1
|
Li Z, Jing S, Wang D, Song Z, An B, Wang S, Liu F, Di N, Aradottir GI, Sun J, Tan X, Qu C, Kang Z. Plant Volatile Methyl Salicylate Primes Wheat Defense Against the Grain Aphid by Altering the Synthesis of Defense Metabolites. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39740205 DOI: 10.1111/pce.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Wheat (Triticum aestivum L.) is one of the most important staple crops all over the world. Its productivity is adversely affected by aphid infestation. Plant volatiles play a critical role in plant communication, inducing direct and indirect defenses against insect pests. However, little is known about the priming mechanism of key volatiles in wheat. To determine whether and how plant volatile induced defense priming in wheat against the grain aphid Sitobion avenae, a combination of insect bioassays, phytohormone and defense metabolite quantification, and transcriptome analyses were performed using an important aphid damage-induced plant volatile, methyl salicylate (MeSA). MeSA treatment primed wheat for enhanced accumulation of salicylic acid, flavonoid and benzoxazinoids (BXs), and increased resistance to S. avenae and attractiveness to an aphid parasitoid Aphelinus asychis. Supplementation with a BX (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one) and two flavonoids (xanthohumol and isobavachalcone) in artificial diet impaired the survival, development and fecundity of S. avenae. Moreover, MeSA treatment induced wheat volatile emission especially MeSA. Functional investigation of odorant-binding proteins (OBPs) in A. asychis revealed that AasyOBP4 is responsible for the recognition of MeSA. Taken together, our results provide insights into the molecular mechanism of MeSA-mediated defense in wheat and propose MeSA as a phytoprotectant for crop protection and sustainable agriculture.
Collapse
Affiliation(s)
- Zhenxiang Li
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shizhao Jing
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zichao Song
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Boyang An
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Saige Wang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Fanghua Liu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ning Di
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xiaoling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhiwei Kang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
2
|
Wang P, Zeng Q, Zhao Y, Sun X, Han Y, Zeng R, Song Y, Chen D, Lin Y. Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of Spodoptera frugiperda and S. litura. PLANTS (BASEL, SWITZERLAND) 2024; 14:57. [PMID: 39795317 PMCID: PMC11723000 DOI: 10.3390/plants14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests Spodoptera frugiperda and S. litura to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize (Zea mays). Larval exposure of the invasive alien species S. frugiperda to maize HIPVs significantly enhanced their tolerance to all three of the well-known defensive compounds 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), chlorogenic acid, and tannic acid in maize and the two commonly used insecticides methomyl and chlorpyrifos. HIPV exposure also improved the larval tolerance of S. litura third instars to chlorogenic and tannic acids. Furthermore, larval exposure to either maize HIPVs or DIMBOA induced the activities of cytochrome P450 enzymes (P450s), glutathione-s-transferase (GST), and carboxylesterase (CarE) in the midguts and fat bodies of the two insects, while the induction was significantly higher by the two components together. In addition, the expression of four genes encoding uridine diphosphate (UDP)-glycosyltransferases (UGT33F28, UGT40L8) and P450s (CYP4d8, CYP4V2) showed similar induction patterns in S. frugiperda. Cis-3-hexen-1-ol, an important component in maize HIPVs, also showed the same functions as maize HIPVs, and its exposure increased larval xenobiotic tolerance and induced the detoxification enzymes and gene expression. Our findings demonstrate that HIPVs released by the pest-infested host plants are conductive to the xenobiotic tolerance of lepidopteran insect larvae. Hijacking the host plant HIPVs is an important strategy of the invasive alien polyphagous lepidopteran pest to counter-defend against the host plant's chemical defense.
Collapse
Affiliation(s)
- Peng Wang
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiyue Zeng
- College of Science, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Yi Zhao
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Sun
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongqiang Han
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China;
| | - Rensen Zeng
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Chen
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Lin
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Alam A, Abbas S, Waheed N, Abbas A, Weibo Q, Huang J, Khan KA, Ghramh HA, Ali J, Zhao CR. Genetic Warfare: The Plant Genome's Role in Fending Off Insect Invaders. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70021. [PMID: 39726337 DOI: 10.1002/arch.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction. In contrast, indirect defenses do not affect insects directly but instead suppress them by releasing volatile compounds that attract the natural enemies of herbivores. Insects overcome plant defenses by deactivating biochemical defenses, suppressing defense signaling through effectors, and altering their behavior through chemical regulation. There is always a genetic war between plants and insects. In this genetic war, plant-insect co-evolution act as both weapons and messengers. Because plants always look for new strategies to avoid insects by developing adaptation. There are molecular processes that regulate the interaction between plants and insect. Here, we examine the genes and proteins involved in plant-insect interactions and explore how their discovery has shaped the current model of the plant genome's role. Plants detect damage-associated and herbivore-associated molecular patterns through receptors, which trigger early signaling pathways involving Ca2+, reactive oxygen species, and MAP kinases. The specific defense mechanisms are activated through gene signaling pathways, including phytohormones, secondary metabolites, and transcription factors. Expanding plant genome approaches to unexplored dimensions in fending off insects should be a future priority in order to develop management strategies.
Collapse
Affiliation(s)
- Aleena Alam
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sohail Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Noman Waheed
- College of Animal Sciences and Technology, Jilin Agricultural University, Changchun, PR China
| | - Arzlan Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Qin Weibo
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jingxuan Huang
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Khalid Ali Khan
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jamin Ali
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Chen Ri Zhao
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
4
|
Laupheimer S, Ghirardo A, Kurzweil L, Weber B, Stark TD, Dawid C, Schnitzler J, Hückelhoven R. Blumeria hordei affects volatile emission of susceptible and resistant barley plants and modifies the defense response of recipient plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14646. [PMID: 39648862 PMCID: PMC11626344 DOI: 10.1111/ppl.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
The barley powdery mildew disease caused by the biotrophic fungus Blumeria hordei (Bh) poses enormous risks to crop production due to yield and quality losses. Plants and fungi can produce and release volatile organic compounds (VOCs) that serve as signals in plant communication and defense response to protect themselves. The present study aims to identify VOCs released by barley (Hordeum vulgare) during Bh-infection and to decipher VOC-induced disease resistance in receiver plants. VOC profiles of susceptible MLO wild type (MLO WT) and a resistant near-isogenic backcross line (mlo5) were characterized over time (one day or three days after Bh inoculation) using TD-GC/MS. Comparative analysis revealed genotype-dependent VOC profiles and significant differences in emission rates for β-caryophyllene, linalool, (Z)-3-hexenol, and methyl salicylate. Furthermore, susceptible barley plants were exposed to the complex VOC bouquet of MLO WT or mlo5 sender plants in plant-to-plant communication. We found that VOC-induced resistance in receiver plants depended on the sender genotype in a Bh susceptibility assay. Additionally, untargeted metabolomics and gene expression studies provide evidence toward an SA-dependent pathway mediating VOC-induced resistance against powdery mildew. The exogenous application of methyl salicylate resulted in the enhanced expression of the BARLEY CHEMICALLY INDUCED-4 marker gene and induced resistance in receiver plants. The findings suggest genotype-dependent alterations in barley VOC profiles during biotrophic plant-fungus interactions and show a VOC-mediated resistance that shares components with salicylic acid-related pathways. The VOC signals identified here could serve as non-invasive markers for disease progression in barley-powdery mildew interactions and as signals for resistance induction in recipient plants.
Collapse
Affiliation(s)
- Silvana Laupheimer
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Lisa Kurzweil
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Baris Weber
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Corinna Dawid
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Jörg‐Peter Schnitzler
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
5
|
Araújo FDDS, Molano EPL, Cabrera OG, Fidelis CHDV, Pereira GAG, Eberlin MN. Volatile Organic Compounds from Ceratocystis cacaofunesta, a Causal Agent of Ceratocystis Wilt of Cacao. J Chem Ecol 2024; 50:807-814. [PMID: 39190193 DOI: 10.1007/s10886-024-01542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Fungi of the genus Ceratocystis are aggressive tree pathogens that cause serious diseases in several crops around the world. Ceratocystis wilt disease caused by C. cacaofunesta has been shown to be responsible for severe reductions in cacao production. In this study, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used in combination with chemometric analysis for monitoring volatile organic compounds (VOCs) released from C. cacaofunesta. Low-molecular-weight esters, alcohols, ketones, and sulphur compounds were identified in the liquid broth. Monitoring the volatile profile over five days of fungal growth revealed that the concentrations of alcohol and esters were inversely proportional. Acetate esters were responsible for the intense fruity aroma of the C. cacaofunesta culture produced within the first hours after fungal inoculation, which decreased over time, and are likely associated with the attraction of insect vectors to maintain the life cycle of the pathogen. PCA revealed that 3-methylbutyl acetate was the metabolite with the highest factor loading for the separation of the VOC samples after 4 h of fungal growth, whereas ethanol and 3-methylbutan-1-ol had the highest factor loadings after 96 and 120 h. 3-Methylbutan-1-ol is a phytotoxic compound that is likely associated with host cell death since C. cacaofunesta is a necrotrophic fungus. Fungal VOCs play important roles in natural habitats, regulating developmental processes and intra- and interkingdom interactions. This is the first report on the volatiles released by C. cacaofunesta.
Collapse
Affiliation(s)
- Francisca Diana da Silva Araújo
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, POB 6154, Campinas, SP, 13084-970, Brazil.
