1
|
Roberts B, Cooper Z, Lu S, Stanley S, Majda BT, Collins KRL, Gilkes L, Rodger J, Akkari PA, Hood SD. Utility of pharmacogenetic testing to optimise antidepressant pharmacotherapy in youth: a narrative literature review. Front Pharmacol 2023; 14:1267294. [PMID: 37795032 PMCID: PMC10545970 DOI: 10.3389/fphar.2023.1267294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Pharmacogenetics (PGx) is the study and application of how interindividual differences in our genomes can influence drug responses. By evaluating individuals' genetic variability in genes related to drug metabolism, PGx testing has the capabilities to individualise primary care and build a safer drug prescription model than the current "one-size-fits-all" approach. In particular, the use of PGx testing in psychiatry has shown promising evidence in improving drug efficacy as well as reducing toxicity and adverse drug reactions. Despite randomised controlled trials demonstrating an evidence base for its use, there are still numerous barriers impeding its implementation. This review paper will discuss the management of mental health conditions with PGx-guided treatment with a strong focus on youth mental illness. PGx testing in clinical practice, the concerns for its implementation in youth psychiatry, and some of the barriers inhibiting its integration in clinical healthcare will also be discussed. Overall, this paper provides a comprehensive review of the current state of knowledge and application for PGx in psychiatry and summarises the capabilities of genetic information to personalising medicine for the treatment of mental ill-health in youth.
Collapse
Affiliation(s)
- Bradley Roberts
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Zahra Cooper
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stephanie Lu
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Susanne Stanley
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Khan R. L. Collins
- Western Australian Department of Health, North Metropolitan Health Service, Perth, WA, Australia
| | - Lucy Gilkes
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Divison of General Practice, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - P. Anthony Akkari
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, United States
| | - Sean D. Hood
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
2
|
Emons B, Arning L, Makulla VE, Suchy MT, Tsikas D, Lücke T, Epplen JT, Juckel G, Roser P. Endocannabinergic modulation of central serotonergic activity in healthy human volunteers. Ann Gen Psychiatry 2023; 22:11. [PMID: 36932421 PMCID: PMC10024405 DOI: 10.1186/s12991-023-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 02/15/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The serotonergic and the endocannabinoid system are involved in the etiology of depression. Depressive patients exhibit low serotonergic activity and decreased level of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2AG). Since the cannabinoid (CB) 1 receptor is activated by endogenous ligands such as AEA and 2AG, whose concentration are controlled by the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, respectively, we investigated the effects on serotonergic utilization. In this study, we investigated the impact of the rs1049353 single-nucleotide polymorphism (SNP) of the cannabinoid receptor 1 (CNR1) gene, which codes the endocannabinoid CB1 receptor, and the rs324420 SNP of the FAAH gene on the serotonergic and endocannabinoid system in 59 healthy volunteers. METHODS Serotonergic activity was measured by loudness dependence of auditory-evoked potentials (LDAEP). Plasma concentrations of AEA, 2AG and its inactive isomer 1AG were determined by mass spectrometry. Genotyping of two SNPs (rs1049353, rs344420) was conducted by polymerase chain reaction (PCR) and differential enzymatic analysis with the PCR restriction fragment length polymorphism method. RESULTS Genotype distributions by serotonergic activity or endocannabinoid concentration showed no differences. However, after detailed consideration of the CNR1-A-allele-carriers, a reduced AEA (A-allele-carrier M = 0.66, SD = 0.24; GG genotype M = 0.72, SD = 0.24) and 2AG (A-allele-carriers M = 0.70, SD = 0.33; GG genotype M = 1.03, SD = 0.83) plasma concentration and an association between the serotonergic activity and the concentrations of AEA and 2AG has been observed. CONCLUSIONS Our results suggest that carriers of the CNR1-A allele may be more susceptible to developing depression.
Collapse
Affiliation(s)
- Barbara Emons
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1-3, 44791, Bochum, Germany.
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Vera-Estelle Makulla
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1-3, 44791, Bochum, Germany
| | | | - Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hanover, Germany
| | - Thomas Lücke
- Department of Neuropediatrics, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1-3, 44791, Bochum, Germany
| | - Patrik Roser
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1-3, 44791, Bochum, Germany
| |
Collapse
|
3
|
Korlatowicz A, Pabian P, Solich J, Kolasa M, Latocha K, Dziedzicka-Wasylewska M, Faron-Górecka A. Habenula as a Possible Target for Treatment-Resistant Depression Phenotype in Wistar Kyoto Rats. Mol Neurobiol 2023; 60:643-654. [PMID: 36344870 PMCID: PMC9849162 DOI: 10.1007/s12035-022-03103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
The mechanisms of treatment-resistant depression (TRD) are not clear and are difficult to study. An animal model resembling human TRD is the Wistar Kyoto rat strain. In the present study, we focused on selecting miRNAs that differentiate rats of the WKY strain from Wistar Han (WIS) rats in two divisions of the habenula, the lateral and medial (LHb and MHb, respectively). Based on our preliminary study and literature survey, we identified 32 miRNAs that could be potentially regulated in the habenula. Six miRNAs significantly differentiated WKY rats from WIS rats within the MHb, and three significantly differentiated WKY from WIS rats within the LHb. Then, we selected relevant transcripts regulated by those miRNAs, and their expression in the habenular nuclei was investigated. For mRNAs that differentiated WKY rats from WIS rats in the MHb (Cdkn1c, Htr7, Kcnj9, and Slc12a5), their lower expression correlated with a higher level of relevant miRNAs. In the LHb, eight mRNAs significantly differentiated WKY from WIS rats (upregulated Htr4, Drd2, Kcnj5, and Sstr4 and downregulated Htr2a, Htr7, Elk4, and Slc12a5). These data indicate that several important miRNAs are expressed in the habenula, which differentiates WKY rats from WIS rats and in turn correlates with alterations in the expression of target transcripts. Of particular note are two genes whose expression is altered in WKY rats in both LHb and MHb: Slc12a5 and Htr7. Regulation of KCC2 via the 5-HT7 receptor may be a potential target for the treatment of TRD.
Collapse
Affiliation(s)
- Agata Korlatowicz
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Paulina Pabian
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Latocha
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
4
|
Perlman K, Benrimoh D, Israel S, Rollins C, Brown E, Tunteng JF, You R, You E, Tanguay-Sela M, Snook E, Miresco M, Berlim MT. A systematic meta-review of predictors of antidepressant treatment outcome in major depressive disorder. J Affect Disord 2019; 243:503-515. [PMID: 30286415 DOI: 10.1016/j.jad.2018.09.067] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/29/2018] [Accepted: 09/16/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The heterogeneity of symptoms and complex etiology of depression pose a significant challenge to the personalization of treatment. Meanwhile, the current application of generic treatment approaches to patients with vastly differing biological and clinical profiles is far from optimal. Here, we conduct a meta-review to identify predictors of response to antidepressant therapy in order to select robust input features for machine learning models of treatment response. These machine learning models will allow us to learn associations between patient features and treatment response which have predictive value at the individual patient level; this learning can be optimized by selecting high-quality input features for the model. While current research is difficult to directly apply to the clinic, machine learning models built using knowledge gleaned from current research may become useful clinical tools. METHODS The EMBASE and MEDLINE/PubMed online databases were searched from January 1996 to August 2017, using a combination of MeSH terms and keywords to identify relevant literature reviews. We identified a total of 1909 articles, wherein 199 articles met our inclusion criteria. RESULTS An array of genetic, immune, endocrine, neuroimaging, sociodemographic, and symptom-based predictors of treatment response were extracted, varying widely in clinical utility. LIMITATIONS Due to heterogeneous sample sizes, effect sizes, publication biases, and methodological disparities across reviews, we could not accurately assess the strength and directionality of every predictor. CONCLUSION Notwithstanding our cautious interpretation of the results, we have identified a multitude of predictors that can be used to formulate a priori hypotheses regarding the input features for a computational model. We highlight the importance of large-scale research initiatives and clinically accessible biomarkers, as well as the need for replication studies of current findings. In addition, we provide recommendations for future improvement and standardization of research efforts in this field.
Collapse
Affiliation(s)
- Kelly Perlman
- Montreal Neurological Institute, McGill University, 3801 Rue Université, Montréal, QC H3A 2B4, Canada.
