excitability-dependent processes. However, the possible synergistic effects of both factors have not been analyzed. In this study, we investigated the effect of treatment in early life with OH and suckling among distinct litter sizes on recognition memory, anxiety behavior, and the excitability-dependent phenomenon known as cortical spreading depression (CSD). METHODS Female Wistar rats were suckled under favorable and unfavorable lactation, corresponding to litters with 9 and 15 pups (L9 and L15 groups, respectively). From postnatal days (P) 7 to 21, the animals received 50 µg/kg of β-estradiol or progesterone. From P80 to P84, we tested behavioral reactions. From P90 to P120, we analyzed CSD parameters. RESULTS Compared with the corresponding L9 groups, the OH-treated L15 groups performed worse in recognition memory tasks. No intergroup difference in the anxiety parameters was observed. Compared with naive and vehicle-treated controls, OH-treated groups displayed higher CSD velocities and amplitudes and shorter CSD durations. DISCUSSION Early treatment with OH facilitates recognition memory and CSD, and in association with unfavorable lactation (L15) impaired recognition memory, but not anxiety behavior, in the adult brain. OH treatment and L15 lactation condition seem to interact regarding OH action on memory, but not on CSD. Data suggest a long-lasting differential effect that might be related to the lasting hormonal action on brain excitability. We postulate and discuss the possibility that these findings may be implicated in human neurological diseases.
Collapse
|
26
|
Maniyar R, Chakraborty S, Suriano R. Ethanol Enhances Estrogen Mediated Angiogenesis in Breast Cancer. J Cancer 2018; 9:3874-3885. [PMID: 30410590 PMCID: PMC6218769 DOI: 10.7150/jca.25581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Angiogenesis, a highly regulated process, is exploited by tumors like breast cancer to ensure a constant supply of oxygen and nutrients and is key for tumor survival and progression. Estrogen and alcohol independently have been observed to contribute to angiogenesis in breast cancer but their combinatorial effects have never been evaluated. The exact mechanism by which estrogen and alcohol contribute to breast cancer angiogenesis remains to be elucidated. In this study, we defined the in vitro effects of the combination of estrogen and alcohol in breast cancer angiogenesis using the tubulogenesis and scratch wound assays. Conditioned media, generated by culturing the murine mammary cancer cell line, TG1-1, in estrogen and ethanol, enhanced tubule formation and migration as well as modulated the MAP Kinase pathway in the murine endothelial cell line, SVEC4-10. Additionally, estrogen and ethanol in combination enhanced the expression of the pro-angiogenic factors VEGF, MMP-9, and eNOS, and modulated Akt activation. These observations suggest that TG1-1 cells secrete pro-angiogenic molecules in response to the combination of estrogen and ethanol that modulate the morphological and migratory properties of endothelial cells. The data presented in this study, is the first in attempting to link the cooperative activity between estrogen and ethanol in breast cancer progression, underscoring correlations first made by epidemiological observations linking the two.
Collapse
Affiliation(s)
- Rachana Maniyar
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Sanjukta Chakraborty
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Robert Suriano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- Division of Natural Sciences, College of Mount Saint Vincent, Bronx. New York, United States of America
| |
Collapse
|
27
|
Opposing Roles of Estradiol and Testosterone on Stress-Induced Visceral Hypersensitivity in Rats. THE JOURNAL OF PAIN 2018; 19:764-776. [PMID: 29496640 DOI: 10.1016/j.jpain.2018.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
Chronic stress produces maladaptive pain responses, manifested as alterations in pain processing and exacerbation of chronic pain conditions including irritable bowel syndrome. Female predominance, especially during reproductive years, strongly suggests a role of gonadal hormones. However, gonadal hormone modulation of stress-induced pain hypersensitivity is not well understood. In the present study, we tested the hypothesis that estradiol is pronociceptive and testosterone is antinociceptive in a model of stress-induced visceral hypersensitivity (SIVH) in rats by recording the visceromotor response to colorectal distention after a 3-day forced swim (FS) stress paradigm. FS induced visceral hypersensitivity that persisted at least 2 weeks in female, but only 2 days in male rats. Ovariectomy blocked and orchiectomy facilitated SIVH. Furthermore, estradiol injection in intact male rats increased SIVH and testosterone in intact female rats attenuated SIVH. Western blot analyses indicated estradiol increased excitatory glutamate ionotropic receptor NMDA type subunit 1 expression and decreased inhibitory metabotropic glutamate receptor 2 expression after FS in male thoracolumbar spinal cord. In addition, the presence of estradiol during stress increased spinal brain-derived neurotrophic factor (BDNF) expression independent of sex. In contrast, testosterone blocked the stress-induced increase in BDNF expression in female rats. These data suggest that estradiol facilitates and testosterone attenuates SIVH by modulating spinal excitatory and inhibitory glutamatergic receptor expression. PERSPECTIVE SIVH is more robust in female rats. Estradiol facilitates whereas testosterone dampens the development of SIVH. This could partially explain the greater prevalence of certain chronic visceral pain conditions in women. An increase in spinal BDNF is concomitant with increased stress-induced pain. Pharmaceutical interventions targeting this molecule could provide promising alleviation of SIVH in women.
