1
|
de Miranda AS, Macedo DS, Rocha NP, Teixeira AL. Targeting the Renin-Angiotensin System (RAS) for Neuropsychiatric Disorders. Curr Neuropharmacol 2024; 22:107-122. [PMID: 36173067 PMCID: PMC10716884 DOI: 10.2174/1570159x20666220927093815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer's disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets. AIMS We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies. CONCLUSION The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Interdisciplinary Laboratory of Medical Investigation (LIIM), Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
- Department of Morphology, Laboratory of Neurobiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle S Macedo
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Natalia P Rocha
- Department of Neurology, The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
- Faculdade Santa Casa BH, Belo Horizonte, Brasil
| |
Collapse
|
2
|
Hettiarachchi SD, Kwon YM, Omidi Y, Speth RC. Nanoparticle approaches for the renin-angiotensin system. Heliyon 2023; 9:e16951. [PMID: 37484281 PMCID: PMC10361043 DOI: 10.1016/j.heliyon.2023.e16951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
The renin-angiotensin system (RAS) is a hormonal cascade that contributes to several disorders: systemic hypertension, heart failure, kidney disease, and neurodegenerative disease. Activation of the RAS can promote inflammation and fibrosis. Drugs that target the RAS can be classified into 3 categories, AT1 angiotensin receptor blockers (ARBs), angiotensin-converting enzyme (ACE) inhibitors, and renin inhibitors. The therapeutic efficacy of current RAS-inhibiting drugs is limited by poor penetration across the blood-brain barrier, low bioavailability, and to some extent, short half-lives. Nanoparticle-mediated drug delivery systems (DDSs) are possible emerging alternatives to overcome such limitations. Nanoparticles are ideally 1-100 nm in size and are considered efficient DDSs mainly due to their unique characteristics, including water dispersity, prolonged half-life in blood circulation, smaller size, and biocompatibility. Nano-scale DDSs can reduce the drug dosage frequency and acute toxicity of drugs while enhancing therapeutic success. Different types of nanoparticles, such as chitosan, polymeric, and nanofibers, have been examined in RAS-related studies, especially in hypertension, cardiovascular disease, and COVID-19. In this review article, we summarize the physical and chemical characteristics of each nanoparticle to elaborate on their potential use in RAS-related nano-drug delivery research and clinical application.
Collapse
Affiliation(s)
- Sajini D. Hettiarachchi
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Young M. Kwon
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
- Department of Pharmacology and Physiology, School of Medicine Georgetown University, 3900 Reservoir Rd. NW, Washington, DC, 20057, USA
| |
Collapse
|
3
|
Nemoto W, Yamagata R, Nakagawasai O, Tan-No K. Angiotensin-Related Peptides and Their Role in Pain Regulation. BIOLOGY 2023; 12:biology12050755. [PMID: 37237567 DOI: 10.3390/biology12050755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Angiotensin (Ang)-generating system has been confirmed to play an important role in the regulation of fluid balance and blood pressure and is essential for the maintenance of biological functions. Ang-related peptides and their receptors are found throughout the body and exhibit diverse physiological effects. Accordingly, elucidating novel physiological roles of Ang-generating system has attracted considerable research attention worldwide. Ang-generating system consists of the classical Ang-converting enzyme (ACE)/Ang II/AT1 or AT2 receptor axis and the ACE2/Ang (1-7)/MAS1 receptor axis, which negatively regulates AT1 receptor-mediated responses. These Ang system components are expressed in various tissues and organs, forming a local Ang-generating system. Recent findings indicate that changes in the expression of Ang system components under pathological conditions are involved in the development of neuropathy, inflammation, and their associated pain. Here, we summarized the effects of changes in the Ang system on pain transmission in various organs and tissues involved in pain development process.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
4
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
5
|
Dong S, Liu P, Luo Y, Cui Y, Song L, Chen Y. Pathophysiology of SARS-CoV-2 infection in patients with intracerebral hemorrhage. Aging (Albany NY) 2020; 12:13791-13802. [PMID: 32633728 PMCID: PMC7377897 DOI: 10.18632/aging.103511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 04/22/2023]
Abstract
Intracerebral hemorrhage (ICH) is associated with old age and underlying conditions such as hypertension and diabetes. ICH patients are vulnerable to SARS-CoV-2 infection and develop serious complications as a result of infection. The pathophysiology of ICH patients with SARS-CoV-2 infection includes viral invasion, dysfunction of the ACE2-Ang (1-7)-MasR and ACE-Ang II-AT1R axes, overactive immune response, cytokine storm, and excessive oxidative stress. These patients have high morbidity and mortality due to hyaline membrane formation, respiratory failure, neurologic deficits, and multiple organ failure.