| | - David Benrimoh
- Department of Psychiatry, McGill University, Montreal, Canada; Faculty of Medicine, McGill University, Montreal, Canada
| | - Sonia Israel
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada
| | - Colleen Rollins
- Department of Psychiatry, University of Cambridge, Cambridge, England, UK
| | - Eleanor Brown
- Montreal Neurological Institute, McGill University, 3801 Rue Université, Montréal, QC H3A 2B4, Canada
| | - Jingla-Fri Tunteng
- Montreal Children's Hospital, McGill University Health Center, Montreal, Canada
| | - Raymond You
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Eunice You
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Myriam Tanguay-Sela
- Montreal Neurological Institute, McGill University, 3801 Rue Université, Montréal, QC H3A 2B4, Canada
| | - Emily Snook
- Douglas Mental Health University Institute, Montreal, Canada
| | - Marc Miresco
- Department of Psychiatry, Jewish General Hospital, Montreal, Canada
| | - Marcelo T Berlim
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada
| |
Collapse
|
5
|
Gassó P, Blázquez A, Rodríguez N, Boloc D, Torres T, Mas S, Lafuente A, Lázaro L. Further Support for the Involvement of Genetic Variants Related to the Serotonergic Pathway in the Antidepressant Response in Children and Adolescents After a 12-Month Follow-Up: Impact of the HTR2A rs7997012 Polymorphism. J Child Adolesc Psychopharmacol 2018; 28:711-718. [PMID: 29975559 DOI: 10.1089/cap.2018.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective: Fluoxetine is an effective and well-tolerated pharmacological treatment for children and adolescents with major depressive disorder (MDD). However, a high percentage of patients do not respond. There is a substantial genetic contribution to this variable clinical outcome. Based on previous genetic results of our group and given the lack of pharmacogenetics studies of antidepressant response with a long follow-up period, we evaluated the influence of single nucleotide polymorphisms (SNPs) in genes related to the serotonergic pathway on remission and recovery in children and adolescents diagnosed with MDD after 12 months of initiating fluoxetine treatment. Methods: The assessment was performed in 46 patients. All of them were visited at least once a month during the 12-month follow-up. Psychiatrists interviewed patients and their parents to explore clinical improvement. A total of 75 genotyped SNPs in 10 candidate genes were included in the genetic association analysis with remission and recovery. Bonferroni correction for multiple testing was applied to avoid false positive results. Results: The HTR2A rs7997012 SNP was significantly associated after Bonferroni correction with clinical improvement. Particularly, the homozygotes for the major allele (GG) showed the highest percentage of remitters and the highest score reductions on the Clinical Global Impressions-Severity (CGI-S) scale. Moreover, although the results were on the border of statistical significance, the GG homozygotes also tended to experience fewer readmissions during the follow-up period Conclusions: These results provide more evidence of the involvement of genetic variants related to the serotonergic pathway in the antidepressant response. Studies with larger cohorts are needed to integrate all relevant variants into clinical predictors of antidepressant response.
Collapse
Affiliation(s)
- Patricia Gassó
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Blázquez
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa Torres
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Luisa Lázaro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| |
Collapse
|
6
|
Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, Juhasz G, Bagdy G. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther 2018; 194:22-43. [PMID: 30189291 DOI: 10.1016/j.pharmthera.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of promising preclinical results there is a decreasing number of new registered medications in major depression. The main reason behind this fact is the lack of confirmation in clinical studies for the assumed, and in animals confirmed, therapeutic results. This suggests low predictive value of animal studies for central nervous system disorders. One solution for identifying new possible targets is the application of genetics and genomics, which may pinpoint new targets based on the effect of genetic variants in humans. The present review summarizes such research focusing on depression and its therapy. The inconsistency between most genetic studies in depression suggests, first of all, a significant role of environmental stress. Furthermore, effect of individual genes and polymorphisms is weak, therefore gene x gene interactions or complete biochemical pathways should be analyzed. Even genes encoding target proteins of currently used antidepressants remain non-significant in genome-wide case control investigations suggesting no main effect in depression, but rather an interaction with stress. The few significant genes in GWASs are related to neurogenesis, neuronal synapse, cell contact and DNA transcription and as being nonspecific for depression are difficult to harvest pharmacologically. Most candidate genes in replicable gene x environment interactions, on the other hand, are connected to the regulation of stress and the HPA axis and thus could serve as drug targets for depression subgroups characterized by stress-sensitivity and anxiety while other risk polymorphisms such as those related to prominent cognitive symptoms in depression may help to identify additional subgroups and their distinct treatment. Until these new targets find their way into therapy, the optimization of current medications can be approached by pharmacogenomics, where metabolizing enzyme polymorphisms remain prominent determinants of therapeutic success.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Andrea Edes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bagdy
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Zeier Z, Carpenter LL, Kalin NH, Rodriguez CI, McDonald WM, Widge AS, Nemeroff CB. Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing. Am J Psychiatry 2018; 175:873-886. [PMID: 29690793 PMCID: PMC6774046 DOI: 10.1176/appi.ajp.2018.17111282] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The accrual and analysis of genomic sequencing data have identified specific genetic variants that are associated with major depressive disorder. Moreover, substantial investigations have been devoted to identifying gene-drug interactions that affect the response to antidepressant medications by modulating their pharmacokinetic or pharmacodynamic properties. Despite these advances, individual responses to antidepressants, as well as the unpredictability of adverse side effects, leave clinicians with an imprecise prescribing strategy that often relies on trial and error. These limitations have spawned several combinatorial pharmacogenetic testing products that are marketed to physicians. Typically, combinatorial pharmacogenetic decision support tools use algorithms to integrate multiple genetic variants and assemble the results into an easily interpretable report to guide prescribing of antidepressants and other psychotropic medications. The authors review the evidence base for several combinatorial pharmacogenetic decision support tools whose potential utility has been evaluated in clinical settings. They find that, at present, there are insufficient data to support the widespread use of combinatorial pharmacogenetic testing in clinical practice, although there are clinical situations in which the technology may be informative, particularly in predicting side effects.
Collapse
Affiliation(s)
- Zane Zeier
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Linda L Carpenter
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Ned H Kalin
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Carolyn I Rodriguez
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - William M McDonald
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Alik S Widge
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Charles B Nemeroff
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| |
Collapse
|
8
|
Daray FM, Arena ÁR, Armesto AR, Rodante DE, Puppo S, Vidjen P, Portela A, Grendas LN, Errasti AE. Serotonin transporter gene polymorphism as a predictor of short-term risk of suicide reattempts. Eur Psychiatry 2018; 54:19-26. [DOI: 10.1016/j.eurpsy.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/08/2018] [Accepted: 07/04/2018] [Indexed: 01/16/2023] Open
Abstract
AbstractObjective:The serotonin-transporter-linked polymorphic region (5-HTTLPR) polymorphisms are associated with suicidal behavior; however, prospective studies are scarce. Herein we aim to determine if 5-HTTLPR polymorphisms predict risk of short-term suicide reattempt in a high-risk suicidal sample. We also explore possible mediators or moderators of this relationship.Methods:A multicenter prospective cohort study was designed to compare data obtained form 136 patients admitted to the emergency department for current suicidal ideation or a recent suicide attempt. Subjects were clinically evaluated, genotyped, and monitored for a new suicide attempt for 6 months.Results:At 6 months of follow up, 21% of the subjects had a new suicide attempt. The frequency of L-allele and L-carrier was higher in reattempters when compared with non-reattempters (55.8% vs. 35.4%, p = 0.01 and 76.9% vs. 54.2%, p = 0.04, respectively). Reattempters also differ from non-reattempters patients with respect to age, history of previous suicide attempts, and age of onset of suicidal behavior. The logistic regression model showed that L-carriers had an odds ratio of 2.8 (95% CI: 1.0–7.6) for reattempts when compared to SS genotype. The adjusted model indicates that this association is not mediated or moderated by impulsivity.Conclusion:The 5-HTTLPR polymorphisms predicted short-term risk of suicidal reattempt independently of age and sex. L-carriers have almost three times more risk of relapse when compared with SS carriers.
Collapse
|
9
|
Wang P, Zhang C, Lv Q, Bao C, Sun H, Ma G, Fang Y, Yi Z, Cai W. Association of DNA methylation in BDNF with escitalopram treatment response in depressed Chinese Han patients. Eur J Clin Pharmacol 2018; 74:1011-1020. [PMID: 29748862 DOI: 10.1007/s00228-018-2463-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/11/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE The neurotrophin brain-derived neurotrophic factor (BDNF) has been found to be associated with both the pathophysiology of depression and antidepressants response. Gene expression differences were partly mediated by SNP, which might be identified as a predictor of antidepressant response. In the present study, we attempt to identify whether DNA methylation, another factor known to affect gene transcription, might also predict antidepressant response. METHODS A total of 85 depressed Chinese Han patients were followed-up 8 weeks after initiating escitalopram treatment. Treatment response was assessed by changes in the Hamilton Depression Rating Scale-17 (HAMD-17) score. The Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) were utilized as the assessment of previous life stress. The bisulfate sequencing was used to assess DNA methylation. Four single nucleotide polymorphisms (SNPs) in the BDNF gene were genotyped using PCR-RFLP or PCR sequencing. RESULTS We identified a DNA methylation predictor (P = 0.006-0.036) and a DNA methylation by LES interaction predictor (OR = 1.442 [1.057-1.968], P = 0.021) of general antidepressant treatment response. Lower mean BDNF DNA methylation was associated with impaired antidepressant response. Furthermore, the present data indicated that age, life stress, and SNPs genotype might be likely related to DNA methylation status. Average DNA methylation of BDNF at baseline was significantly lower than that at endpoint after 8 weeks of escitalopram treatment, which was based only on a subset of cases (n = 44). CONCLUSIONS Our results suggest that BDNF DNA hypomethylation and its interaction with lower LES score might result in impaired antidepressant treatment response. The pharmacoepigenetic study could eventually help in finding epigenetic biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, People's Republic of China
| | - Cuizhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, People's Republic of China
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Rd, Shanghai, 200030, People's Republic of China
| | - Chenxi Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Rd, Shanghai, 200030, People's Republic of China
| | - Hong Sun
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, People's Republic of China
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, People's Republic of China
| | - Yiru Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Rd, Shanghai, 200030, People's Republic of China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Rd, Shanghai, 200030, People's Republic of China.