- Federal University of Piauí, Campus Professora Cinobelina Elvas, Bom Jesus, PI, 64900-000, Brazil.
| | - Eddy Patricia Lopez Molano
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Biology Institute, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Odalys García Cabrera
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Biology Institute, University of Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Gonçalo Amarante Guimarães Pereira
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Biology Institute, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, POB 6154, Campinas, SP, 13084-970, Brazil
| |
Collapse
|
6
|
Yang F, Huang T, Tong H, Shi X, Zhang R, Gu W, Li Y, Han P, Zhang X, Yang Y, Zhou Z, Wu Q, Zhang Y, Su Q. Herbivore-induced volatiles reduce the susceptibility of neighboring tomato plants to transmission of a whitefly-borne begomovirus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6663-6675. [PMID: 39126232 DOI: 10.1093/jxb/erae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Plant viruses exist in a broader ecological community that includes non-vector herbivores that can impact vector abundance, behavior, and virus transmission within shared host plants. However, little is known about the effects of non-vector herbivore infestation on virus transmission by vector insects on neighboring plants through inter-plant airborne chemicals. In this study, we investigated how volatiles emitted from tomato plants infested with the two-spotted spider mite (Tetranychus urticae) affect the infection of neighboring plants by tomato yellow leaf curl virus (TYLCV) transmitted by whitefly (Bemisia tabaci). Exposure of neighboring tomato plants to volatiles released from T. urticae-infested tomato plants reduced subsequent herbivory as well as TYLCV transmission and infection, and the jasmonic acid signaling pathway was essential for generation of the inter-plant defense signals. We also demonstrated that (E)-β-ocimene and methyl salicylic acid were two volatiles induced by T. urticae that synergistically attenuated TYLCV transmission and infection in tomato. Thus, our findings suggest that plant-plant communication via volatiles likely represents a widespread defensive mechanism that substantially contributes to plant fitness. Understanding such phenomena may help us to predict the occurrence and epidemics of multiple herbivores and viruses in agroecosystems, and ultimately to manage pest and virus outbreaks.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Tianyu Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xiaobin Shi
- Yuelushan Laboratory, Changsha, Hunan 410125, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weina Gu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Peng Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
| | - Xiaoming Zhang
- College of Plant Protection, Yunnan Agricultural University, National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, Kunming 650201, China
| | - Yuting Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Zhixiong Zhou
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
7
|
Zhou X, Zhang J, Shi J, Khashi U Rahman M, Liu H, Wei Z, Wu F, Dini-Andreote F. Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation. MICROBIOME 2024; 12:207. [PMID: 39428455 PMCID: PMC11492557 DOI: 10.1186/s40168-024-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) released by plants can act as signaling molecules mediating ecological interactions. Therefore, the study of VOCs mediated intra- and interspecific interactions with downstream plant physiological responses is critical to advance our understanding of mechanisms underlying information exchange in plants. Here, we investigated how plant-emitted VOCs affect the performance of an interspecific neighboring plant via induced shifts in root exudate chemistry with implications for root-associated microbiota recruitment. RESULTS First, we showed that VOCs emitted by potato-onion plants stimulate the growth of adjacent tomato plants. Then, we demonstrated that this positive effect on tomato biomass was attributed to shifts in the tomato rhizosphere microbiota. Specifically, we found potato-onion VOCs to indirectly affect the recruitment of specific bacteria (e.g., Pseudomonas and Bacillus spp.) in the tomato rhizosphere. Second, we identified and validated the compound dipropyl disulfide as the active molecule within the blend of potato-onion VOCs mediating this interspecific plant communication. Third, we showed that the effect on the tomato rhizosphere microbiota occurs via induced changes in root exudates of tomato plants caused by exposure to dipropyl disulfide. Last, Pseudomonas and Bacillus spp. bacteria enriched in the tomato rhizosphere were shown to have plant growth-promoting activities. CONCLUSIONS Potato-onion VOCs-specifically dipropyl disulfide-can induce shifts in the root exudate of adjacent tomato plants, which results in the recruitment of plant-beneficial bacteria in the rhizosphere. Taken together, this study elucidated a new mechanism of interspecific plant interaction mediated by VOCs resulting in alterations in the rhizosphere microbiota with beneficial outcomes for plant performance. Video Abstract.
Collapse
Affiliation(s)
- Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Jibo Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Muhammad Khashi U Rahman
- Department of Microbiology and Genetics and Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, 37007, Spain
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Wang A, Tang H, Sun J, Wang L, Rasmann S, Ruan W, Wei X. Entomopathogenic Nematodes-Killed Insect Cadavers in the Rhizosphere Activate Plant Direct and Indirect Defences Aboveground. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39370758 DOI: 10.1111/pce.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Plants can perceive and respond to external stimuli by activating both direct and indirect defences against herbivores. Soil-dwelling entomopathogenic nematodes (EPNs), natural enemies of root-feeding herbivores, carry symbiotic bacteria that grow and reproduce once inside arthropod hosts. We hypothesized that the metabolites produced by EPN-infected insect cadavers could be perceived by plants, thereby activating plant defences systemically. We tested this hypothesis by adding three EPN-infected Galleria mellonella cadavers to maize plants and testing plant responses against a major maize pest (Spodoptera frugiperda) and one of its parasitoids (Trichogramma dendrolimi). We found that S. frugiperda females deposited fewer, and caterpillars fed less on maize plants growing near EPN-infected cadavers than on control plants. Accordingly, EPN-infected cadavers triggered the systemic accumulation of defence hormones (SA), genes (PR1), and enzymes (SOD, POD, and CAT) in maize leaves. Furthermore, four volatile organic compounds produced by plants exposed to EPN-infected cadavers deterred S. frugiperda caterpillars and female adults. However, these compounds were more attractive to T. dendrolimi parasitoids. Our study enhances the understanding of the intricate relationships within the above- and belowground ecosystems and provides crucial insights for advancing sustainable pest management strategies.
Collapse
Affiliation(s)
- Ailing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Tang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Martín-Cacheda L, Röder G, Abdala-Roberts L, Moreira X. Test of Specificity in Signalling between Potato Plants in Response to Infection by Fusarium Solani and Phytophthora Infestans. J Chem Ecol 2024; 50:562-572. [PMID: 38904862 PMCID: PMC11493820 DOI: 10.1007/s10886-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Plant-plant signalling via volatile organic compounds (VOCs) in response to insect herbivory has been widely studied, but its occurrence and specificity in response to pathogen attack has received much less attention. To fill this gap, we carried out a greenhouse experiment using two fungal pathogens (Fusarium solani and Phytophthora infestans) to test for specificity in VOC induction and signalling between potato plants (Solanum tuberosum). We paired potato plants in plastic cages, one acting as VOC emitter and the other as receiver, and subjected emitters to one of the following treatments: no infection (control), infected by F. solani, or infected by P. infestans. We measured total emission and composition of VOCs released by emitter plants to test for pathogen-specificity in VOC induction, and then conducted a pathogen infection bioassay to assess resistance levels on receiver plants by subjecting half of the receivers of each emitter treatment to F. solani infection and the other half to P. infestans infection. This allowed us to test for specificity in plant VOC signalling by comparing its effects on conspecific and heterospecific sequential infections. Results showed that infection by neither F. solani or P. infestans produced quantitative (total emissions) or qualitative (compositional) changes in VOC emissions. Mirroring these patterns, emitter infection treatment (control vs. pathogen infection) did not produce a significant change in pathogen infection levels on receiver plants in any case (i.e., either for conspecific or heterospecific sequential infections), indicating a lack of signalling effects which precluded pathogen-based specificity in signalling. We discuss possible mechanisms for lack of pathogen effects on VOC emissions and call for future work testing for pathogen specificity in plant-plant signalling and its implications for plant-pathogen interactions under ecologically relevant scenarios involving infections by multiple pathogens.
Collapse
Affiliation(s)
- Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116,, Yucatán, Itzimná, 97000. Mérida, México
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| |
Collapse
|
10
|
Karban R, Rasheed MU, Huntzinger M, Grof-Tisza P, Blande J. Alarm calls of sagebrush converge when herbivory is high. Proc Biol Sci 2024; 291:20241513. [PMID: 39288807 PMCID: PMC11407867 DOI: 10.1098/rspb.2024.1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Herbivory is a major threat to virtually all plants, so adaptations to avoid herbivory will generally be selected. One potential adaptation is the ability to 'listen in' on the volatile cues emitted by plants that are experiencing herbivory and to then respond by ramping up defences. The nature of these volatile cues is poorly understood. Sagebrush (Artemisia tridentata) plants that were exposed to cues of experimentally damaged neighbours experienced less herbivory; this induction was most effective if emitter and receiver plants had similar volatile emission profiles, termed chemotypes. Previously, we observed that sagebrush populations that were in locations with high herbivory exhibited little diversity of volatiles compared to populations with low herbivory. Several hypotheses could produce this correlation. High risk of herbivory could have selected for individuals that converged on a common 'alarm cue' that all individuals would respond to. In this case, individuals of locally rare chemotypes that were less able to eavesdrop would experience more damage than common chemotypes when herbivores were abundant. Alternatively, low chemotypic diversity could allow higher levels of damage to plants. In this case, rare chemotypes would experience less damage than common chemotypes. We examined the chemotypes of sagebrush individuals from multiple sites and found that rare chemotypes experienced more damage than common chemotypes when herbivores were abundant. This pattern was seen among sites and among years with different densities of herbivores. This result is consistent with the hypothesis that herbivory selects for individuals that are effective communicators and shapes the communication system.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology & Nematology, University of California, Davis, CA95616, USA
| | - Muhammad Usman Rasheed
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 8, Kuopio70211, Finland
| | - Mikaela Huntzinger
- Department of Entomology & Nematology, University of California, Davis, CA95616, USA
| | - Patrick Grof-Tisza
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 8, Kuopio70211, Finland
- Department of Biology, Converse University, SpartansburgSC 29302, USA
| | - James Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 8, Kuopio70211, Finland
| |
Collapse
|
11
|
He Y, Peng J, Jia N, Wang X, Ma J, Wang H, Zhang C, Wang E, Hu D, Wang Z. Up-regulation of growth-related gene expression in tobacco by volatile compounds released by Bacillus velezensis WSW007. Sci Rep 2024; 14:18087. [PMID: 39103433 PMCID: PMC11300851 DOI: 10.1038/s41598-024-68274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
In order to investigate the mechanism of plant growth promoting (PGP) effects of strain Bacillus velezensis WSW007, its PGP traits and production of volatile organic compounds (VOCs) were tested. The effects of VOCs produced by strain WSW007 on plant growth were observed by co-culturing this strain with tobacco seedlings in I-plates. Meanwhile, the effects of VOCs on tobacco gene expression were analysed by a transcriptome analysis and VOCs were identified by solid phase micro extraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) analysis. As results, strains WSW007 produced acetic acid and siderophore, and could solubilize phosphate; while it also significantly increased the fresh weight of tobacco seedlings via production of VOCs. In transcriptome analysis, plants co-cultured with strain WSW007 presented the highest up-regulated expression for the genes involved in plant growth and development processes, implying that the bacterial VOCs played a role as regulator of plant gene expression. Conclusively, the up-regulation in expression of growth- and development-related genes via VOCs production is an important PGP mechanism in strain B. velezensis WSW007.