Collapse
|
28
|
Greenwood-Van Meerveld B, Johnson AC. Mechanisms of Stress-induced Visceral Pain. J Neurogastroenterol Motil 2018; 24:7-18. [PMID: 29291604 PMCID: PMC5753899 DOI: 10.5056/jnm17137] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that long-term stress facilitates visceral pain through sensitization of pain pathways and promotes chronic visceral pain disorders such as the irritable bowel syndrome (IBS). This review will describe the importance of stress in exacerbating IBS-induced abdominal pain. Additionally, we will briefly review our understanding of the activation of the hypothalamic-pituitary-adrenal axis by both chronic adult stress and following early life stress in the pathogenesis of IBS. The review will focus on the glucocorticoid receptor and corticotropin-releasing hormone-mediated mechanisms in the amygdala involved in stress-induced visceral hypersensitivity. One potential mechanism underlying persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in stress-induced visceral nociception, alterations in DNA methylation and histone acetylation patterns within the brain, have been linked to alterations in nociceptive signaling via increased expression of pro-nociceptive neurotransmitters. This review will discuss the latest studies investigating the long-term effects of stress on visceral sensitivity. Additionally, we will critically review the importance of experimental models of adult stress and early life stress in enhancing our understanding of the basic molecular mechanisms of nociceptive processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
| | - Anthony C Johnson
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
| |
Collapse
|
29
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
30
|
Amygdala-mediated mechanisms regulate visceral hypersensitivity in adult females following early life stress: importance of the glucocorticoid receptor and corticotropin-releasing factor. Pain 2017; 158:296-305. [PMID: 27849648 DOI: 10.1097/j.pain.0000000000000759] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alterations in amygdala activity are apparent in women who report a history of early life stress (ELS) and those diagnosed with chronic pain disorders. Chronic stress in adulthood induces visceral hypersensitivity by alterations in glucocorticoid receptor (GR) and corticotropin-releasing factor (CRF) expression within the central amygdala (CeA). Here, we hypothesized that unpredictable ELS, previously shown to induce visceral hypersensitivity in adult female rats, alters GR and CRF expression in the CeA. After neonatal ELS, visceral sensitivity and GR and CRF gene expression were quantified in adult female rats. After unpredictable ELS, adult female rats exhibited visceral hypersensitivity and increased expression of GR and CRF in the CeA. After predictable ELS, adult female rats demonstrated normosensitive behavioral pain responses and upregulation of GR but not CRF in the CeA. After the ELS paradigms, visceral sensitivity and gene expression within the CeA were unaffected in adult male rats. The role of GR and CRF in modulating visceral sensitivity in adult female rats after ELS was investigated using oligodeoxynucleotide sequences targeted to the CeA for knockdown of GR or CRF. Knockdown of GR increased visceral sensitivity in all rats but revealed an exaggerated visceral hypersensitivity in females with a history of predictable or unpredictable ELS compared with that of controls. Knockdown of CRF expression or antagonism of CRF1R in the CeA attenuated visceral hypersensitivity after unpredictable ELS. This study highlights a shift in GR and CRF regulation within the CeA after ELS that underlies the development of visceral hypersensitivity in adulthood.
Collapse
|
31
|
Abstract
Epidemiological studies indicate sex-related differences among functional gastrointestinal disorders (FGIDs) wherein females are more likely to receive a diagnosis than their male counterparts. However, the mechanism by which females exhibit an increased vulnerability for development of these pathophysiologies remains largely unknown, and therapeutic treatments are limited. The current chapter focuses on clinical research outlining our current knowledge of factors that contribute to the female predominance among FGID patients such as the menstrual cycle and sex hormones. In addition, we will discuss progress in preclinical research, including animal models, which serve as valuable tools for the investigation of the development and long term manifestation of symptoms observed within the patient population. Although much progress has been made, additional longitudinal studies in both clinical and preclinical research are necessary to identify more specific mechanisms underlying sex-related differences in FGIDs as well as targets for improved therapeutic approaches.
Collapse
|
32
|
Deng C, Gu YJ, Zhang H, Zhang J. Estrogen affects neuropathic pain through upregulating N-methyl-D-aspartate acid receptor 1 expression in the dorsal root ganglion of rats. Neural Regen Res 2017; 12:464-469. [PMID: 28469663 PMCID: PMC5399726 DOI: 10.4103/1673-5374.202925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Estrogen affects the generation and transmission of neuropathic pain, but the specific regulatory mechanism is still unclear. Activation of the N-methyl-D-aspartate acid receptor 1 (NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia. The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain. A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats. These rats were then subcutaneously injected with 17β-estradiol, the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP-5), or both once daily for 15 days. Compared with injured drug naïve rats, rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency, indicating increased sensitivity to mechanical and thermal pain. Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity (as assessed by immunohistochemistry) and protein (as determined by western blot assay) in spinal dorsal root ganglia. This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5, whereas AP-5 alone did not affect NMDAR1 expression. These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve, and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.