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
10
|
HTR1A/1B DNA methylation may predict escitalopram treatment response in depressed Chinese Han patients. J Affect Disord 2018; 228:222-228. [PMID: 29275155 DOI: 10.1016/j.jad.2017.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND The serotonin receptor 1A and 1B (HTR1A/1B) gene have been suggested to be involved in the pathogenesis of major depressive disorder (MDD) and the antidepressant treatment response. Gene expression differences were partly mediated by genetic polymorphism and DNA methylation which might be affected by environmental factors. In the present study, we attempt to identify whether HTR1A/1B DNA methylation and genetic polymorphism could predict antidepressant treatment response. METHODS 85 Chinese Han MDD patients were clinically assessed 8 weeks after of initiating escitalopram treatment for the first time. Antidepressant treatment response was assessed by changes in the Hamilton Depression Rating Scale-17 items (HAMD-17) score. The Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) were utilized as the assessment of previous life stress. The Illumina HiSeq platform was used to assess DNA methylation at 96 CpG sites located in HTR1A and HTR1B gene promoter regions. Six single nucleotide polymorphisms (SNPs) (HTR1A rs6294, rs116985176; HTR1B rs6296, rs6298, rs1228814, rs1778258) were genotype by using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) or PCR sequencing. Regression analyses were used to explore the relationship between DNA methylation and SNP and antidepressant response. RESULTS We identified two CpG sites predictor of antidepressant treatment response (CpG 668, amplicon HTR1A_1, NC_000005.10, P = 0.025; CpG 1401, amplicon HTR1B_4, NC_000006.12, P = 0.033). The interaction of four CpG sites hypomethylation of HTR1A/1B with high recent stress might result in impaired antidepressant treatment response. What's more, the present data indicated that age, environments and antidepressant treatment might affect DNA methylation status. It was found that DNA methylation status could be influenced by antidepressant treatment in turn. However, HTR1A and HTR1B genotypes did not influence antidepressant response and DNA methylation status. CONCLUSIONS The results suggest that HTR1A/1B DNA hypomethylation and its interaction with recent life stress might drive impaired antidepressant treatment response. Meanwhile, DNA methylation, in turn, was modified by antidepressant treatment and environments. Our results offer new evidence for the role of epigenetic and genetic polymorphism in pharmacological response to antidepressants.
Collapse
|
11
|
Abstract
Depression is the most common and leading devastating psychiatric illness that affects a majority of the world population. The treatment of depression has been a challenge for a majority of patients and healthcare practitioners. The advent of pharmacogenomics (PGx) empowered the Food and Drug Administration to approve some antidepressant biomarkers for PGx model of treatment. The PGx testing identifies whether an individual is a poor metabolizer, ultra/rapid metabolizer, intermediate metabolizer, or essential metabolizer of an antidepressants before prescription. This is a cutting edge treatment that eliminates trial and error. PGx testing has shown to precisely identify the effective medication and dose for a patient.
Collapse
Affiliation(s)
- David Nana Ampong
- Assistant Professor of Nursing, University of Alaska, Anchorage, College of Health, School of Nursing, 3321 Providence DR, Anchorage, AK 99508, United States..
| |
Collapse
|
12
|
Magalhães P, Alves G, Llerena A, Falcão A. Therapeutic Drug Monitoring of Fluoxetine, Norfluoxetine and Paroxetine: A New Tool Based on Microextraction by Packed Sorbent Coupled to Liquid Chromatography. J Anal Toxicol 2017; 41:631-638. [PMID: 28873974 DOI: 10.1093/jat/bkx043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
The present article reports the first liquid chromatography (LC) assay for the simultaneous quantification of fluoxetine (FLU), its metabolite norfluoxetine (NFLU) and paroxetine (PAR) in human plasma, applying the microextraction by packed sorbent (MEPS) technology in sample preparation. Chromatographic analysis of FLU, NFLU and PAR was achieved in <13 min on a reverse-phase C18 column using isocratic elution and fluorescence detection (FLD). The mobile phase was composed by an aqueous solution of 25 mM sodium phosphate monobasic anhydrous and 7.5 mM di-potassium hydrogen phosphate anhydrous (pH 3.0)/acetonitrile/methanol (70:23:7, v/v/v). The detector was set at 240/312 nm for FLU, NFLU and IS and at 295/350 nm for PAR. The method showed linearity in the ranges of 20-750 ng mL-1 for FLU and NFLU, and 5-750 ng mL-1 for PAR (r2 ≥ 0.9919). The overall intra- and interday precision did not exceed 13.6% and the corresponding accuracy (bias) ranged from 0.02 to 16.7%. The method was successfully applied in the analysis of authentic plasma samples. Hence, this new MEPS/LC-FLD assay ensures robust and low-cost analyses representing, therefore, a good alternative to support therapeutic drug monitoring and clinical studies involving these antidepressant drugs.
Collapse
Affiliation(s)
- Paulo Magalhães
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.,CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Ave. Infante D. Henrique, 6200-506 Covilhã, Portugal.,CICAB, Clinical Research Centre, Extremadura University Hospital and Medical School, Ave. de Elvas, 06006 Badajoz, Spain
| | - Gilberto Alves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.,CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Ave. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adrián Llerena
- CICAB, Clinical Research Centre, Extremadura University Hospital and Medical School, Ave. de Elvas, 06006 Badajoz, Spain
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
13
|
Elmorsy E, Al-Ghafari A, Almutairi FM, Aggour AM, Carter WG. Antidepressants are cytotoxic to rat primary blood brain barrier endothelial cells at high therapeutic concentrations. Toxicol In Vitro 2017; 44:154-163. [PMID: 28712878 DOI: 10.1016/j.tiv.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Antidepressants are commonly employed for the treatment of major depressive disorders and other psychiatric conditions. We investigated the relatively acute cytotoxic effects of three commonly prescribed antidepressants: fluoxetine, sertraline, and clomipramine on rat primary blood brain barrier endothelial cells over a concentration range of 0.1-100μM. At therapeutic concentrations (0.1μM) no significant cytotoxicity was observed after 4, 24, or 48h. At high therapeutic to overdose concentrations (1-100μM), antidepressants reduced cell viability in proportion to their concentration and exposure duration. At 1μM, antidepressants significantly reduced mitochondrial membrane potential. At drug concentrations producing ~50% inhibition of cell viability, all drugs significantly reduced cellular oxygen consumption rates, activities of mitochondrial complexes I and III, and triggered a significant increase of lactate production. Fluoxetine (6.5μM) and clomipramine (5.5μM) also significantly lowered transcellular transport of albumin. The mechanism of cellular cytotoxicity was evaluated and at high concentrations all drugs significantly increased the production of reactive oxygen species, and significantly increased the activity of the pro-apoptotic caspases-3, 8, and 9. Comet assays revealed that all drugs were genotoxic. Pre-incubation of cells with glutathione significantly ameliorated antidepressant-induced cytotoxicity, indicating the potential benefit of treatment of overdosed patients with antioxidants.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Departments of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Egypt; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Fahd M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia.
| | | | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.
| |
Collapse
|
14
|
Manoharan A, Shewade DG, Rajkumar RP, Adithan S. Serotonin transporter gene (SLC6A4) polymorphisms are associated with response to fluoxetine in south Indian major depressive disorder patients. Eur J Clin Pharmacol 2016; 72:1215-1220. [DOI: 10.1007/s00228-016-2099-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023]
|
15
|
Noordam R, Avery CL, Visser LE, Stricker BH. Identifying genetic loci affecting antidepressant drug response in depression using drug-gene interaction models. Pharmacogenomics 2016; 17:1029-40. [PMID: 27248517 DOI: 10.2217/pgs-2016-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antidepressants are often only moderately successful in decreasing the severity of depressive symptoms. In part, antidepressant treatment response in patients with depression is genetically determined. However, although a large number of studies have been conducted aiming to identify genetic variants associated with antidepressant drug response in depression, only a few variants have been repeatedly identified. Within the present review, we will discuss the methodological challenges and limitations of the studies that have been conducted on this topic to date (e.g., 'treated-only design', statistical power) and we will discuss how specifically drug-gene interaction models can be used to be better able to identify genetic variants associated with antidepressant drug response in depression.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Loes E Visser
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Apotheek Haagse Ziekenhuizen - HAGA, The Hague, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Inspectorate of Health Care, Utrecht, The Netherlands
| |
Collapse
|
16
|
ALDH2 polymorphism, associated with attenuating negative symptoms in patients with schizophrenia treated with add-on dextromethorphan. J Psychiatr Res 2015; 69:50-6. [PMID: 26343594 DOI: 10.1016/j.jpsychires.2015.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Increasing the evidence of inflammation's contribution to schizophrenia; using anti-inflammatory or neurotrophic therapeutic agents to see whether they improve schizophrenia treatment. Dextromethorphan (DM), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, might protect monoamine neurons. Whether treating schizophrenia with risperidone plus add-on DM is more effective than risperidone (RISP) alone, and the association between the ALDH2 polymorphism and treatment response were investigated. METHODS A double-blind study in which patients with schizophrenia were randomly assigned to the RISP + DM (60 mg/day; n = 74) or the RISP + Placebo (n = 75) group. The Positive and Negative Syndrome Scale (PANSS) and the Scale for the Assessment of Negative Symptoms (SANS) scores were used to evaluate clinical response during weeks 0, 1, 2, 4, 6, 8, and 11. The genotypes of the ALDH2 polymorphism were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. A generalized estimating equation was used to analyze the effects of ALDH2 polymorphism on the clinical performance of DM. RESULTS PANSS and SANS scores were significantly lower in both groups after 11 weeks of treatment. SANS total scores were significantly lower in the RISP + DM group in patients with the ALDH2*2*2 genotype. CONCLUSIONS RISP plus add-on DM treatment reduced negative schizophrenia symptoms in patients with the ALDH2 polymorphism.
