1
|
Loo YS, Yusoh NA, Lim WF, Ng CS, Zahid NI, Azmi IDM, Madheswaran T, Lee TY. Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy. Nanomedicine (Lond) 2025; 20:401-416. [PMID: 39848784 PMCID: PMC11812329 DOI: 10.1080/17435889.2025.2452151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections. This review explores nanoparticle-based treatment strategies incorporating phytochemicals for antiviral application, highlighting their demonstrated antiviral mechanisms. It specifically examines the antiviral activities of phytochemical-loaded nanosystems against (i) influenza virus (IAV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); (ii) mosquito-borne viruses [dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV)]; and (iii) sexually transmitted/blood borne viruses [e.g. herpes simplex virus (HSV), human papillomavirus (HPV), and human immunodeficiency virus (HIV)]. Furthermore, this review highlights the emerging role of these nanosystems in photodynamic therapy (PDT)-mediated attenuation of viral proliferation, and offers a perspective on the future directions of research in this promising area of multimodal therapeutic approach.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Aininie Yusoh
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Wai Feng Lim
- Sunway Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - N. Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Centre for Foundation Studies in Science of Universiti Putra Malaysia, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Rizwan M, Cheng K, Gang Y, Hou Y, Wang C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol Trace Elem Res 2025; 203:1-17. [PMID: 38451442 DOI: 10.1007/s12011-024-04139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ke Cheng
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yang Gang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yuntao Hou
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Sinha AP, Khatib MN, Gaidhane A, Upadhyay S, Wanjari M, Quazi SZ. Efficacy of nutraceuticals (probiotics or prebiotics or synbiotics) in the prevention or treatment of COVID -19: a systematic review and meta-analysis. COGENT FOOD & AGRICULTURE 2024; 10. [DOI: 10.1080/23311932.2024.2330183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 03/09/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Anju Pradhan Sinha
- ICMR Emeritus Scientist, Division of Reproductive, Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India
| | - Mahalaqua Nazli Khatib
- Head, Global Evidence Synthesis Initiative (GESI), Division of Evidence Synthesis, School of Epidemiology and Public Health, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Abhay Gaidhane
- Dean, Jawaharlal Nehru Medical College, One Health Research, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Shilpa Upadhyay
- Resesarch Associate, Global Consortium of Public Health Research, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Mayur Wanjari
- Resesarch Associate, Global Consortium of Public Health Research, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Syed Zahiruddin Quazi
- South Asia Infant Feeding Research Network (SAIFRN), School of Epidemiology and Public Health, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
4
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024; 61:10115-10137. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
5
|
Felice F, Moschini R, Cappiello M, Sardelli G, Mosca R, Piazza L, Balestri F. Is Micronutrient Supplementation Helpful in Supporting the Immune System during Prolonged, High-Intensity Physical Training? Nutrients 2024; 16:3008. [PMID: 39275323 PMCID: PMC11397090 DOI: 10.3390/nu16173008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
It is well known that during prolonged, high-intensity physical training, athletes experience a state of immunosuppression and that balanced nutrition can help maintain immunity. This review summarizes the effects (amplified by virus infection) of high-intensity, long-term exercise on immunity, critically presenting key micronutrients and supplementation strategies that can influence athletes' performance and their immune system. The main conclusion is that micronutrient supplementation with diet could help to protect the immune system from the stress effects induced by intense physical activities. The importance of personalized supplementation has been also recommended.
Collapse
Affiliation(s)
- Francesca Felice
- Biochemistry Unit, University of Pisa, Via San Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56123 Pisa, Italy
| | - Roberta Moschini
- Biochemistry Unit, University of Pisa, Via San Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56123 Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, University of Pisa, Via San Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56123 Pisa, Italy
| | - Gemma Sardelli
- Biochemistry Unit, University of Pisa, Via San Zeno 51, 56123 Pisa, Italy
| | - Rossella Mosca
- Biochemistry Unit, University of Pisa, Via San Zeno 51, 56123 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, University of Pisa, Via San Zeno 51, 56123 Pisa, Italy
| | - Francesco Balestri
- Biochemistry Unit, University of Pisa, Via San Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
6
|
Wang J, Jin X, Yan S, Zhao H, Pang D, Ouyang H, Tang X. Yeast β-glucan promotes antiviral type I interferon response via dectin-1. Vet Microbiol 2024; 295:110107. [PMID: 38838382 DOI: 10.1016/j.vetmic.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Pseudorabies virus (PRV), an alphaherpesvirus, is a neglected zoonotic pathogen. Dectin-1 sensing of β-glucan (BG) induces trained immunity, which can possibly form a new strategy for the prevention of viral infection. However, alphaherpesvirus including PRV have received little to no investigation in the context of trained immunity. Here, we found that BG pretreatment improved the survival rate, weight loss outcomes, alleviated histological injury and decreased PRV copy number of tissues in PRV-infected mice. Type I interferons (IFNs) including IFN-α/β levels in serum were significantly increased by BG. However, these effects were abrogated in the presence of Dectin-1 antagonist. Dectin-1-mediated effect of BG was also confirmed in porcine and murine macrophages. These results suggested that BG have effects on type I IFNs with antiviral property involved in Dectin-1. In piglets, oral or injected immunization with BG and PRV vaccine could significantly elevated the level of PRV-specific IgG and type I IFNs. And it also increased the antibody levels of porcine reproductive and respiratory syndrome virus vaccine and classical swine fever vaccine that were later immunized, indicating a broad-spectrum effect on improving vaccine immunity. On the premise that the cost was greatly reducing, the immunological effect of oral was better than injection administration. Our findings highlighted that BG induced type I IFNs related antiviral effect against PRV involved in Dectin-1 and potential application value as a feed additive to help control the spread of PRV and future emerging viruses.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shihan Yan
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Haoran Zhao
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China.
| |
Collapse
|
7
|
Deng L, Wei SL, Wang L, Huang JQ. Feruloylated Oligosaccharides Prevented Influenza-Induced Lung Inflammation via the RIG-I/MAVS/TRAF3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9782-9794. [PMID: 38597360 DOI: 10.1021/acs.jafc.3c09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-β, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lei Wei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jun-Qing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Eslami Ghayour A, Nazari S, Keramat F, Shahbazi F, Eslami-Ghayour A. Evaluation of the efficacy of N-acetylcysteine and bromhexine compared with standard care in preventing hospitalization of outpatients with COVID-19: a double blind randomized clinical trial. Rev Clin Esp 2024; 224:86-95. [PMID: 38215974 DOI: 10.1016/j.rceng.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
INTRODUCTION AND AIM Since its emergence in December 2019, the coronavirus disease caused by the severe acute respiratory syndrome coronavirus 2 has become a global emergency, spreading rapidly worldwide. In response to the early referral of these patients to outpatient health centers, we decided to seek more effective treatments in the early stages of their referral. This study aims to prevent both the progression and deterioration of the physical conditions of COVID-19 patients, reduce the rate of referrals, and mitigate the risks of hospitalization and death. MATERIAL AND METHODS Conducted at Dibaj Therapeutic Center, Hamadan City, Iran, a double-blind randomized controlled trial encompassed 225 COVID-19 patients from April to September 2022. Ethical approval was obtained from Hamadan University of Medical Sciences (Approval No.: IR.UMSHA.REC.1400.957), with the protocol registered in the Iranian Registry of Clinical Trials (Registration No. : IRCT20220302054167N1). In this study, we included patients who tested positive for COVID-19- PCR and were symptomatic, excluding those who were pregnant or had received a COVID-19 vaccine. Patients with oxygen saturation above 92% were allocated to three groups: Group A received N-acetylcysteine, Group B received Bromhexine, and Group C received standard care. Follow-ups on oxygen levels, symptoms, and hospitalization needs were conducted on days 7 and 14, with hospitalized patients monitored for one month post-hospitalization. RESULTS The study found that both N-acetylcysteine and Bromhexine can effectively reduce hospitalization rates and mortality and shorten the duration of hospitalization. The third visit of patients who received N-acetylcysteine showed an increase of 1.33% in oxygen saturation compared to their first visit, and in patients who received Bromhexine, this increase was 1.19%. The mortality rate was 9.33% in the control group and zero in both groups of patients who received medication. CONCLUSION In conclusion, the results of this study indicate that NAC and bromhexine may be effective in the treatment of patients with positive COVID-19, with a lower hospitalization rate, shorter hospitalization, faster recovery time, and reduced mortality compared to the control group.
