1
|
Knight H, Abis G, Kaur M, Green HL, Krasemann S, Hartmann K, Lynham S, Clark J, Zhao L, Ruppert C, Weiss A, Schermuly RT, Eaton P, Rudyk O. Cyclin D-CDK4 Disulfide Bond Attenuates Pulmonary Vascular Cell Proliferation. Circ Res 2023; 133:966-988. [PMID: 37955182 PMCID: PMC10699508 DOI: 10.1161/circresaha.122.321836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH. METHODS Oxidative modifications of cyclin D-CDK4 were detected in human pulmonary arterial smooth muscle cells and human pulmonary arterial endothelial cells. Site-directed mutagenesis, tandem mass-spectrometry, cell-based experiments, in vitro kinase activity assays, in silico structural modeling, and a novel redox-dead constitutive knock-in mouse were utilized to investigate the nature and definitively establish the importance of CDK4 cysteine modification in pulmonary vascular cell proliferation. Furthermore, the cyclin D-CDK4 oxidation was assessed in vivo in the pulmonary arteries and isolated human pulmonary arterial smooth muscle cells of patients with pulmonary arterial hypertension and in 3 preclinical models of PH. RESULTS Cyclin D-CDK4 forms a reversible oxidant-induced heterodimeric disulfide dimer between C7/8 and C135, respectively, in cells in vitro and in pulmonary arteries in vivo to inhibit cyclin D-CDK4 kinase activity, decrease Rb (retinoblastoma) protein phosphorylation, and induce cell cycle arrest. Mutation of CDK4 C135 causes a kinase-impaired phenotype, which decreases cell proliferation rate and alleviates disease phenotype in an experimental mouse PH model, suggesting this cysteine is indispensable for cyclin D-CDK4 kinase activity. Pulmonary arteries and human pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension display a decreased level of CDK4 disulfide, consistent with CDK4 being hyperactive in human pulmonary arterial hypertension. Furthermore, auranofin treatment, which induces the cyclin D-CDK4 disulfide, attenuates disease severity in experimental PH models by mitigating pulmonary vascular remodeling. CONCLUSIONS A novel disulfide bond in cyclin D-CDK4 acts as a rapid switch to inhibit kinase activity and halt cell proliferation. This oxidative modification forms at a critical cysteine residue, which is unique to CDK4, offering the potential for the design of a selective covalent inhibitor predicted to be beneficial in PH.
Collapse
Affiliation(s)
- Hannah Knight
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, United Kingdom (G.A.)
| | - Manpreet Kaur
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Hannah L.H. Green
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Steven Lynham
- Proteomics Core Facility, Centre of Excellence for Mass Spectrometry (S.L.), King’s College London, United Kingdom
| | - James Clark
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (L.Z.)
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center Giessen Biobank, Justus-Liebig-University Giessen, Germany (C.R.)
| | - Astrid Weiss
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Ralph T. Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Philip Eaton
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.E.)
| | - Olena Rudyk
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| |
Collapse
|
2
|
Bender AM, Parr LC, Livingston WB, Lindsley CW, Merryman WD. 2B Determined: The Future of the Serotonin Receptor 2B in Drug Discovery. J Med Chem 2023; 66:11027-11039. [PMID: 37584406 PMCID: PMC11073569 DOI: 10.1021/acs.jmedchem.3c01178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The cardiotoxicity associated with des-ethyl-dexfenfluramine (norDF) and related agonists of the serotonin receptor 2B (5-HT2B) has solidified the receptor's place as an "antitarget" in drug discovery. Conversely, a growing body of evidence has highlighted the utility of 5-HT2B antagonists for the treatment of pulmonary arterial hypertension (PAH), valvular heart disease (VHD), and related cardiopathies. In this Perspective, we summarize the link between the clinical failure of fenfluramine-phentermine (fen-phen) and the subsequent research on the role of 5-HT2B in disease progression, as well as the development of drug-like and receptor subtype-selective 5-HT2B antagonists. Such agents represent a promising class for the treatment of PAH and VHD, but their utility has been historically understudied due to the clinical disasters associated with 5-HT2B. Herein, it is our aim to examine the current state of 5-HT2B drug discovery, with an emphasis on the receptor's role in the central nervous system (CNS) versus the periphery.