Collapse
Affiliation(s)
- Sisi Dong
- The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Peipei Liu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yuhan Luo
- Department of Neurology, Clinical Medical College of Yangzhou, Dalian Medical University, Yangzhou 225001, Jiangsu, China
| | - Ying Cui
- Department of Neurology, Clinical Medical College of Yangzhou, Dalian Medical University, Yangzhou 225001, Jiangsu, China
| | - Lilong Song
- Department of Neurology, Clinical Medical College of Yangzhou, Dalian Medical University, Yangzhou 225001, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| |
Collapse
|
6
|
Liu L, Zhang Y, Fu F, Zhuo L, Wang Y, Li W. Long-term clinical spectrum and circulating RAS evaluation of anephric patients undergoing hemodialysis: A report of four cases and literature review. J Renin Angiotensin Aldosterone Syst 2019; 19:1470320318799904. [PMID: 30264674 PMCID: PMC6166312 DOI: 10.1177/1470320318799904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Bilateral nephrectomy leads to a short-term reduction in blood pressure. This
is mainly due to a sharp change in the circulating renin-angiotensin system
(RAS), but data on the long-term outcomes of their clinical status and
further changes in circulating RAS are rare. Materials and methods: We enrolled four Chinese patients who had both of their kidneys removed two
(1), six (1) and eight (2) years prior to this study, respectively. Their
clinical data were collected retrospectively and circulating RAS was
evaluated by radioimmunoassay. Results: Hypotension after surgery occurred in two patients who suffered thrombosis of
the arteriovenous fistula, but no life-threatening complications occurred.
The average hemoglobin level was 103.3±12.3 g/l. Two patients without
hemorrhage received intravenous erythropoietin (EPO) of 4500–8000 iu/week.
Extremely low plasma renin activity (PRA) of 0.08±0.03 ng/ml (normal range
0.93–6.56 ng/ml) showed in the patients. Surprisingly, plasma angiotensin II
concentration (71.37±8.28 pg/ml) and aldosterone level
(0.17±0.02 ng/mlng/ml) were within the normal range. Conclusions: The four anephric individuals did not suffer life-threatening complications
while their hypotension gradually subsided and their EPO dosage was
relatively low. Although their PRA level was extremely low, they produced
normal levels of angiotensin II and aldosterone in plasma, which indicates
the kidney-independent mechanism of angiotensin II production likely
compensated in the long term.
Collapse
Affiliation(s)
- Lin Liu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, PR China
| | - Yumei Zhang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, PR China
| | - Fangting Fu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, PR China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, PR China
| | - Yamei Wang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, PR China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, PR China
| |
Collapse
|
7
|
Sousa IRD, Pereira ICC, Morais LJD, Teodoro LDGVL, Rodrigues MLP, Gomes RADS. Pericardial Parietal Mesothelial Cells: Source of the Angiotensin-Converting-Enzyme of the Bovine Pericardial Fluid. Arq Bras Cardiol 2017; 109:425-431. [PMID: 29267626 PMCID: PMC5729778 DOI: 10.5935/abc.20170155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
Background Angiotensin II (Ang II), the primary effector hormone of the
renin-angiotensin system (RAS), acts systemically or locally, being produced
by the action of angiotensin-converting-enzyme (ACE) on angiotensin I.
Although several tissue RASs, such as cardiac RAS, have been described,
little is known about the presence of an RAS in the pericardial fluid and
its possible sources. Locally produced Ang II has paracrine and autocrine
effects, inducing left ventricular hypertrophy, fibrosis, heart failure and
cardiac dysfunction. Because of the difficulties inherent in human
pericardial fluid collection, appropriate experimental models are useful to
obtain data regarding the characteristics of the pericardial fluid and
surrounding tissues. Objectives To evidence the presence of constituents of the Ang II production paths in
bovine pericardial fluid and parietal pericardium. Methods Albumin-free crude extracts of bovine pericardial fluid, immunoprecipitated
with anti-ACE antibody, were submitted to electrophoresis (SDS-PAGE) and
gels stained with coomassie blue. Duplicates of gels were probed with
anti-ACE antibody. In the pericardial membranes, ACE was detected by use of
immunofluorescence. Results Immunodetection on nitrocellulose membranes showed a 146-KDa ACE isoform in
the bovine pericardial fluid. On the pericardial membrane sections, ACE was
immunolocalized in the mesothelial layer. Conclusions The ACE isoform in the bovine pericardial fluid and parietal pericardium
should account at least partially for the production of Ang II in the
pericardial space, and should be considered when assessing the cardiac
RAS.
Collapse
|
8
|
Zakrocka I, Targowska-Duda KM, Wnorowski A, Kocki T, Jóźwiak K, Turski WA. Angiotensin II Type 1 Receptor Blockers Inhibit KAT II Activity in the Brain-Its Possible Clinical Applications. Neurotox Res 2017; 32:639-648. [PMID: 28733707 PMCID: PMC5602025 DOI: 10.1007/s12640-017-9781-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 01/13/2023]
Abstract
Angiotensin II receptor blockers (ARBs) are one of the most frequently recommended antihypertensive drugs. Apart from their activity towards the circulatory system, ARBs also penetrate the blood-brain barrier and display neuroprotective effects. Kynurenic acid (KYNA) is an endogenous metabolite of tryptophan produced by kynurenine aminotransferase II (KAT II) in the brain. Antagonism towards all ionotropic glutamate (GLU) receptors is the main mechanism of KYNA action. An elevated brain level of KYNA is linked with memory impairment and psychotic symptoms. The aim of this study was to examine the influence of three ARBs: irbesartan, losartan, and telmisartan on KYNA production and KAT II activity in rat brain. The effect of ARBs on KYNA production was analyzed in rat brain cortical slices and on isolated KAT II enzyme. Irbesartan, losartan, and telmisartan decreased KYNA production and KAT II activity in a dose-dependent manner in rat brain cortex in vitro. Molecular docking suggested that the examined ARBs could bind to an active site of KAT II. In conclusion, ARBs decrease KYNA production in rat brain by direct inhibition of KAT II enzymatic activity. This novel mechanism of ARBs action may be advantageous in the treatment of cognitive impairment or the management of schizophrenia.