Collapse
|
17
|
Abstract
Several lines of evidence implicate abnormalities in glutamatergic neural transmission in major depressive disorder (MDD) and treatment response. A high percentage of MDD patients do not respond adequately to antidepressants and are classified as having treatment-resistant depression (TRD). In this study we investigated five GRIK4 variants, previously associated with antidepressants response, in an Italian cohort of 247 MDD no-TRD and 380 TRD patients. We found an association between rs11218030 G allele and TRD. Moreover, significant associations between rs11218030 and rs1954787 and the presence of psychotic symptoms were observed. In conclusion, our data support the involvement of GRIK4 in TRD and in the risk of developing psychotic symptoms during depressive episodes.
Collapse
|
18
|
Bet PM, Verbeek EC, Milaneschi Y, Straver DBM, Uithuisje T, Bevova MR, Hugtenburg JG, Heutink P, Penninx BWJH, Hoogendijk WJG. A common polymorphism in the ABCB1 gene is associated with side effects of PGP-dependent antidepressants in a large naturalistic Dutch cohort. THE PHARMACOGENOMICS JOURNAL 2015; 16:202-8. [DOI: 10.1038/tpj.2015.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 11/09/2022]
|
19
|
Effect of desipramine on gene expression in the mouse frontal cortex – Microarray study. Pharmacol Rep 2015; 67:345-8. [DOI: 10.1016/j.pharep.2014.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 12/13/2022]
|
20
|
Noordam R, Direk N, Sitlani CM, Aarts N, Tiemeier H, Hofman A, Uitterlinden AG, Psaty BM, Stricker BH, Visser LE. Identifying genetic loci associated with antidepressant drug response with drug-gene interaction models in a population-based study. J Psychiatr Res 2015; 62:31-7. [PMID: 25649181 DOI: 10.1016/j.jpsychires.2015.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
It has been difficult to identify genes affecting drug response to Selective Serotonin Reuptake Inhibitors (SSRIs). We used multiple cross-sectional assessments of depressive symptoms in a population-based study to identify potential genetic interactions with SSRIs as a model to study genetic variants associated with SSRI response. This study, embedded in the prospective Rotterdam Study, included all successfully genotyped participants with data on depressive symptoms (CES-D scores). We used repeated measurement models to test multiplicative interaction between genetic variants and use of SSRIs on repeated CESD scores. Besides a genome-wide analysis, we also performed an analysis which was restricted to genes related to the serotonergic signaling pathway. A total of 273 out of 14,937 assessments of depressive symptoms in 6443 participants, use of an SSRI was recorded. After correction for multiple testing, no plausible loci were identified in the genome-wide analysis. However, among the top 10 independent loci with the lowest p-values, findings within two genes (FSHR and HMGB4) might be of interest. Among 26 genes related to the serotonergic signaling pathway, the rs6108160 polymorphism in the PLCB1 gene reached statistical significance after Bonferroni correction (p-value = 8.1e-5). Also, the widely replicated 102C > T polymorphism in the HTR2A gene showed a statistically significant drug-gene interaction with SSRI use. Therefore, the present study suggests that drug-gene interaction models on (repeated) cross-sectional assessments of depressive symptoms in a population-based study can identify potential loci that may influence SSRI response.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Nese Direk
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | - Nikkie Aarts
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam, The Netherlands.
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam, The Netherlands.
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA; Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA.
| | - Bruno H Stricker
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Inspectorate of Health Care, The Hague, The Netherlands; The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam, The Netherlands.
| | - Loes E Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Apotheek Haagse Ziekenhuizen, HAGA, The Hague, The Netherlands.
| |
Collapse
|
21
|
Rodieux F, Piguet V, Berney P, Desmeules J, Besson M. Pharmacogenetics and analgesic effects of antidepressants in chronic pain management. Per Med 2015; 12:163-175. [DOI: 10.2217/pme.14.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antidepressants are widely administered to chronic pain patients, but there is large interindividual variability in their efficacy and adverse effect rates that may be attributed to genetic factors. Studies have attempted to determine the impact of genetic polymorphisms in enzymes and transporters that are involved in antidepressant pharmacokinetics, for example, cytochrome P450 and P-gp. The impacts of genetic polymorphisms in the targets of antidepressants, such as the serotonin receptor or transporter, the noradrenaline transporter and the COMT and monoamine oxydase enzymes, have also been described. This manuscript discusses the current knowledge of the influence of genetic factors on the plasma concentrations, efficacy and adverse effects of the major antidepressants used in pain management.
Collapse
Affiliation(s)
- Frédérique Rodieux
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Valérie Piguet
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Patricia Berney
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Jules Desmeules
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Marie Besson
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| |
Collapse
|
22
|
Vizirianakis IS. Harnessing pharmacological knowledge for personalized medicine and pharmacotyping: Challenges and lessons learned. World J Pharmacol 2014; 3:110-119. [DOI: 10.5497/wjp.v3.i4.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/03/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The contribution of the genetic make-up to an individual’s capacity has long been recognized in modern pharmacology as a crucial factor leading to therapy inefficiency and toxicity, negatively impacting the economic burden of healthcare and restricting the monitoring of diseases. In practical terms, and in order for drug prescription to be improved toward meeting the personalized medicine concept in drug delivery, the maximum clinical outcome for most, if not all, patients must be achieved, i.e., pharmacotyping. Such a direction although promising and of high expectation from the society, it is however hardly to be afforded for healthcare worldwide. To overcome any existed hurdles, this means that practical clinical utility of personalized medicine decisions have to be documented and validated in the clinical setting. The latter implies for drug delivery the efficient implementation of previously gained in vivo pharmacology experience with pharmacogenomics knowledge. As an approach to work faster and in a more productive way, the elaboration of advanced physiologically based pharmacokinetics models is discussed. And in better clarifying this topic, the example of tamoxifen is thoroughly presented. Overall, pharmacotyping represents a major challenge in modern therapeutics for which pharmacologists need to work in successfully fulfilling this task.
Collapse
|
23
|
First MEPS/HPLC assay for the simultaneous determination of venlafaxine and O-desmethylvenlafaxine in human plasma. Bioanalysis 2014; 6:3025-38. [DOI: 10.4155/bio.14.222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: A new high-performance liquid chromatography–fluorescence detection assay based on microextraction by packed sorbent as sample preparation approach is described to quantify venlafaxine (VEN) and its main metabolite [O-desmethylvenlafaxine (ODV)]in human plasma. Methods & results: Chromatographic separation of the target analytes (VEN and ODV) and internal standard (licarbazepine) was achieved in less than 6 min on a reverse-phase C18 column using isocratic elution. Calibration curves were linear in the ranges of 10–1000 ng ml-1 for VEN and 20–1000 ng ml-1 for ODV. The method was successfully applied to real plasma samples. Conclusion: This microextraction by packed sorbent/high-performance liquid chromatography–fluorescence detection assay offers a cost-effective tool that can be applied for therapeutic drug monitoring and also support other pharmacokinetic-based studies in humans.
Collapse
|
24
|
O'Leary OF, O'Brien FE, O'Connor RM, Cryan JF. Drugs, genes and the blues: Pharmacogenetics of the antidepressant response from mouse to man. Pharmacol Biochem Behav 2014; 123:55-76. [PMID: 24161683 DOI: 10.1016/j.pbb.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
|
25
|
Abstract
BACKGROUND The gene product of the ABCB1 gene, the P-glycoprotein, functions as a custodian molecule in the blood-brain barrier and regulates the access of most antidepressants into the brain. Previous studies showed that ABCB1 polymorphisms predicted the response to antidepressants that are substrates of the P-gp, while the response to nonsubstrates was not influenced by ABCB1 polymorphisms. The aim of the present study was to evaluate the clinical application of ABCB1 genotyping in antidepressant pharmacotherapy. METHODS Data came from 58 depressed inpatients participating in the Munich Antidepressant Response Signature (MARS) project, whose ABCB1 gene test results were implemented into the clinical decision making process. Hamilton Depression Rating Scale (HAM-D) scores, remission rates, and duration of hospital stay were documented with dose and kind of antidepressant treatment. RESULTS Patients who received ABCB1 genotyping had higher remission rates [χ2(1) = 6.596, p = 0.005, 1-sided] and lower Hamilton sores [t(111) = 2.091, p = 0.0195, 1-sided] at the time of discharge from hospital as compared to patients without ABCB1 testing. Among major allele homozygotes for ABCB1 single nucleotide polymorphisms (SNPs) rs2032583 and rs2235015 (TT/GG genotype), an increase in dose was associated with a shorter duration of hospital stay [rho(28) = -0.441, p = 0.009, 1-sided], whereas other treatment strategies (eg, switching to a nonsubstrate) showed no significant associations with better treatment outcome. Discussion The implementation of ABCB1 genotyping as a diagnostic tool influenced clinical decisions and led to an improvement of treatment outcome. Patients carrying the TT/GG genotype seemed to benefit from an increase in P-gp substrate dose. CONCLUSION Results suggest that antidepressant treatment of depression can be optimized by the clinical application of ABCB1 genotyping.
Collapse
|
26
|
Breitenstein B, Scheuer S, Holsboer F. Are there meaningful biomarkers of treatment response for depression? Drug Discov Today 2014; 19:539-61. [PMID: 24561326 DOI: 10.1016/j.drudis.2014.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
During the past decades, the prevalence of affective disorders has been on the rise globally, with only one out of three patients achieving remission in acute treatment with antidepressants. The identification of physiological markers that predict treatment course proves useful in increasing therapeutic success. On the basis of well-documented, recent findings in depression research, we highlight and discuss the most promising biomarkers for antidepressant therapy response. These include genetic variants and gene expression profiles, proteomic and metabolomic markers, neuroendocrine function tests, electrophysiology and imaging techniques. Ultimately, this review proposes an integrative use of biomarkers for antidepressant treatment outcome.
