1
|
Grzech D, Smit SJ, Alam RM, Boccia M, Nakamura Y, Hong B, Barbole R, Heinicke S, Kunert M, Seibt W, Grabe V, Caputi L, Lichman BR, O'Connor SE, Aharoni A, Sonawane PD. Incorporation of nitrogen in antinutritional Solanum alkaloid biosynthesis. Nat Chem Biol 2025; 21:131-142. [PMID: 39271954 DOI: 10.1038/s41589-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.
Collapse
Affiliation(s)
- Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Ryan M Alam
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
2
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2024; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Liu Y, Liu X, Li Y, Pei Y, Jaleel A, Ren M. Potato steroidal glycoalkaloids: properties, biosynthesis, regulation and genetic manipulation. MOLECULAR HORTICULTURE 2024; 4:43. [PMID: 39668379 PMCID: PMC11639122 DOI: 10.1186/s43897-024-00118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024]
Abstract
Steroidal glycoalkaloids (SGAs), predominantly comprising α-solanine (C45H73NO15) and α-chaconine (C45H73NO14), function as natural phytotoxins within potatoes. In addition to their other roles, these SGAs are crucial for enabling potato plants to withstand biotic stresses. However, they also exhibit toxicity towards humans and animals. Consequently, the content and distribution of SGAs are crucial traits for the genetic improvement of potatoes. This review focuses on advancing research related to the biochemical properties, biosynthesis, regulatory mechanisms, and genetic improvement of potato SGAs. Furthermore, we provide perspectives on future research directions to further enhance our understanding of SGA biosynthesis and regulation, ultimately facilitating the targeted development of superior potato varieties.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| | - Xiaowei Liu
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yingge Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China
| | - Yanfei Pei
- Hainan Seed Industry Laboratory, Sanya, 572025, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China.
| |
Collapse
|
4
|
Li Y, Luo J. From steroidal glycoalkaloids to steroidal saponins: Biosynthesis and ecological role in the Solanum genus. MOLECULAR PLANT 2024:S1674-2052(24)00364-2. [PMID: 39600099 DOI: 10.1016/j.molp.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Affiliation(s)
- Yan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Yazhouwan National Laboratory, Sanya 572025, China.
| |
Collapse
|
5
|
Fernie AR, de Vries S, de Vries J. Evolution of plant metabolism: the state-of-the-art. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230347. [PMID: 39343029 PMCID: PMC11449224 DOI: 10.1098/rstb.2023.0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024] Open
Abstract
Immense chemical diversity is one of the hallmark features of plants. This chemo-diversity is mainly underpinned by a highly complex and biodiverse biochemical machinery. Plant metabolic enzymes originated and were inherited from their eukaryotic and prokaryotic ancestors and further diversified by the unprecedentedly high rates of gene duplication and functionalization experienced in land plants. Unlike prokaryotic microbes, which display frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced relatively few gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner using existing networks as a starting point and under various evolutionary constraints. That said, until recently, the evolution of only a handful of metabolic traits had been extensively investigated and as such, the evolution of metabolism has received a fraction of the attention of, the evolution of development, for example. Advances in metabolomics and next-generation sequencing have, however, recently led to a deeper understanding of how a wide range of plant primary and specialized (secondary) metabolic pathways have evolved both as a consequence of natural selection and of domestication and crop improvement processes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
6
|
Anaia RA, Chiocchio I, Sontowski R, Swinkels B, Vergara F, van Dam NM. Ontogeny and organ-specific steroidal glycoside diversity is associated with differential expression of steroidal glycoside pathway genes in two Solanum dulcamara leaf chemotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39150982 DOI: 10.1111/plb.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
Solanaceous plants, such as Solanum dulcamara, produce steroidal glycosides (SGs). Leaf SG profiles vary among S. dulcamara individuals, leading to distinct phytochemical phenotypes ('chemotypes') and intraspecific phytochemical diversity ('chemodiversity'). However, if and how SG chemodiversity varies among organs and across ontogeny, and how this relates to SG metabolism gene expression is unknown. Among organs and across ontogeny, S. dulcamara plants with saturated (S) and unsaturated (U) SG leaf chemotypes were selected and clonally propagated. Roots, stems and leaves were harvested from vegetative and flowering plants. Extracts were analysed using untargeted LC-MS. Expression of candidate genes in SG metabolism (SdGAME9, SdGAME4, SdGAME25, SdS5αR2 and SdDPS) was analysed using RT-qPCRs. Our analyses showed that SG chemodiversity varies among organs and across ontogeny in S. dulcamara; SG richness (Dmg) was higher in flowering than vegetative plants. In vegetative plants, Dmg was higher for leaves than for roots. Lack of SdGAME25 expression in U-chemotype leaves, while readily expressed in roots and stems, suggests a pivotal role for SdGAME25 in differentiation of leaf chemotypes in vegetative and flowering plants. By acting as an ontogeny-dependent chemotypic switch, differential regulation of SdGAME25 enables adaptive allocation of SGs, thereby increasing SG chemodiversity in leaves. This indicates that differential expression and/or regulation of glycoalkaloid metabolism genes, rather than their presence or absence, explains observed chemotypic variation in SG chemodiversity among organs and across ontogeny.