Collapse
Affiliation(s)
- Izabela Zakrocka
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland.
| | | | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
9
|
Dartora DR, Irigoyen MC, Casali KR, Moraes-Silva IC, Bertagnolli M, Bader M, Santos RAS. Improved cardiovascular autonomic modulation in transgenic rats expressing an Ang-(1-7)-producing fusion protein. Can J Physiol Pharmacol 2017; 95:993-998. [PMID: 28459154 DOI: 10.1139/cjpp-2016-0557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Angiotensin-(1-7) counterbalances angiotensin II cardiovascular effects. However, it has yet to be determined how cardiovascular autonomic modulation may be affected by chronic and acute elevation of Ang-(1-7). Hemodynamics and cardiovascular autonomic profile were evaluated in male Sprague-Dawley (SD) rats and transgenic rats (TGR) overexpressing Ang-(1-7) [TGR(A1-7)3292]. Blood pressure (BP) was directly measured while cardiovascular autonomic modulation was evaluated by spectral analysis. TGR received A-779 or vehicle and SD rats received Ang-(1-7) or vehicle and were monitored for 5 h after i.v. administration. In another set of experiments with TGR, A-779 was infused for 7 days using osmotic mini pumps. Although at baseline no differences were observed, acute administration of A-779 in TGR produced a marked long-lasting increase in BP accompanied by increased BP variability (BPV) and sympathetic modulation to the vessels. Likewise, chronic administration of A-779 with osmotic mini pumps in TGR increased heart rate, sympathovagal balance, BPV, and sympathetic modulation to the vessels. Administration of Ang-(1-7) to SD rats increased heart rate variability values in 88% accompanied by 8% of vagal modulation increase and 18% of mean BP reduction. These results show that both acute and chronic alteration in the Ang-(1-7)-Mas receptor axis may lead to important changes in the autonomic control of circulation, impacting either sympathetic and (or) parasympathetic systems.
Collapse
Affiliation(s)
- Daniela Ravizzoni Dartora
- a Cardiology Institute of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria-Claudia Irigoyen
- a Cardiology Institute of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil.,b Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Karina Rabello Casali
- a Cardiology Institute of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil.,c Federal University of São Paulo (UNIFESP), Science and Technology Institute (ICT), São José dos Campos, São Paulo, Brazil
| | - Ivana C Moraes-Silva
- b Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | | | - Michael Bader
- e Max-Delbruck Center of Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Robson A S Santos
- a Cardiology Institute of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil.,f National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Faulk K, Shell B, Nedungadi TP, Cunningham JT. Role of angiotensin-converting enzyme 1 within the median preoptic nucleus following chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2017; 312:R245-R252. [PMID: 28003214 PMCID: PMC5336571 DOI: 10.1152/ajpregu.00472.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023]
Abstract
Sustained hypertension is an important consequence of obstructive sleep apnea. An animal model of the hypoxemia associated with sleep apnea, chronic intermittent hypoxia (CIH), produces increased sympathetic nerve activity (SNA) and sustained increases in blood pressure. Many mechanisms have been implicated in the hypertension associated with CIH, including the role of ΔFosB within the median preoptic nucleus (MnPO). Also, the renin-angiotensin system (RAS) has been associated with CIH hypertension. We conducted experiments to determine the possible association of FosB/ΔFosB with a RAS component, angiotensin-converting enzyme 1 (ACE1), within the MnPO following 7 days of CIH. Retrograde tract tracing from the paraventricular nucleus (PVN), a downstream region of the MnPO, was used to establish a potential pathway for FosB/ΔFosB activation of MnPO ACE1 neurons. After CIH, ACE1 cells with FosB/ΔFosB expression increased colocalization with a retrograde tracer that was injected unilaterally within the PVN. Also, Western blot examination showed ACE1 protein expression increasing within the MnPO following CIH. Chromatin immunoprecipitation (ChIP) assays demonstrated an increase in FosB/ΔFosB association with the ACE1 gene within the MnPO following CIH. FosB/ΔFosB may transcriptionally target ACE1 within the MnPO following CIH to affect the downstream PVN region, which may influence SNA and blood pressure.