Collapse
Affiliation(s)
- Yuxi He
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jieli Peng
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Nan Jia
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jia Ma
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Hao Wang
- College of Life Science, Northeast Agricultural University, Harbin City, Heilongjiang Province, China
| | - Cuimian Zhang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Mexico City, Mexico
| | - Dong Hu
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.
| |
Collapse
|
12
|
Niu D, Xu L, Lin K. Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds. INSECTS 2024; 15:572. [PMID: 39194777 DOI: 10.3390/insects15080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Plants communicate with insects and other organisms through the release of volatile organic compounds (VOCs). Using Boolean operators, we retrieved 1093 articles from the Web of Science and Scopus databases, selecting 406 for detailed analysis, with approximately 50% focusing on herbivore-induced plant volatiles (HIPVs). This review examines the roles of VOCs in direct and indirect plant defense mechanisms and their influence on complex communication networks within ecosystems. Our research reveals significant functions of VOCs in four principal areas: activating insect antennae, attracting adult insects, attracting female insects, and attracting natural enemies. Terpenoids like α-pinene and β-myrcene significantly alter pest behavior by attracting natural enemies. β-ocimene and β-caryophyllene are crucial in regulating aboveground and belowground interactions. We emphasize the potential applications of VOCs in agriculture for developing novel pest control strategies and enhancing crop resilience. Additionally, we identify research gaps and propose new directions, stressing the importance of comparative studies across ecosystems and long-term observational research to better understand VOCs dynamics. In conclusion, we provide insights into the multifunctionality of VOCs in natural ecosystems, their potential for future research and applications, and their role in advancing sustainable agricultural and ecological practices, contributing to a deeper understanding of their mechanisms and ecological functions.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| |
Collapse
|
13
|
Haas RA, Crișan I, Vârban D, Vârban R. Aerobiology of the Family Lamiaceae: Novel Perspectives with Special Reference to Volatiles Emission. PLANTS (BASEL, SWITZERLAND) 2024; 13:1687. [PMID: 38931119 PMCID: PMC11207455 DOI: 10.3390/plants13121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view on the aerobiology of species from the family Lamiaceae, with an emphasis on novelties and emerging applications. From the aerobiology point of view, the greatest interest in this botanical family is related to the volatile organic compounds emitted by the plants and, to a much lesser extent, their pollen. Research has shown that the major volatile organic compounds emitted by the plants from this botanical family are monoterpenes and sesquiterpenes. The most important monoterpenes reported across studies include α-pinene, β-pinene, 1,8-cineole, menthol, limonene, and γ-terpinene. Most reports tend to cover species from the subfamily Nepetoideae. Volatile oils are produced by glandular trichomes found on aerial organs. Based on general morphology, two main types are found in the family Lamiaceae, namely peltate and capitate trichomes. As a result of pollinator-mediated transfer of pollen, Lamiaceae species present a reduced number of stamens and quantity of pollen. This might explain the low probability of pollen presence in the air from these species. A preliminary synopsis of the experimental evidence presented in this work suggests that the interplay of the organic particles and molecules released by these plants and their environment could be leveraged for beneficial outcomes in agriculture and landscaping. Emerging reports propose their use for intercropping to ensure the success of fructification, increased yield of entomophilous crops, as well as in sensory gardens due to the therapeutic effect of volatiles.
Collapse
Affiliation(s)
| | - Ioana Crișan
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania; (R.A.H.); (D.V.); (R.V.)
| | | | | |
Collapse
|
14
|
Wang W, Ouyang J, Li Y, Zhai C, He B, Si H, Chen K, Rose JKC, Jia W. A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1106-1125. [PMID: 38558522 DOI: 10.1111/jipb.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yating Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changsheng Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bing He
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huahan Si
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China
| |
Collapse
|
15
|
Gille CE, Finnegan PM, Hayes PE, Ranathunge K, Burgess TI, de Tombeur F, Migliorini D, Dallongeville P, Glauser G, Lambers H. Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. THE NEW PHYTOLOGIST 2024; 242:1630-1644. [PMID: 38105548 DOI: 10.1111/nph.19489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.
Collapse
Affiliation(s)
- Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Félix de Tombeur
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- CEFE, CNRS, EPHE, IRD, University of Montpellier, 34000, Montpellier, France
| | - Duccio Migliorini
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- National Research Council, Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, 50019, Italy
| | - Paul Dallongeville
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
16
|
Mahmood MA, Awan MJA, Naqvi RZ, Mansoor S. Methyl-salicylate (MeSA)-mediated airborne defence. TRENDS IN PLANT SCIENCE 2024; 29:391-393. [PMID: 38135604 DOI: 10.1016/j.tplants.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Stressed plants emit a variety of chemicals into the environment, leading to increased pest resistance in neighbouring plants but the genetic and molecular mechanisms of the emissions remain obscure. Recently, Gong et al. identified novel methyl salicylate (MeSA)-mediated airborne defence that confers resistance to neighbouring plants against aphids and viruses.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan; Present address: Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE),Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE),Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE),Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan; International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan.
| |
Collapse
|
17
|
Ray R, Singh SS, Yadav SR, Sircar D. A nondestructive asymptomatic early disease prediction method employing ROS-induced differential volatile emissions from dry rot-infected potatoes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108532. [PMID: 38503189 DOI: 10.1016/j.plaphy.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Potatoes are a staple crop with many health benefits. Postharvest storage of potatoes takes a considerable amount of time. Potato dry rot is one of the most serious postharvest storage diseases, caused primarily by the fungus Fusarium sambucinum. It is possible to minimize losses if disease is detected early, which allows it to be controlled promptly. A phytopathogen infection can alter the volatile profile of plants. Identifying unique volatile organic compounds (VOCs) as biomarkers for early disease detection is an area of considerable research interest. In this study, we compared the VOC profiles of healthy and dry rot inoculated potatoes (cv. "Kufri Pukhraj") over a time course using gas chromatography-mass spectrometry (GC-MS). There were 29 differentially emitting VOCs between healthy and dry rot inoculated potatoes. Nevertheless, only four of these compounds (linalool tetrahydride, γ-muurolene, alloaromadendrene, and α-isomethyl ionone) were exclusively found in dry rot inoculated potatoes, and hence they were considered biomarkers. Furthermore, reactive oxygen species (ROS) levels were altered in potatoes that were inoculated with dry rot, suggesting a role for ROS signaling in differential VOC emissions. In the early stages of dry rot infection, when symptoms were barely visible, these four biomarker VOCs were robustly useful in distinguishing healthy and dry rot-infected potatoes. These novel biomarkers associated with this disease are promising candidates for non-destructive detection of dry rot in stored potatoes at an early asymptomatic stage. These biomarkers can be used to develop an e-nose sensor to predict dry rot in the future.
Collapse
Affiliation(s)
- Rittika Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shiv Shakti Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
18
|
Thompson MN, Arriaga J, Bradford BJ, Kurian R, Strozier G, Helms AM. Belowground insect herbivory induces systemic volatile emissions that strengthen neighbouring plant resistance aboveground. PLANT, CELL & ENVIRONMENT 2024; 47:714-725. [PMID: 37961782 DOI: 10.1111/pce.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Plants transmit ecologically relevant messages to neighbouring plants through chemical cues. For instance, insect herbivory triggers the production of herbivore-induced plant volatiles (HIPVs), which can enhance neighbouring plant defences. HIPVs are emitted from directly damaged plant tissues and from systemic, nondamaged tissues. Although volatile-mediated interplant interactions have been observed both above- and belowground, it remains unknown whether belowground herbivory induces systemic HIPVs aboveground that influence neighbouring plants. To explore how belowground herbivory affects interplant interactions aboveground, we characterised systemic HIPVs from squash induced by belowground striped cucumber beetle (Acalymma vittatum) larval herbivory. We exposed squash 'receiver plants' to systemic HIPVs or volatiles from nondamaged plants. We then measured herbivore resistance by challenging 'receiver plants' with aboveground-feeding herbivores: adult beetles (A. vittatum) or squash bugs (Anasa tristis). We discovered belowground-damaged plants emitted more (E)-β-ocimene, a key volatile from the systemic HIPV blend, than nondamaged controls, and that exposure to systemic HIPVs enhanced neighbouring plant resistance to aboveground squash bugs, but not adult beetles. Further investigations into the mechanism of interplant interaction revealed β-ocimene alone can elicit plant resistance against squash bugs. Overall, our findings reveal a novel form of volatile-mediated interactions between plants spanning across aboveground-belowground plant systems.