Collapse
Affiliation(s)
- R A Anaia
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Plant and Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - I Chiocchio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - R Sontowski
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - B Swinkels
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Plant and Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - F Vergara
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - N M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|
7
|
Lucier R, Kamileen MO, Nakamura Y, Serediuk S, Barbole R, Wurlitzer J, Kunert M, Heinicke S, O'Connor SE, Sonawane PD. Steroidal scaffold decorations in Solanum alkaloid biosynthesis. MOLECULAR PLANT 2024; 17:1236-1254. [PMID: 38937971 DOI: 10.1016/j.molp.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.
Collapse
Affiliation(s)
- Rosalind Lucier
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Research Group Biosynthesis and NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sofiia Serediuk
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ranjit Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Jens Wurlitzer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
8
|
Bueno da Silva M, Wiese-Klinkenberg A, Usadel B, Genzel F. Potato Berries as a Valuable Source of Compounds Potentially Applicable in Crop Protection and Pharmaceutical Sectors: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15449-15462. [PMID: 38970497 PMCID: PMC11261637 DOI: 10.1021/acs.jafc.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Potato (Solanum tuberosum) is a major agricultural crop cultivated worldwide. To meet market demand, breeding programs focus on enhancing important agricultural traits such as disease resistance and improvement of tuber palatability. However, while potato tubers get a lot of attention from research, potato berries are mostly overlooked due to their level of toxicity and lack of usefulness for the food production sector. Generally, they remain unused in the production fields after harvesting the tuber. These berries are toxic due to high levels of glycoalkaloids, which might confer some interesting bioactivities. Berries of various solanaceous species contain bioactive secondary metabolites, suggesting that potato berries might contain similarly valuable metabolites. Therefore, possible applications of potato berries, e.g., in the protection of plants against pests and pathogens, as well as the medical exploitation of their anti-inflammatory, anticarcinogenic, and antifungal properties, are plausible. The presence of valuable compounds in potato berries could also contribute to the bioeconomy by providing a novel use for otherwise discarded agricultural side streams. Here we review the potential use of these berries for the extraction of compounds that can be exploited to produce pharmaceuticals and plant protection products.