Collapse
Affiliation(s)
- Katelynn Faulk
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - Brent Shell
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - T Prashant Nedungadi
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
- American Heart Association, Dallas, Texas
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| |
Collapse
|
11
|
Kafami M. The effect of angiotensin II microinjection into the bed nucleus of the stria terminalis on serum lipid peroxidation and nitric oxide metabolite levels. Adv Biomed Res 2016; 5:106. [PMID: 27376045 PMCID: PMC4918206 DOI: 10.4103/2277-9175.183667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Overactivity of renin-angiotensin system is involved in the pathophysiology of renal and cardiovascular diseases. It is suggested that endothelial cells can release nitric oxide (NO) and reactive oxygen species in response to angiotensin II (Ang II). Angiotensin type 1 (AT1) receptor of Ang II has been found in the bed nucleus of the stria terminalis (BST). BST is involved in autonomic function. This study was performed to find the role of central Ang II in serum lipid peroxidation product and in releasing NO into circulation. MATERIALS AND METHODS Twenty-one catheterized rats were placed in stereotaxic instrument. A hole was drilled above BST. In the control group, saline 0.9% (100 nl) was microinjected into the BST. In the second group, Ang II (100 μM, 100-150 nl) was microinjected into the BST. In the third group losartan (an AT1 antagonist) was microinjected (100 μM, 200 nl) before Ang II into the BST. Systolic blood pressure was recorded. The NO metabolite (nitrite) and malondialdehyde (MDA) were measured in the rat's serum. RESULTS The data indicated that microinjection of Ang II into the BST produced a pressor response (P < 0.0001). It also increased MDA and nitrite levels of the serum significantly (P < 0.001, P < 0.0001). Pretreatment with losartan before Ang II microinjection attenuated serum's levels of MDA and nitrite (P < 0.001, P < 0.0001). CONCLUSION Our findings suggest that central effect of Ang II on blood pressure is accompanied with increased levels of MDA and nitrite in the circulation.
Collapse
Affiliation(s)
- Marzieh Kafami
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
del Castillo M, Lucca A, Plodkowski A, Huang YT, Kaplan J, Gilhuley K, Babady NE, Seo SK, Kamboj M. Atypical presentation of Legionella pneumonia among patients with underlying cancer: A fifteen-year review. J Infect 2016; 72:45-51. [PMID: 26496794 PMCID: PMC4938150 DOI: 10.1016/j.jinf.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/01/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Immunocompromised patients, especially those receiving treatment with corticosteroids and cytotoxic chemotherapy are at increased risk for developing Legionella pneumonia. OBJECTIVE The aim of this study was to determine clinical and radiographic characteristics of pulmonary infection due to Legionella in persons undergoing treatment for cancer and stem cell transplant (SCT) recipients. METHODS Retrospective review of Legionella cases at MSKCC over a fifteen-year study period from January 1999 and December 2013. Cases were identified by review of microbiology records. RESULTS During the study period, 40 cases of Legionella infection were identified; nine among these were due to non-pneumophila species. Most cases occurred during the summer. The majority [8/9, (89%)] of patients with non-pneumophila infection had underlying hematologic malignancy, compared to 18/31 (58%) with Legionella pneumophila infections. Radiographic findings were varied-nodular infiltrates mimicking invasive fungal infection were seen only among patients with hematologic malignancy and hematopoietic stem cell transplant (SCT) recipients and were frequently associated with non-pneumophila infections (50% vs 16%; P = 0.0594). All cases of nodular Legionella pneumonia were found incidentally or had an indolent clinical course. CONCLUSIONS Legionella should be considered in the differential diagnosis of nodular lung lesions in immunocompromised patients, especially those with hematologic malignancy and SCT recipients. Most cases of nodular disease due to Legionella are associated with non-pneumophila infections.
Collapse
Affiliation(s)
- Maria del Castillo
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA.
| | - Anabella Lucca
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Andrew Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Yao-Ting Huang
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Janice Kaplan
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Kathleen Gilhuley
- Clinical Microbiology Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - N Esther Babady
- Clinical Microbiology Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Susan K Seo
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Mini Kamboj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA; Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| |
Collapse
|
13
|
Krawczyńska A, Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Herman AP, Oczkowski M, Królikowski T, Wilczak J, Wojewódzka M, Kruszewski M. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin–angiotensin system in brain. Food Chem Toxicol 2015; 85:96-105. [DOI: 10.1016/j.fct.2015.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
|
14
|
Vahidinia A, Heshmatian B, Salehi I, Zarei M. Garlic Powder Effect on Plasma Renin Activity, and Cardiovascular Effects of Intravenous Angiotensin I and Angiotensin II in Normotensive and Hypertensive Male Rats. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2015. [DOI: 10.17795/ajmb-28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Armesto P, Cousin X, Salas-Leiton E, Asensio E, Manchado M, Infante C. Molecular characterization and transcriptional regulation of the renin–angiotensin system genes in Senegalese sole (Solea senegalensis Kaup, 1858): Differential gene regulation by salinity. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:6-19. [DOI: 10.1016/j.cbpa.2015.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 12/27/2022]
|
16
|
de Alencar Franco Costa D, Todiras M, Campos LA, Cipolla-Neto J, Bader M, Baltatu OC. Sex-dependent differences in renal angiotensinogen as an early marker of diabetic nephropathy. Acta Physiol (Oxf) 2015; 213:740-6. [PMID: 25529203 DOI: 10.1111/apha.12441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/28/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023]
Abstract
AIM The renal renin-angiotensin system (RAS) has been implicated in the pathogenesis of diabetic nephropathy. The aim of this study was to investigate sex differences in renal renin-angiotensin system (RAS) and the roles of androgens in diabetes-associated renal injury. METHODS Renal injury and fibrosis were studied in streptozotocin-induced diabetic rats by albuminuria and by gene expression of collagen I and fibronectin. RAS was investigated by analysing the plasma angiotensinogen (AOGEN) and renin activity (PRA) and their renal gene expression. Also, a group of diabetic rats was treated with the anti-androgen flutamide. RESULTS Albuminuria was significantly lower in diabetic females than in males (1.2 [0.8-1.5] versus 4.4 [2.2-6.1] mg/24 h, data are median [IQR] values, P < 0.05). Renal AOGEN mRNA levels were increased by diabetes in males (8.1 ± 0.8% in diabetes versus 0.8 ± 0.2% in control, P < 0.001) but not in females (1.0 ± 0.1% in diabetes versus 0.8 ± 0.1% in control, P > 0.05), as were collagen I and fibronectin mRNAs. Furthermore, AOGEN mRNA levels were strongly correlated with albuminuria (Spearman r = 0.64, 95% [CI] 0.36-0.81, P < 0.0001). Diabetes decreased PRA, renal renin mRNA and plasma AOGEN in both females and males. Anti-androgen treatment decreased albuminuria only in diabetic males without affecting the endocrine or renal RAS. CONCLUSIONS These data indicate that renal but not hepatic AOGEN or renin is positively associated with diabetic albuminuria and contribute to the sex-dependent differences in renal injury. Androgens may contribute to albuminuria in male independently of the RAS.