Collapse
Affiliation(s)
- Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Jayda Arriaga
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Biomedical Sciences Interdisciplinary Program, Texas A&M University, College Station, Texas, USA
| | - B Jack Bradford
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Rachel Kurian
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Gage Strozier
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Sulaiman HY, Runno-Paurson E, Niinemets Ü. The same boat, different storm: stress volatile emissions in response to biotrophic fungal infections in primary and alternate hosts. PLANT SIGNALING & BEHAVIOR 2023; 18:2217030. [PMID: 37232366 PMCID: PMC10730184 DOI: 10.1080/15592324.2023.2217030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Rust infection results in stress volatile emissions, but due to the complexity of host-pathogen interaction and variations in innate defense and capacity to induce defense, biochemical responses can vary among host species. Fungal-dependent modifications in volatile emissions have been well documented in numerous host species, but how emission responses vary among host species is poorly understood. Our recent experiments demonstrated that the obligate biotrophic crown rust fungus (P. coronata) differently activated primary and secondary metabolic pathways in its primary host Avena sativa and alternate host Rhamnus frangula. In A. sativa, emissions of methyl jasmonate, short-chained lipoxygenase products, long-chained saturated fatty acid derivatives, mono- and sesquiterpenes, carotenoid breakdown products, and benzenoids were initially elicited in an infection severity-dependent manner, but the emissions decreased under severe infection and photosynthesis was almost completely inhibited. In R. frangula, infection resulted in low-level induction of stress volatile emissions, but surprisingly, in enhanced constitutive isoprene emissions, and even severely-infected leaves maintained a certain photosynthesis rate. Thus, the same pathogen elicited a much stronger response in the primary than in the alternate host. We argue that future work should focus on resolving mechanisms of different fungal tolerance and resilience among primary and secondary hosts.
Collapse
Affiliation(s)
- Hassan Yusuf Sulaiman
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
20
|
Jin J, Zhao M, Jing T, Wang J, Lu M, Pan Y, Du W, Zhao C, Bao Z, Zhao W, Tang X, Schwab W, Song C. (Z)-3-Hexenol integrates drought and cold stress signaling by activating abscisic acid glucosylation in tea plants. PLANT PHYSIOLOGY 2023; 193:1491-1507. [PMID: 37315209 PMCID: PMC10517186 DOI: 10.1093/plphys/kiad346] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Cold and drought stresses severely limit crop production and can occur simultaneously. Although some transcription factors and hormones have been characterized in plants subjected each stress, the role of metabolites, especially volatiles, in response to cold and drought stress exposure is rarely studied due to lack of suitable models. Here, we established a model for studying the role of volatiles in tea (Camellia sinensis) plants experiencing cold and drought stresses simultaneously. Using this model, we showed that volatiles induced by cold stress promote drought tolerance in tea plants by mediating reactive oxygen species and stomatal conductance. Needle trap microextraction combined with GC-MS identified the volatiles involved in the crosstalk and showed that cold-induced (Z)-3-hexenol improved the drought tolerance of tea plants. In addition, silencing C. sinensis alcohol dehydrogenase 2 (CsADH2) led to reduced (Z)-3-hexenol production and significantly reduced drought tolerance in response to simultaneous cold and drought stress. Transcriptome and metabolite analyses, together with plant hormone comparison and abscisic acid (ABA) biosynthesis pathway inhibition experiments, further confirmed the roles of ABA in (Z)-3-hexenol-induced drought tolerance of tea plants. (Z)-3-Hexenol application and gene silencing results supported the hypothesis that (Z)-3-hexenol plays a role in the integration of cold and drought tolerance by stimulating the dual-function glucosyltransferase UGT85A53, thereby altering ABA homeostasis in tea plants. Overall, we present a model for studying the roles of metabolites in plants under multiple stresses and reveal the roles of volatiles in integrating cold and drought stresses in plants.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenjie Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Zhijie Bao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wei Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xiaoyan Tang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
- Biotechnology of Natural Products, Technische Universität München, Freising 85354, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
21
|
Razo-Belmán R, Ángeles-López YI, García-Ortega LF, León-Ramírez CG, Ortiz-Castellanos L, Yu H, Martínez-Soto D. Fungal volatile organic compounds: mechanisms involved in their sensing and dynamic communication with plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1257098. [PMID: 37810383 PMCID: PMC10559904 DOI: 10.3389/fpls.2023.1257098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are mixtures of gas-phase hydrophobic carbon-based molecules produced by microorganisms such as bacteria and fungi. They can act as airborne signals sensed by plants being crucial players in triggering signaling cascades influencing their secondary metabolism, development, and growth. The role of fungal volatile organic compounds (FVOCs) from beneficial or detrimental species to influence the physiology and priming effect of plants has been well studied. However, the plants mechanisms to discern between FVOCs from friend or foe remains significantly understudied. Under this outlook, we present an overview of the VOCs produced by plant-associate fungal species, with a particular focus on the challenges faced in VOCs research: i) understanding how plants could perceive FVOCs, ii) investigating the differential responses of plants to VOCs from beneficial or detrimental fungal strains, and finally, iii) exploring practical aspects related to the collection of VOCs and their eco-friendly application in agriculture.
Collapse
Affiliation(s)
- Rosario Razo-Belmán
- Departamento de Alimentos, División de Ciencias de la Vida, Universidad de Guanajuato, Irapuato, Guanajuato, Mexico
| | | | - Luis Fernando García-Ortega
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
22
|
Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G, Wang J, Guo D, Pan Y, Hoffmann TD, Schwab W, Song C. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. HORTICULTURE RESEARCH 2023; 10:uhad143. [PMID: 37691961 PMCID: PMC10483893 DOI: 10.1093/hr/uhad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
Plants respond to environmental stimuli via the release of volatile organic compounds (VOCs), and neighboring plants constantly monitor and respond to these VOCs with great sensitivity and discrimination. This sensing can trigger increased plant fitness and reduce future plant damage through the priming of their own defenses. The defense mechanism in neighboring plants can either be induced by activation of the regulatory or transcriptional machinery, or it can be delayed by the absorption and storage of VOCs for the generation of an appropriate response later. Despite much research, many key questions remain on the role of VOCs in interplant communication and plant fitness. Here we review recent research on the VOCs induced by biotic (i.e. insects and pathogens) and abiotic (i.e. cold, drought, and salt) stresses, and elucidate the biosynthesis of stress-induced VOCs in tea plants. Our focus is on the role of stress-induced VOCs in complex ecological environments. Particularly, the roles of VOCs under abiotic stress are highlighted. Finally, we discuss pertinent questions and future research directions for advancing our understanding of plant interactions via VOCs.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guomeng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| |
Collapse
|
23
|
Lin YH, Silven JJM, Wybouw N, Fandino RA, Dekker HL, Vogel H, Wu YL, de Koster C, Große-Wilde E, Haring MA, Schuurink RC, Allmann S. A salivary GMC oxidoreductase of Manduca sexta re-arranges the green leaf volatile profile of its host plant. Nat Commun 2023; 14:3666. [PMID: 37380635 DOI: 10.1038/s41467-023-39353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Green leaf volatiles (GLVs) are short-chain oxylipins that are emitted from plants in response to stress. Previous studies have shown that oral secretions (OS) of the tobacco hornworm Manduca sexta, introduced into plant wounds during feeding, catalyze the re-arrangement of GLVs from Z-3- to E-2-isomers. This change in the volatile signal however is bittersweet for the insect as it can be used by their natural enemies, as a prey location cue. Here we show that (3Z):(2E)-hexenal isomerase (Hi-1) in M. sexta's OS catalyzes the conversion of the GLV Z-3-hexenal to E-2-hexenal. Hi-1 mutants that were raised on a GLV-free diet showed developmental disorders, indicating that Hi-1 also metabolizes other substrates important for the insect's development. Phylogenetic analysis placed Hi-1 within the GMCβ-subfamily and showed that Hi-1 homologs from other lepidopterans could catalyze similar reactions. Our results indicate that Hi-1 not only modulates the plant's GLV-bouquet but also functions in insect development.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Richard A Fandino
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, US
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chris de Koster
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Michel A Haring
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Silke Allmann
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
24
|
Kessler A, Mueller MB, Kalske A, Chautá A. Volatile-mediated plant-plant communication and higher-level ecological dynamics. Curr Biol 2023; 33:R519-R529. [PMID: 37279686 DOI: 10.1016/j.cub.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Volatile organic compounds (VOCs) in general and herbivory-induced plant volatiles (HIPVs) in particular are increasingly understood as major mediators of information transfer between plant tissues. Recent findings have moved the field of plant communication closer to a detailed understanding of how plants emit and perceive VOCs and seem to converge on a model that juxtaposes perception and emission mechanisms. These new mechanistic insights help to explain how plants can integrate different types of information and how environmental noise can affect the transmission of information. At the same time, ever-new functions of VOC-mediated plant-plant interactions are being revealed. Chemical information transfer between plants is now known to fundamentally affect plant organismal interactions and, additionally, population, community, and ecosystem dynamics. One of the most exciting new developments places plant-plant interactions along a behavioral continuum with an eavesdropping strategy at one end and mutually beneficial information-sharing among plants within a population at the other. Most importantly and based on recent findings as well as theoretical models, plant populations can be predicted to evolve different communication strategies depending on their interaction environment. We use recent studies from ecological model systems to illustrate this context dependency of plant communication. Moreover, we review recent key findings about the mechanisms and functions of HIPV-mediated information transfer and suggest conceptual links, such as to information theory and behavioral game theory, as valuable tools for a deeper understanding of how plant-plant communication affects ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Michael B Mueller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Alexander Chautá
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
26
|
Escobar-Bravo R, Lin PA, Waterman JM, Erb M. Dynamic environmental interactions shaped by vegetative plant volatiles. Nat Prod Rep 2023; 40:840-865. [PMID: 36727645 PMCID: PMC10132087 DOI: 10.1039/d2np00061j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 02/03/2023]
Abstract
Covering: up to November 2022Plants shape terrestrial ecosystems through physical and chemical interactions. Plant-derived volatile organic compounds in particular influence the behavior and performance of other organisms. In this review, we discuss how vegetative plant volatiles derived from leaves, stems and roots are produced and released into the environment, how their production and release is modified by abiotic and biotic factors, and how they influence other organisms. Vegetative plant volatiles are derived from different biosynthesis and degradation pathways and are released via distinct routes. Both biosynthesis and release are regulated by other organisms as well as abiotic factors. In turn, vegetative plant volatiles modify the physiology and the behavior of a wide range of organisms, from microbes to mammals. Several concepts and frameworks can help to explain and predict the evolution and ecology of vegetative plant volatile emission patterns of specific pathways: multifunctionality of specialized metabolites, chemical communication displays and the information arms race, and volatile physiochemistry. We discuss how these frameworks can be leveraged to understand the evolution and expression patterns of vegetative plant volatiles. The multifaceted roles of vegetative plant volatiles provide fertile grounds to understand ecosystem dynamics and harness their power for sustainable agriculture.