Collapse
Affiliation(s)
- Barbara Breitenstein
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Florian Holsboer
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
27
|
Abstract
Memantine is a non-competitive N-methyl-d-asparate (NMDA) receptor antagonist with a mood-stabilizing effect. We investigated whether using valproic acid (VPA) plus add-on memantine to treat bipolar II disorder (BP-II) is more effective than using VPA alone (VPA + Pbo). We also evaluated, in BP-II patients, the association between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with treatment response to VPA + add-on memantine and to VPA + Pbo. In this randomized, double-blind, controlled 12 wk study, BP-II patients undergoing regular VPA treatments were randomly assigned to a group: VPA + Memantine (5 mg/day) (n = 115) or VPA + Pbo (n = 117). The Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) were used to evaluate clinical response during week 0, 1, 2, 4, 8 and 12. The genotypes of the BDNF Val66Met polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. To adjust within-subject dependence over repeated assessments, multiple linear regression with generalized estimating equation methods was used to analyze the effects of the BDNF Val66Met polymorphism on the clinical performance of memantine. Both groups showed significantly decreased YMRS and HDRS scores after 12 wk of treatment; the differences between groups were non-significant. When stratified by the BDNF Val66Met genotypes, significantly greater decreases in HDRS scores were found in the VPA + memantine group in patients with the Val Met genotype (p = 0.004). We conclude that the BDNF Val66Met polymorphism influenced responses to add-on memantine by decreasing depressive symptoms in patients with BP-II.
Collapse
|
28
|
El-Hage W, Leman S, Camus V, Belzung C. Mechanisms of antidepressant resistance. Front Pharmacol 2013; 4:146. [PMID: 24319431 PMCID: PMC3837246 DOI: 10.3389/fphar.2013.00146] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/05/2013] [Indexed: 12/28/2022] Open
Abstract
Depression is one of the most frequent and severe mental disorder. Since the discovery of antidepressant (AD) properties of the imipramine and then after of other tricyclic compounds, several classes of psychotropic drugs have shown be effective in treating major depressive disorder (MDD). However, there is a wide range of variability in response to ADs that might lead to non response or partial response or in increased rate of relapse or recurrence. The mechanisms of response to AD therapy are poorly understood, and few biomarkers are available than can predict response to pharmacotherapy. Here, we will first review markers that can be used to predict response to pharmacotherapy, such as markers of drug metabolism or blood-brain barrier (BBB) function, the activity of specific brain areas or neurotransmitter systems, hormonal dysregulations or plasticity, and related molecular targets. We will describe both clinical and preclinical studies and describe factors that might affect the expression of these markers, including environmental or genetic factors and comorbidities. This information will permit us to suggest practical recommendations and innovative treatment strategies to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Wissam El-Hage
- INSERM 930, Faculté de Sciences et Techniques, Université François Rabelais Tours, France ; Centre Hospitalier Régional Universitaire de Tours, Centre Expert Dépression Résistante, Fondation FondaMental Tours, France
| | | | | | | |
Collapse
|
29
|
Lanni C, Racchi M, Govoni S. Do we need pharmacogenetics to personalize antidepressant therapy? Cell Mol Life Sci 2013; 70:3327-40. [PMID: 23272319 PMCID: PMC11113225 DOI: 10.1007/s00018-012-1237-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 12/16/2022]
Abstract
This review examines the role of drug metabolism and drug target polymorphism in determining the clinical response to antidepressants. Even though antidepressants are the most effective available treatment for depressive disorders, there is still substantial need for improvement due to the slow onset of appreciable clinical improvement and the association with side effects. Moreover, a substantial group of patients receiving antidepressant therapy does not achieve remission or fails to respond entirely. Even if the large variation in antidepressant treatment outcome across individuals remains poorly understood, one possible source of this variation in treatment outcome are genetic differences. The review focuses on a few polymorphisms which have been extensively studied, while reporting a more comprehensive reference to the existing literature in table format. It is relatively easy to predict the effect of polymorphisms in drug metabolizing enzymes, such as cytochromes P450 2D6 (CYP2D6) and cytochrome P450 2C19 (CYP2C19), which may be determined in the clinical context in order to explain or prevent serious adverse effects. The role of target polymorphism, however, is much more difficult to establish and may be more relevant for disease susceptibility and presentation rather than for response to therapy.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), Center of Excellence in Applied Biology, University of Pavia, IUSS-Pavia (Istituto Universitario di Studi Superiori-Pavia), Viale Taramelli 14, 27100, Pavia, Italy.
| | | | | |
Collapse
|
30
|
Jang MH, Kitabatake Y, Kang E, Jun H, Pletnikov MV, Christian KM, Hen R, Lucae S, Binder EB, Song H, Ming GI. Secreted frizzled-related protein 3 (sFRP3) regulates antidepressant responses in mice and humans. Mol Psychiatry 2013; 18. [PMID: 23207650 PMCID: PMC3970729 DOI: 10.1038/mp.2012.158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M-H Jang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurologic Surgery, Department of Biochemistry and Molecular Biology, Mayo College of Medicine, Rochester, MN, USA
| | - Y Kitabatake
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Pediatrics, Osaka University School of Medicine, Osaka, Japan
| | - E Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Pre-doctoral Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H Jun
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - MV Pletnikov
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - KM Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Hen
- Department of Psychiatry, Columbia University, New York, NY, USA,The New York State Psychiatric Institute, New York, NY, USA
| | - S Lucae
- Max Planck Institute of Psychiatry, Munich, Germany
| | - EB Binder
- Max Planck Institute of Psychiatry, Munich, Germany,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - H Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Pre-doctoral Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G-I Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Association between genetic variation in the ABCB1 gene and switching, discontinuation, and dosage of antidepressant therapy: results from the Rotterdam Study. J Clin Psychopharmacol 2013; 33:546-50. [PMID: 23771194 DOI: 10.1097/jcp.0b013e318291c07b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The objective of this study was to investigate whether polymorphisms in the ABCB1 gene were associated with switching, with discontinuation of antidepressants within 45 days after starting therapy, and/or with dose change in a large prospective population-based cohort study. Between April 1, 1991, and December 31, 2007, there were 1257 incident users of antidepressants with known ABCB1 genotypes (1236C>T, 2677G>T/A, 3435C>T) in the population-based Rotterdam Study. Logistic regression models were used to estimate the genotype and haplotype effect on the risk of switching and discontinuation. In addition, the association between the haplotypes and the prescribed drug dosage was assessed per drug class. The separate polymorphisms in the ABCB1 gene were associated with increased risks of switching and discontinuation but reached only statistical significance for the association between the 3435C>T polymorphism and switching. In a model adjusted for age and sex, homozygous carriers of the T-T-T haplotype had an increased risk of switching (odds ratio, 4.22; 95% confidence interval, 1.30-13.7; P = 0.017) and discontinuation (odds ratio, 1.47; 95% confidence interval, 0.98-2.22; P = 0.063). Explained variance was 10.4% for switching and 2.5% for discontinuation. In contrast, no association was observed between the T-T-T haplotype and the prescribed dosage. In summary, this study showed that genetic variation in the ABCB1 gene might play a role in the risk of switching and discontinuation of antidepressant therapy but the clinical relevance is limited.
Collapse
|
32
|
Kloiber S, Ripke S, Kohli MA, Reppermund S, Salyakina D, Uher R, McGuffin P, Perlis RH, Hamilton SP, Pütz B, Hennings J, Brückl T, Klengel T, Bettecken T, Ising M, Uhr M, Dose T, Unschuld PG, Zihl J, Binder E, Müller-Myhsok B, Holsboer F, Lucae S. Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels. Eur Neuropsychopharmacol 2013; 23:653-62. [PMID: 23026132 PMCID: PMC4221661 DOI: 10.1016/j.euroneuro.2012.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 07/11/2012] [Accepted: 08/07/2012] [Indexed: 01/01/2023]
Abstract
Leptin, a peptide hormone from adipose tissue and key player in weight regulation, has been suggested to be involved in sleep and cognition and to exert antidepressant-like effects, presumably via its action on the HPA-axis and hippocampal function. This led us to investigate whether genetic variants in the leptin gene, the level of leptin mRNA-expression and leptin serum concentrations are associated with response to antidepressant treatment. Our sample consisted of inpatients from the Munich Antidepressant Response Signature (MARS) project with weekly Hamilton Depression ratings, divided into two subsamples. In the exploratory sample (n=251) 17 single nucleotide polymorphisms (SNPs) covering the leptin gene region were genotyped. We found significant associations of several SNPs with impaired antidepressant treatment outcome and impaired cognitive performance after correction for multiple testing. The SNP (rs10487506) showing the highest association with treatment response (p=3.9×10(-5)) was analyzed in the replication sample (n=358) and the association could be verified (p=0.021) with response to tricyclic antidepressants. In an additional meta-analysis combining results from the MARS study with data from the Genome-based Therapeutic Drugs for Depression (GENDEP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR(⁎)D) studies, nominal associations of several polymorphisms in the upstream vicinity of rs10487506 with treatment outcome were detected (p=0.001). In addition, we determined leptin mRNA expression in lymphocytes and leptin serum levels in subsamples of the MARS study. Unfavorable treatment outcome was accompanied with decreased leptin mRNA and leptin serum levels. Our results suggest an involvement of leptin in antidepressant action and cognitive function in depression with genetic polymorphisms in the leptin gene, decreased leptin gene expression and leptin deficiency in serum being risk factors for resistance to antidepressant therapy in depressed patients.