Collapse
Affiliation(s)
| | - S Nazari
- Hamadan University of Medical Science, Hamadan, Iran.
| | - F Keramat
- Department of Infectious Disease, Hamadan University of Medical Science, Hamadan, Iran.
| | - F Shahbazi
- Hamadan University of Medical Science, Hamadan, Iran.
| | - A Eslami-Ghayour
- Department of Computer Engineering, Faculty of Engineering, Hamadan Branch, Islamic Azad University, Hamadan, Iran.
| |
Collapse
|
9
|
Dhakad PK, Mishra R, Mishra I. A Concise Review: Nutritional Interventions for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). NATURAL RESOURCES FOR HUMAN HEALTH 2023; 3:403-425. [DOI: 10.53365/nrfhh/175070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2025]
Abstract
Wuhan, China reported a novel coronavirus-related sickness in late 2019, which quickly spread into a global epidemic. One crucial factor in combating the coronavirus infection appears to be the presence of a robust, long-lasting, and active immune system. The immune response is affected by several factors, including food. Nutritional insufficiency can cause immune deficits, making infections more likely to cause fatality. Thus, understanding numerous behaviors, particularly dietary habits, is essential to determining their capacity to reduce severe acute respiratory syndrome coronavirus 2 risks and improve prognosis. In this paper, the authors summarize the complex interaction between nutritional status and severe acute respiratory syndrome corona virus 2 infections, as well as the consequences of poor nutrients with regard of the extent to which disease is affected. The literature was compiled by searching a number of reputable scientific databases including Scopus, Science Direct, Springer, Nature, PubMed, Web of Science resources. The accumulating evidence demonstrates that malnutrition impairs the immune system's ability to function, weakening the body's infection resistance. This review emphasizes the significance of nutritional status in the care of coronavirus disease patients as well as demonstrates that functional foods may contribute to better outcomes. Ageing, Obesity, Malnutrition, Undernutrition, Lack of exercise are having a devastating effect on people's health in general and during this coronavirus disease. The severity and prognosis of coronavirus illness seem to be significantly influenced by lifestyle choices, nutritional imbalances, and impaired immune response.
Collapse
|
10
|
Fredsgaard M, Kaniki SEK, Antonopoulou I, Chaturvedi T, Thomsen MH. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1, HBV, HCV, and HIV: A Review. Molecules 2023; 28:5312. [PMID: 37513186 PMCID: PMC10384198 DOI: 10.3390/molecules28145312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.
Collapse
Affiliation(s)
| | | | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | | | | |
Collapse
|
11
|
Ye XL, Tian SS, Tang CC, Jiang XR, Liu D, Yang GZ, Zhang H, Hu Y, Li TT, Jiang X, Li HK, Peng YC, Zheng NN, Ge GB, Liu W, Lv AP, Wang HK, Chen HZ, Ho LP, Zhang WD, Zheng YJ. Cytokine Storm in Acute Viral Respiratory Injury: Role of Qing-Fei-Pai-Du Decoction in Inhibiting the Infiltration of Neutrophils and Macrophages through TAK1/IKK/NF-[Formula: see text]B Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1153-1188. [PMID: 37403214 DOI: 10.1142/s0192415x23500532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
COVID-19 has posed unprecedented challenges to global public health since its outbreak. The Qing-Fei-Pai-Du decoction (QFPDD), a Chinese herbal formula, is widely used in China to treat COVID-19. It exerts an impressive therapeutic effect by inhibiting the progression from mild to critical disease in the clinic. However, the underlying mechanisms remain obscure. Both SARS-CoV-2 and influenza viruses elicit similar pathological processes. Their severe manifestations, such as acute respiratory distress syndrome (ARDS), multiple organ failure (MOF), and viral sepsis, are correlated with the cytokine storm. During flu infection, QFPDD reduced the lung indexes and downregulated the expressions of MCP-1, TNF-[Formula: see text], IL-6, and IL-1[Formula: see text] in broncho-alveolar lavage fluid (BALF), lungs, or serum samples. The infiltration of neutrophils and inflammatory monocytes in lungs was decreased dramatically, and lung injury was ameliorated in QFPDD-treated flu mice. In addition, QFPDD also inhibited the polarization of M1 macrophages and downregulated the expressions of IL-6, TNF-[Formula: see text], MIP-2, MCP-1, and IP-10, while also upregulating the IL-10 expression. The phosphorylated TAK1, IKK[Formula: see text]/[Formula: see text], and I[Formula: see text]B[Formula: see text] and the subsequent translocation of phosphorylated p65 into the nuclei were decreased by QFPDD. These findings indicated that QFPDD reduces the intensity of the cytokine storm by inhibiting the NF-[Formula: see text]B signaling pathway during severe viral infections, thereby providing theoretical and experimental support for its clinical application in respiratory viral infections.
Collapse
Affiliation(s)
- Xiao-Lan Ye
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Sai-Sai Tian
- School of Pharmacy Second Military Medical University, Shanghai 200433, P. R. China
| | - Chen-Chen Tang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Xin-Ru Jiang
- School of Pharmacy Second Military Medical University, Shanghai 200433, P. R. China
| | - Dan Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Gui-Zhen Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - You Hu
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Tian-Tian Li
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xin Jiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| | - Hou-Kai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yan-Chun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ning-Ning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ai-Ping Lv
- Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Hong-Zhuan Chen
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Wei-Dong Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- School of Pharmacy Second Military Medical University, Shanghai 200433, P. R. China
| | - Yue-Juan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
12
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
13
|
Ricci A, Roviello GN. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life (Basel) 2023; 13:402. [PMID: 36836758 PMCID: PMC9966545 DOI: 10.3390/life13020402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A complex network of processes inside the human immune system provides resistance against a wide range of pathologies. These defenses form an innate and adaptive immunity, in which certain immune components work together to counteract infections. In addition to inherited variables, the susceptibility to diseases may be influenced by factors such as lifestyle choices and aging, as well as environmental determinants. It has been shown that certain dietary chemical components regulate signal transduction and cell morphologies which, in turn, have consequences on pathophysiology. The consumption of some functional foods may increase immune cell activity, defending us against a number of diseases, including those caused by viruses. Here, we investigate a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota. We also discuss the molecular mechanisms that govern the protective effects of some functional foods and their molecular constituents. The main message of this review is that discovering foods that are able to strengthen the immune system can be a winning weapon against viral diseases. In addition, understanding how the dietary components function can aid in the development of novel strategies for maintaining human bodily health and keeping our immune systems strong.
Collapse
Affiliation(s)
- Andrea Ricci
- Studio Nutrizione e Benessere, Via Giuseppe Verdi 1, 84043 Agropoli, Italy
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area Di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
14
|
Vitale E, Mea R. Associations between sampling characteristics, nutritional supplemental taking and the SARS-CoV-2 infection onset in a cohort of Italian nurses. ITALIAN JOURNAL OF MEDICINE 2023. [DOI: 10.4081/itjm.2022.1540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: The aim of the present study was to analyze any relations existed between sampling characteristics and the onset of the SARS-CoV-2 infection, also by considering the number of times that it occurred in a cohort of Italian nurses interviewed. Additionally, by considering the nutritional supplemental taking, this research wanted to assess any differences both in the onset and in the number of times which the infection occurred among participants.
Method: An observational cohort study was carried out thorough all Italian nurses by advertising the questionnaire through some professional internet pages.
Results: Work typology (p=0.021), ward Covid-19 (p=0.002) and regular meal assumption (p=0.019) significantly associated to the onset of the SARS-CoV-2 infection. Most of nurses who contracted the SARS-CoV-2 infection worked during the night shift (53.7%), 44.3% worked in a no-Covid-19 ward and 53% declared to have a regular meals’ assumption. Ward typology significantly associated to the times of the SARS-CoV-2 onset (p=0.003), as most of nurses who contracted almost one time the SARS-CoV-2 infection were employed in a no-Covid-19 ward (55.5%) and 54.1% of them declared to have a regular meals’ assumption. The onset of the Sars-CoV-2 infection seemed to be more present in the most part of the sample collect.
Conclusion: The present study could be considered as pilot in this sense and also more studies will be performed in order to better relate the function of supplemental food intakes with a better functioning of the immune system.