Collapse
Affiliation(s)
| | - Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Gomes T, Pereira JA, Moya-Laraño J, Poveda J, Lino-Neto T, Baptista P. Deciphering plant health status: The link between secondary metabolites, fungal community and disease incidence in olive tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1048762. [PMID: 37035041 PMCID: PMC10073708 DOI: 10.3389/fpls.2023.1048762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plant-associated microorganisms are increasingly recognized to play key roles in host health. Among several strategies, associated microorganisms can promote the production of specific metabolites by their hosts. However, there is still a huge gap in the understanding of such mechanisms in plant-microorganism interaction. Here, we want to determine whether different levels of olive leaf spot (OLS) disease incidence were related to differences in the composition of fungal and secondary metabolites (i.e. phenolic and volatile compounds) in leaves from olive tree cultivars with contrasting OLS susceptibilities (ranging from tolerant to highly susceptible). Accordingly, leaves with three levels of OLS incidence from both cultivars were used to assess epiphytic and endophytic fungal communities, by barcoding of cultivable isolates, as well as to evaluate leaf phenolic and volatile composition. Fungal and metabolite compositions variations were detected according to the level of disease incidence. Changes were particularly noticed for OLS-tolerant cultivars, opposing to OLS-susceptible cultivars, suggesting that disease development is linked, not only to leaf fungal and metabolite composition, but also to host genotype. A set of metabolites/fungi that can act as predictive biomarkers of plant tolerance/susceptibility to OLS disease were identified. The metabolites α-farnesene and p-cymene, and the fungi Fusarium sp. and Alternaria sp. were more related to disease incidence, while Pyronema domesticum was related to the absence of disease symptoms. Cultivar susceptibility to OLS disease is then suggested to be driven by fungi, volatile and phenolic host leaves composition, and above all to plant-fungus interaction. A deeper understanding of these complex interactions may unravel plant defensive responses.
Collapse
Affiliation(s)
- Teresa Gomes
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões De Montanha (SusTEC), Instituto Politécnico De Bragança, Bragança, Portugal
| | - José Alberto Pereira
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões De Montanha (SusTEC), Instituto Politécnico De Bragança, Bragança, Portugal
| | - Jordi Moya-Laraño
- Functional and Evolutionary Ecology, Estación Experimental De Zonas Áridas - CSIC, Almería, Spain
| | - Jorge Poveda
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões De Montanha (SusTEC), Instituto Politécnico De Bragança, Bragança, Portugal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública De Navarra, Pamplona, Spain
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Paula Baptista
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões De Montanha (SusTEC), Instituto Politécnico De Bragança, Bragança, Portugal
| |
Collapse
|
28
|
Yao C, Du L, Liu Q, Hu X, Ye W, Turlings TCJ, Li Y. Stemborer-induced rice plant volatiles boost direct and indirect resistance in neighboring plants. THE NEW PHYTOLOGIST 2023; 237:2375-2387. [PMID: 36259093 DOI: 10.1111/nph.18548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) are known to be perceived by neighboring plants, resulting in induction or priming of chemical defenses. There is little information on the defense responses that are triggered by these plant-plant interactions, and the phenomenon has rarely been studied in rice. Using chemical and molecular analyses in combination with insect behavioral and performance experiments, we studied how volatiles emitted by rice plants infested by the striped stemborer (SSB) Chilo suppressalis affect defenses against this pest in conspecific plants. Compared with rice plants exposed to the volatiles from uninfested plants, plants exposed to SSB-induced volatiles showed enhanced direct and indirect resistance to SSB. When subjected to caterpillar damage, the HIPV-exposed plants showed increased expression of jasmonic acid (JA) signaling genes, resulting in JA accumulation and higher levels of defensive proteinase inhibitors. Moreover, plants exposed to SSB-induced volatiles emitted larger amounts of inducible volatiles and were more attractive to the parasitoid Cotesia chilonis. By unraveling the factors involved in HIPV-mediated defense priming in rice, we reveal a key defensive role for proteinase inhibitors. These findings pave the way for novel rice management strategies to enhance the plant's resistance to one of its most devastating pests.
Collapse
Affiliation(s)
- Chengcheng Yao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingsong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xiaoyun Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
29
|
Zhang J, Liang Q, Li Y, Deng Z, Song G, Wang H, Yan M, Wang X. Integrated transcriptome and metabolome analyses shed light on the defense mechanisms in tomato plants after (E)-2-hexenal fumigation. Genomics 2023; 115:110592. [PMID: 36854356 DOI: 10.1016/j.ygeno.2023.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Tomato is a widely cultivated fruit and vegetable and is valued for its flavor, colour, and nutritional value. C6-aldehydes, such as (E)-2-hexenal, not only have antibacterial and antifungal properties but also function as signaling molecules that control the defense mechanisms of plants, including tomatoes. In this study, we used liquid chromatography-mass spectrometry (LC-MS) and RNA sequencing techniques to generate metabolome and transcriptome datasets that elucidate the molecular mechanisms regulating defense responses in tomato leaves exposed to (E)-2-hexenal. A total of 28.27 Gb of clean data were sequenced and assembled into 23,720 unigenes. In addition, a non-targeted metabolomics approach detected 739 metabolites. There were 233 significant differentially expressed genes (DEGs) (158 up-regulated, 75 down-regulated) and 154 differentially expressed metabolites (DEMs) (86 up-regulated, 69 down-regulated). Most nucleotides and amino acids (L-Phenylalanine, L-Asparagine, L-Histidine, L-Arginine, and L-Tyrosine) and their derivatives were enriched. The analyses revealed that mitogen-activated protein kinase (MPK), pathogenesis-related protein (PR), and endochitinase (CHIB) were primarily responsible for the adaptation of plant defense responses. Therefore, the extensive upregulation of these genes may be associated with the increased plant defense response. These findings help us comprehend the defense response of plants to (E)-2-hexenal and improve the resistance of horticultural plants.
Collapse
Affiliation(s)
- Jihong Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Quanwu Liang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuqiong Li
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Ge Song
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens GA30602, USA
| |
Collapse
|
30
|
Sarkar AK, Sadhukhan S. Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: A shield against plant pathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e13845. [PMID: 36546667 DOI: 10.1111/ppl.13845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plants produce a large range of structurally varied low molecular weight secondary metabolites, which evaporate, known as volatile organic compounds (VOCs). Several of them are emitted in response to biotic stress as a defensive measure against pathogen attacks. Arbuscular Mycorrhizal Fungi (AMFs) can change the VOC pattern in parts of the plant and may promote plant defense via direct or indirect mechanisms. Mycorrhization of plants positively affects plant immunization along with growth and yield. The presence of AMF may raise the concentration of phenolic compounds and the activity of critical defense-related enzymes. AMF-induced changes in plant chemistry and associated volatile emissions lead to stronger immunity against pathogenic microorganisms. Despite substantial research into the origins of diversity in VOC-mediated plant communication, very little is known about the mechanism of influence of several AMFs on plant VOC emissions and modulation of plant immunization. Moreover, the molecular mechanism for VOC sensing in plants and mycorrhizal association is still unclear. In the present review, we have presented an up-to-date understanding of the cross-talk of AMF and VOC patterns in plants and the subsequent modulation of resistance against microbial pathogens.
Collapse
Affiliation(s)
- Anup Kumar Sarkar
- Department of Botany, Dukhulal Nibaran Chandra College, Murshidabad, West Bengal, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
31
|
Chautá A, Kessler A. Metabolic Integration of Spectral and Chemical Cues Mediating Plant Responses to Competitors and Herbivores. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202768. [PMID: 36297792 PMCID: PMC9609625 DOI: 10.3390/plants11202768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/08/2023]
Abstract
Light quality and chemicals in a plant's environment can provide crucial information about the presence and nature of antagonists, such as competitors and herbivores. Here, we evaluate the roles of three sources of information-shifts in the red:far red (R:FR) ratio of light reflected off of potentially competing neighbors, induced metabolic changes to damage by insect herbivores, and induced changes to volatile organic compounds emitted from herbivore-damaged neighboring plants-to affect metabolic responses in the tall goldenrod, Solidago altissima. We address the hypothesis that plants integrate the information available about competitors and herbivory to optimize metabolic responses to interacting stressors by exposing plants to the different types of environmental information in isolation and combination. We found strong interactions between the exposure to decreased R:FR light ratios and damage on the induction of secondary metabolites (volatile and non-volatile) in plants. Similarly, the perception of VOCs emitted from neighboring plants was altered by the simultaneous exposure to spectral cues from neighbors. These results suggest that plants integrate spectral and chemical environmental cues to change the production and perception of volatile and non-volatile compounds and highlight the role of plant context-dependent metabolic responses in mediating population and community dynamics.