Collapse
Affiliation(s)
- Chao Deng
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ya-Juan Gu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Hong Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun Zhang
- Department of Genetics, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
33
|
Norcini M, Sideris A, Adler SM, Hernandez LAM, Zhang J, Blanck TJJ, Recio-Pinto E. NR2B Expression in Rat DRG Is Differentially Regulated Following Peripheral Nerve Injuries That Lead to Transient or Sustained Stimuli-Evoked Hypersensitivity. Front Mol Neurosci 2016; 9:100. [PMID: 27803647 PMCID: PMC5068091 DOI: 10.3389/fnmol.2016.00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022] Open
Abstract
Following injury, primary sensory neurons undergo changes that drive central sensitization and contribute to the maintenance of persistent hypersensitivity. NR2B expression in the dorsal root ganglia (DRG) has not been previously examined in neuropathic pain models. Here, we investigated if changes in NR2B expression within the DRG are associated with hypersensitivities that result from peripheral nerve injuries. This was done by comparing the NR2B expression in the DRG derived from two modalities of the spared nerve injury (SNI) model, since each variant produces different neuropathic pain phenotypes. Using the electronic von Frey to stimulate the spared and non-spared regions of the hindpaws, we demonstrated that sural-SNI animals develop sustained neuropathic pain in both regions while the tibial-SNI animals recover. NR2B expression was measured at Day 23 and Day 86 post-injury. At Day 23 and 86 post-injury, sural-SNI animals display strong hypersensitivity, whereas tibial-SNI animals display 50 and 100% recovery from post-injury-induced hypersensitivity, respectively. In tibial-SNI at Day 86, but not at Day 23 the perinuclear region of the neuronal somata displayed an increase in NR2B protein. This retention of NR2B protein within the perinuclear region, which will render them non-functional, correlates with the recovery observed in tibial-SNI. In sural-SNI at Day 86, DRG displayed an increase in NR2B mRNA which correlates with the development of sustained hypersensitivity in this model. The increase in NR2B mRNA was not associated with an increase in NR2B protein within the neuronal somata. The latter may result from a decrease in kinesin Kif17, since Kif17 mediates NR2B transport to the soma’s plasma membrane. In both SNIs, microglia/macrophages showed a transient increase in NR2B protein detected at Day 23 but not at Day 86, which correlates with the initial post-injury induced hypersensitivity in both SNIs. In tibial-SNI at Day 86, but not at Day 23, satellite glia cells (SGCs) displayed an increase in NR2B protein. This study is the first to characterize of cell-specific changes in NR2B expression within the DRG following peripheral nerve injury. We discuss how the observed NR2B changes in DRG can contribute to the different neuropathic pain phenotypes displayed by each SNI variant.
Collapse
Affiliation(s)
- Monica Norcini
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Alexandra Sideris
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Samantha M Adler
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Lourdes A M Hernandez
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Jin Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Thomas J J Blanck
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New YorkNY, USA; Department of Neuroscience and Physiology, NYU Langone Medical Center, New York University, New YorkNY, USA
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New YorkNY, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University, New YorkNY, USA
| |
Collapse
|
34
|
Knuesel C, Oulevey-Meier M, Flogerzi B, Krayer M, Gschossmann I, Miller J, Tovar L, Janko S, Gschossmann JM. Effect of estrogen on visceral sensory function in a non-inflammatory colonic hypersensitivity rat model. Neurogastroenterol Motil 2016; 28:1570-9. [PMID: 27230266 DOI: 10.1111/nmo.12857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 04/18/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Increased prevalence of functional gastrointestinal disorders in women and perimenstrually accentuated symptoms imply that sexual hormones play a crucial role in the pathogenesis of such syndromes. The aim of this study was to analyze the selective effect of estrogen on visceral sensitivity in gonadectomized female and male Lewis rats with or without prior treatment with butyrate enemas. METHODS Following ovariectomy (OVX) or orchiectomy (ORX) estradiol pellets (E2-P) or sham pellets (Sham-P) were implanted. After treatment with butyrate (BUT) or saline (NaCl) enemas, colorectal distensions (CRD) were performed and the visceromotor reflex (VMR) to CRD was measured by electromyography. KEY RESULTS Gender did not influence VMR to CRD in gonadectomized animals. VMR in E2-P animals compared to Sham-P animals was increased (635 ± 32 μVs vs 470 ± 39 μVs; p = 0.002). Overall, instillation of butyrate enemas did not influence VMR to CRD. A comparison of CRD clusters showed that butyrate enemas in the E2-P animals resulted in a significant sensitization in both OVX and ORX animals. In female rats, sensitization was also caused by estrogen substitution alone. CONCLUSION & INFERENCES In our animal model, estrogen is a strong factor for an increase in visceral sensory function. Surprisingly, the treatment with butyrate alone did not evoke a general rise in VMR to CRD. Rats treated with butyrate enemas and under selective estrogen substitution developed visceral sensitization during the series of CRDs.