Collapse
|
15
|
Panahi Y, Ghanei M, Rahimi M, Samim A, Vahedian‐Azimi A, Atkin SL, Sahebkar A. Evaluation the efficacy and safety of N-acetylcysteine inhalation spray in controlling the symptoms of patients with COVID-19: An open-label randomized controlled clinical trial. J Med Virol 2023; 95:e28393. [PMID: 36495185 PMCID: PMC9878233 DOI: 10.1002/jmv.28393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the effect and safety of N-acetylcysteine (NAC) inhalation spray in the treatment of patients with coronavirus disease 2019 (COVID-19). This randomized controlled clinical trial study was conducted on patients with COVID-19. Eligible patients (n = 250) were randomly allocated into the intervention group (routine treatment + NAC inhaler spray one puff per 12 h, for 7 days) or the control group who received routine treatment alone. Clinical features, hemodynamic, hematological, biochemical parameters and patient outcomes were assessed and compared before and after treatment. The mortality rate was significantly higher in the control group than in the intervention group (39.2% vs. 3.2%, p < 0.001). Significant differences were found between the two groups (intervention and control, respectively) for white blood cell count (6.2 vs. 7.8, p < 0.001), hemoglobin (12.3 vs. 13.3, p = 0.002), C-reactive protein (CRP: 6 vs. 11.5, p < 0.0001) and aspartate aminotransferase (AST: 32 vs. 25.5, p < 0.0001). No differences were seen for hospital length of stay (11.98 ± 3.61 vs. 11.81 ± 3.52, p = 0.814) or the requirement for intensive care unit (ICU) admission (7.2% vs. 11.2%, p = 0.274). NAC was beneficial in reducing the mortality rate in patients with COVID-19 and inflammatory parameters, and a reduction in the development of severe respiratory failure; however, it did not affect the length of hospital stay or the need for ICU admission. Data on the effectiveness of NAC for Severe Acute Respiratory Syndrome Coronavirus-2 is limited and further research is required.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, School of PharmacyBaqiyatallah University of Medical SciencesTehranIran
| | - Mostafa Ghanei
- Chemical Injuries Center, Systems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Morteza Rahimi
- Chemical Injuries Center, Systems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Abbas Samim
- Chemical Injuries Center, Systems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Amir Vahedian‐Azimi
- Trauma Research Center, Nursing FacultyBaqiyatallah University of Medical SciencesTehranIran
| | - Stephen L. Atkin
- School of Postgraduate Studies and ResearchRCSI Medical University of BahrainBusaiteenKingdom of Bahrain
| | - Amirhossein Sahebkar
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran,Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran,Department of Biotechnology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
16
|
Izquierdo-Alonso JL, Pérez-Rial S, Rivera CG, Peces-Barba G. N-acetylcysteine for prevention and treatment of COVID-19: Current state of evidence and future directions. J Infect Public Health 2022; 15:1477-1483. [PMID: 36410267 PMCID: PMC9651994 DOI: 10.1016/j.jiph.2022.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19) and can be associated with serious complications, including acute respiratory distress syndrome. This condition is accompanied by a massive release of cytokines, also denominated cytokine storm, development of systemic oxidative stress and a prothrombotic state. In this context, it has been proposed a role for acetylcysteine (NAC) in the management of patients with COVID-19. NAC is a molecule classically known for its mucolytic effect, but it also has direct and indirect antioxidant activity as a precursor of reduced glutathione. Other effects of NAC have also been described, such as modulating the immune and inflammatory response, counteracting the thrombotic state, and having an antiviral effect. The pharmacological activities of NAC and its effects on the mechanisms of disease progression make it a potential therapeutic agent for COVID-19. NAC is safe, tolerable, affordable, and easily available. Moreover, the antioxidant effects of the molecule may even prevent infection and play an important role as a complement to vaccination. Although the clinical efficacy and dosing regimens of NAC have been evaluated in the clinical setting with small series of patients, the results are promising. In this article, we review the pathogenesis of SARS-CoV-2 infection and the current knowledge of the mechanisms of action of NAC across disease stages. We also propose NAC posology strategies to manage COVID-19 patients in different clinical scenarios.
Collapse
Affiliation(s)
- José Luis Izquierdo-Alonso
- Servicio de Neumología, Gerencia de Atención Integrada de Guadalajara, Spain,Correspondence to: Gerencia de Atención Integrada de Guadalajara, C/Donante de sangre, s/n, 19002 Guadalajara, Spain
| | | | | | | |
Collapse
|
17
|
Das D, Adhikary S, Das RK, Banerjee A, Radhakrishnan AK, Paul S, Pathak S, Duttaroy AK. Bioactive food components and their inhibitory actions in multiple platelet pathways. J Food Biochem 2022; 46:e14476. [PMID: 36219755 DOI: 10.1111/jfbc.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
In addition to hemostasis and thrombosis, blood platelets are involved in various processes such as inflammation, infection, immunobiology, cancer metastasis, wound repair and angiogenesis. Platelets' hemostatic and non-hemostatic functions are mediated by the expression of various membrane receptors and the release of proteins, ions and other mediators. Therefore, specific activities of platelets responsible for the non-hemostatic disease are to be inhibited while leaving the platelet's hemostatic function unaffected. Platelets' anti-aggregatory property has been used as a primary criterion for antiplatelet drugs/bioactives; however, their non-hemostatic activities are not well known. This review describes the hemostatic and non-hemostatic function of human blood platelets and the modulatory effects of bioactive food components. PRACTICAL APPLICATIONS: In this review, we have discussed the antiplatelet effects of several food components. These bioactive compounds inhibit both hemostatic and non-hemostatic pathways involving blood platelet. Platelets have emerged as critical biological factors of normal and pathologic vascular healing and other diseases such as cancers and inflammatory and immune disorders. The challenge for therapeutic intervention in these disorders will be to find drugs and bioactive compounds that preferentially block specific sites implicated in emerging roles of platelets' complicated contribution to inflammation, tumour growth, or other disorders while leaving at least some of their hemostatic function intact.
Collapse
Affiliation(s)
- Diptimayee Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Shubhamay Adhikary
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Elekhnawy E, Negm WA, El-Sherbeni SA, Zayed A. Assessment of drugs administered in the Middle East as part of the COVID-19 management protocols. Inflammopharmacology 2022; 30:1935-1954. [PMID: 36018432 PMCID: PMC9411846 DOI: 10.1007/s10787-022-01050-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023]
Abstract
The pandemic spread of coronavirus (COVID-19) has been reported first at the end of 2019. It continues disturbing various human aspects with multiple pandemic waves showing more fatal novel variants. Now Egypt faces the sixth wave of the pandemic with controlled governmental measures. COVID-19 is an infectious respiratory disease-causing mild to moderate illness that can be progressed into life-threatening complications based on patients- and variant type-related factors. The symptoms vary from dry cough, fever to difficulty in breathing that required urgent hospitalization. Most countries have authorized their national protocols for managing manifested symptoms and thus lowering the rate of patients' hospitalization and boosting the healthcare systems. These protocols are still in use even with the development and approval of several vaccines. These protocols were instructed to aid home isolation, bed rest, dietary supplements, and additionally the administration of antipyretic, steroids, and antiviral drugs. The current review aimed to highlight the administered protocols in the Middle East, namely in Egypt and the Kingdom of Saudi Arabia demonstrating how these protocols have shown potential effectiveness in treating patients and saving many soles.
Collapse
Affiliation(s)
- Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527 Egypt
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527 Egypt
| | - Suzy A. El-Sherbeni
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527 Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527 Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
19
|
Bouazzaoui W, Xiao P, Couve‐Bonnaire S, Bouillon J, Mulengi JK. Chronic Inflammation and Chronic Diseases: Potential Healing with Glutathione‐Inspired Fragments. ChemistrySelect 2022. [DOI: 10.1002/slct.202203051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Wafaa Bouazzaoui
- Laboratory of Organic Chemistry Natural Products and Analysis University of Tlemcen P.O. BOX 117 Tlemcen 13 000 Algeria
| | - Pan Xiao
- Normandie Université COBRA, UMR 6014 et FR 3038 INSA Rouen, CNRS Université de Rouen 1, Rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Samuel Couve‐Bonnaire
- Normandie Université COBRA, UMR 6014 et FR 3038 INSA Rouen, CNRS Université de Rouen 1, Rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Jean‐Philippe Bouillon
- Normandie Université COBRA, UMR 6014 et FR 3038 INSA Rouen, CNRS Université de Rouen 1, Rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Joseph Kajima Mulengi
- Department of Chemistry Faculty of Sciences Faculty of Sciences University of Tlemcen P.O. Box 119 13000 Tlemcen Algeria
| |
Collapse
|
20
|
Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities. Antioxidants (Basel) 2022; 11:antiox11102061. [PMID: 36290783 PMCID: PMC9598460 DOI: 10.3390/antiox11102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Over hundreds of years, humans have faced multiple pandemics and have overcome many of them with scientific advancements. However, the recent coronavirus disease (COVID-19) has challenged the physical, mental, and socioeconomic aspects of human life, which has introduced a general sense of uncertainty among everyone. Although several risk profiles, such as the severity of the disease, infection rate, and treatment strategy, have been investigated, new variants from different parts of the world put humans at risk and require multiple strategies simultaneously to control the spread. Understanding the entire system with respect to the commonly involved or essential mechanisms may be an effective strategy for successful treatment, particularly for COVID-19. Any treatment for COVID-19 may alter the redox profile, which can be an effective complementary method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and further replication. Indeed, redox profiles are one of the main barriers that suddenly shift the immune response in favor of COVID-19. Fortunately, several redox components exhibit antiviral and anti-inflammatory activities. However, access to these components as support elements against COVID-19 is limited. Therefore, understanding redox-derived species and their nodes as a common interactome in the system will facilitate the treatment of COVID-19. This review discusses the redox-based perspectives of the entire system during COVID-19 infection, including how redox-based molecules impact the accessibility of SARS-CoV-2 to the host and further replication. Additionally, to demonstrate its feasibility as a viable approach, we discuss the current challenges in redox-based treatment options for COVID-19.