Collapse
|
32
|
Zhou S, Ma Y, Shang Y, Qi X, Huang S, Li J. Functional diversity and metabolic engineering of plant-specialized metabolites. LIFE METABOLISM 2022; 1:109-121. [PMID: 39872355 PMCID: PMC11749740 DOI: 10.1093/lifemeta/loac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2025]
Abstract
Plants are talented biochemists that produce a broad diversity of small molecules. These so-called specialized metabolites (SMs) play critical roles in the adaptive evolution of plants to defend against biotic and abiotic stresses, attract pollinators, and modulate soil microbiota for their own benefits. Many plant SMs have been used as nutrition and flavor compounds in our daily food, as well as drugs for treatment of human diseases. Current multi-omics tools have significantly accelerated the process of biosynthetic pathway elucidation in plants through correlation analyses, genetic mapping, and de novo biosynthetic gene cluster predictions. Understanding the biosynthesis of plant SMs has enabled reconstitution of naturally occurring specialized metabolic pathways in microbial hosts, providing a sustainable supply of these high-value molecules. In this review, we illustrate the general functions of several typical plant SMs in natural ecosystems and for human societies. We then provide an overview of current methods elucidating the biosynthetic pathways of plant SMs, and synthetic biology strategies that optimize the efficiency of heterologous biosynthetic pathways in microbial hosts. Moving forward, dissection of the functions and application of plant SMs by using current multidiscipline approaches would be greatly benefit to the scientific community and human societies.
Collapse
Affiliation(s)
- Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yongshuo Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunan 650500, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Type of Stress Induces Differential Responses in Acer rubrum (Red Maple), but Induced Responses Have No Effect on Herbivorous Pests. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plants thrive in dynamic environments requiring adaptive strategies in response to environmental stressors. Furthermore, insect herbivores may be attracted or deterred by the expression of these traits. This study examines growth, physiological, and phytochemical adaptations of maple trees in response to stressors and how these stressors effect herbivore feeding behavior within an agricultural production system. Agricultural systems are unique because plants experience environmental stressors unique to production such as herbicide sprays and girdling. Using four environmental stressors commonly observed in agricultural production (control, mechanical defoliation, chemical defoliation, and girdling), applied to two cultivars of red maple (Acer rubrum, ‘Brandywine’ and ‘Franksred’), this study analyzed differentiation of expressed traits in a production system. Responses varied depending on cultivar and stress treatment but had no effect on insect herbivore behavior. Understanding the ecological interactions within these systems will provide information for better plant production and pest management recommendations.
Collapse
|
34
|
Yu H, Kivimäenpää M, Blande JD. Volatile-mediated between-plant communication in Scots pine and the effects of elevated ozone. Proc Biol Sci 2022; 289:20220963. [PMID: 36069014 PMCID: PMC9449471 DOI: 10.1098/rspb.2022.0963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conifers are dominant tree species in boreal forests, but are susceptible to attack by bark beetles. Upon bark beetle attack, conifers release substantial quantities of volatile organic compounds known as herbivore-induced plant volatiles (HIPVs). Earlier studies of broadleaved plants have shown that HIPVs provide information to neighbouring plants, which may enhance their defences. However, the defence responses of HIPV-receiver plants have not been described for conifers. Here we advance knowledge of plant-plant communication in conifers by documenting a suite of receiver-plant responses to bark-feeding-induced volatiles. Scots pine seedlings exposed to HIPVs were more resistant to subsequent weevil feeding and received less damage. Receiver plants had both induced and primed volatile emissions and their resin ducts had an increased epithelial cell (EC) mean area and an increased number of cells located in the second EC layer. Importantly, HIPV exposure increased stomatal conductance and net photosynthesis rate of receiver plants. Receiver-plant responses were also examined under elevated ozone conditions and found to be significantly altered. However, the final defence outcome was not affected. These findings demonstrate that HIPVs modulate conifer metabolism through responses spanning photosynthesis and chemical defence. The responses are adjusted under ozone stress, but the defence benefits remain intact.
Collapse
Affiliation(s)
- Hao Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
35
|
Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, Udayashankar AC, Amruthesh KN, Murali M, Poczai P, Gafur A, Almalki WH, Sayyed RZ. Insight into Recent Progress and Perspectives in Improvement of Antioxidant Machinery upon PGPR Augmentation in Plants under Drought Stress: A Review. Antioxidants (Basel) 2022; 11:1763. [PMID: 36139837 PMCID: PMC9495777 DOI: 10.3390/antiox11091763] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022] Open
Abstract
Agriculture has a lot of responsibility as the rise in the world's population demands more food requirements. However, more than one type of biotic and abiotic stress continually impacts agricultural productivity. Drought stress is a major abiotic stress that significantly affects agricultural productivity every year as the plants undergo several morphological, biochemical, and physiological modifications, such as repressed root and shoot growth, reduced photosynthesis and transpiration rate, excessive production of reactive oxygen species (ROS), osmotic adjustments, and modified leaf senescence regulating and stress signaling pathways. Such modifications may permanently damage the plants; therefore, mitigation strategies must be developed. The use of drought resistant crop cultivars is more expensive and labor-intensive with few advantages. However, exploiting plant growth promoting rhizobacteria (PGPR) is a proven alternative with numerous direct and indirect advantages. The PGPR confers induced systemic tolerance (IST) mechanisms in plants in response to drought stress via multiple mechanisms, including the alteration of root architecture, maintenance of high relative water content, improvement of photosynthesis rate, production of phytohormones, exopolysaccharides, ACC deaminase, carotenoids and volatiles, induction of antioxidant defense system, and alteration in stress-responsive gene expression. The commercial application of PGPR as bioinoculants or biostimulants will remain contingent on more robust strain selection and performance under unfavorable environmental conditions. This review highlights the possible mechanisms of PGPR by activating the plant adaptive defense systems for enhancing drought tolerance and improving overall growth and yield.
Collapse
Affiliation(s)
| | | | - Natarajamurthy Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Kalegowda Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, India
| | | | | | - Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang 28772, Indonesia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al Qura University, Makkah 77207, Saudi Arabia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, S.I. Patil Arts, G.B. Patel Science & STKV Sangh Commerce College, Shahada 425409, India
| |
Collapse
|
36
|
Volatile Dimethyl Disulfide from Guava Plants Regulate Developmental Performance of Asian Citrus Psyllid through Activation of Defense Responses in Neighboring Orange Plants. Int J Mol Sci 2022; 23:ijms231810271. [PMID: 36142192 PMCID: PMC9499464 DOI: 10.3390/ijms231810271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Intercropping with guava (Psidium guajava L.) can assist with the management of Asian citrus psyllid (ACP, Diaphorina citri Kuwayama), the insect vector of the huanglongbing pathogen, in citrus orchards. Sulfur volatiles have a repellent activity and physiological effects, as well as being important components of guava volatiles. In this study, we tested whether the sulfur volatiles emitted by guava plants play a role in plant–plant communications and trigger anti-herbivore activities against ACP in sweet orange plants (Citrus sinensis L. Osbeck). Real-time determination using a proton-transfer-reaction mass spectrometer (PTR-MS) showed that guava plants continuously release methanethiol, dimethyl sulfide (DMS), and dimethyl disulfide (DMDS), and the contents increased rapidly after mechanical damage. The exposure of orange plants to DMDS resulted in the suppression of the developmental performance of ACP. The differential elevation of salicylic acid (SA) levels; the expression of phenylalanine ammonia lyase (PAL), salicylate-O-methyl transferase (SMT), and pathogenesis-related (PR1) genes; the activities of defense-related enzymes PAL, polyphenol oxidase (PPO), and peroxidase (POD); and the total polyphenol content were observed in DMDS-exposed orange plants. The emission of volatiles including myrcene, nonanal, decanal, and methyl salicylate (MeSA) was increased. In addition, phenylpropanoid and flavonoid biosynthesis, and aromatic amino acid (such as phenylalanine, tyrosine, and tryptophan) metabolic pathways were induced. Altogether, our results indicated that DMDS from guava plants can activate defense responses in eavesdropping orange plants and boost their herbivore resistance to ACP, which suggests the possibility of using DMDS as a novel approach for the management of ACP in citrus orchards.
Collapse
|
37
|
Volatile uptake, transport, perception, and signaling shape a plant's nose. Essays Biochem 2022; 66:695-702. [PMID: 36062590 PMCID: PMC9528081 DOI: 10.1042/ebc20210092] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022]
Abstract
Herbivore-induced plant volatiles regulate defenses in undamaged neighboring plants. Understanding the mechanisms by which plant volatiles are taken up, perceived, and translated into canonical defense signaling pathways is an important frontier of knowledge. Volatiles can enter plants through stomata and the cuticle. They are likely perceived by membrane-associated receptors as well as intracellular receptors. The latter likely involves metabolization and transport across cell membranes by volatile transporters. Translation of volatiles into defense priming and induction typically involves mitogen-activated protein kinases (MAPKs), WRKY transcription factors, and jasmonates. We propose that the broad range of molecular processes involved in volatile signaling will likely result in substantial spatiotemporal and ontogenetic variation in plant responsiveness to volatiles, with important consequences for plant–environment interactions.
Collapse
|
38
|
Mhlongo MI, Piater LA, Dubery IA. Profiling of Volatile Organic Compounds from Four Plant Growth-Promoting Rhizobacteria by SPME-GC-MS: A Metabolomics Study. Metabolites 2022; 12:763. [PMID: 36005635 PMCID: PMC9414699 DOI: 10.3390/metabo12080763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023] Open
Abstract
The rhizosphere microbiome is a major determinant of plant health. Plant-beneficial or plant growth-promoting rhizobacteria (PGPR) influence plant growth, plant development and adaptive responses, such as induced resistance/priming. These new eco-friendly choices have highlighted volatile organic compounds (biogenic VOCs) as a potentially inexpensive, effective and efficient substitute for the use of agrochemicals. Secreted bacterial VOCs are low molecular weight lipophilic compounds with a low boiling point and high vapor pressures. As such, they can act as short- or long-distance signals in the rhizosphere, affecting competing microorganisms and impacting plant health. In this study, secreted VOCs from four PGPR strains (Pseudomonas koreensis (N19), Ps. fluorescens (N04), Lysinibacillus sphaericus (T19) and Paenibacillus alvei (T22)) were profiled by solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) combined with a multivariate data analysis. Metabolomic profiling with chemometric analyses revealed novel data on the composition of the secreted VOC blends of the four PGPR strains. Of the 121 annotated metabolites, most are known as bioactives which are able to affect metabolism in plant hosts. These VOCs belong to the following classes: alcohols, aldehydes, ketones, alkanes, alkenes, acids, amines, salicylic acid derivatives, pyrazines, furans, sulfides and terpenoids. The results further demonstrated the presence of species-specific and strain-specific VOCs, characterized by either the absence or presence of specific VOCs in the different strains. These molecules could be further investigated as biomarkers for the classification of an organism as a PGPR and selection for agricultural use.