Collapse
Affiliation(s)
- C Knuesel
- Department of Visceral Surgery and Medicine, Inselspital/University of Berne, Berne, Switzerland.,Department of Clinical Research, Inselspital/University of Berne, Berne, Switzerland
| | - M Oulevey-Meier
- Department of Visceral Surgery and Medicine, Inselspital/University of Berne, Berne, Switzerland.,Department of Clinical Research, Inselspital/University of Berne, Berne, Switzerland
| | - B Flogerzi
- Department of Visceral Surgery and Medicine, Inselspital/University of Berne, Berne, Switzerland.,Department of Clinical Research, Inselspital/University of Berne, Berne, Switzerland
| | - M Krayer
- Department of Visceral Surgery and Medicine, Inselspital/University of Berne, Berne, Switzerland.,Department of Clinical Research, Inselspital/University of Berne, Berne, Switzerland
| | - I Gschossmann
- Department of Visceral Surgery and Medicine, Inselspital/University of Berne, Berne, Switzerland.,Department of Clinical Research, Inselspital/University of Berne, Berne, Switzerland
| | - J Miller
- Department of Visceral Surgery and Medicine, Inselspital/University of Berne, Berne, Switzerland.,Department of Clinical Research, Inselspital/University of Berne, Berne, Switzerland
| | - L Tovar
- Department of Visceral Surgery and Medicine, Inselspital/University of Berne, Berne, Switzerland.,Department of Clinical Research, Inselspital/University of Berne, Berne, Switzerland
| | - S Janko
- Department of Statistics and Econometry, University of Bamberg, Bamberg, Germany
| | - J M Gschossmann
- Department of Visceral Surgery and Medicine, Inselspital/University of Berne, Berne, Switzerland. .,Department of Clinical Research, Inselspital/University of Berne, Berne, Switzerland.
| |
Collapse
|
35
|
Sajjad J, Felice VD, Golubeva AV, Cryan JF, O’Mahony SM. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle. Neuroscience 2016; 333:311-9. [DOI: 10.1016/j.neuroscience.2016.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
|
36
|
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry 2016; 6:e888. [PMID: 27622932 PMCID: PMC5048206 DOI: 10.1038/tp.2016.168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Collapse
Affiliation(s)
- K N Dodds
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - E A H Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - S F Evans
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Pelvic Pain SA, Norwood, SA, Australia
| | - P M Grace
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
37
|
Prusator DK, Andrews A, Greenwood-Van Meerveld B. Neurobiology of early life stress and visceral pain: translational relevance from animal models to patient care. Neurogastroenterol Motil 2016; 28:1290-305. [PMID: 27251368 DOI: 10.1111/nmo.12862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epidemiological studies show that females are twice as likely to receive a diagnosis of irritable bowel syndrome (IBS) than their male counterparts. Despite evidence pointing to a role for sex hormones in the onset or exacerbation of IBS symptoms, the mechanism by which ovarian hormones may predispose women to develop IBS remains largely undefined. On the other hand, there is a growing body of research showing a correlation between reports of early life stress (ELS) and the diagnosis of IBS. Current treatments available for IBS patients target symptom relief including abdominal pain and alterations in bowel habits, but are not directed to the etiology of the disease. PURPOSE To better understand the mechanisms by which sex hormones and ELS contribute to IBS, animal models have been developed to mirror complex human experiences allowing for longitudinal studies that investigate the lifelong consequences of ELS. These preclinical models have been successful in recapitulating ELS-induced visceral pain. Moreover, in female rats the influence of cycling hormones on visceral hypersensitivity resembles that seen in women with IBS. Such studies suggest that rodent models of ELS may serve as pivotal tools in determining (i) the etiology of IBS, (ii) novel future treatments for IBS, and (iii) improving individualized patient care. The current review aims to shed light on the progress and the challenges observed by clinicians within the field of gastroenterology and the preclinical science aimed at addressing those challenges in an effort to understand and more efficiently treat functional gastrointestinal disorders (FGIDs) in both children and adults.
Collapse
Affiliation(s)
- D K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - A Andrews
- Section of Pediatric Gastroenterology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
38
|
Cao DY, Bai G, Ji Y, Karpowicz JM, Traub RJ. EXPRESS: Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats. Mol Pain 2016; 12:1744806916660722. [PMID: 27385724 PMCID: PMC4956148 DOI: 10.1177/1744806916660722] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stressinduced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome.