Collapse
|
21
|
García-Castro A, Román-Gutiérrez AD, Castañeda-Ovando A, Cariño-Cortés R, Acevedo-Sandoval OA, López-Perea P, Guzmán-Ortiz FA. Cereals as a Source of Bioactive Compounds with Anti-Hypertensive Activity and Their Intake in Times of COVID-19. Foods 2022; 11:3231. [PMID: 37430980 PMCID: PMC9601750 DOI: 10.3390/foods11203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cereals have phytochemical compounds that can diminish the incidence of chronic diseases such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-converting enzyme (ACE) and the block receptors of angiotensin II regulate the expression of ACE2; thus, they could be useful in the treatment of patients infected with SARS-CoV-2. The inferior peptides from 1 to 3 kDa and the hydrophobic amino acids are the best candidates to inhibit ACE, and these compounds are present in rice, corn, wheat, oats, sorghum, and barley. In addition, the vitamins C and E, phenolic acids, and flavonoids present in cereals show a reduction in the oxidative stress involved in the pathogenesis of hypertension. The influence of ACE on hypertension and COVID-19 has turned into a primary point of control and treatment from the nutritional perspective. The objective of this work was to describe the inhibitory effect of the angiotensin-converting enzyme that the bioactive compounds present in cereals possess in order to lower blood pressure and how their consumption could be associated with reducing the virulence of COVID-19.
Collapse
Affiliation(s)
- Abigail García-Castro
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Alma Delia Román-Gutiérrez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Raquel Cariño-Cortés
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Elíseo Ramírez Ulloa, 400, Doctores, Pachuca de Soto 42090, Mexico
| | - Otilio Arturo Acevedo-Sandoval
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Patricia López-Perea
- Área de Ingeniería Agroindustrial, Universidad Politécnica Francisco I. Madero, Francisco I. Madero, Hidalgo 42660, Mexico
| | - Fabiola Araceli Guzmán-Ortiz
- CONACYT, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| |
Collapse
|
22
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Affiliation(s)
- Carl J Lavie
- Ochsner Heart and Vascular Institute, New Orleans, LA, United States of America.
| |
Collapse
|
24
|
Pan T, Qi J, Tang Y, Yao Y, Chen J, Wang H, Yang J, Xu X, Shi Q, Liu Y, He X, Chen F, Ma X, Hu X, Wu X, Wu D, Han Y. N-Acetylcysteine as Prophylactic Therapy for Transplantation-Associated Thrombotic Microangiopathy: A Randomized, Placebo-Controlled Trial. Transplant Cell Ther 2022; 28:764.e1-764.e7. [PMID: 35940529 DOI: 10.1016/j.jtct.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Transplantation-associated thrombotic microangiopathy (TA-TMA) is a life-threatening complication for patients undergoing hematopoietic stem cell transplantation (HSCT). N-acetylcysteine (NAC) has recently been considered as a potential treatment for patients with thrombotic thrombocytopenic purpura. To assess the value of NAC for the prevention of TA-TMA, we conducted a prospective study at the First Affiliated Hospital of Soochow University. This open-label, randomized placebo-controlled trial included 160 patients who were scheduled for allogeneic HSCT. Participants were assigned at random 1:1 to either oral NAC (50 mg/kg/day from 9 days before HSCT to 30 days after HSCT) or placebo treatment. The primary outcome was the incidence of TA-TMA. Overall survival (OS) and event-free survival (EFS) were assessed in the NAC and placebo control groups. The incidence of TA-TMA was 9.1% (95% confidence interval [CI], 2% to 16.2%) in the NAC group, compared with 23% (95% CI, 13.2% to 32.8%) in the control group, with a rate ratio of .34 (95% CI, .123 to .911; P = .039). The median time to the onset of TA-TMA was 60 days (interquartile range [IQR], 42 to 129 days) in the NAC group and 36 days (IQR, 30.5 to 51 days) in the control group (P = .063). The 2-year OS rate was 75.4% (95% CI, 28.65% to 73.53%) in the NAC group and 63.0% (95% CI, 50.8% to 73.5%) in the control group, with a hazard ratio (HR) of .622 (95% CI, .334-1.155; P = .132). The EFS rate was 25.8% in the NAC patients and 8.1% in controls (HR, .254; 95% CI, .094 to .692; P = .024). The median time of EFS was 60 days in the NAC group and 38 days in controls. Our findings suggest that NAC may be a potential treatment to reduce the incidence of TA-TMA.
Collapse
Affiliation(s)
- Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yifang Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jingyi Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Qin Shi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, Suzhou, China
| | - Yuejun Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xuefeng He
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Feng Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaohui Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Elhusseiny SM, El-Mahdy TS, Elleboudy NS, Yahia IS, Farag MMS, Ismail NSM, Yassien MA, Aboshanab KM. In vitro Anti SARS-CoV-2 Activity and Docking Analysis of Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus Edible Mushrooms. Infect Drug Resist 2022; 15:3459-3475. [PMID: 35813084 PMCID: PMC9259418 DOI: 10.2147/idr.s362823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shaza M Elhusseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Cairo, 12566, Egypt
| | - Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ibrahim S Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab, Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Mohamed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Correspondence: Khaled M Aboshanab, Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt, Tel +20 1-0075-82620, Fax +20 224051107, Email
| |
Collapse
|
26
|
Sengupta P, Dutta S. N-acetyl cysteine as a potential regulator of SARS-CoV-2-induced male reproductive disruptions. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022; 27:14. [PMID: 35730047 PMCID: PMC9197722 DOI: 10.1186/s43043-022-00104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), has shown its persistent pandemic strength. This viral infectivity, kinetics, and the mechanisms of its actions in human body are still not completely understood. In addition, the infectivity and COVID-19 severity reportedly differ with patient’s gender with men being more susceptible to the disease. Thus, different studies have also suggested the adverse impact of COVID-19 on male reproductive functions, mainly emphasizing on high expressions of angiotensin-converting enzyme 2 (ACE2) in the testes that allows the viral entry into the cells. Main body The N-acetylcysteine (NAC), a potent therapeutic agent of COVID-19, may be effective in reducing the impairing impacts of this disease on male reproductive functions. NAC acts as mucolytic agent by reducing sulfide bonds in the cross-linked glycoprotein matrix in mucus owing to its free sulfhydryl group. Since NAC also breaks the viral disulfide bonds required for the host cell invasion, it may help to prevent direct SARS-CoV-2 invasion into the testicular cells as well. NAC also acts as a potent anti-inflammatory and antioxidant, directly scavenging reactive oxygen species (ROS) and regulating the redox state by maintaining the thiol pool being a precursor of cysteine (an essential substrate for glutathione synthesis). Since it is suggested that male reproductive impairment in COVID-19 patient may be caused by secondary immune responses owing to systemic inflammation and OS, the anti-inflammatory and antioxidant properties of NAC explained above may attribute in protecting the male reproduction functions from these COVID-19-mediated damages. Conclusion This article explains the mechanisms how NAC treatment for COVID-19 may prevent the infection-mediated disruptions in male reproduction.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor Malaysia
| | - Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor Malaysia
| |
Collapse
|
27
|
Batiha GES, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43516-43531. [PMID: 35391642 PMCID: PMC8989262 DOI: 10.1007/s11356-022-20075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 04/16/2023]
Abstract
The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
28
|
Sengupta P, Dutta S, Roychoudhury S, D’Souza UJA, Govindasamy K, Kolesarova A. COVID-19, Oxidative Stress and Male Reproduction: Possible Role of Antioxidants. Antioxidants (Basel) 2022; 11:antiox11030548. [PMID: 35326201 PMCID: PMC8945216 DOI: 10.3390/antiox11030548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) involves a complex pathogenesis and with the evolving novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the long-term impacts of the unceasing COVID-19 pandemic are mostly uncertain. Evidence indicates deleterious impact of this disease upon male reproductive health. It is concerning that COVID-19 may contribute to the already global declining trend of male fertility. The adverse impacts of COVID-19 on male reproduction may primarily be attributed to the induction of systemic inflammatory responses and oxidative stress (OS), which operate as a vicious loop. Bringing the systemic inflammation to a halt is critical for ‘putting out’ the ‘cytokine storm’ induced by excessive reactive oxygen species (ROS) generation. The possibility of OS playing a prime role in COVID-19-mediated male reproductive dysfunctions has led to the advocacy of antioxidant therapy. An array of antioxidant defense medications has shown to be effective in experimental and clinical studies of COVID-19. The present review thus discusses the possibilities as to whether antioxidant drugs would contribute to combating the SARS-CoV-2 infection-induced male reproductive disruptions, thereby aiming at kindling research ideas that are needed for identification and treatment of COVID-19-mediated male reproductive impairments.