Collapse
Affiliation(s)
- Marília Bueno da Silva
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Anika Wiese-Klinkenberg
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Björn Usadel
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Faculty
of Mathematics and Natural Sciences, CEPLAS, Institute for Biological
Data Science, Heinrich Heine University
Düsseldorf, 40225 Düsseldorf, Germany
| | - Franziska Genzel
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
9
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
Dixon RA, Dickinson AJ. A century of studying plant secondary metabolism-From "what?" to "where, how, and why?". PLANT PHYSIOLOGY 2024; 195:48-66. [PMID: 38163637 PMCID: PMC11060662 DOI: 10.1093/plphys/kiad596] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2024]
Abstract
Over the past century, early advances in understanding the identity of the chemicals that collectively form a living plant have led scientists to deeper investigations exploring where these molecules localize, how they are made, and why they are synthesized in the first place. Many small molecules are specific to the plant kingdom and have been termed plant secondary metabolites, despite the fact that they can play primary and essential roles in plant structure, development, and response to the environment. The past 100 yr have witnessed elucidation of the structure, function, localization, and biosynthesis of selected plant secondary metabolites. Nevertheless, many mysteries remain about the vast diversity of chemicals produced by plants and their roles in plant biology. From early work characterizing unpurified plant extracts, to modern integration of 'omics technology to discover genes in metabolite biosynthesis and perception, research in plant (bio)chemistry has produced knowledge with substantial benefits for society, including human medicine and agricultural biotechnology. Here, we review the history of this work and offer suggestions for future areas of exploration. We also highlight some of the recently developed technologies that are leading to ongoing research advances.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Alexandra Jazz Dickinson
- Department of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Kusaka H, Nakasato S, Sano K, Kobata K, Ohno S, Doi M, Tanaka Y. An evolutionary view of vanillylamine synthase pAMT, a key enzyme of capsaicinoid biosynthesis pathway in chili pepper. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1453-1465. [PMID: 38117481 DOI: 10.1111/tpj.16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Pungent capsaicinoid is synthesized only in chili pepper (Capsicum spp.). The production of vanillylamine from vanillin is a unique reaction in the capsaicinoid biosynthesis pathway. Although putative aminotransferase (pAMT) has been isolated as the vanillylamine synthase gene, it is unclear how Capsicum acquired pAMT. Here, we present a phylogenetic overview of pAMT and its homologs. The Capsicum genome contained 5 homologs, including pAMT, CaGABA-T1, CaGABA-T3, and two pseudogenes. Phylogenetic analysis indicated that pAMT is a member of the Solanaceae cytoplasmic GABA-Ts. Comparative genome analysis found that multiple copies of GABA-T exist in a specific Solanaceae genomic region, and the cytoplasmic GABA-Ts other than pAMT are located in the region. The cytoplasmic GABA-T was phylogenetically close to pseudo-GABA-T harboring a plastid transit peptide (pseudo-GABA-T3). This suggested that Solanaceae cytoplasmic GABA-Ts occurred via duplication of a chloroplastic GABA-T ancestor and subsequent loss of the plastid transit signal. The cytoplasmic GABA-T may have been translocated from the specific Solanaceae genomic region during Capsicum divergence, resulting in the current pAMT locus. A recombinant protein assay demonstrated that pAMT had higher vanillylamine synthase activity than those of other plant GABA-Ts. pAMT was expressed exclusively in the placental septum of mature green fruit, whereas tomato orthologs SlGABA-T2/4 exhibit a ubiquitous expression pattern in plants. These findings suggested that both the increased catalytic efficiency and transcriptional changes in pAMT may have contributed to establish vanillylamine synthesis in the capsaicinoid biosynthesis pathway. This study provides insights into the establishment of pungency in the evolution of chili peppers.
Collapse
Affiliation(s)
- Hirokazu Kusaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Saika Nakasato
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Saitama, 350-0295, Japan
| | - Kenji Kobata
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan
| | - Sho Ohno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
12
|
Chen D, Xu X, Yang Y, Meng H, Xu M, Dong L, Ma G, Zhang X. Discovery of Cadinane-Type Sesquiterpenoids from the Infected Stems of Hibiscus tiliaceus as Potential Agrochemical Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4089-4099. [PMID: 38353561 DOI: 10.1021/acs.jafc.3c08508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Ten new cadinane-type sesquiterpenoids, named hibisceusins I-R (1-10), along with 14 known sesquiterpenoids (11-24), were acquired from the tainted stems of Hibiscus tiliaceus. Their structures were identified via spectroscopic analysis, one-dimensional (1D) and two-dimensional (2D) NMR, and computer-assisted structure elucidation techniques, including infrared (IR) and mass spectrometry (MS) data. Additionally, subsequent DP4/DP4+ probability methods were used to resolve 3's relative configurations by comparing their experimental values to the predicted NMR data. The absolute configurations of compounds 1-4 were measured through electronic circular dichroism (ECD) spectra. The ability of all isolates to inhibit the growth of five phytopathogenic fungi (Rhizopus stolonifer, Verticillium dahliae Kleb., Thanatephorus cucumeris, Fusarium oxysporum Schltdl., and F. oxysporum HK-27) was evaluated. Aldehydated sesquiterpenoids (1, 6-9, 11, 12, and 22) and a known sesquiterpenoid quinine (18) exhibited significant inhibitory activities against V. dahliae, T. cucumeris, F. oxysporum, and F. oxysporum HK-27 with minimum inhibitory concentration (MIC) values of 2.5-50 μg/mL, but all isolates remained inactive against R. stolonifer. Moreover, the effects of the isolates on the mycelial morphology were watched through scanning electron microscopy. This study revealed that aldehydated cadinane-type sesquiterpenoids could be used as novel antifungal molecules to develop agrochemical fungicides in plant protection.