Collapse
Affiliation(s)
| | | | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
39
|
Li T, Girling RD. Editorial: Impacts of pollution on volatile-mediated interactions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.973983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
New molecules in plant defence against pathogens. Essays Biochem 2022; 66:683-693. [PMID: 35642866 DOI: 10.1042/ebc20210076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Plants host a multipart immune signalling network to ward off pathogens. Pathogen attack upon plant tissues can often lead to an amplified state of (induced) defence against subsequent infections in distal tissues; this is known as systemic acquired resistance (SAR). The interaction of plants with beneficial microbes of the rhizosphere microbiome can also lead to an induced resistance in above-ground plant tissues, known as induced systemic resistance. Second messengers such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO) are necessary for cell-to-cell signal propagation during SAR and show emergent roles in the mediation of other SAR metabolites. These include the lysine-derived signals pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP), which are key signalling metabolites in SAR. Emerging evidence additionally pinpoints plant volatiles as modulators of defence signalling within and between plants. Plant volatile organic compounds (VOCs) such as monoterpenes can promote SAR by functioning through ROS. Furthermore, plant-derived and additionally also microbial VOCs can target both salicylic acid and jasmonic acid signalling pathways in plants and modulate defence against pathogens. In this review, an overview of recent findings in induced defence signalling, with a particular focus on newer signalling molecules and how they integrate into these networks is discussed.
Collapse
|
41
|
Piesik D, Lemańczyk G, Bocianowski J, Buszewski B, Vidal S, Mayhew CA. Induction of volatile organic compounds in Triticum aestivum (wheat) plants following infection by different Rhizoctonia pathogens is species specific. PHYTOCHEMISTRY 2022; 198:113162. [PMID: 35278419 DOI: 10.1016/j.phytochem.2022.113162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The most popular means of plant protection is the chemical method, but this control is often connected with the need for repeating chemical treatments. Thus, eco-friendly strategies should be developed where, under the European Green Deal, aromatic plants and their repellent properties seem to constitute a good alternative. In earlier studies, we have shown that insect injury, bacteria infestation and pathogen infection induce plant volatile organic compounds (VOCs) emission, which can provide defensive functions to plants. In this study, Triticum aestivum L. (Poaceae) cv. 'Jenga' wheat plants were intentionally infected with one of four Rhizoctonia species (R. cerealis, R. solani, R. zeae, and R. oryzae). The soil was inoculated by the pathogens during sowing, whereas shoots were inoculated at stage BBCH 33. In greenhouse experiments, we measured VOCs from wheat 3, 7 and 11 days following stem infestation, or 42 days following soil inoculation of Rhizoctonia spp. VOC emissions were found to be largest on days 7 or 11 post-stem inoculation (>3 days post-stem inoculation >42 days post-soil inoculation). T. aestivum infected by pathogens induced five common green leaf volatiles (GLVs), namely (Z)-3-hexenal = (Z)-3-HAL, (E)-2-hexenal = (E)-2-HAL, (Z)-3-hexen-1-ol = (Z)-3- HOL, (E)-2-hexenol = (E)-2-HOL, (Z)-3-hexen-1-yl acetate = (Z)-3-HAC], six common terpenes (β-pinene = β-PIN, β-myrcene = β-MYR, Z-ocimene = Z-OCI, linalool = LIN, benzyl acetate = BAC, β-caryophyllene = β-CAR), and indole = IND. We found that R. cerealis infested T. aestivum emitted the largest amounts of (Z)-3-HAL and (Z)-3-HAC, while T. aestivum infested by R. solani released the largest amount of LIN (7 or 11 days following stem infestation). VOCs released by the T. aestivum after R. cerealis (AGD I) and R. solani (AG 5) infestations were significantly larger in comparison to R. zeae (WAG-Z) and R. oryzae (WAG-O) for the volatiles (Z)-3-HAL, (E)-2-HAL, (Z)-3-HOL, (E)-2-HOL, (Z)-3-HAC, β-PIN, β-MYR, and LIN. With the exception of (E)-2-HOL, β-MYR, LIN, BAC, β-CAR, the other VOCs were emitted in similar amounts by infected T. aestivum 3 days following stem and soil inoculation. The quantities of induced VOCs were higher at days 7 and 11 than at 3 days post-infection, and greater when T. aestivum was infected with Rhizoctonia on the stem base than through the soil.
Collapse
Affiliation(s)
- Dariusz Piesik
- Bydgoszcz University of Science and Technology, Department of Biology and Plant Protection, 7 Prof. Kaliskiego Ave., 85-796, Bydgoszcz, Poland.
| | - Grzegorz Lemańczyk
- Bydgoszcz University of Science and Technology, Department of Biology and Plant Protection, 7 Prof. Kaliskiego Ave., 85-796, Bydgoszcz, Poland
| | - Jan Bocianowski
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, 28 Wojska Polskiego, 60-637, Poznań, Poland
| | - Bogusław Buszewski
- Nicolaus Copernicus University, Faculty of Chemistry, Chair of Environmental Chemistry Bioanalytics, 7 Gagarina, 87-100, Toruń, Poland
| | - Stefan Vidal
- Georg-August-University Goettingen, Department of Crop Sciences, Agricultural, Entomology, 6 Grisebachstrasse, 37077, Goettingen, Germany
| | - Chris A Mayhew
- University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020, Innsbruck, Austria
| |
Collapse
|
42
|
Ang MCY, Lew TTS. Non-destructive Technologies for Plant Health Diagnosis. FRONTIERS IN PLANT SCIENCE 2022; 13:884454. [PMID: 35712566 PMCID: PMC9197209 DOI: 10.3389/fpls.2022.884454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
As global population grows rapidly, global food supply is increasingly under strain. This is exacerbated by climate change and declining soil quality due to years of excessive fertilizer, pesticide and agrichemical usage. Sustainable agricultural practices need to be put in place to minimize destruction to the environment while at the same time, optimize crop growth and productivity. To do so, farmers will need to embrace precision agriculture, using novel sensors and analytical tools to guide their farm management decisions. In recent years, non-destructive or minimally invasive sensors for plant metabolites have emerged as important analytical tools for monitoring of plant signaling pathways and plant response to external conditions that are indicative of overall plant health in real-time. This will allow precise application of fertilizers and synthetic plant growth regulators to maximize growth, as well as timely intervention to minimize yield loss from plant stress. In this mini-review, we highlight in vivo electrochemical sensors and optical nanosensors capable of detecting important endogenous metabolites within the plant, together with sensors that detect surface metabolites by probing the plant surface electrophysiology changes and air-borne volatile metabolites. The advantages and limitations of each kind of sensing tool are discussed with respect to their potential for application in high-tech future farms.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive and Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
43
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
44
|
Guo M, Ren X, Liu Y, Wang G. An Odorant Receptor from the Proboscis of the Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) Narrowly Tuned to Indole. INSECTS 2022; 13:insects13040385. [PMID: 35447827 PMCID: PMC9033110 DOI: 10.3390/insects13040385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 01/18/2023]
Abstract
Simple Summary Odorant receptors (ORs) are at the core of the high-efficiency and sensitive olfactory system in insects. The expression and specific function of ORs largely contribute to the habits and speciation of one species. Although being predominantly expressed in the antennae, ORs in non-olfactory organs are suggested to have particular roles in promoting the reproduction or host fitness of insects. Our previous work has identified four ORs in the mouthpart organs of Helicoverpa armigera. Here, we amplified the full-length sequences of HarmORs from the proboscis. Further functional characterization suggested that HarmOR30 narrowly tuned to indole, the vital nitrogen-containing compounds that mediate tritrophic interactions. Our study deepens the insight into the olfactory perception of H. armigera, and explored a candidate functional receptor target for studying the interaction between insects and their plant hosts. Abstract Helicoverpa armigera is a serious agricultural pest with polyphagous diets, widespread distribution, and causing severe damage. Among sixty-five candidate ORs in H. armigera, the co-receptor HarmOrco and three specific ORs with partial sequences were identified to be expressed in the proboscis by our previous work, whereas their exact function is not known yet. In this study, we first confirmed the expression of these ORs in the proboscis by full-length cloning, which obtained the complete coding region of HarmOrco, OR24, and OR30. We then performed functional identification of HarmOR24 and OR30 by co-expressing them respectively with HarmOrco in Xenopus oocytes eukaryotic expression system combined with two-electrode voltage-clamp physiology. By testing the response of HarmOR24/OR30-expressing oocytes against eighty structural-divergent compounds, respectively, HarmOR30 was characterized to narrowly tune to indole and showed a specific tuning spectrum compared to its ortholog in Spodoptera littoralis. As indole is a distinctive herbivore-induced plant volatile and floral scent component, HarmOR30 might play roles in foraging and mediating the interactions between H. armigera with its surrounding environment.
Collapse
Affiliation(s)
- Mengbo Guo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.R.); (Y.L.)
| | - Xueting Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.R.); (Y.L.)
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.R.); (Y.L.)
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.R.); (Y.L.)