Collapse
Affiliation(s)
- Pallav Sengupta
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai 600126, India;
| | - Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai 600126, India;
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
- Correspondence:
| | - Urban John Arnold D’Souza
- Father Muller Medical College, Mangalore 575025, India;
- Father Muller College of Allied Health Sciences, Kankanady, Mangalore 575002, India
| | - Kadirvel Govindasamy
- Animal Production Division, ICAR Research Complex for NEH Region, Indian Council of Agricultural Research, Umiam 793103, India;
| | - Adriana Kolesarova
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| |
Collapse
|
29
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Ferulic Acid From Plant Biomass: A Phytochemical With Promising Antiviral Properties. Front Nutr 2022; 8:777576. [PMID: 35198583 PMCID: PMC8860162 DOI: 10.3389/fnut.2021.777576] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is a magnificent renewable resource for phytochemicals that carry bioactive properties. Ferulic acid (FA) is a hydroxycinnamic acid that is found widespread in plant cell walls, mainly esterified to polysaccharides. It is well known of its strong antioxidant activity, together with numerous properties, such as antimicrobial, anti-inflammatory and neuroprotective effects. This review article provides insights into the potential for valorization of FA as a potent antiviral agent. Its pharmacokinetic properties (absorption, metabolism, distribution and excretion) and the proposed mechanisms that are purported to provide antiviral activity are presented. Novel strategies on extraction and derivatization routes, for enhancing even further the antiviral activity of FA and potentially favor its metabolism, distribution and residence time in the human body, are discussed. These routes may lead to novel high-added value biorefinery pathways to utilize plant biomass toward the production of nutraceuticals as functional foods with attractive bioactive properties, such as enhancing immunity toward viral infections.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
30
|
Souid I, Korchef A, Souid S. In silico evaluation of Vitis amurensis Rupr. polyphenol compounds for their inhibition potency against CoVID-19 main enzymes Mpro and RdRp. Saudi Pharm J 2022; 30:570-584. [PMID: 35250347 PMCID: PMC8883852 DOI: 10.1016/j.jsps.2022.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
The rapid transmission of the pneumonia (COVID-19) emerged as an entire worldwide health concern and it was declared as pandemic by the World Health Organization (WHO) as a consequence of the increasing reported infections number. COVID-19 disease is caused by the novel SARS-CoV-2 virus, and unfortunatly no drugs are currently approved against this desease. Accordingly, it is of outmost importance to review the possible therapeutic effects of naturally-occuring compounds that showed approved antiviral activities. The molecular docking approach offers a rapid prediction of a possible inhibition of the main enzymes Mpro and RdRp that play crucial role in the SARS-CoV-2 replication and transcription. In the present work, we review the anti-viral activities of polyphenol compounds (phenolic acids, flavonoids and stilbene) derived from the traditional Chinese medicinal Vitis amurensis. Recent molecular docking studies reported the possible binding of these polyphenols on SARS-CoV-2 enzymes Mpro and RdRp active sites and showed interesting inhibitory effects. This antiviral activity was explained by the structure-activity relationships of the studied compounds. Also, pharmacokinetic analysis of the studied molecules is simulated in the present work. Among the studied polyphenol compounds, only five, namely caffeic acid, ferulic acid, quercetin, naringenin and catechin have drug-likeness characteristics. These five polyphenols derived from Vitis amurensis are promising drug candidates for the COVID-19 treatment.
Collapse
|
31
|
Narayanaperumal J, D'souza A, Miriyala A, Sharma B, Gopal G. A randomized double blinded placebo controlled clinical trial for the evaluation of green coffee extract on immune health in healthy adults. J Tradit Complement Med 2022; 12:455-465. [PMID: 36081816 PMCID: PMC9446042 DOI: 10.1016/j.jtcme.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background The immune system functions to protect the host from a broad array of infectious diseases. Here, we evaluated the in vitro immunomodulatory effects of green coffee extract (GCE), and conducted a double-blinded, randomized and placebo-controlled trial among apparently healthy individuals. Methods We determined the levels and functions of inflammatory and immune markers viz., phospho-NF-κB p65 ser536, chemotaxis, phagocytosis, TH1/TH2 cytokines and IgG production. We also evaluated several immunological markers such as total leukocyte counts, differential leukocyte counts, NK cell activity, CD4/CD8 ratio, serum immunoglobulin, C-reactive protein (CRP) and pro-inflammatory cytokines (IL-6 and TNF-α). Results and conclusion GCE significantly inhibited LPS-induced NF-κB p65 ser536 phosphorylation, MCP-1-induced chemotaxis and significantly enhanced phagocytosis and IgG production. In addition, GCE modulated PMA/PHA-induced TH1/TH2 cytokine production. Clinical investigations suggested that the expression of CD56 and CD16 was markedly augmented on NK cells following GCE treatment. GCE significantly enhanced IgA production before and after influenza vaccination. Similarly, IL-6, TNF-α and CRP levels were significantly inhibited by GCE. Together, GCE confers several salubrious immunomodulatory effects at different levels attributing to optimal functioning of immune responses in the host. Taxonomy Cell biology, Clinical study, Clinical Trial. GCE showed an anti-inflammatory effect by inhibiting the NF-κB phosphorylation. GCE enhances innate immune response by activating NK cells and phagocytosis. GCE is an immunomodulator.
Collapse
Affiliation(s)
- Jeyaparthasarathy Narayanaperumal
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Avin D'souza
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Amarnath Miriyala
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Bhavna Sharma
- ITC Limited - Foods Division, ITC Green Centre, No. 18 Banaswadi, Main Road, Maruthiseva Nagar, Bangalore, 560 005, India
| | - Ganesh Gopal
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
- Corresponding author.
| |
Collapse
|
32
|
Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. BIOLOGY 2022; 11:biology11020177. [PMID: 35205044 PMCID: PMC8869385 DOI: 10.3390/biology11020177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary In this review, we discuss the potential use of extracellular vesicles (EVs) to deliver dietary supplements to the brain to reduce brain complications associated with HIV, COVID-19, and other brain disorders. Brain-related complications affect people with HIV and COVID-19 alike. Moreover, since HIV patients are at a higher risk of contracting COVID-19, their neurological problems can be exacerbated by COVID-19. The use of dietary supplements together with available treatment options has been shown to reduce the severity of infections. However, these treatments are not chemically compatible with the body’s blood–brain barrier defense mechanism. Therefore, a viable delivery method is needed to deliver drugs and nutraceuticals to the brain in HIV and COVID-19 comorbid patients. Abstract People living with HIV/AIDS (PLWHA) are at an increased risk of severe and critical COVID-19 infection. There is a steady increase in neurological complications associated with COVID-19 infection, exacerbating HIV-associated neurocognitive disorders (HAND) in PLWHA. Nutraceuticals, such as phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in treating and/or prophylaxis of neurological complications associated with these co-infections. However, most of these nutraceuticals have poor bioavailability and cannot cross the blood–brain barrier (BBB). To overcome this challenge, extracellular vesicles (EVs), biological nanovesicles, can be used. Due to their intrinsic features of biocompatibility, stability, and their ability to cross BBB, as well as inherent homing capabilities, EVs hold immense promise for therapeutic drug delivery to the brain. Therefore, in this review, we summarize the potential role of different nutraceuticals in reducing HIV- and COVID-19-associated neurological complications and the use of EVs as nutraceutical/drug delivery vehicles to treat HIV, COVID-19, and other brain disorders.
Collapse
|
33
|
El Shehaby DM, Mohammed MK, Ebrahem NE, Abd El-Azim MM, Sayed IG, Eweda SA. The emerging therapeutic role of some pharmacological antidotes in management of COVID-19. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2022. [PMCID: PMC8771180 DOI: 10.1186/s43168-021-00105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background A novel RNA coronavirus was identified in January 2020 as the cause of a pneumonia epidemic affecting the city of Wuhan; it rapidly spread across China. Aim of the review The aim is to discuss the potential efficacy of some pharmacologically known pharmacological antidotes (N-acetylcysteine; hyperbaric oxygen; deferoxamine; low-dose naloxone) for the management of COVID-19-associated symptoms and complications. Method An extensive search was accomplished in Medline, Embase, Scopus, Web of Science, and Central databases until the end of April, 2021. Four independent researchers completed the screening, and finally, the associated studies were involved. Conclusion The current proof hinders the experts for suggesting the proper pharmacological lines of treatment of COVID-19. Organizations, for example, WHO, should pursue more practical actions and design well-planned clinical trials so that their results may be used in the treatment of future outbreaks.