Collapse
Affiliation(s)
- Deli Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xudong Xu
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yun Yang
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Hui Meng
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Minghui Xu
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Lin Dong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Guoxu Ma
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaopo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
13
|
Watanabe M, Tohge T. Species-specific 'specialized' genomic region provides the new insights into the functional genomics characterizing metabolic polymorphisms in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102427. [PMID: 37517136 DOI: 10.1016/j.pbi.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Functional genomics approaches with comparative omics analyses of wild-accessions and cultivars/wild species, as well as comparative genomic analyses in plant species focusing on gene clusters, have successfully detected key metabolic polymorphisms in plant specialized metabolism. In recent decades, (i) intra-species specific metabolic polymorphisms, (ii) new functionalization of tandem duplicated genes, and (iii) metabolic gene clusters were found as the main factors creating metabolic diversity of specialized metabolites in plants. However, given findings aware us that the identification of genes in plant specialized metabolism requires strategic approaches depending on the target metabolic pathways. The increasing availability of plant genome sequences and transcriptome data has facilitated inter-specific comparative analyses, including genomic analysis and gene co-expression network analysis. Here, we introduce functional genomics approaches with the integration of inter-/intra-species comparative metabolomics, their key roles in providing genomic signatures of metabolic evolution, and discuss future prospects of functional genomics on plant specialized metabolism.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho 8916-5, Ikoma, Nara 630-0192, Japan
| | - Takayuki Tohge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho 8916-5, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
14
|
Delbrouck JA, Desgagné M, Comeau C, Bouarab K, Malouin F, Boudreault PL. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023; 28:4957. [PMID: 37446619 DOI: 10.3390/molecules28134957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
15
|
Negin B, Jander G. Convergent and divergent evolution of plant chemical defenses. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102368. [PMID: 37087925 DOI: 10.1016/j.pbi.2023.102368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
The majority of the several hundred thousand specialized metabolites produced by plants function in defense against insects and other herbivores. Despite this diversity, identical metabolites or structurally distinct metabolites hitting the same targets in herbivorous animals have evolved repeatedly. This convergent evolution may reflect the constraints of plant primary metabolism in providing metabolic precursors, as well as the limited number of readily accessible targets in animals. These restrictions may make it uncommon for plants to develop completely novel toxic and deterrent metabolites, despite the ongoing evolution of resistance mechanisms in insect herbivores. Defensive compounds that are unique to individual genera or species often have long biosynthetic pathways that may complicate the repeated evolution of these metabolites in different plant species.
Collapse
Affiliation(s)
- Boaz Negin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Chuang L, Liu S, Franke J. Post-Cyclization Skeletal Rearrangements in Plant Triterpenoid Biosynthesis by a Pair of Branchpoint Isomerases. J Am Chem Soc 2023; 145:5083-5091. [PMID: 36821810 PMCID: PMC9999417 DOI: 10.1021/jacs.2c10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Triterpenoids possess potent biological activities, but their polycyclic skeletons are challenging to synthesize. The skeletal diversity of triterpenoids in plants is generated by oxidosqualene cyclases based on epoxide-triggered cationic rearrangement cascades. Normally, triterpenoid skeletons then remain unaltered during subsequent tailoring steps. In contrast, the highly modified triterpenoids found in Sapindales plants imply the existence of post-cyclization skeletal rearrangement enzymes that have not yet been found. We report here a biosynthetic pathway in Sapindales plants for the modification of already cyclized tirucallane triterpenoids, controlling the pathway bifurcation between different plant triterpenoid classes. Using a combination of bioinformatics, heterologous expression in plants and chemical analyses, we identified a cytochrome P450 monooxygenase and two isomerases which harness the epoxidation-rearrangement biosynthetic logic of triterpene cyclizations for modifying the tirucallane scaffold. The two isomerases share the same epoxide substrate made by the cytochrome P450 monooxygenase CYP88A154, but generate two different rearrangement products, one containing a cyclopropane ring. Our findings reveal a process for skeletal rearrangements of triterpenoids in nature that expands their scaffold diversity after the initial cyclization. In addition, the enzymes described here are crucial for the biotechnological production of limonoid, quassinoid, apoprotolimonoid, and glabretane triterpenoids.