Collapse
Affiliation(s)
| | - Guang Bai
- University of Maryland School of Dentistry
| | - Yaping Ji
- University of Maryland School of Dentistry
| | - Jane M Karpowicz
- University of Maryland School of DentistryUniversity of Maryland School of DentistryUniversity of Maryland School of Dentistry
| | - Richard J Traub
- University of Maryland School of DentistryUniversity of Maryland School of DentistryUniversity of Maryland School of Dentistry
| |
Collapse
|
39
|
Hormonal and Clinical Predictors for Post–egg Retrieval Pain in Women Undergoing Assisted Reproductive Technology Procedures. Clin J Pain 2016; 32:313-20. [DOI: 10.1097/ajp.0000000000000251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Cao DY, Bai G, Ji Y, Traub RJ. Epigenetic upregulation of metabotropic glutamate receptor 2 in the spinal cord attenuates oestrogen-induced visceral hypersensitivity. Gut 2015; 64:1913-20. [PMID: 25378524 PMCID: PMC4562903 DOI: 10.1136/gutjnl-2014-307748] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/16/2014] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Epigenetic mechanisms are potential targets to relieve somatic pain. However, little is known whether epigenetic regulation interferes with visceral pain. Previous studies show that oestrogen facilitates visceral pain. This study aimed to determine whether histone hyperacetylation in the spinal cord could attenuate oestrogen-facilitated visceral pain. DESIGN The effect of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) on the magnitude of the visceromotor response (VMR) to colorectal distention was examined in ovariectomised rats with/without oestrogen replacement. An additional interaction with the metabotropic glutamate receptor 2/3 (mGluR2/3) antagonist LY341495 was tested. The levels of acetylated histone and mGluR2 mRNA and protein were analysed. The binding of acetylated H3 and oestrogen receptor α (ERα) to the GRM2 promoter was measured by chromatin immunoprecipitation coupled with qPCR. RESULTS In ovariectomised rats, 17β-estradiol (E2), but not safflower oil, increased the magnitude of the VMR to colorectal distention. SAHA attenuated the E2-facilitated VMR, but had no effect in safflower oil-treated rats. Subsequent spinal administration of LY341495 reversed the antinociceptive effect of SAHA in E2 rats. In addition, SAHA increased mGluR2 mRNA and protein in the spinal dorsal horn following E2, but not vehicle, treatment. In contrast, neither E2 nor SAHA alone altered mGluR2 mRNA. SAHA increased binding of H3K9ac and ERα to the same regions of the GRM2 promoter in E2-SAHA-treated animals. CONCLUSIONS Histone hyperacetylation in the spinal cord attenuates the pronociceptive effects of oestrogen on visceral sensitivity, suggesting that epigenetic regulation may be a potential approach to relieve visceral pain.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, UM Center to Advance Chronic Pain Research, Baltimore, Maryland, USA
| | - Guang Bai
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, UM Center to Advance Chronic Pain Research, Baltimore, Maryland, USA
| | - Yaping Ji
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, UM Center to Advance Chronic Pain Research, Baltimore, Maryland, USA
| | - Richard J Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, UM Center to Advance Chronic Pain Research, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Ji Y, Bai G, Cao DY, Traub RJ. Estradiol modulates visceral hyperalgesia by increasing thoracolumbar spinal GluN2B subunit activity in female rats. Neurogastroenterol Motil 2015; 27:775-86. [PMID: 25810326 PMCID: PMC4446246 DOI: 10.1111/nmo.12549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND We previously reported estrogen modulates spinal N-methyl-d-aspartate (NMDA) receptor processing of colorectal pain through changes in spinal GluN1 subunit phosphorylation/expression. The purpose of this study was to investigate whether spinal GluN2B containing NMDA receptors are involved in estrogen modulation of visceral pain processing. METHODS Behavioral, molecular, and immunocytochemical techniques were used to determine spinal GluN2B expression/phosphorylation and function 48 h following subcutaneous injection of estradiol (E2) or vehicle (safflower oil, Saff oil) in ovariectomized rats in the absence or presence of colonic inflammation induced by mustard oil. KEY RESULTS E2 increased the magnitude of the visceromotor response (VMR) to colorectal distention compared to Saff oil in non-inflamed rats. Intrathecal injection of the GluN2B subunit antagonist, Ro 25-6981, had no effect on the VMR in non-inflamed E2 or Saff oil rats. Colonic inflammation induced visceral hyperalgesia in E2, but not Saff oil rats. Visceral hyperalgesia in E2 rats was blocked by intrathecal GluN2B subunit selective antagonists. In inflamed rats, E2 increased GluN2B protein and gene expression in the thoracolumbar (TL), but not lumbosacral (LS), dorsal spinal cord. Immunocytochemical labeling showed a significant increase in GluN2B subunit in the superficial dorsal horn of E2 rats compared to Saff oil rats. CONCLUSIONS & INFERENCES These data support the hypothesis that estrogen increases spinal processing of colonic inflammation-induced visceral hyperalgesia by increasing NMDA receptor activity. Specifically, an increase in the activity of GluN2B containing NMDA receptors in the TL spinal cord by estrogen underlies visceral hypersensitivity in the presence of colonic inflammation.