- Correspondence: ; Tel.: +86-010-628-16947
| |
Collapse
|
45
|
Zhao M, Jin J, Wang J, Gao T, Luo Y, Jing T, Hu Y, Pan Y, Lu M, Schwab W, Song C. Eugenol functions as a signal mediating cold and drought tolerance via UGT71A59-mediated glucosylation in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1489-1506. [PMID: 34931743 DOI: 10.1111/tpj.15647] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cold and drought stress are the most critical stresses encountered by crops and occur simultaneously under field conditions. However, it is unclear whether volatiles contribute to both cold and drought tolerance, and if so, by what mechanisms they act. Here, we show that airborne eugenol can be taken up by the tea (Camellia sinensis) plant and metabolized into glycosides, thus enhancing cold and drought tolerance of tea plants. A uridine diphosphate (UDP)-glucosyltransferase, UGT71A59, was discovered, whose expression is strongly induced by multiple abiotic stresses. UGT71A59 specifically catalyzes glucosylation of eugenol glucoside in vitro and in vivo. Suppression of UGT71A59 expression in tea reduced the accumulation of eugenol glucoside, lowered reactive oxygen species (ROS) scavenging capacity, and ultimately impaired cold and drought stress tolerance. Exposure to airborne eugenol triggered a marked increase in UGT71A59 expression, eugenol glucoside accumulation, and cold tolerance by modulating ROS accumulation and CBF1 expression. It also promoted drought tolerance by altering abscisic acid homeostasis and stomatal closure. CBF1 and CBF3 play positive roles in eugenol-induced cold tolerance and CBF2 may be a negative regulator of eugenol-induced cold tolerance in tea plants. These results provide evidence that eugenol functions as a signal in cold and drought tolerance regulation and shed new light on the biological functions of volatiles in the response to multiple abiotic stresses in plants.
Collapse
Affiliation(s)
- Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Yu Luo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Yutong Hu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising, 85354, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| |
Collapse
|
46
|
CabZIP23 Integrates in CabZIP63-CaWRKY40 Cascade and Turns CabZIP63 on Mounting Pepper Immunity against Ralstonia solanacearum via Physical Interaction. Int J Mol Sci 2022; 23:ijms23052656. [PMID: 35269798 PMCID: PMC8910381 DOI: 10.3390/ijms23052656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
CabZIP63 and CaWRKY40 were previously found to be shared in the pepper defense response to high temperature stress (HTS) and to Ralstonia solanacearum inoculation (RSI), forming a transcriptional cascade. However, how they activate the two distinct defense responses is not fully understood. Herein, using a revised genetic approach, we functionally characterized CabZIP23 in the CabZIP63-CaWRKY40 cascade and its context specific pepper immunity activation against RSI by interaction with CabZIP63. CabZIP23 was originally found by immunoprecipitation-mass spectrometry to be an interacting protein of CabZIP63-GFP; it was upregulated by RSI and acted positively in pepper immunity against RSI by virus induced gene silencing in pepper plants, and transient overexpression in Nicotiana benthamiana plants. By chromatin immunoprecipitation (ChIP)-qPCR and electrophoresis mobility shift assay (EMSA), CabZIP23 was found to be directly regulated by CaWRKY40, and CabZIP63 was directly regulated by CabZIP23, forming a positive feedback loop. CabZIP23-CabZIP63 interaction was confirmed by co-immunoprecipitation (CoIP) and bimolecular fluorescent complimentary (BiFC) assays, which promoted CabZIP63 binding immunity related target genes, including CaPR1, CaNPR1 and CaWRKY40, thereby enhancing pepper immunity against RSI, but not affecting the expression of thermotolerance related CaHSP24. All these data appear to show that CabZIP23 integrates in the CabZIP63-CaWRKY40 cascade and the context specifically turns it on mounting pepper immunity against RSI.
Collapse
|
47
|
Brosset A, Blande JD. Volatile-mediated plant-plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:511-528. [PMID: 34791168 PMCID: PMC8757495 DOI: 10.1093/jxb/erab487] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/04/2021] [Indexed: 05/12/2023]
Abstract
It is firmly established that plants respond to biotic and abiotic stimuli by emitting volatile organic compounds (VOCs). These VOCs provide information on the physiological status of the emitter plant and are available for detection by the whole community. In the context of plant-plant interactions, research has focused mostly on the defence-related responses of receiver plants. However, responses may span hormone signalling and both primary and secondary metabolism, and ultimately affect plant fitness. Here we present a synthesis of plant-plant interactions, focusing on the effects of VOC exposure on receiver plants. An overview of the important chemical cues, the uptake and conversion of VOCs, and the adsorption of VOCs to plant surfaces is presented. This is followed by a review of the substantial VOC-induced changes to receiver plants affecting both primary and secondary metabolism and influencing plant growth and reproduction. Further research should consider whole-plant responses for the effective evaluation of the mechanisms and fitness consequences of exposure of the receiver plant to VOCs.
Collapse
Affiliation(s)
- Agnès Brosset
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P.O. Box 1627, Kuopio FIN-70211, Finland
| | | |
Collapse
|
48
|
Brambilla A, Sommer A, Ghirardo A, Wenig M, Knappe C, Weber B, Amesmaier M, Lenk M, Schnitzler JP, Vlot AC. Immunity-associated volatile emissions of β-ionone and nonanal propagate defence responses in neighbouring barley plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:615-630. [PMID: 34849759 DOI: 10.1093/jxb/erab520] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Plants activate biochemical responses to combat stress. (Hemi-)biotrophic pathogens are fended off by systemic acquired resistance (SAR), a primed state allowing plants to respond faster and more strongly upon subsequent infection. Here, we show that SAR-like defences in barley (Hordeum vulgare) are propagated between neighbouring plants, which respond with enhanced resistance to the volatile cues from infected senders. The emissions of the sender plants contained 15 volatile organic compounds (VOCs) associated with infection. Two of these, β-ionone and nonanal, elicited resistance upon plant exposure. Whole-genome transcriptomics analysis confirmed that interplant propagation of defence in barley is established as a form of priming. Although gene expression changes were more pronounced after challenge infection of the receiver plants with Blumeria graminis f. sp. hordei, differential gene expression in response to the volatile cues of the sender plants included an induction of HISTONE DEACETYLASE 2 (HvHDA2) and priming of TETRATRICOPEPTIDE REPEAT-LIKE superfamily protein (HvTPL). Because HvHDA2 and HvTPL transcript accumulation was also enhanced by exposure of barley to β-ionone and nonanal, our data identify both genes as possible defence/priming markers in barley. Our results suggest that VOCs and plant-plant interactions are relevant for possible crop protection strategies priming defence responses in barley.
Collapse
Affiliation(s)
- Alessandro Brambilla
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Anna Sommer
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Baris Weber
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Melissa Amesmaier
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Miriam Lenk
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| |
Collapse
|
49
|
Howard MM, Bass E, Chautá A, Mutyambai D, Kessler A. Integrating plant-to-plant communication and rhizosphere microbial dynamics: ecological and evolutionary implications and a call for experimental rigor. THE ISME JOURNAL 2022; 16:5-9. [PMID: 34333553 PMCID: PMC8692333 DOI: 10.1038/s41396-021-01063-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/02/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
The perception of airborne chemical signals by plants can trigger reconfigurations of their metabolism that alter their biotic interactions. While plant-to-plant chemical communication has primarily been studied in the context of eliciting defenses to herbivores and pathogens, recent work suggests that it can also affect plants’ interactions with their rhizosphere microbiomes. In this perspective, we discuss the potential for integrating the fields of plant-to-plant communication and microbial ecology to understand the chemical ecology of plant−microbiome interactions. As an introduction for microbial ecologists, we highlight mechanistic knowledge gaps in plant volatile organic compound (VOC) perception and provide recommendations for avoiding common experimental errors that have plagued the plant communication field. Lastly, we discuss potential implications of plant VOCs structuring rhizosphere microbiomes, particularly effects on plant community and evolutionary dynamics. As we continue to discover links between plant metabolism and their microbiomes—from molecular to community scales—we hope that this perspective will provide both motivation and words of caution for researchers working at the intersection of these two fields.
Collapse
Affiliation(s)
- Mia M. Howard
- grid.411377.70000 0001 0790 959XDepartment of Biology, Indiana University, Bloomington, IN USA ,grid.5386.8000000041936877XDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY USA
| | - Ethan Bass
- grid.5386.8000000041936877XDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY USA
| | - Alexander Chautá
- grid.5386.8000000041936877XDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY USA
| | - Daniel Mutyambai
- grid.5386.8000000041936877XDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY USA ,grid.419326.b0000 0004 1794 5158International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - André Kessler
- grid.5386.8000000041936877XDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY USA
| |
Collapse
|
50
|
Loreto F, D'Auria S. How do plants sense volatiles sent by other plants? TRENDS IN PLANT SCIENCE 2022; 27:29-38. [PMID: 34544607 DOI: 10.1016/j.tplants.2021.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Plants communicate via the emission of volatile organic compounds (VOCs) with many animals as well as other plants. We still know little about how VOCs are perceived by receiving (eavesdropping) plants. Here we propose a multiple system of VOC perception, where stress-induced VOCs dock on odorant-binding proteins (OBPs) like in animals and are transported to as-yet-unknown receptors mediating downstream metabolic and/or behavioral changes. Constitutive VOCs that are broadly and lifelong emitted by plants do not bind OBPs but may directly change the metabolism of eavesdropping plants. Deciphering how plants listen to their talking neighbors could empower VOCs as a tool for bioinspired strategies of plant defense when challenged by abiotic and biotic stresses.
Collapse
Affiliation(s)
- Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Sesto Fiorentino, Italy.
| | - Sabato D'Auria
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Institute for Food Science, National Research Council of Italy (CNR-ISA), Avellino, Italy.
| |
Collapse
|