Collapse
Affiliation(s)
- Ling Chuang
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Shenyu Liu
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Jakob Franke
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany.,Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
17
|
Negin B, Hen-Avivi S, Almekias-Siegl E, Shachar L, Jander G, Aharoni A. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. THE NEW PHYTOLOGIST 2023; 237:1574-1589. [PMID: 36369885 DOI: 10.1111/nph.18615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/05/2022] [Indexed: 05/20/2023]
Abstract
Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. We utilized genome-edited tree tobacco (Nicotiana glauca) to investigate the significance of different classes of epicuticular wax in abiotic stress such as cuticular water loss, drought, and light response. We generated mutants displaying a range of wax compositions. Four wax mutants and one cutin mutant were extensively investigated for alterations in their response to abiotic factors. Although the mutations led to elevated cuticular water loss, the wax mutants did not display elevated transpiration or reduced growth under nonstressed conditions. However, under drought, plants lacking alkanes were unable to reduce their transpiration, leading to leaf death, impaired recovery, and stem cracking. By contrast, plants deficient in fatty alcohols exhibited elevated drought tolerance, which was part of a larger trend of plant phenotypes not clustering by a glossy/glaucous appearance in the parameters examined in this study. We conclude that although alkanes have little effect on whole N. glauca transpiration and biomass gain under normal, nonstressed conditions, they are essential during drought responses, since they enable plants to seal their cuticle upon stomatal closure, thereby reducing leaf death and facilitating a speedy recovery.
Collapse
Affiliation(s)
- Boaz Negin
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Shelly Hen-Avivi
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Efrat Almekias-Siegl
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lior Shachar
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Asaph Aharoni
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
18
|
Fiesel PD, Parks HM, Last RL, Barry CS. Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. Nat Prod Rep 2022; 39:1438-1464. [PMID: 35332352 PMCID: PMC9308699 DOI: 10.1039/d2np00003b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2000-2022Plants collectively synthesize a huge repertoire of metabolites. General metabolites, also referred to as primary metabolites, are conserved across the plant kingdom and are required for processes essential to growth and development. These include amino acids, sugars, lipids, and organic acids. In contrast, specialized metabolites, historically termed secondary metabolites, are structurally diverse, exhibit lineage-specific distribution and provide selective advantage to host species to facilitate reproduction and environmental adaptation. Due to their potent bioactivities, plant specialized metabolites attract considerable attention for use as flavorings, fragrances, pharmaceuticals, and bio-pesticides. The Solanaceae (Nightshade family) consists of approximately 2700 species and includes crops of significant economic, cultural, and scientific importance: these include potato, tomato, pepper, eggplant, tobacco, and petunia. The Solanaceae has emerged as a model family for studying the biochemical evolution of plant specialized metabolism and multiple examples exist of lineage-specific metabolites that influence the senses and physiology of commensal and harmful organisms, including humans. These include, alcohols, phenylpropanoids, and carotenoids that contribute to fruit aroma and color in tomato (fruity), glandular trichome-derived terpenoids and acylsugars that contribute to plant defense (stinky & sticky, respectively), capsaicinoids in chilli-peppers that influence seed dispersal (spicy), and steroidal glycoalkaloids (bitter) from Solanum, nicotine (addictive) from tobacco, as well as tropane alkaloids (deadly) from Deadly Nightshade that deter herbivory. Advances in genomics and metabolomics, coupled with the adoption of comparative phylogenetic approaches, resulted in deeper knowledge of the biosynthesis and evolution of these metabolites. This review highlights recent progress in this area and outlines opportunities for - and challenges of-developing a more comprehensive understanding of Solanaceae metabolism.