Collapse
Affiliation(s)
- D. de Alencar Franco Costa
- Center of Innovation; Technology and Education-(CITE); University Camilo Castelo Branco; Sao Jose dos Campos Brazil
| | - M. Todiras
- Max-Delbrueck Center for Molecular Medicine; Berlin Germany
| | - L. A. Campos
- Center of Innovation; Technology and Education-(CITE); University Camilo Castelo Branco; Sao Jose dos Campos Brazil
- Technology Park; Sao Jose dos Campos Brazil
| | - J. Cipolla-Neto
- Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - M. Bader
- Max-Delbrueck Center for Molecular Medicine; Berlin Germany
| | - O. C. Baltatu
- Center of Innovation; Technology and Education-(CITE); University Camilo Castelo Branco; Sao Jose dos Campos Brazil
- Technology Park; Sao Jose dos Campos Brazil
| |
Collapse
|
17
|
Structural and theoretical studies on rhodium and iridium complexes with 5-nitrosopyrimidines. Effects on the proteolytic regulatory enzymes of the renin-angiotensin system in human tumoral brain cells. J Inorg Biochem 2014; 143:20-33. [PMID: 25474363 DOI: 10.1016/j.jinorgbio.2014.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 02/02/2023]
Abstract
The reactions of [RhCl(CO)(PPh3)2], [RhCl(CO)2]2 and [IrCl(CO)(PPh3)2] with different 5-nitrosopyrimidines afforded sixteen complexes which have been structurally characterized by elemental analysis, IR and NMR ((1)H and (13)C) spectral methods and luminescence spectroscopy. The crystal and molecular structures of [Rh(III)Cl(VIOH-1)2(PPh3)], [Rh(III)Cl(DVIOH-1)2(PPh3)] and [Rh(II)(DVIOH-1)2(PPh3)2] have been established from single crystal x-ray structure analyses. The three complexes are six-coordinated with both violurato ligands into an equatorial N5,O4-bidentate fashion, but with different mutually arrangements. Theoretical studies were driven on the molecular structure of [Rh(III)Cl(VIOH-1)2(PPh3)] to assess the nature of the metal-ligand interaction as well as the foundations of the cis-trans (3L-2L) isomerism. An assortment of density functional (SOGGA11-X, B1LYP, B3LYP, B3LYP-D3 and wB97XD) has been used, all of them leading to a similar description of the target system. Thus, a topological analysis of the electronic density within AIM scheme and the study of the Mulliken charges yield a metal-ligand link of ionic character. Likewise, it has been proved that the cis-trans isomerism is mainly founded on that metal-ligand interaction with the relativistic effects playing a significant role. Although most of the compounds showed low direct toxicity against the human cell lines NB69 (neuroblastoma) and U373-MG (astroglioma), they differently modify in several ways the renin-angiotensin system (RAS)-regulating proteolytic regulatory enzymes aminopeptidase A (APA), aminopeptidase N (APN) and insulin-regulated aminopeptidase (IRAP). Therefore, these complexes could exert antitumor activity against both brain tumor types, acting through the paracrine regulating system mediated by tissue RAS rather than exerting a direct cytotoxic effect on tumor cells.