Collapse
Affiliation(s)
- Y. Ji
- Department of Neural and Pain Sciences; University of Maryland School of Dentistry; UM Center to Advance Chronic Pain Research; Baltimore MD USA
| | - G. Bai
- Department of Neural and Pain Sciences; University of Maryland School of Dentistry; UM Center to Advance Chronic Pain Research; Baltimore MD USA
| | - D.-Y. Cao
- Department of Neural and Pain Sciences; University of Maryland School of Dentistry; UM Center to Advance Chronic Pain Research; Baltimore MD USA
| | - R. J. Traub
- Department of Neural and Pain Sciences; University of Maryland School of Dentistry; UM Center to Advance Chronic Pain Research; Baltimore MD USA
| |
Collapse
|
42
|
Naji-Esfahani H, Vaseghi G, Safaeian L, Pilehvarian AA, Abed A, Rafieian-Kopaei M. Gender differences in a mouse model of chemotherapy-induced neuropathic pain. Lab Anim 2015; 50:15-20. [DOI: 10.1177/0023677215575863] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapy-induced neuropathic pain is one of the major problems for cancer patients. Although paclitaxel and cisplatin are widely used in women, most laboratory studies of chemotherapy-induced neuropathic pain have been conducted on male animals. The current study examined the gender differences in chemotherapy-induced neuropathic pain in mice. Neuropathic pain was induced by intraperitoneal injection of paclitaxel (2 mg/kg) for five consecutive days and cisplatin (1 mg/kg) for seven consecutive days. Cold allodynia was evaluated by measuring the paw withdrawal frequency and duration of paw licking in mice; however, mechanical allodynia was assessed by von Frey filaments. Neuropathic pain began to manifest after a few days ( P < 0.001). Cold allodynia was more robust in female mice ( P < 0.001) treated with paclitaxel, while no differences were observed between the two genders in the manifestation of paclitaxel-induced mechanical allodynia. Interestingly, no gender differences were observed in cisplatin-induced cold and mechanical allodynia tests. In conclusion, gender differences play a major role in neuropathic pain induced by paclitaxel. The differences between male and female animals should be considered in future studies and the findings should be generalized to humans with caution.
Collapse
Affiliation(s)
- H Naji-Esfahani
- Applied Physiology Research Center, Department of Pharmacology, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Basic Sciences, Isfahan Payame Noor University, Isfahan, Iran
| | - G Vaseghi
- Applied Physiology Research Center, Department of Pharmacology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - L Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences, Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan, University of Medical Sciences, Isfahan, Iran
| | - A-A Pilehvarian
- Department of Basic Sciences, Isfahan Payame Noor University, Isfahan, Iran
| | - A Abed
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - M Rafieian-Kopaei
- Medical Plant Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
43
|
Meleine M, Matricon J. Gender-related differences in irritable bowel syndrome: Potential mechanisms of sex hormones. World J Gastroenterol 2014; 20:6725-6743. [PMID: 24944465 PMCID: PMC4051914 DOI: 10.3748/wjg.v20.i22.6725] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/08/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
According to epidemiological studies, twice as many women as men are affected by irritable bowel syndrome (IBS) in western countries, suggesting a role for sex hormones in IBS pathophysiology. Despite growing evidence about the implications of sex hormones in IBS symptom modulation, data on mechanisms by which they influence disease development are sparse. This review aims to determine the state of knowledge about the role of sex hormones in sensorimotor dysfunctions and to address the possible interplay of sex hormones with common risk factors associated with IBS. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, sex, gender, ovarian hormone, estradiol, progesterone, testosterone, symptoms, pain, sensitivity, motility, permeability, stress, immune system, brain activity, spinal, supraspinal, imaging. Ovarian hormones variations along the menstrual cycle affect sensorimotor gastrointestinal function in both healthy and IBS populations. They can modulate pain processing by interacting with neuromodulator systems and the emotional system responsible for visceral pain perception. These hormones can also modulate the susceptibility to stress, which is a pivotal factor in IBS occurrence and symptom severity. For instance, estrogen-dependent hyper-responsiveness to stress can promote immune activation or impairments of gut barrier function. In conclusion, whereas it is important to keep in mind that ovarian hormones cannot be considered as a causal factor of IBS, they arguably modulate IBS onset and symptomatology. However, our understanding of the underlying mechanisms remains limited and studies assessing the link between IBS symptoms and ovarian hormone levels are needed to improve our knowledge of the disease evolution with regard to gender. Further studies assessing the role of male hormones are also needed to understand fully the role of sex hormones in IBS. Finally, investigation of brain-gut interactions is critical to decipher how stress, ovarian hormones, and female brain processing of pain can translate into gut dysfunctions.
Collapse
|
44
|
An G, Li W, Yan T, Li S. Estrogen rapidly enhances incisional pain of ovariectomized rats primarily through the G protein-coupled estrogen receptor. Int J Mol Sci 2014; 15:10479-91. [PMID: 24921706 PMCID: PMC4100163 DOI: 10.3390/ijms150610479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 01/24/2023] Open
Abstract
It has become increasingly apparent that the pain threshold of females and males varies in an estrogen dependent manner. To investigate the modulation of pain by estrogen and the molecular mechanisms involved in this process. A total of 48 rats were ovariectomized (OVX). At 14 and 20 days after OVX, rats were divided into eight groups: groups 1–4 were administered drugs intravenously (IV); groups 5–8 were administered through intrathecal (IT) catheter. Hind paw incision was made in all animals to determine incisional pain. Paw withdraw threshold (PWT) was tested prior to and 24 h after incision. The test drugs were applied 24 h after the incision. Rats were either IV or IT administered with: 17-β-estradiol (E2), G protein-coupled estrogen receptor (GPER)-selective agonist (G1), GPER-selective antagonist (G15) and E2 (G15 + E2), or solvent. Before and 30 min after IV drug administration and 20 min during the IT catheter administration, PWT was tested and recorded. 24 h after incisional surgery, the PWT of all rats significantly decreased. Both in the IV group and IT group: administration of E2 and G1 significantly decreased PWT. Neither administration of G15 + E2 nor solvent significantly changed PWT. Estrogen causes rapid reduction in the mechanical pain threshold of OVX rats via GPER.