Collapse
Affiliation(s)
- Stefan Kloiber
- Max-Planck-Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
There is considerable variability in the rate of response and remission following treatment with antidepressant drugs or placebo in depression patients. No pharmacogenetic studies of bupropion response have been done. We investigated 532 tagging single nucleotide polymorphisms (SNPs) in 34 candidate genes for association with remission and response to either bupropion (n=319) or placebo (n=257) in patients with major depressive disorder. Analyses were performed using conditional logistic regression. Significant association (gene-wide correction) was observed for remission following treatment with bupropion for a SNP within the serotonin receptor 2A gene (HTR2A rs2770296, p(corrected)=0.02). Response to bupropion treatment was significantly associated with a SNP in the dopamine transporter gene (rs6347, p(corrected)=0.013). Among the patients who received placebo, marginal association for remission was observed between a SNP in HTR2A (rs2296972, p(corrected)=0.055) as well as in the serotonin transporter gene (5-HTT or SLC6A4 rs4251417, p(corrected)=0.050). Placebo response was associated with SNPs in the glucocorticoid receptor gene (NR3C1; rs1048261, p(corrected)=0.040) and monoamine oxidase A gene (MAOA; rs6609257, p corrected=0.046). Although the above observations were significant after gene-wide corrections, none of these would be significant after a more conservative study-wide correction for multiple tests. These results suggest a possible role for HTR2A in remission to bupropion treatment. In accordance with bupropion pharmacology, dopamine transporter may play a role in response. The MAOA gene may be involved in placebo response.
Collapse
|
34
|
Influence of CYP2D6 and CYP2C19 gene variants on antidepressant response in obsessive-compulsive disorder. THE PHARMACOGENOMICS JOURNAL 2013; 14:176-81. [PMID: 23545896 DOI: 10.1038/tpj.2013.12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022]
Abstract
Numerous studies have reported on pharmacogenetics of antidepressant response in depression. In contrast, little is known of response predictors in obsessive-compulsive disorder (OCD), a disorder with among the lowest proportion of responders to medication (40-60%). Our study is the largest investigation to date (N=184) of treatment response and side effects to antidepressants in OCD based on metabolizer status for CYP2D6 and CYP2C19. We observed significantly more failed medication trials in CYP2D6 non-extensive compared with extensive metabolizers (P=0.007). CYP2D6 metabolizer status was associated with side effects to venlafaxine (P=0.022). There were nonsignificant trends for association of CYP2D6 metabolizer status with response to fluoxetine (P=0.056) and of CYP2C19 metabolizer status with response to sertraline (P=0.064). Our study is the first to indicate that CYP genes may have a role in antidepressant response in OCD. More research is required for a future clinical application of genetic testing, which could lead to improved treatment outcomes.
Collapse
|
35
|
Pu M, Zhang Z, Xu Z, Shi Y, Geng L, Yuan Y, Zhang X, Reynolds GP. Influence of genetic polymorphisms in the glutamatergic and GABAergic systems and their interactions with environmental stressors on antidepressant response. Pharmacogenomics 2013; 14:277-88. [PMID: 23394390 DOI: 10.2217/pgs.13.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To investigate the role of genetic polymorphisms in glutamatergic and GABAergic genes and their interactions with environmental stressors in antidepressant response. Methods: A set of 114 SNPs of 34 glutamatergic and GABAergic genes, mainly in promoter and coding regions, were genotyped in 281 Chinese Han major depressive disorder patients. The 17-item Hamilton Depression Rating Scale was used to evaluate the symptom severity and therapeutic efficacy. Childhood Trauma Questionnaire and Life Events Scale were used for assessing early-onset and recent stressful life events, respectively. Results: The single SNPs rs1954787 (GRIK4), rs1992647 (GABRA6), rs10036156 (GABRP) and rs3810651 (GABRQ) were significantly associated with antidepressant response, as were haplotypes in GRIK4 and GABRP genes. A genetic interaction between rs11542313 (GAD1), rs13303344 (GABRD) and rs2256882 (GABRE) was identified as impacting therapeutic response. SNPs in GRIA3 demonstrated interactions with early-onset adverse events and recent negative life stress that influence treatment outcome. Conclusion: Genetic polymorphisms in the glutamatergic and GABAergic systems and certain genetic interactions, as well as gene–environment interactions, are associated with antidepressant response. Original submitted 9 July 2012; Revision submitted 1 January 2013
Collapse
Affiliation(s)
- Mengjia Pu
- Department of Neuropsychiatry, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neuropsychiatry, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhi Xu
- Department of Neuropsychiatry, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yanyan Shi
- Department of Neuropsychiatry, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Leiyu Geng
- Department of Neuropsychiatry, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Neuropsychiatry, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiangrong Zhang
- Department of Neuropsychiatry, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Gavin P Reynolds
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
36
|
The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 2012; 37:2331-71. [PMID: 23261405 DOI: 10.1016/j.neubiorev.2012.12.007] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 12/18/2022]
Abstract
We present a comprehensive overview of the neurobiology of unipolar major depression and antidepressant drug action, integrating data from affective neuroscience, neuro- and psychopharmacology, neuroendocrinology, neuroanatomy, and molecular biology. We suggest that the problem of depression comprises three sub-problems: first episodes in people with low vulnerability ('simple' depressions), which are strongly stress-dependent; an increase in vulnerability and autonomy from stress that develops over episodes of depression (kindling); and factors that confer vulnerability to a first episode (a depressive diathesis). We describe key processes in the onset of a 'simple' depression and show that kindling and depressive diatheses reproduce many of the neurobiological features of depression. We also review the neurobiological mechanisms of antidepressant drug action, and show that resistance to antidepressant treatment is associated with genetic and other factors that are largely similar to those implicated in vulnerability to depression. We discuss the implications of these conclusions for the understanding and treatment of depression, and make some strategic recommendations for future research.
Collapse
|
37
|
Rabl U, Scharinger C, Müller M, Pezawas L. Imaging genetics: implications for research on variable antidepressant drug response. Expert Rev Clin Pharmacol 2012; 3:471-89. [PMID: 22111678 DOI: 10.1586/ecp.10.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genetic variation of SLC6A4, HTR1A, MAOA, COMT and BDNF has been associated with depression, variable antidepressant drug responses as well as impacts on brain regions of emotion processing that are modulated by antidepressants. Pharmacogenetic studies are using psychometric outcome measures of drug response and are hampered by small effect sizes that might be overcome by the use of intermediate endophenotypes of drug response, which are suggested by imaging studies. Such an approach will not only tighten the relationship between genes and drug response, but also yield new insights into the neurobiology of depression and individual drug responses. This article provides a comprehensive overview of pharmacogenetic, imaging genetics and drug response studies, utilizing imaging techniques within the context of antidepressive drug therapy.
Collapse
Affiliation(s)
- Ulrich Rabl
- >Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
38
|
Mitjans M, Gastó C, Catalán R, Fañanás L, Arias B. Genetic variability in the endocannabinoid system and 12-week clinical response to citalopram treatment: the role of the CNR1, CNR2 and FAAH genes. J Psychopharmacol 2012; 26:1391-8. [PMID: 22826533 DOI: 10.1177/0269881112454229] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
First line treatment of major depression is based on selective serotonin re-uptake inhibitors (SSRIs) that enhance serotonergic neurotransmission by blocking the serotonin transporter. However, clinical response is a complex phenomenon in which other systems such as the endocannabinoid system could be involved. Given the evidence for the role of the endocannabinoid system in the pathogenesis of depression as well as in the mediation of antidepressant drug effects, the aim of this study was to analyze genetic variability in the endocannabinoid system genes (CNR1, CNR2 and FAAH genes) and their role in clinical response (at week 4) and remission (at week 12) in SSRI (citalopram) treatment in a sample of 154 depressive outpatients, all of Spanish origin. All patients were treated with citalopram and followed over 12 weeks. Severity of depressive symptomatology was evaluated by means of the 21-item Hamilton Depression Rating Score (HDRS). No differences were found in any of the genotype distributions according to response or remission. The longitudinal study showed that (i) the CNR1 rs1049353-GG genotype conferred a better response to citalopram treatment in the subgroup of male patients and (ii) G allele carriers (CNR2 rs2501431) presented higher HDRS scores in the follow-up than AA homozygous allele carriers. Our results seem to suggest the involvement of CNR1 and CNR2 genes in clinical responses to citalopram treatment.