Collapse
|
34
|
Kaur R, Sood A, Lang DK, Arora R, Kumar N, Diwan V, Saini B. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic. Curr Top Med Chem 2022; 22:347-365. [PMID: 35040403 DOI: 10.2174/1568026622666220117105740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Nature has provided therapeutic substances for millennia, with many valuable medications derived from plant sources. Multitarget drugs become essential in the management of various disorders including hepatic disorders, neurological disorders, diabetes, and carcinomas. Ferulic acid is a significant potential therapeutic agent, which is easily available at low cost, possesses a low toxicity profile, and has minimum side effects. Ferulic acid exhibits various therapeutic actions by modulation of various signal transduction pathways such as Nrf2, p38, and mTOR. The actions exhibited by ferulic acid include anti-apoptosis, antioxidant, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotection, cardioprotection, activation of transcriptional factors, expression of genes, regulation of enzyme activity, and neuroprotection, which further help in treating various pathophysiological conditions such as cancer, skin diseases, brain disorders, diabetes, Parkinson's disease, Alzheimer's disease, hypoxia, hepatic disorders, H1N1 flu, and viral infections. The current review focuses on the significance of natural products as sources of multitarget compounds and a primary focus has been made on ferulic acid and its mechanism, role, and protective action in various ailments.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neeraj Kumar
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Vishal Diwan
- Centre for Chronic Disease, The University of Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
35
|
Tiwari V, Kumar M, Tiwari A, Sahoo BM, Singh S, Kumar S, Saharan R. Current trends in diagnosis and treatment strategies of COVID-19 infection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64987-65013. [PMID: 34601675 PMCID: PMC8487330 DOI: 10.1007/s11356-021-16715-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 04/15/2023]
Abstract
Coronaviruses are terrifically precise and adapted towards specialized respiratory epithelial cells, observed in organ culture and human volunteers both. This virus is found to possess an unpredictable anti-viral T-cell response which in turn results in T-cell activation and finally apoptosis, leading to cytokine storm and collapse of the whole immune system. The present review provides comprehensive information regarding SARS-CoV-2 infection, mutant strains, and the impact of SARS-COV-2 on vital organs, the pathophysiology of the disease, diagnostic tests available, and possible treatments. It also includes all the vaccines developed so far throughout the world to control this pandemic. Until now, 18 vaccines have been approved by the WHO and further 22 vaccines are in the third trial. This study also provides up-to-date information regarding the drugs repurposed in clinical trials and the recent status of allopathic drugs along with its result. Although vaccines are available, specific treatment is not available for the disease. Furthermore, the effect of vaccines on new variants is a new area of research at this time. Therefore, a preventive attitude is the best approach to fight against this virus.
Collapse
Affiliation(s)
- Varsha Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur (U.S. Nagar), Uttrakhand, Rudrapur, 236148, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, 133207, India
| | - Abhishek Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur (U.S. Nagar), Uttrakhand, Rudrapur, 236148, India.
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Odisha, ha-760010, Berhampur, India
| | - Sunil Singh
- Department of Pharmaceutical Chemistry, Shri Sai College of Pharmacy, Handia, Prayagraj, Uttar Pradesh, 221503, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra, Haryana, 136156, India
| | - Renu Saharan
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, 133207, India
| |
Collapse
|
36
|
Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, Rahman MM, Rahman MM, Elzaki A, Kajoak S, Osman H, ElSamani M, Khandaker MU, Idris AM, Emran TB. Natural Bioactive Molecules: An Alternative Approach to the Treatment and Control of COVID-19. Int J Mol Sci 2021; 22:12638. [PMID: 34884440 PMCID: PMC8658031 DOI: 10.3390/ijms222312638] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Sristy Bepary
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mizanur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mominur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Amin Elzaki
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Samih Kajoak
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Mohamed ElSamani
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
37
|
Singh S, Kola P, Kaur D, Singla G, Mishra V, Panesar PS, Mallikarjunan K, Krishania M. Therapeutic Potential of Nutraceuticals and Dietary Supplements in the Prevention of Viral Diseases: A Review. Front Nutr 2021; 8:679312. [PMID: 34604272 PMCID: PMC8484310 DOI: 10.3389/fnut.2021.679312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nowadays, despite enormous scientific advances, viral diseases remain the leading cause of morbidity worldwide, and their potential to spread is escalating, eventually turning into pandemics. Nutrition can play a major role in supporting the immune system of the body and for the optimal functioning of the cells of the immune system. A healthy diet encompassing vitamins, multi-nutrient supplements, functional foods, nutraceuticals, and probiotics can play a pivotal role in combating several viral invasions in addition to strengthening the immune system. This review provides comprehensive information on diet-based scientific recommendations, evidence, and worldwide case studies in light of the current pandemic and also with a particular focus on virus-induced respiratory tract infections. After reviewing the immune potential of nutraceuticals based on the lab studies and on human studies, it was concluded that bioactive compounds such as nutraceuticals, vitamins, and functional foods (honey, berries, etc.) with proven antiviral efficacy, in addition to pharmaceutical medication or alone as dietary supplements, can prove instrumental in treating a range of virus-induced infections in addition to strengthening the immune system. Milk proteins and peptides can also act as adjuvants for the design of more potent novel antiviral drugs.
Collapse
Affiliation(s)
- Saumya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Prithwish Kola
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Dalveer Kaur
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Gisha Singla
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India.,Food Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology Longowal, Longowal, India
| | - Vibhu Mishra
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Parmjit S Panesar
- Food Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology Longowal, Longowal, India
| | - Kumar Mallikarjunan
- Food Science and Nutrition Department, University of Minnesota, Minneapolis, MN, United States
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| |
Collapse
|
38
|
An Overview of COVID-19 and the Potential Plant Harboured Secondary Metabolites against SARS-CoV-2: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causes COVID-19, a pandemic disease, and it is called the novel coronavirus. It belongs to the Coronaviridae family and has been plagued the world since the end of 2019. Viral infection to the lungs causes fluid filling and breathing difficulties, which leads to pneumonia. Pneumonia progresses to ARDS (Acute Respiratory Distress Syndrome), in which fluid fills the air sac and seeps from the pulmonary veins. In the current scenario, several vaccines have been used to control the pandemic worldwide. Even though vaccines are available and their effectiveness is short, it may be helpful to curb the pandemic, but long-term protection is inevitable when we look for other options. Plants have diversified components such as primary and secondary metabolites. These molecules show several activities such as anti-microbial, anti-cancer, anti-helminthic. In addition, these molecules have good binding ability to the SARS-CoV-2 virus proteins such as RdRp (RNA-dependent RNA polymerase), Mpro (Main Protease), etc. Therefore, these herbal molecules could probably be used to control the COVID-19. However, pre-requisite tests, such as cytotoxicity, in vivo, and human experimental studies, are required before plant molecules can be used as potent drugs. Plant metabolites such as alkaloids, isoquinoline ß-carboline, and quinoline alkaloids such as skimmianine, quinine, cinchonine, and dictamine are present in plants and used in a traditional medicinal system.
Collapse
|
39
|
Lavie CJ. Special Assorted Topics 2021. Prog Cardiovasc Dis 2021; 67:1. [PMID: 34412824 DOI: 10.1016/j.pcad.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine in New Orleans, United States of America.
| |
Collapse
|
40
|
Hassan AE. An observational cohort study to assess N-acetylglucosamine for COVID-19 treatment in the inpatient setting. Ann Med Surg (Lond) 2021; 68:102574. [PMID: 34306677 PMCID: PMC8282940 DOI: 10.1016/j.amsu.2021.102574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has affected millions globally, with a continued need for effective treatments. N-acetylglucosamine has anti-inflammatory activities and modulates immune response. This study evaluated whether N-acetylglucosamine administered orally improves clinical outcomes for patients admitted to the hospital due to COVID-19. MATERIALS AND METHODS This single-center, prospective, observational cohort study used a retrospective control group for comparison. Multivariate analyses evaluated whether N-acetylglucosamine was an independent predictor of primary outcomes (rate of intubation, hospital length-of-stay, and mortality) and select secondary outcomes (intensive care unit [ICU] admission, ICU length-of-stay, supplemental oxygen use duration, hospice initiation, and poor clinical outcome [defined as combined hospice initiation/death]). RESULTS Of the 50 patients enrolled in the N-acetylglucosamine treatment group, 48 patients had follow-up data (50.0% [24/48] male; median age 63 years, range: 29-88). Multivariate analysis showed the treatment group had improved hospital length-of-stay (β: 4.27 [95% confidence interval (CI) -5.67; -2.85], p < 0.001), ICU admission (odds ratio [OR] 0.32 [95% CI 0.10; 0.96], p = 0.049), and poor clinical outcome (OR 0.30 [95% CI 0.09; 0.86], p = 0.034). Mortality was significantly lower for treatment versus control on univariate analysis (12.5% vs. 28.0%, respectively; p = 0.039) and approached significance on multivariate analysis (p = 0.081). CONCLUSIONS N-acetylglucosamine administration was associated with reduced hospital length-of-stay, ICU admission rates, and death/hospice rates in adults with COVID-19 compared to those who received standard care alone. An upcoming trial will further investigate N-acetylglucosamine's effects. TRIAL REGISTRATION NCT04706416.