Collapse
Affiliation(s)
- Guanghui An
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai 200080, China.
| | - Wenhui Li
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China.
| | - Tao Yan
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai 200080, China.
| | - Shitong Li
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai 200080, China.
| |
Collapse
|
45
|
Qin B, Dong L, Guo X, Jiang J, He Y, Wang X, Li L, Zhao J. Expression of G protein-coupled estrogen receptor in irritable bowel syndrome and its clinical significance. Asian Pac J Cancer Prev 2014; 15:4733-8. [PMID: 24966932 DOI: 10.7314/apjcp.2014.15.11.4733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Estrogen is suggested to participate in pathogenesis of irritable bowel syndrome (IBS), but expression of G protein-coupled estrogen receptor (GPER) in the colon of IBS patients has never been investigated. The aim of this study was to investigate the expression of GPER and classical estrogen receptors in the colon of IBS patients and healthy controls. METHODS Colonic biopsies were obtained by endoscopy from patients with IBS (n=46) and healthy subjects (n=13). Expression of GPER, estrogen receptor α (ERα) and estrogen receptor β (ERβ) in mast cells were measured by double-labelling immunofluorescence. Quantification of mRNA expression was performed for GPER, ERα and ERβ by real-time polymerase chain reaction. RESULTS Differential distribution of GPER, ERα and ERβ were detected in human colonic mucosa. The expression of GPER in the cytoplasm of mast cells and GPER-positive cells was significantly higher in diarrhea-predominant IBS (D-IBS) patients than that in constipation-predominant IBS (C-IBS, P<0.001) patients and healthy subjects (P=0.005). ERα and ERβ were not detected in majority of mast cells in colonic mucosa and no difference of immunostaining results for ERα and ERβ was found among these three groups. A positive correlation (r=0.451, P=0.011) between GPER-positive cell counts and abdominal pain severity was observed in D-IBS group. Relative mRNA expression of GPER in D-IBS was also higher than that in C-IBS (P=0.018) and healthy subjects (P=0.011). CONCLUSIONS The present study, for the first time, demonstrated the expression of GPER in human colonic mucosa and its correlation with abdominal pain severity.
Collapse
Affiliation(s)
- Bin Qin
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Lei Dong
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Xiaoyan Guo
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Jiong Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Yangxin He
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Lu Li
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Juhui Zhao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| |
Collapse
|
46
|
Aloisi AM, Sorda G. Relationship of female sex hormones with pain perception: focus on estrogens. Pain Manag 2014; 1:229-38. [PMID: 24646389 DOI: 10.2217/pmt.11.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The role of gonadal hormones has slowly gathered the right attention in the study of chronic pain mechanisms. The clear presence of sex differences in chronic pain and the number of studies showing the power of gonadal hormones to modify pain-induced behavioral responses appear to have convinced clinicians and researchers. Indeed, available data strongly indicate that more studies on gonadal hormones would certainly enhance the possibility of greatly increasing the knowledge of pain mechanisms and, thus, treatments. In the present article, old and new literature are summarized to evaluate data on pain and its modulation by gonadal hormones, particularly estrogens. Peripheral and central targets of these hormones are discussed with the aim of renewing interest in important aspects of estrogenic functions and their interactions with pain processes.
Collapse
Affiliation(s)
- Anna Maria Aloisi
- San Carlo Clinic, via dell'Ospedale 21, Paderno Dugnano Milano, Italy; Neurophysiology of Stress & Pain Laboratory, Department of Physiology, Polo Scientifico San Miniato, Via Aldo Moro 2, 53100 Siena, Italy
| | | |
Collapse
|
47
|
Nag S, Mokha SS. Activation of a Gq-coupled membrane estrogen receptor rapidly attenuates α2-adrenoceptor-induced antinociception via an ERK I/II-dependent, non-genomic mechanism in the female rat. Neuroscience 2014; 267:122-34. [PMID: 24613724 DOI: 10.1016/j.neuroscience.2014.02.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 01/04/2023]
Abstract
Though sex differences in pain and analgesia are known, underlying mechanisms remain elusive. This study addresses the selective contribution of membrane estrogen receptors (mERs) and mER-initiated non-genomic signaling mechanisms in our previously reported estrogen-induced attenuation of α2-adrenoceptor-mediated antinociception. By selectively targeting spinal mERs in ovariectomized female rats using β-estradiol 6-(O-carboxy-methyl)oxime bovine serum albumin (E2BSA) (membrane impermeant estradiol analog), and ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), G-protein-coupled estrogen receptor 30 (GPR30) agonist G1 and Gq-coupled mER (Gq-mER) agonist STX, we provide strong evidence that Gq-mER activation may solely contribute to suppressing clonidine (an α2-adrenoceptor agonist)-induced antinociception, using the nociceptive tail-flick test. Increased tail-flick latencies (TFLs) by intrathecal (i.t.) clonidine were not significantly altered by i.t. PPT, DPN, or G1. In contrast, E2BSA or STX rapidly and dose-dependently attenuated clonidine-induced increase in TFL. ICI 182,780, the ER antagonist, blocked this effect. Consistent with findings with the lack of effect of ERα and ERβ agonists that modulate receptor-regulated transcription, inhibition of de novo protein synthesis using anisomycin also failed to alter the effect of E2BSA or STX, arguing against a contribution of genomic mechanisms. Immunoblotting of spinal tissue revealed that mER activation increased levels of phosphorylated extracellular signal-regulated kinase (ERK) but not of protein kinase A (PKA) or C (PKC). In vivo inhibition of ERK with U0126 blocked the effect of STX and restored clonidine antinociception. Although estrogen-induced delayed genomic mechanisms may still exist, data presented here indicate that Gq-mER may solely mediate estradiol-induced attenuation of clonidine antinociception via a rapid, reversible, and ERK-dependent, non-genomic mechanism, suggesting that Gq-mER blockade might provide improved analgesia in females.