Collapse
|
18
|
Deliu E, Brailoiu GC, Eguchi S, Hoffman NE, Rabinowitz JE, Tilley DG, Madesh M, Koch WJ, Brailoiu E. Direct evidence of intracrine angiotensin II signaling in neurons. Am J Physiol Cell Physiol 2014; 306:C736-44. [PMID: 24401846 DOI: 10.1152/ajpcell.00131.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The existence of a local renin-angiotensin system (RAS) in neurons was first postulated 40 years ago. Further studies indicated intraneuronal generation of ANG II. However, the function and signaling mechanisms of intraneuronal ANG II remained elusive. Since ANG II type 1 receptor (AT1R) is the major type of receptor mediating the effects of ANG II, we used intracellular microinjection and concurrent Ca(2+) and voltage imaging to examine the functionality of intracellular AT1R in neurons. We show that intracellular administration of ANG II produces a dose-dependent elevation of cytosolic Ca(2+) concentration ([Ca(2+)]i) in hypothalamic neurons that is sensitive to AT1R antagonism. Endolysosomal, but not Golgi apparatus, disruption prevents the effect of microinjected ANG II on [Ca(2+)]i. Additionally, the ANG II-induced Ca(2+) response is dependent on microautophagy and sensitive to inhibition of PLC or antagonism of inositol 1,4,5-trisphosphate receptors. Furthermore, intracellular application of ANG II produces AT1R-mediated depolarization of hypothalamic neurons, which is dependent on [Ca(2+)]i increase and on cation influx via transient receptor potential canonical channels. In summary, we provide evidence that intracellular ANG II activates endolysosomal AT1Rs in hypothalamic neurons. Our results point to the functionality of a novel intraneuronal angiotensinergic pathway, extending the current understanding of intracrine ANG II signaling.
Collapse
Affiliation(s)
- Elena Deliu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li C, Li X, Shen Q, Li Y, He L, Li M, Tang Y, Wang Y, He Q, Peng Y. Critical Role of Matrix Metalloproteinase-9 in Acute Cold Exposure–Induced Stroke in Renovascular Hypertensive Rats. J Stroke Cerebrovasc Dis 2013; 22:e477-85. [DOI: 10.1016/j.jstrokecerebrovasdis.2013.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/29/2013] [Accepted: 05/10/2013] [Indexed: 12/20/2022] Open
|
20
|
Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension. PLoS One 2013; 8:e63847. [PMID: 23691105 PMCID: PMC3655013 DOI: 10.1371/journal.pone.0063847] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/05/2013] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of brain renin-angiotensin system (RAS) components is implicated in the development of hypertension. We previously showed that angiotensin (Ang) II-induced hypertension is mediated by increased production of proinflammatory cytokines (PIC), including tumor necrosis factor (TNF), in brain cardiovascular regulatory centers such as the paraventricular nucleus (PVN). Presently, we tested the hypothesis that central TNF blockade prevents dysregulation of brain RAS components and attenuates Ang II-induced hypertension. Male Sprague-Dawley rats were implanted with radio-telemetry transmitters to measure mean arterial pressure (MAP) and subjected to intracerebroventricular (i.c.v.) infusion of etanercept (10 µg/kg/day) with/without concurrent subcutaneous 4-week Ang II (200 ng/kg/min) infusion. Chronic Ang II infusion resulted in a significant increase in MAP and cardiac hypertrophy, which was attenuated by inhibition of brain TNF with etanercept. Etanercept treatment also attenuated Ang II-induced increases in PIC and decreases in IL-10 expression in the PVN. Additionally, Ang II infusion increased expression of pro-hypertensive RAS components (ACE and AT1R), while decreasing anti-hypertensive RAS components (ACE2, Mas, and AT2 receptors), within the PVN. I.c.v. etanercept treatment reversed these changes. Ang II-infusion was associated with increased oxidative stress as indicated by increased NAD(P)H oxidase activity and super oxide production in the PVN, which was prevented by inhibition of TNF. Moreover, brain targeted TNF blockade significantly reduced Ang II-induced NOX-2 and NOX-4 mRNA and protein expression in the PVN. These findings suggest that chronic TNF blockade in the brain protects rats against Ang II-dependent hypertension and cardiac hypertrophy by restoring the balance between pro- and anti-hypertensive RAS axes and inhibiting PIC and oxidative stress genes and proteins in the PVN.
Collapse
|
21
|
Campos LA, Cipolla-Neto J, Amaral FG, Michelini LC, Bader M, Baltatu OC. The Angiotensin-melatonin axis. Int J Hypertens 2013; 2013:521783. [PMID: 23365722 PMCID: PMC3556444 DOI: 10.1155/2013/521783] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates that various biological and neuroendocrine circadian rhythms may be disrupted in cardiovascular and metabolic disorders. These circadian alterations may contribute to the progression of disease. Our studies direct to an important role of angiotensin II and melatonin in the modulation of circadian rhythms. The brain renin-angiotensin system (RAS) may modulate melatonin synthesis, a hormone with well-established roles in regulating circadian rhythms. Angiotensin production in the central nervous system may not only influence hypertension but also appears to affect the circadian rhythm of blood pressure. Drugs acting on RAS have been proven effective in the treatment of cardiovascular and metabolic disorders including hypertension and diabetes mellitus (DM). On the other hand, since melatonin is capable of ameliorating metabolic abnormalities in DM and insulin resistance, the beneficial effects of RAS blockade could be improved through combined RAS blocker and melatonin therapy. Contemporary research is evidencing the existence of specific clock genes forming central and peripheral clocks governing circadian rhythms. Further research on the interaction between these two neurohormones and the clock genes governing circadian clocks may progress our understanding on the pathophysiology of disease with possible impact on chronotherapeutic strategies.