Collapse
Affiliation(s)
- Paul D Fiesel
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah M Parks
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L Last
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Schenck CA, Busta L. Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. PLANT MOLECULAR BIOLOGY 2022; 109:355-367. [PMID: 34816350 DOI: 10.1007/s11103-021-01220-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
To cope with relentless environmental pressures, plants produce an arsenal of structurally diverse chemicals, often called specialized metabolites. These lineage-specific compounds are derived from the simple building blocks made by ubiquitous core metabolic pathways. Although the structures of many specialized metabolites are known, the underlying metabolic pathways and the evolutionary events that have shaped the plant chemical diversity landscape are only beginning to be understood. However, with the advent of multi-omics data sets and the relative ease of studying pathways in previously intractable non-model species, plant specialized metabolic pathways are now being systematically identified. These large datasets also provide a foundation for comparative, phylogeny-guided studies of plant metabolism. Comparisons of metabolic traits and features like chemical abundances, enzyme activities, or gene sequences from phylogenetically diverse plants provide insights into how metabolic pathways evolved. This review highlights the power of studying evolution through the lens of comparative biochemistry, particularly how placing metabolism into a phylogenetic context can help a researcher identify the metabolic innovations enabling the evolution of structurally diverse plant metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA
| |
Collapse
|
20
|
Baur S, Bellé N, Frank O, Wurzer S, Pieczonka SA, Fromme T, Stam R, Hausladen H, Hofmann T, Hückelhoven R, Dawid C. Steroidal Saponins─New Sources to Develop Potato ( Solanum tuberosum L.) Genotypes Resistant against Certain Phytophthora infestans Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7447-7459. [PMID: 35679324 DOI: 10.1021/acs.jafc.2c02575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant pathogens such as Phytophthora infestans that caused the Irish Potato Famine continue to threaten local and global food security. Genetic and chemical plant protection measures are often overcome by adaptation of pathogen population structures. Therefore, there is a constant demand for new, consumer- and environment-friendly plant protection strategies. Metabolic alterations induced by P. infestans in the foliage and tubers of six different potato cultivars were investigated. Using a combination of untargeted metabolomics, isolation techniques, and structure elucidation by MS and 1D/2D-NMR experiments, five steroidal glycoalkaloids, five oxylipins, and four steroidal saponins were identified. As the steroidal saponins showed antioomycete but no hemolytic activity, they may thus be considered as probably safe target substances for enrichment in breeding programs for disease resistance and as chemical lead structures for the production of nature-derived synthetic antioomycetes.
Collapse
Affiliation(s)
- Sebastian Baur
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Nicole Bellé
- Chair of Phytopathology, Technische Universität München, Emil-Ramann-Straße 2, 85354 Freising, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Sebastian Wurzer
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Stefan Alexander Pieczonka
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technische Universität München, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Remco Stam
- Chair of Phytopathology, Technische Universität München, Emil-Ramann-Straße 2, 85354 Freising, Germany
| | - Hans Hausladen
- Plant Technology Center, Technische Universität München, Dürnast 9, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, Technische Universität München, Emil-Ramann-Straße 2, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| |
Collapse
|
21
|
Sonawane PD, Jozwiak A, Barbole R, Panda S, Abebie B, Kazachkova Y, Gharat SA, Ramot O, Unger T, Wizler G, Meir S, Rogachev I, Doron-Faigenboim A, Petreikov M, Schaffer A, Giri AP, Scherf T, Aharoni A. 2-oxoglutarate-dependent dioxygenases drive expansion of steroidal alkaloid structural diversity in the genus Solanum. THE NEW PHYTOLOGIST 2022; 234:1394-1410. [PMID: 35238413 DOI: 10.1111/nph.18064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.