Collapse
Affiliation(s)
- Ameer E. Hassan
- Valley Baptist Medical Center, 2101 Pease St, Harlingen, TX, 78550, USA
| |
Collapse
|
41
|
Santos Ferreira RD, Dos Santos C, Maranhão Mendonça LAB, Espinola Carvalho CM, Franco OL. Immunonutrition effects on coping with COVID-19. Food Funct 2021; 12:7637-7650. [PMID: 34286803 DOI: 10.1039/d1fo01278a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
COVID-19 implications are still a threat to global health. In the face of this pandemic, food and nutrition are key issues that can boost the immune system. The bioactivity of functional foods and nutrients (probiotics, prebiotics, water- and fat-soluble vitamins, minerals, flavonoids, glutamine, arginine, nucleotides, and PUFAs) contributes to immune system modulation, which establishes the status of nutrients as a factor of immune competence. These foods can contribute, especially during a pandemic, to the minimization of complications of SARS-CoV-2 infection. Therefore, it is important to support the nutritional strategies for strengthening the immune status, associated with good eating habits, as a way to confront COVID-19.
Collapse
Affiliation(s)
- Rosângela Dos Santos Ferreira
- S-Inova Biotech. Post Graduate Program in Biotechnology, Catholic University Dom Bosco-UCDB, MS 79117-010 Campo Grande, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech. Post Graduate Program in Biotechnology, Catholic University Dom Bosco-UCDB, MS 79117-010 Campo Grande, Brazil.
| | | | | | - Octávio Luiz Franco
- S-Inova Biotech. Post Graduate Program in Biotechnology, Catholic University Dom Bosco-UCDB, MS 79117-010 Campo Grande, Brazil. and Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
42
|
Wong KK, Lee SWH, Kua KP. N-Acetylcysteine as Adjuvant Therapy for COVID-19 - A Perspective on the Current State of the Evidence. J Inflamm Res 2021; 14:2993-3013. [PMID: 34262324 PMCID: PMC8274825 DOI: 10.2147/jir.s306849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
The looming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a long-lasting pandemic of coronavirus disease 2019 (COVID-19) around the globe with substantial morbidity and mortality. N-acetylcysteine, being a nutraceutical precursor of an important antioxidant glutathione, can perform several biological functions in mammals and microbes. It has consequently garnered a growing interest as a potential adjunctive therapy for coronavirus disease. Here, we review evidence concerning the effects of N-acetylcysteine in respiratory viral infections based on currently available in vitro, in vivo, and human clinical investigations. The repurposing of a known drug such as N-acetylcysteine may significantly hasten the deployment of a novel approach for COVID-19. Since the drug candidate has already been translated into the clinic for several decades, its established pharmacological properties and safety and side-effect profiles expedite preclinical and clinical assessment for the treatment of COVID-19. In vitro data have depicted that N-acetylcysteine increases antioxidant capacity, interferes with virus replication, and suppresses expression of pro-inflammatory cytokines in cells infected with influenza viruses or respiratory syncytial virus. Furthermore, findings from in vivo studies have displayed that, by virtue of immune modulation and anti-inflammatory mechanism, N-acetylcysteine reduces the mortality rate in influenza-infected mice animal models. The promising in vitro and in vivo results have prompted the initiation of human subject research for the treatment of COVID-19, including severe pneumonia and acute respiratory distress syndrome. Albeit some evidence of benefits has been observed in clinical outcomes of patients, precision nanoparticle design of N-acetylcysteine may allow for greater therapeutic efficacy.
Collapse
Affiliation(s)
- Kon Ken Wong
- Department of Microbiology and Immunology, Hospital Canselor Tuanku Muhriz UKM, Cheras, Kuala Lumpur, Malaysia.,Faculty of Medicine, The National University of Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University, Bandar Sunway, Selangor, Malaysia.,Asian Centre for Evidence Synthesis in Population, Implementation, and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University, Bandar Sunway, Selangor, Malaysia.,Gerontechnology Laboratory, Global Asia in the 21st Century (GA21) Platform, Monash University, Bandar Sunway, Selangor, Malaysia.,Faculty of Health and Medical Sciences, Taylor's University, Bandar Sunway, Selangor, Malaysia
| | - Kok Pim Kua
- Puchong Health Clinic, Petaling District Health Office, Ministry of Health Malaysia, Petaling, Selangor, Malaysia
| |
Collapse
|
43
|
DE FLORA SILVIO, BALANSKY ROUMEN, LA MAESTRA SEBASTIANO. Antioxidants and COVID-19. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E34-E45. [PMID: 34622082 PMCID: PMC8452284 DOI: 10.15167/2421-4248/jpmh2021.62.1s3.1895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022]
Abstract
Oxidative mechanisms are not only involved in chronic degenerative diseases but also in infectious diseases, among which viral respiratory diseases. Antioxidants have the capability to counteract the action of oxidants by scavenging reactive oxygen species (ROS) and by inhibiting oxidant generating enzymes. Overproduction of ROS and deprivation of antioxidant systems play a major role in COVID-19 occurrence, progression, and severity. Interconnected pathways account for the relationships between oxidative damage and inflammation resulting from an interplay between transcription factors having opposite effects. For instance, Nrf2 downregulates inflammation by inhibiting endogenous antioxidant enzymes such as NQO-1 and HO-1. On the other hand, NF-κB upregulates pro-inflammatory cytokines and chemokines, such as IL-1β, IL-6, IL-8, PGE-2, COX-2, TNF-α, MMP-3, and MMP-4. A central protective role against oxidants is played by reduced glutathione (GSH), which is depleted in SARS-CoV-2 infection. N-acetylcysteine (NAC), a precursor of GSH, is of particular interest as an anti-COVID-19 agent. GSH and NAC hamper binding of the S1 subunit of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor. In addition, NAC and its derivatives possess a broad array of antioxidant and antiinflammatory mechanisms that could be exploited for COVID-19 prevention and adjuvant therapy. In particular, as demonstrated in a previous clinical trial evaluating influenza and influenza-like illnesses, the oral administration of NAC may be expected to decrease the risk of developing COVID-19. Furthermore, at the very high doses used worldwide as an antidote against paracetamol intoxication, intravenous NAC is likely to attenuate the pulmonary and systemic symptoms of COVID-19.
Collapse
Affiliation(s)
| | | | - SEBASTIANO LA MAESTRA
- Department of Health Sciences, University of Genoa, Italy
- Correspondence: Sebastiano La Maestra, Department of Health Sciences, University of Genoa, via A. Pastore 1, 16132 Genoa, Italy – E-mail:
| |
Collapse
|
44
|
Mushroom Nutrition as Preventative Healthcare in Sub-Saharan Africa. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The defining characteristics of the traditional Sub-Saharan Africa (SSA) cuisine have been the richness in indigenous foods and ingredients, herbs and spices, fermented foods and beverages, and healthy and whole ingredients used. It is crucial to safeguard the recognized benefits of mainstream traditional foods and ingredients, which gradually eroded in the last decades. Notwithstanding poverty, chronic hunger, malnutrition, and undernourishment in the region, traditional eating habits have been related to positive health outcomes and sustainability. The research prevailed dealing with food availability and access rather than the health, nutrition, and diet quality dimensions of food security based on what people consume per country and on the missing data related to nutrient composition of indigenous foods. As countries become more economically developed, they shift to “modern” occidental foods rich in saturated fats, salt, sugar, fizzy beverages, and sweeteners. As a result, there are increased incidences of previously unreported ailments due to an unbalanced diet. Protein-rich foods in dietary guidelines enhance only those of animal or plant sources, while rich protein sources such as mushrooms have been absent in these charts, even in developed countries. This article considers the valorization of traditional African foodstuffs and ingredients, enhancing the importance of establishing food-based dietary guidelines per country. The crux of this review highlights the potential of mushrooms, namely some underutilized in the SSA, which is the continent’s little exploited gold mine as one of the greatest untapped resources for feeding and providing income for Africa’s growing population, which could play a role in shielding Sub-Saharan Africans against the side effects of an unhealthy stylish diet.