Collapse
Affiliation(s)
- Luciana A. Campos
- Center of Innovation, Technology and Education—(CITE), Camilo Castelo Branco University (UNICASTELO), São José dos Campos Technology Park, Presidente Dutra Road Km 138, 12247-004 São José dos Campos, SP, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Fernanda G. Amaral
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Lisete C. Michelini
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Michael Bader
- Cardiovascular Research, Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ovidiu C. Baltatu
- Center of Innovation, Technology and Education—(CITE), Camilo Castelo Branco University (UNICASTELO), São José dos Campos Technology Park, Presidente Dutra Road Km 138, 12247-004 São José dos Campos, SP, Brazil
| |
Collapse
|
22
|
Guethe LM, Pelegrini-da-Silva A, Borelli KG, Juliano MA, Pelosi GG, Pesquero JB, Silva CLM, Corrêa FMA, Murad F, Prado WA, Martins AR. Angiotensin (5-8) modulates nociception at the rat periaqueductal gray via the NO-sGC pathway and an endogenous opioid. Neuroscience 2012; 231:315-27. [PMID: 23219939 DOI: 10.1016/j.neuroscience.2012.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/18/2012] [Accepted: 11/21/2012] [Indexed: 01/05/2023]
Abstract
Angiotensins (Angs) modulate blood pressure, hydro-electrolyte composition, and antinociception. Although Ang (5-8) has generally been considered to be inactive, we show here that Ang (5-8) was the smallest Ang to elicit dose-dependent responses and receptor-mediated antinociception in the rat ventrolateral periaqueductal gray matter (vlPAG). Ang (5-8) antinociception seems to be selective, because it did not alter blood pressure or act on vascular or intestinal smooth muscle cells. The non-selective Ang-receptor (Ang-R) antagonist saralasin blocked Ang (5-8) antinociception, but selective antagonists of Ang-R types I, II, IV, and Mas did not, suggesting that Ang (5-8) may act via an unknown receptor. Endopeptidase EP 24.11 and amastatin-sensitive aminopeptidase from the vlPAG catalyzed the synthesis (from Ang II or Ang III) and inactivation of Ang (5-8), respectively. Selective inhibitors of neuronal-nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and a non-selective opioid receptor (opioid-R) inhibitor blocked Ang (5-8)-induced antinociception. In conclusion, Ang (5-8) is a new member of the Ang family that selectively and strongly modulates antinociception via NO-sGC and endogenous opioid in the vlPAG.
Collapse
Affiliation(s)
- L M Guethe
- Department of Psychology, FFCLRP University of São Paulo, Ribeirão Preto 14049-901, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Renin-Angiotensin system and sympathetic neurotransmitter release in the central nervous system of hypertension. Int J Hypertens 2012; 2012:474870. [PMID: 23227311 PMCID: PMC3512297 DOI: 10.1155/2012/474870] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023] Open
Abstract
Many Studies suggest that changes in sympathetic nerve activity in the central nervous system might have a crucial role in blood pressure control. The present paper discusses evidence in support of the concept that the brain renin-angiotensin system (RAS) might be linked to sympathetic nerve activity in hypertension. The amount of neurotransmitter release from sympathetic nerve endings can be regulated by presynaptic receptors located on nerve terminals. It has been proposed that alterations in sympathetic nervous activity in the central nervous system of hypertension might be partially due to abnormalities in presynaptic modulation of neurotransmitter release. Recent evidence indicates that all components of the RAS have been identified in the brain. It has been proposed that the brain RAS may actively participate in the modulation of neurotransmitter release and influence the central sympathetic outflow to the periphery. This paper summarizes the results of studies to evaluate the possible relationship between the brain RAS and sympathetic neurotransmitter release in the central nervous system of hypertension.
Collapse
|
24
|
Damkjær M, Isaksson GL, Stubbe J, Jensen BL, Assersen K, Bie P. Renal renin secretion as regulator of body fluid homeostasis. Pflugers Arch 2012; 465:153-65. [PMID: 23096366 DOI: 10.1007/s00424-012-1171-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/06/2012] [Accepted: 10/07/2012] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium intake, but the specific pathways involved and the relations between them are not well defined. In animals, renin secretion is a log-linear function of sodium intake. Close associations exist between sodium intake, total body sodium, extracellular fluid volume, and blood volume. Plasma volume increases by about 1.5 mL/mmol increase in daily sodium intake. Several lines of evidence indicate that central blood volume may vary substantially without measurable changes in arterial blood pressure. At least five intertwining feedback loops of renin regulation are identifiable based on controlled variables (blood volume, arterial blood pressure), efferent pathways to the kidney (nervous, humoral), and pathways operating via the macula densa. Taken together, the available evidence favors the notion that under physiological conditions (1) volume-mediated regulation of renin secretion is the primary regulator, (2) macula densa mediated mechanisms play a substantial role as co-mediator although the controlled variables are not well defined so far, and (3) regulation via arterial blood pressure is the exception rather than the rule. Improved quantitative analyses based on in vivo and in silico models are warranted.