Collapse
Affiliation(s)
- Prashant D Sonawane
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Natural Products, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev, 85280, Israel
| | - Bekele Abebie
- Department of Plant Pathology and Weed Research, ARO-Volcani Center, Bet Dagan, 50250, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofir Ramot
- Metabolic Insights Ltd, Ness Ziona, 7414001, Israel
| | - Tamar Unger
- Israel Structural Proteomics Centre, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Guy Wizler
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZiyyon, 7505101, Israel
| | - Marina Petreikov
- Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZiyyon, 7505101, Israel
| | - Arthur Schaffer
- Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZiyyon, 7505101, Israel
| | - Ashok P Giri
- Department of Natural Products, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Tali Scherf
- NMR unit, Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
22
|
Lou YR, Pichersky E, Last RL. Deep roots and many branches: Origins of plant-specialized metabolic enzymes in general metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102192. [PMID: 35217473 DOI: 10.1016/j.pbi.2022.102192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Collectively, plants produce hundreds of thousands of specialized metabolites from simple building blocks such as amino acids, fatty acids, and isoprenoids. As additional specialized metabolic enzymes are described, there is increasing recognition of the importance of cooption of general metabolic enzymes to specialized metabolism by gene duplication, narrowing of expression, and alteration of enzymatic activities. Here, we examine how several classes of enzymes were each coopted multiple times. We demonstrate the simplicity of achieving the synthesis of analogous chemicals by coopting existing enzymes and summarize emerging insights that could inform rational metabolic engineering of both general and specialized metabolic enzymes.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Wang Y, Xiong W, Chen Y, Zhu M, Liang J, Li Y, Huang J, Huang L, Liu Z, Ji A, Duan L. Transcriptomic investigation of the biochemical function of 7-dehydrocholesterol reductase 1 from the traditional Chinese medicinal plant Anemarrhena asphodeloides Bunge. PHYTOCHEMISTRY 2021; 192:112954. [PMID: 34543875 DOI: 10.1016/j.phytochem.2021.112954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Anemarrhena asphodeloides Bunge (Liliaceae) is an important Traditional Chinese Medicine herb, which contains up to 6 % total steroidal saponins (timosaponins) and has multiple pharmacological properties. However, the timosaponin biosynthetic pathway has not been extensively investigated. Here we conducted de novo transcriptome sequencing and analysis of A. asphodeloides Bunge and screened for candidate genes involved in the timosaponin biosynthetic pathway. Targeted metabolite analysis showed that timosaponins primarily accumulated in rhizomes, while phytosterols (including cholesterol) were distributed throughout various organs. Most of the identified candidate genes of the timosaponin biosynthetic pathway were also highly expressed in the rhizome, consistent with the results of metabolic analysis. Based on the transcriptome results, two candidate 7-dehydrocholesterol reductase genes were cloned and heterologously expressed in the yeast Saccharomyces cerevisiae. The purified and identified products supported that Aa7DR1 possessed Δ7-reduction activity in yeast and therefore may be involved in the timosaponins biosynthetic pathway in A. asphodeloides Bunge. Phylogenetic analysis showed Aa7DR1 belongs to monocotyledonous Δ7 reductase of phytosterol biosynthesis. These data expand our understanding of timosaponin biosynthesis.
Collapse
Affiliation(s)
- Yunpeng Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Wenbo Xiong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yidu Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Min Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jincai Liang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jia Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Liufang Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Aijia Ji
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Lixin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
24
|
Tsugawa H, Rai A, Saito K, Nakabayashi R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 2021; 38:1729-1759. [PMID: 34668509 DOI: 10.1039/d1np00014d] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. We also highlight the use of phytochemical genomics to mine genes associated with specialized metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is fundamental to elucidate the functions of the plant-derived specialized metabolome.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Amit Rai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
25
|
Nakayasu M, Umemoto N, Akiyama R, Ohyama K, Lee HJ, Miyachi H, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M. Characterization of C-26 aminotransferase, indispensable for steroidal glycoalkaloid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:81-92. [PMID: 34273198 DOI: 10.1111/tpj.15426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Yokohama, Kanagawa, 230-0045, Japan
- Central Laboratories for Key Technologies, Kirin Co., Ltd. Fukuura 1-13-5, Yokohama, Kanagawa, 236-0004, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo, 152-8551, Japan
| | - Hyoung J Lee
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Haruka Miyachi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Yokohama, Kanagawa, 230-0045, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
26
|
Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R. Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:697318. [PMID: 34490002 PMCID: PMC8418127 DOI: 10.3389/fpls.2021.697318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sarma R. Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, Querétaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
27
|
Mokgehle TM, Madala N, Gitari WM, Tavengwa NT. Advances in the development of biopolymeric adsorbents for the extraction of metabolites from nutraceuticals with emphasis on Solanaceae and subsequent pharmacological applications. Carbohydr Polym 2021; 264:118049. [PMID: 33910751 DOI: 10.1016/j.carbpol.2021.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Biopolymers are renowned for their sustainable, biodegradable, biocompatible and most of them have antitoxic characteristics. These versatile naturally derived compounds include proteins, polynucleotides (RNA and DNA) and polysaccharides. Cellulose and chitosan are the most abundant polysaccharides. Proteins and polysaccharides have been applied as emulsifiers. Additional applications of proteins and polysaccharides include cosmetics, food and wastewater treatment for adsorption of dyes and pesticides. However, more interesting applications of biopolymers are emerging, such as use in transport systems for delivery of plant derived nutraceuticals to sites of inflammation, due to its inherent ability to immobilize different biological and chemical systems. This review aims to give a summary on new trends and complement what is already known in the development of polysaccharides and proteins as adsorbents of nutraceutical compounds. The application of polysaccharides/protein containing the adsorbed Solanum derived nutraceutical compounds for drug deliveryis also reviewed.