Collapse
Affiliation(s)
- Marina Mitjans
- Unitat d'Antropologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
39
|
Ganea K, Menke A, Schmidt MV, Lucae S, Rammes G, Liebl C, Harbich D, Sterlemann V, Storch C, Uhr M, Holsboer F, Binder EB, Sillaber I, Müller MB. Convergent animal and human evidence suggests the activin/inhibin pathway to be involved in antidepressant response. Transl Psychiatry 2012; 2:e177. [PMID: 23092981 PMCID: PMC3565812 DOI: 10.1038/tp.2012.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite the overt need for improved treatment modalities in depression, efforts to develop conceptually novel antidepressants have been relatively unsuccessful so far. Here we present a translational approach combining results from hypothesis-free animal experiments with data from a genetic association study in depression. Comparing genes regulated by chronic paroxetine treatment in the mouse hippocampus with genes showing nominally significant association with antidepressant treatment response in two pharmacogenetic studies, the activin pathway was the only one to show this dual pattern of association and therefore selected as a candidate. We examined the regulation of activin A and activin receptor type IA mRNA following antidepressant treatment. We investigated the effects of stereotaxic infusion of activin into the hippocampus and the amygdala in a behavioural model of depression. To analyse whether variants in genes in the activin signalling pathway predict antidepressant treatment response, we performed a human genetic association study. Significant changes in the expression of genes in the activin signalling pathway were observed following 1 and 4 weeks of treatment. Injection of activin A into the hippocampus exerts acute antidepressant-like effects. Polymorphisms in the betaglycan gene, a co-receptor mediating functional antagonism of activin signalling, significantly predict treatment outcome in our system-wide pharmacogenetics study in depression. We provide convergent evidence from mouse and human data that genes in the activin signalling pathway are promising novel candidates involved in the neurobiogical mechanisms underlying antidepressant mechanisms of action. Further, our data suggest this pathway to be a target for more rapid-acting antidepressants in the future.
Collapse
Affiliation(s)
- K Ganea
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A Menke
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M V Schmidt
- Max Planck Institute of Psychiatry, Munich, Germany
| | - S Lucae
- Max Planck Institute of Psychiatry, Munich, Germany
| | - G Rammes
- Max Planck Institute of Psychiatry, Munich, Germany,Department of Anesthesiology, Technische Universtität, Munich, Germany
| | - C Liebl
- Max Planck Institute of Psychiatry, Munich, Germany
| | - D Harbich
- Max Planck Institute of Psychiatry, Munich, Germany
| | - V Sterlemann
- Max Planck Institute of Psychiatry, Munich, Germany
| | - C Storch
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M Uhr
- Max Planck Institute of Psychiatry, Munich, Germany
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
| | - E B Binder
- Max Planck Institute of Psychiatry, Munich, Germany
| | - I Sillaber
- Phenoquest AG, Martinsried/Munich, Munich, Germany
| | - M B Müller
- Max Planck Institute of Psychiatry, Munich, Germany,Molecular Stress Physiology, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany. E-mail:
| |
Collapse
|
40
|
Wall CA, Croarkin PE, Swintak C, Koplin BA. Psychiatric pharmacogenomics in pediatric psychopharmacology. Child Adolesc Psychiatr Clin N Am 2012; 21:773-88. [PMID: 23040901 DOI: 10.1016/j.chc.2012.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article provides an overview of where psychiatric pharmacogenomic testing stands as an emerging clinical tool in modern psychotropic prescribing practice, specifically in the pediatric population. This practical discussion is organized around the state of psychiatric pharmacogenomics research when choosing psychopharmacologic interventions in the most commonly encountered mental illnesses in youth. As with the rest of the topics on psychopharmacology for children and adolescents in this publication, a clinical vignette is presented, this one highlighting a clinical case of a 16 year old genotyped during hospitalization for recalcitrant depression.
Collapse
Affiliation(s)
- Christopher A Wall
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
41
|
Lane HY, Tsai GE, Lin E. Assessing Gene-Gene Interactions in Pharmacogenomics. Mol Diagn Ther 2012; 16:15-27. [DOI: 10.1007/bf03256426] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Lim K, Sanders A, Brain U, Riggs W, Oberlander TF, Rurak D. Third trimester fetal pulmonary artery Doppler blood flow velocity characteristics following prenatal selective serotonin reuptake inhibitor (SSRI) exposure. Early Hum Dev 2012; 88:609-15. [PMID: 22305713 DOI: 10.1016/j.earlhumdev.2012.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/04/2012] [Accepted: 01/15/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND There have been contradictory reports on the risks of persistent pulmonary hypertension (PPHN) in infants exposed to SSRIs in utero. However, there has been no assessment of fetal pulmonary arterial dynamics in such pregnancies. AIMS AND SUBJECTS: To measure fetal right pulmonary artery (RPA) variables using Doppler ultrasound at 36 weeks gestation in fetuses of mothers taking SSRI antidepressants (n=23) and in a control, normal pregnancy group (n=35). OUTCOME MEASURES At 36 weeks gestation, Doppler ultrasound estimates of Pulsatility Index (PI), Resistance Index (RI), vessel diameter, peak systolic velocity, mean velocity and volume flow were obtained from the fetal right pulmonary artery in a morning session (~0830), before the SSRI mothers took their daily drug dose and in an afternoon session (~1300). Venous blood was drawn at 5 time points across the day (~08:30AM, ~10:30AM, ~13:00PM, ~13:45PM, and ~15:00PM) from the SSRI treated mothers for measurement of plasma SSRI concentration using high performance liquid chromatography tandem mass spectrometry. RESULTS There were no differences in the RPA Doppler measures between the control and SSRI-exposed fetuses. However 8 of the 23 latter fetuses experience transient respiratory difficulties at birth and, in these RPA flow was significantly higher than in the SSR-exposed fetuses without respiratory problems. There were, however, no differences in RPA PI and RI between the 2 groups. CONCLUSIONS In SSRI-exposed infants with transient postnatal respiratory difficulties, fetal RPA flow in increased, likely due to partial constriction of the ductus arteriosus. However, this was not associated with PPHN.
Collapse
Affiliation(s)
- Ken Lim
- Department of Obstetrics & Gynecology, University of British Columbia, 50 West 28th Avenue, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Park JW, Heah TP, Gouffon JS, Henry TB, Sayler GS. Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 167:163-170. [PMID: 22575097 DOI: 10.1016/j.envpol.2012.03.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
Larval zebrafish (Danio rerio) were exposed (96 h) to selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and changes in transcriptomes analyzed by Affymetrix GeneChip Zebrafish Array were evaluated to enhance understanding of biochemical pathways and differences between these SSRIs. The number of genes differentially expressed after fluoxetine exposure was 288 at 25 μg/L and 131 at 250 μg/L; and after sertraline exposure was 33 at 25 μg/L and 52 at 250 μg/L. Same five genes were differentially regulated in both SSRIs indicating shared molecular pathways. Among these, the gene coding for FK506 binding protein 5, annotated to stress response regulation, was highly down-regulated in all treatments (results confirmed by qRT-PCR). Gene ontology analysis indicated at the gene expression level that regulation of stress response and cholinesterase activities were influenced by these SSRIs, and suggested that changes in transcription of these genes could be used as biomarkers of SSRI exposure.
Collapse
Affiliation(s)
- June-Woo Park
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
44
|
Dunlop BW, Binder EB, Cubells JF, Goodman MM, Kelley ME, Kinkead B, Kutner M, Nemeroff CB, Newport DJ, Owens MJ, Pace TWW, Ritchie JC, Rivera VA, Westen D, Craighead WE, Mayberg HS. Predictors of remission in depression to individual and combined treatments (PReDICT): study protocol for a randomized controlled trial. Trials 2012; 13:106. [PMID: 22776534 PMCID: PMC3539869 DOI: 10.1186/1745-6215-13-106] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 05/22/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Limited controlled data exist to guide treatment choices for clinicians caring for patients with major depressive disorder (MDD). Although many putative predictors of treatment response have been reported, most were identified through retrospective analyses of existing datasets and very few have been replicated in a manner that can impact clinical practice. One major confound in previous studies examining predictors of treatment response is the patient's treatment history, which may affect both the predictor of interest and treatment outcomes. Moreover, prior treatment history provides an important source of selection bias, thereby limiting generalizability. Consequently, we initiated a randomized clinical trial designed to identify factors that moderate response to three treatments for MDD among patients never treated previously for the condition. METHODS/DESIGN Treatment-naïve adults aged 18 to 65 years with moderate-to-severe, non-psychotic MDD are randomized equally to one of three 12-week treatment arms: (1) cognitive behavior therapy (CBT, 16 sessions); (2) duloxetine (30-60 mg/d); or (3) escitalopram (10-20 mg/d). Prior to randomization, patients undergo multiple assessments, including resting state functional magnetic resonance imaging (fMRI), immune markers, DNA and gene expression products, and dexamethasone-corticotropin-releasing hormone (Dex/CRH) testing. Prior to or shortly after randomization, patients also complete a comprehensive personality assessment. Repeat assessment of the biological measures (fMRI, immune markers, and gene expression products) occurs at an early time-point in treatment, and upon completion of 12-week treatment, when a second Dex/CRH test is also conducted. Patients remitting by the end of this acute treatment phase are then eligible to enter a 21-month follow-up phase, with quarterly visits to monitor for recurrence. Non-remitters are offered augmentation treatment for a second 12-week course of treatment, during which they receive a combination of CBT and antidepressant medication. Predictors of the primary outcome, remission, will be identified for overall and treatment-specific effects, and a statistical model incorporating multiple predictors will be developed to predict outcomes. DISCUSSION The PReDICT study's evaluation of biological, psychological, and clinical factors that may differentially impact treatment outcomes represents a sizeable step toward developing personalized treatments for MDD. Identified predictors should help guide the selection of initial treatments, and identify those patients most vulnerable to recurrence, who thus warrant maintenance or combination treatments to achieve and maintain wellness.