Collapse
Affiliation(s)
- S Nag
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States.
| | - S S Mokha
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States
| |
Collapse
|
48
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
49
|
Chauvel V, Schoenen J, Multon S. Influence of ovarian hormones on cortical spreading depression and its suppression by L-kynurenine in rat. PLoS One 2013; 8:e82279. [PMID: 24340013 PMCID: PMC3858280 DOI: 10.1371/journal.pone.0082279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/21/2013] [Indexed: 01/30/2023] Open
Abstract
Migraine is sexually dimorphic and associated in 20-30% of patients with an aura most likely caused by cortical spreading depression (CSD). We have previously shown that systemic L-kynurenine (L-KYN), the precursor of kynurenic acid, suppresses CSD and that this effect depends on the stage of the estrous cycle in female rats. The objectives here are to determine the influence of ovarian hormones on KCl-induced CSD and its suppression after L-KYN by directly modulating estradiol or progesterone levels in ovariectomized rats. Adult female rats were ovariectomized and subcutaneously implanted with silastic capsules filled with progesterone or 17β-estradiol mixed with cholesterol, with cholesterol only or left empty. Two weeks after the ovariectomy/capsule implantation, the animals received an i.p. injection of L-KYN (300 mg/kg) or NaCl as control. Thirty minutes later CSDs were elicited by applying KCl over the occipital cortex and recorded by DC electrocorticogram for 1 hour. The results show that both estradiol and progesterone increase CSD frequency after ovariectomy. The suppressive effect of L-KYN on CSD frequency, previously reported in normal cycling females, is not found anymore after ovariectomy, but reappears after progesterone replacement therapy. Taken together, these results emphasize the complex role of sex hormones on cortical excitability. The CSD increase by estradiol and, more surprisingly, progesterone may explain why clinically migraine with aura appears or worsens during pregnancy or with combined hormonal treatments.
Collapse
Affiliation(s)
- Virginie Chauvel
- Cephalic Pain Unit of GIGA-Neurosciences, Liège University, Liège, Belgium
| | - Jean Schoenen
- Cephalic Pain Unit of GIGA-Neurosciences, Liège University, Liège, Belgium
- Headache Research Unit, Dept. of Neurology, Liège University, CHR Citadelle, Liège, Belgium
| | - Sylvie Multon
- Cephalic Pain Unit of GIGA-Neurosciences, Liège University, Liège, Belgium
| |
Collapse
|
50
|
GABAergic influence on temporomandibular joint-responsive spinomedullary neurons depends on estrogen status. Neuroscience 2013; 259:53-62. [PMID: 24316475 DOI: 10.1016/j.neuroscience.2013.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
Sensory input from the temporomandibular joint (TMJ) to neurons in superficial laminae at the spinomedullary (Vc/C1-2) region is strongly influenced by estrogen status. This study determined if GABAergic mechanisms play a role in estrogen modulation of TMJ nociceptive processing in ovariectomized female rats treated with high- (HE) or low-dose (LE) estradiol (E2) for 2days. Superficial laminae neurons were activated by ATP (1mM) injections into the joint space. The selective GABAA receptor antagonist, bicuculline methiodide (BMI, 5 or 50μM, 30μl), applied at the site of recording greatly enhanced the magnitude and duration of ATP-evoked responses in LE rats, but not in units from HE rats. The convergent cutaneous receptive field (RF) area of TMJ neurons was enlarged after BMI in LE but not HE rats, while resting discharge rates were increased after BMI independent of estrogen status. By contrast, the selective GABAA receptor agonist, muscimol (50μM, 30μl), significantly reduced the magnitude and duration of ATP-evoked activity, resting discharge rate, and cutaneous RF area of TMJ neurons in LE and HE rats, whereas lower doses (5μM) affected only units from LE rats. Protein levels of GABAA receptor β3 isoform at the Vc/C1-2 region were similar for HE and LE rats. These results suggest that GABAergic mechanisms contribute significantly to background discharge rates and TMJ-evoked input to superficial laminae neurons at the Vc/C1-2 region. Estrogen status may gate the magnitude of GABAergic influence on TMJ neurons at the earliest stages of nociceptive processing at the spinomedullary region.
Collapse
|