Collapse
Affiliation(s)
- Tebogo Mphatlalala Mokgehle
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Wilson Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
28
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
29
|
Gasparini K, Moreira JDR, Peres LEP, Zsögön A. De novo domestication of wild species to create crops with increased resilience and nutritional value. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102006. [PMID: 33556879 DOI: 10.1016/j.pbi.2021.102006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Creating crops with resistance to drought, soil salinity and insect damage, that simultaneously have higher nutritional quality, is challenging to conventional breeding due to the complex and diffuse genetic basis of those traits. Recent advances in gene editing technology, such as base editors and prime-editing, coupled with a deeper understanding of the genetic basis of domestication delivered by the analysis of crop 'pangenomes', open the exciting prospect of creating novel crops via manipulation of domestication-related genes in wild species. A de novo domestication platform may allow rapid and precise conversion of crop wild relatives into crops, while retaining many of the valuable resilience and nutritional traits left behind during domestication and breeding. Using the Solanaceae family as case in point, we discuss how such a knowledge-driven pipeline could be exploited to contribute to food security over the coming decades.
Collapse
Affiliation(s)
- Karla Gasparini
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | | | - Lázaro Eustáquio Pereira Peres
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
| |
Collapse
|
30
|
The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nat Commun 2021; 12:1300. [PMID: 33637735 PMCID: PMC7910490 DOI: 10.1038/s41467-021-21546-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Potato (Solanum tuberosum), a worldwide major food crop, produces the toxic, bitter tasting solanidane glycoalkaloids α-solanine and α-chaconine. Controlling levels of glycoalkaloids is an important focus on potato breeding. Tomato (Solanum lycopersicum) contains a bitter spirosolane glycoalkaloid, α-tomatine. These glycoalkaloids are biosynthesized from cholesterol via a partly common pathway, although the mechanisms giving rise to the structural differences between solanidane and spirosolane remained elusive. Here we identify a 2-oxoglutarate dependent dioxygenase, designated as DPS (Dioxygenase for Potato Solanidane synthesis), that is a key enzyme for solanidane glycoalkaloid biosynthesis in potato. DPS catalyzes the ring-rearrangement from spirosolane to solanidane via C-16 hydroxylation. Evolutionary divergence of spirosolane-metabolizing dioxygenases contributes to the emergence of toxic solanidane glycoalkaloids in potato and the chemical diversity in Solanaceae. One goal of potato breeding is to reduce the accumulation of toxic solanidane glycoalkaloids. Here the authors show that potato DPS, a 2-oxoglutarate dependent dioxygenase, catalyzes ring rearrangement of a biosynthetic precursor to differentiate solanidanes from spirosolanes that are found in other solanaceous plants.
Collapse
|
31
|
Zhao DK, Zhao Y, Chen SY, Kennelly EJ. Solanum steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis. Nat Prod Rep 2021; 38:1423-1444. [DOI: 10.1039/d1np00001b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical structures of typical Solanum steroidal glycoalkaloids from eggplant, tomato, and potato.
Collapse
Affiliation(s)
- Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environment, Yunnan University, Kunming, 650504, P. R. China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, 10016, USA
| | - Sui-Yun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environment, Yunnan University, Kunming, 650504, P. R. China
| | - Edward J. Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, 10016, USA
| |
Collapse
|