Collapse
Affiliation(s)
- Mads Damkjær
- Department of Paediatrics, Kolding Hospital, Kolding, Denmark
| | | | | | | | | | | |
Collapse
|
25
|
Patel BM, Mehta AA. Aldosterone and angiotensin: Role in diabetes and cardiovascular diseases. Eur J Pharmacol 2012; 697:1-12. [PMID: 23041273 DOI: 10.1016/j.ejphar.2012.09.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/13/2012] [Accepted: 09/22/2012] [Indexed: 12/14/2022]
Abstract
The present review shall familiarize the readers with the role of renin-angiotensin aldosterone system (RAAS), which regulates blood pressure, electrolyte and fluid homeostasis. The local RAAS operates in an autocrine, paracrine and/or intracrine manner and exhibits multiple physiological effects at the cellular level. In addition to local RAAS, there exists a complete pancreatic RAAS which has multi-facet role in diabetes and cardiovascular diseases. Aldosterone is known to mediate hyperinsulinemia, hypertension, cardiac failure and myocardial fibrosis while angiotensin II mediates diabetes, endothelial dysfunction, vascular inflammation, hypertrophy and remodeling. As the understanding of this biology of RAAS increases, it serves to exploit this for the pharmacotherapy of diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Bhoomika M Patel
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad 380 009, Gujarat, India.
| | | |
Collapse
|
26
|
Zill P, Baghai TC, Schüle C, Born C, Früstück C, Büttner A, Eisenmenger W, Varallo-Bedarida G, Rupprecht R, Möller HJ, Bondy B. DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLoS One 2012; 7:e40479. [PMID: 22808171 PMCID: PMC3396656 DOI: 10.1371/journal.pone.0040479] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/08/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The angiotensin converting enzyme (ACE) has been repeatedly discussed as susceptibility factor for major depression (MD) and the bi-directional relation between MD and cardiovascular disorders (CVD). In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ~40%-50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. MATERIALS AND METHODS The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. RESULTS We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008) and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02). Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04). CONCLUSION The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders.
Collapse
Affiliation(s)
- Peter Zill
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wright JW, Harding JW. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 2012; 465:133-51. [DOI: 10.1007/s00424-012-1102-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
|
28
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
29
|
Nguyen Dinh Cat A, Touyz RM. A new look at the renin-angiotensin system--focusing on the vascular system. Peptides 2011; 32:2141-50. [PMID: 21945916 DOI: 10.1016/j.peptides.2011.09.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS), critically involved in the control of blood pressure and volume homeostasis, is a dual system comprising a circulating component and a local tissue component. The rate limiting enzyme is renin, which in the circulating RAS derives from the kidney to generate Ang II, which in turn regulates cardiovascular function by binding to AT(1) and AT(2) receptors on cardiac, renal and vascular cells. The tissue RAS can operate independently of the circulating RAS and may be activated even when the circulating RAS is suppressed or normal. A functional tissue RAS has been identified in brain, kidney, heart, adipose tissue, hematopoietic tissue, gastrointestinal tract, liver, endocrine system and blood vessels. Whereas angiotensinsinogen, angiotensin converting enzyme (ACE), Ang I and Ang II are synthesized within these tissues, there is still controversy as to whether renin is produced locally or whether it is taken up from the circulation, possibly by the (pro)renin receptor. This is particularly true in the vascular wall, where expression of renin is very low. The exact function of the vascular RAS remains elusive, but may contribute to fine-tuning of vascular tone and arterial structure and may amplify vascular effects of the circulating RAS, particularly in pathological conditions, such as in hypertension, atherosclerosis and diabetes. New concepts relating to the vascular RAS have recently been elucidated including: (1) the presence of functionally active Ang-(1-7)-Mas axis in the vascular system, (2) the importance of the RAS in perivascular adipose tissue and cross talk with vessels, and (3) the contribution to vascular RAS of Ang II derived from immune and inflammatory cells within the vascular wall. The present review highlights recent progress in the RAS field, focusing on the tissue system and particularly on the vascular RAS.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
30
|
Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 2011; 32:1551-65. [PMID: 21699940 PMCID: PMC3137727 DOI: 10.1016/j.peptides.2011.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Although renin, the rate-limiting enzyme of the renin-angiotensin system (RAS), was first discovered by Robert Tigerstedt and Bergman more than a century ago, the research on the RAS still remains stronger than ever. The RAS, once considered to be an endocrine system, is now widely recognized as dual (circulating and local/tissue) or multiple hormonal systems (endocrine, paracrine and intracrine). In addition to the classical renin/angiotensin I-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor (AT₁/AT₂) axis, the prorenin/(Pro)renin receptor (PRR)/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, and the Ang IV/AT₄/insulin-regulated aminopeptidase (IRAP) axis have recently been discovered. Furthermore, the roles of the evolving RAS have been extended far beyond blood pressure control, aldosterone synthesis, and body fluid and electrolyte homeostasis. Indeed, novel actions and underlying signaling mechanisms for each member of the RAS in physiology and diseases are continuously uncovered. However, many challenges still remain in the RAS research field despite of more than one century's research effort. It is expected that the research on the expanded RAS will continue to play a prominent role in cardiovascular, renal and hypertension research. The purpose of this article is to review the progress recently being made in the RAS research, with special emphasis on the local RAS in the kidney and the newly discovered prorenin/PRR/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, the Ang IV/AT₄/IRAP axis, and intracrine/intracellular Ang II. The improved knowledge of the expanded RAS will help us better understand how the classical renin/ACE/Ang II/AT₁ receptor axis, extracellular and/or intracellular origin, interacts with other novel RAS axes to regulate blood pressure and cardiovascular and kidney function in both physiological and diseased states.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, the University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|