Collapse
|
45
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems 2021; 6:e00122-21. [PMID: 33947804 PMCID: PMC8269209 DOI: 10.1128/msystems.00122-21] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents may reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products may help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with a greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.IMPORTANCE Sales of dietary supplements and nutraceuticals have increased during the pandemic due to their perceived "immune-boosting" effects. However, little is known about the efficacy of these dietary supplements and nutraceuticals against the novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) or the disease that it causes, CoV disease 2019 (COVID-19). This review provides a critical overview of the potential prophylactic and therapeutic value of various dietary supplements and nutraceuticals from the evidence available to date. These include vitamin C, vitamin D, and zinc, which are often perceived by the public as treating respiratory infections or supporting immune health. Consumers need to be aware of misinformation and false promises surrounding some supplements, which may be subject to limited regulation by authorities. However, considerably more research is required to determine whether dietary supplements and nutraceuticals exhibit prophylactic and therapeutic value against SARS-CoV-2 infection and COVID-19. This review provides perspective on which nutraceuticals and supplements are involved in biological processes that are relevant to recovery from or prevention of COVID-19.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, Sharma A, Ahmad A, Bhardwaj R, Ahmad P. Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153361. [PMID: 33485605 PMCID: PMC7532351 DOI: 10.1016/j.phymed.2020.153361] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Current scenario depicts that world has been clenched by COVID-19 pandemic. Inevitably, public health and safety measures could be undertaken in order to dwindle the infection threat and mortality. Moreover, to overcome the global menace and drawing out world from moribund stage, there is an exigency for social distancing and quarantines. Since December, 2019, coronavirus, SARS-CoV-2 (COVID-19) have came into existence and up till now world is still in the state of shock.At this point of time, COVID-19 has entered perilous phase, creating havoc among individuals, and this has been directly implied due to enhanced globalisation and ability of the virus to acclimatize at all conditions. The unabated transmission is due to lack of drugs, vaccines and therapeutics against this viral outbreak. But research is still underway to formulate the vaccines or drugs by this means, as scientific communities are continuously working to unravel the pharmacologically active compounds that might offer a new insight for curbing infections and pandemics. Therefore, the topical COVID-19 situation highlights an immediate need for effective therapeutics against SARS-CoV-2. Towards this effort, the present review discusses the vital concepts related to COVID-19, in terms of its origin, transmission, clinical aspects and diagnosis. However, here, we have formulated the novel concept hitherto, ancient means of traditional medicines or herbal plants to beat this pandemic.
Collapse
Affiliation(s)
- Kanika Khanna
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sukhmeen Kaur Kohli
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ravdeep Kaur
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Abhay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine
| | - Vinay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anket Sharma
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Renu Bhardwaj
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
47
|
Lavie CJ. In Reply-Use of Famotidine and Risk of Severe Course of Illness in Patients With COVID-19: A Meta-analysis. Mayo Clin Proc 2021; 96:1367-1368. [PMID: 33958066 PMCID: PMC7934692 DOI: 10.1016/j.mayocp.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA
| |
Collapse
|
48
|
Morais AHDA, Aquino JDS, da Silva-Maia JK, Vale SHDL, Maciel BLL, Passos TS. Nutritional status, diet and viral respiratory infections: perspectives for severe acute respiratory syndrome coronavirus 2. Br J Nutr 2021; 125:851-862. [PMID: 32843118 PMCID: PMC7542326 DOI: 10.1017/s0007114520003311] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was recognised by the WHO as a pandemic in 2020. Host preparation to combat the virus is an important strategy to avoid COVID-19 severity. Thus, the relationship between eating habits, nutritional status and their effects on the immune response and further implications in viral respiratory infections is an important topic discussed in this review. Malnutrition causes the most diverse alterations in the immune system, suppressing of the immune response and increasing the susceptibility to infections such as SARS-CoV-2. On the other hand, obesity induces low-grade chronic inflammation caused by excess adiposity, which increases angiotensin-converting enzyme 2. It decreases the immune response favouring SARS-CoV-2 virulence and promoting respiratory distress syndrome. The present review highlights the importance of food choices considering their inflammatory effects, consequently increasing the viral susceptibility observed in malnutrition and obesity. Healthy eating habits, micronutrients, bioactive compounds and probiotics are strategies for COVID-19 prevention. Therefore, a diversified and balanced diet can contribute to the improvement of the immune response to viral infections such as COVID-19.
Collapse
Affiliation(s)
- Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| | - Jailane de Souza Aquino
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Paraíba, João Pessoa, PB58050-085, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| | - Sancha Helena de Lima Vale
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| | - Thaís Sousa Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| |
Collapse
|
49
|
Chen O, Mah E, Dioum E, Marwaha A, Shanmugam S, Malleshi N, Sudha V, Gayathri R, Unnikrishnan R, Anjana RM, Krishnaswamy K, Mohan V, Chu Y. The Role of Oat Nutrients in the Immune System: A Narrative Review. Nutrients 2021; 13:1048. [PMID: 33804909 PMCID: PMC8063794 DOI: 10.3390/nu13041048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Optimal nutrition is the foundation for the development and maintenance of a healthy immune system. An optimal supply of nutrients is required for biosynthesis of immune factors and immune cell proliferation. Nutrient deficiency/inadequacy and hidden hunger, which manifests as depleted nutrients reserves, increase the risk of infectious diseases and aggravate disease severity. Therefore, an adequate and balanced diet containing an abundant diversity of foods, nutrients, and non-nutrient chemicals is paramount for an optimal immune defense against infectious diseases, including cold/flu and non-communicable diseases. Some nutrients and foods play a larger role than others in the support of the immune system. Oats are a nutritious whole grain and contain several immunomodulating nutrients. In this narrative review, we discuss the contribution of oat nutrients, including dietary fiber (β-glucans), copper, iron, selenium, and zinc, polyphenolics (ferulic acid and avenanthramides), and proteins (glutamine) in optimizing the innate and adaptive immune system's response to infections directly by modulating the innate and adaptive immunity and indirectly by eliciting changes in the gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Oliver Chen
- Biofortis Research, Mérieux NutriSciences, Addison, IL 60101, USA;
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Eunice Mah
- Biofortis Research, Mérieux NutriSciences, Addison, IL 60101, USA;
| | - ElHadji Dioum
- Quaker Oats Center of Excellence, PepsiCo Health & Nutrition Sciences, Barrington, IL 60010, USA; (E.D.); (Y.C.)
| | - Ankita Marwaha
- PepsiCo Health & Nutrition Sciences, AMESA, Gurgaon 122101, India;
| | - Shobana Shanmugam
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Nagappa Malleshi
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Vasudevan Sudha
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Rajagopal Gayathri
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Ranjit Unnikrishnan
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Kamala Krishnaswamy
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo Health & Nutrition Sciences, Barrington, IL 60010, USA; (E.D.); (Y.C.)
| |
Collapse
|
50
|
Abstract
BACKGROUND Currently, no proven effective drugs for the novel coronavirus disease COVID-19 exist and despite widespread vaccination campaigns, we are far short from herd immunity. The number of people who are still vulnerable to the virus is too high to hamper new outbreaks, leading a compelling need to find new therapeutic options devoted to combat SARS-CoV-2 infection. Drug repurposing represents an effective drug discovery strategy from existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. RESULTS We developed a network-based tool for drug repurposing provided as a freely available R-code, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), with the aim to offer a promising framework to efficiently detect putative novel indications for currently marketed drugs against diseases of interest. SAveRUNNER predicts drug-disease associations by quantifying the interplay between the drug targets and the disease-associated proteins in the human interactome through the computation of a novel network-based similarity measure, which prioritizes associations between drugs and diseases located in the same network neighborhoods. CONCLUSIONS The algorithm was successfully applied to predict off-label drugs to be repositioned against the new human coronavirus (2019-nCoV/SARS-CoV-2), and it achieved a high accuracy in the identification of well-known drug indications, thus revealing itself as a powerful tool to rapidly detect potential novel medical indications for various drugs that are worth of further investigation. SAveRUNNER source code is freely available at https://github.com/giuliafiscon/SAveRUNNER.git , along with a comprehensive user guide.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science, Antonio Ruberti", National Research Council, Rome, Italy
- Fondazione Per La Medicina Personalizzata, Via Goffredo Mameli, 3/1, Genoa, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science, Antonio Ruberti", National Research Council, Rome, Italy.
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|