Collapse
Affiliation(s)
- Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| | - Elisabeth B Binder
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Joseph F Cubells
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary E Kelley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Becky Kinkead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| | - Michael Kutner
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Jeffrey Newport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| | - Michael J Owens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| | - Thaddeus W W Pace
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| | - James C Ritchie
- Department of Clinical Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Vivianne Aponte Rivera
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| | - Drew Westen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| | - W Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Helen S Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1256 Briarcliff Road, Building A, 3rd Floor, Atlanta, GA 30306, USA
| |
Collapse
|
45
|
Hodgson K, Mufti SJ, Uher R, McGuffin P. Genome-wide approaches to antidepressant treatment: working towards understanding and predicting response. Genome Med 2012; 4:52. [PMID: 22738351 PMCID: PMC3698532 DOI: 10.1186/gm351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antidepressants are among the most commonly prescribed drugs, and a range of medications are available. However, treatment response to a particular drug varies greatly between patients, with only 30% of patients responding well to the first treatment administered. Given evidence that antidepressant treatment response is a heritable trait, together with technological advances in genetic research, three recently published genome-wide investigations into antidepressant responses have examined the determinants of variability in treatment outcomes between depressed patients. Here, we review these studies within the context of wider research efforts to identify treatment response predictors. Some interesting genes have been implicated, but no variants have yet been robustly and reliably linked to response. This may suggest that genetic effect sizes are smaller than originally anticipated. Candidate gene approaches in these samples have lent support to the involvement of serotonergic, glutamatergic and stress-response systems in treatment response, although corroborative evidence from genome-wide analyses indicates these results should be interpreted cautiously. Closer examination of antidepressant response, considering it as a complex trait, has indicated that multiple genes of small effect are likely to be involved. Furthermore, there is some evidence that genetic influence on response to treatment may vary between patients with different symptom profiles or environmental exposures. This has implications for the translation of pharmacogenetic findings into clinical practice: genotypic information from multiple loci and data on non-genetic factors are likely to be needed to tailor antidepressant treatment to the individual patient.
Collapse
Affiliation(s)
- Karen Hodgson
- MRC SGDP Centre, Institute of Psychiatry, King's College London, London, SE5 A8F, UK.
| | | | | | | |
Collapse
|
46
|
Sarris J, Scholey A, Schweitzer I, Bousman C, Laporte E, Ng C, Murray G, Stough C. The acute effects of kava and oxazepam on anxiety, mood, neurocognition; and genetic correlates: a randomized, placebo-controlled, double-blind study. Hum Psychopharmacol 2012; 27:262-9. [PMID: 22311378 DOI: 10.1002/hup.2216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/11/2012] [Indexed: 02/03/2023]
Abstract
RATIONALE Kava (Piper methysticum) is a psychotropic plant medicine with history of cultural and medicinal use. We conducted a study comparing the acute neurocognitive, anxiolytic, and thymoleptic effects of a medicinal dose of kava to a benzodiazepine and explored for the first time specific genetic polymorphisms, which may affect the psychotropic activity of phytomedicines or benzodiazepines. METHODS Twenty-two moderately anxious adults aged between 18 and 65 years were randomized to receive an acute dose of kava (180 mg of kavalactones), oxazepam (30 mg), and placebo 1 week apart in a crossover design trial. RESULTS After exposure to cognitive tasks, a significant interaction was revealed between conditions on State-Trait Anxiety Inventory-State anxiety (p = 0.046, partial ŋ² = 0.14). In the oxazepam condition, there was a significant reduction in anxiety (p = 0.035), whereas there was no change in anxiety in the kava condition, and there was an increase in anxiety in the placebo condition. An increase in Bond-Lader "calmness" (p = 0.002) also occurred for the oxazepam condition. Kava was found to have no negative effect on cognition, whereas a reduction in alertness (p < 0.001) occurred in the oxazepam condition. Genetic analyses provide tentative evidence that noradrenaline (SLC6A2) transporter polymorphisms may have an effect on response to kava. CONCLUSION Acute "medicinal level" doses of this particular kava cultivar in naive users do not provide anxiolytic activity, although the phytomedicine also appears to have no negative effects on cognition.
Collapse
Affiliation(s)
- J Sarris
- The University of Melbourne, Department of Psychiatry, 2 Salisbury St., Richmond, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee SY, Chen SL, Chang YH, Chen SH, Chu CH, Huang SY, Tzeng NS, Wang CL, Lee IH, Yeh TL, Yang YK, Lu RB. The DRD2/ANKK1 gene is associated with response to add-on dextromethorphan treatment in bipolar disorder. J Affect Disord 2012; 138:295-300. [PMID: 22326841 DOI: 10.1016/j.jad.2012.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 11/30/2022]
Abstract
Dextromethorphan (DM) is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that may be neuroprotective for monoamine neurons. We hypothesized that adding DM to valproate (VPA) treatment would attenuate bipolar disorder (BP) symptoms. We evaluated in BP patients the association between the DRD2/ANKK1 TaqIA polymorphism with treatment response to VPA+add-on DM and to VPA+placebo. This double-blind, stratified, randomized study ran from January 2007 through December 2010. BP patients undergoing regular VPA treatments were randomly assigned to groups given either add-on DM (60 mg/day) (n=167) or placebo (n=83) for 12 weeks. The Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HDRS) were used to evaluate clinical response. The genotypes of the DRD2/ANKK1 TaqIA polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. To adjust within-subject dependence over repeated assessments, multiple linear regression with generalized estimating equation methods was used to analyze the effects of the DRD2/ANKK1 TaqIA polymorphism on clinical performance. Both groups showed significantly decreased YMRS and HDRS scores after 12 weeks of treatment; the differences between groups were non-significant. Decreases in YMRS scores were greater in patients with the A1A1 (P=0.004) genotypes than with the A2A2 genotype. We conclude that the DRD2/ANKK1 TaqIA polymorphism influenced responses to DM by decreasing manic symptoms in BP patients.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xu Z, Zhang Z, Shi Y, Pu M, Yuan Y, Zhang X, Li L, Reynolds GP. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J Psychopharmacol 2012; 26:349-59. [PMID: 21937687 DOI: 10.1177/0269881111414452] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Variation in genes implicated in serotonin neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of polymorphisms in serotonergic genes determine this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. In total, 14 single nucleotide polymorphisms (SNPs) in coding regions of 10 serotonergic genes (HTR1A, HTR1B, HTR1D, HTR2A, HTR3A, HTR3C, HTR3D, HTR3E, HTR5A and TPH2) were genotyped in 308 Chinese Han patients with major depressive disorder. Response to 6 weeks' antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale (HDRS-17) score, and previous stressful events were evaluated by the Life Events Scale (LES) and Childhood Trauma Questionnaire-Short Form (CTQ-SF). Two 5-HT1B receptor SNPs (rs6296 and rs6298) and one tryptophan hydroxylase2 (rs7305115) SNP were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs7305115 and rs4290270). A gene-gene interaction on antidepressant response was found between SNPs in HTR1B, HTR3A and HTR5A in female subjects. The HTR1B SNPs demonstrated interaction with recent stress, while that for TPH2 interacted with childhood trauma to influence antidepressant response.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Neuropsychiatry, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Biernacka JM, McElroy SL, Crow S, Sharp A, Benitez J, Veldic M, Kung S, Cunningham JM, Post RM, Mrazek D, Frye MA. Pharmacogenomics of antidepressant induced mania: a review and meta-analysis of the serotonin transporter gene (5HTTLPR) association. J Affect Disord 2012; 136:e21-e29. [PMID: 21680025 DOI: 10.1016/j.jad.2011.05.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 05/18/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Antidepressants can trigger a rapid mood switch from depression to mania. Identifying genetic risk factors associated with antidepressant induced mania (AIM) may enable individualized treatment strategies for bipolar depression. This review and meta-analysis evaluates the evidence for association between the serotonin transporter gene promoter polymorphism (5HTTLPR) and AIM. METHODS Medline up to November 2009 was searched for key words bipolar, antidepressant, serotonin transporter, SLC6A4, switch, and mania. RESULTS Five studies have evaluated the SLC6A4 promoter polymorphism and AIM in adults (total N=340 AIM+ cases, N=543 AIM- controls). Although a random effects meta-analysis showed weak evidence of association of the S allele with AIM+ status, a test of heterogeneity indicated significant differences in estimated genetic effects between studies. A similar weak association was observed in a meta-analysis based on a subset of three studies that excluded patients on mood stabilizers; however the result was again not statistically significant. LIMITATIONS Few pharmacogenomic studies of antidepressant treatment of bipolar disorder have been published. The completed studies were underpowered and often lacked important phenotypic information regarding potential confounders such as concurrent use of mood stabilizers or rapid cycling. CONCLUSIONS There is insufficient published data to confirm an association between 5HTTLPR and antidepressant induced mania. Pharmacogenomic studies of antidepressant induced mania have high potential clinical impact provided future studies are of adequate sample size and include rigorously assessed patient characteristics (e.g. ancestry, rapid cycling, concurrent mood stabilization, and length of antidepressant exposure).
Collapse
Affiliation(s)
- Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States.
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Bipolar Collaborative Network, Bethesda, MD, United States
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Alexis Sharp
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Joachim Benitez
- Department of Psychiatry, Austin Medical Center, Mayo Health System, Austin, MN, United States
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Robert M Post
- The Bipolar Collaborative Network, Bethesda, MD, United States
| | - David Mrazek
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; The Bipolar Collaborative Network, Bethesda, MD, United States
| |
Collapse
|
50
|
Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med 2012; 9:e1001326. [PMID: 23091423 PMCID: PMC3472989 DOI: 10.1371/journal.pmed.1001326] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/04/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way. METHODS AND FINDINGS The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance p<5×10(-8)). No biological pathways were significantly overrepresented in the results. No significant associations (genome-wide significance p<5×10(-8)) were detected in a meta-analysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D. CONCLUSIONS No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors' Summary.
Collapse
|