Collapse
Affiliation(s)
- Aaron M Bender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lauren C Parr
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - William B Livingston
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
3
|
Doyle M, Rayarao G, Biederman RWW. The sine transform is the sine qua non of the pulmonary and systemic pressure relationship. Front Cardiovasc Med 2023; 10:1120330. [PMID: 37304951 PMCID: PMC10250723 DOI: 10.3389/fcvm.2023.1120330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Assessment of therapeutic interventions in patients with pulmonary arterial hypertension (PAH) suffers from several commonly encountered limitations: (1) patient studies are often too small and short-term to provide definitive conclusions, (2) there is a lack of a universal set of metrics to adequately assess therapy and (3) while clinical treatments focus on management of symptoms, there remain many cases of early loss of life in a seemingly arbitrary distribution. Here we provide a unified approach to assess right and left pressure relationships in PAH and pulmonary hypertension (PH) patients by developing linear models informed by the observation of Suga and Sugawa that pressure generation in the ventricle (right or left) approximately follows a single lobe of a sinusoid. We sought to identify a set of cardiovascular variables that either linearly or via a sine transformation related to systolic pulmonary arterial pressure (PAPs) and systemic systolic blood pressure (SBP). Importantly, both right and left cardiovascular variables are included in each linear model. Using non-invasively obtained cardiovascular magnetic resonance (CMR) image metrics the approach was successfully applied to model PAPs in PAH patients with an r2 of 0.89 (p < 0.05) and SBP with an r2 of 0.74 (p < 0.05). Further, the approach clarified the relationships that exist between PAPs and SBP separately for PAH and PH patients, and these relationships were used to distinguish PAH vs. PH patients with good accuracy (68%, p < 0.05). An important feature of the linear models is that they demonstrate that right and left ventricular conditions interact to generate PAPs and SBP in PAH patients, even in the absence of left-sided disease. The models predicted a theoretical right ventricular pulsatile reserve that in PAH patients was shown to be predictive of the 6 min walk distance (r2 = 0.45, p < 0.05). The linear models indicate a physically plausible mode of interaction between right and left ventricles and provides a means of assessing right and left cardiac status as they relate to PAPs and SBP. The linear models have potential to allow assessment of the detailed physiologic effects of therapy in PAH and PH patients and may thus permit cross-over of knowledge between PH and PAH clinical trials.
Collapse
Affiliation(s)
- Mark Doyle
- Department Cardiology, Cardiovascular MRI, Cardiovascular Institute, Allegheny Health Network, Pittsburgh, PA, United States
| | | | | |
Collapse
|
4
|
Nikolaeva YV, Galochkina AV, Shtro AA, Berns SA. [ In vitro activity of human recombinant interferon gamma against SARS-CoV-2 virus]. Vopr Virusol 2023; 68:26-36. [PMID: 36961233 DOI: 10.36233/0507-4088-150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 03/13/2023]
Abstract
INTRODUCTION The development of drugs against SARS-CoV-2 continues to be crucial for reducing the spread of infection and associated mortality. The aim of the work is to study the neutralization of the SARS-CoV-2 virus with interferon gamma preparations in vitro. MATERIALS AND METHODS The activity of recombinant human interferon gamma for intramuscular and subcutaneous administration of 500,000 IU and for intranasal administration of 100,000 IU against the SARS-CoV-2 virus in vitro was studied. The methodological approach of this study is based on the phenomenon of a decrease in the number of plaques formed under the action of a potential antiviral drug. RESULTS The antiviral activity of recombinant interferon gamma has been experimentally confirmed, both in preventive and therapeutic application schemes. The smallest number of plaques was observed with the preventive scheme of application of the tested object at concentrations of 1000 and 333 IU/ml. The semi-maximal effective concentration (EC50) with the prophylactic regimen was 24 IU/ml. DISCUSSION The preventive scheme of application of the tested object turned out to be more effective than therapeutic one, which is probably explained by the launch of the expression of various interferon-stimulated genes that affect to a greater extent the steps of virus entry into the cell and its reproduction. CONCLUSION Further study of the effect of drugs based on recombinant interferon gamma on the reproduction of the SARS-CoV-2 virus for clinical use for prevention and treatment is highly relevant.
Collapse
Affiliation(s)
- Y V Nikolaeva
- Smorodintsev research Institute of Influenza WHO National Influenza Centre of Russia
| | - A V Galochkina
- Smorodintsev research Institute of Influenza WHO National Influenza Centre of Russia
| | - A A Shtro
- Smorodintsev research Institute of Influenza WHO National Influenza Centre of Russia
| | - S A Berns
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Health of the Russian Federation
| |
Collapse
|
5
|
Solinc J, Ribot J, Soubrier F, Pavoine C, Dierick F, Nadaud S. The Platelet-Derived Growth Factor Pathway in Pulmonary Arterial Hypertension: Still an Interesting Target? Life (Basel) 2022; 12:life12050658. [PMID: 35629326 PMCID: PMC9143262 DOI: 10.3390/life12050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
The lack of curative options for pulmonary arterial hypertension drives important research to understand the mechanisms underlying this devastating disease. Among the main identified pathways, the platelet-derived growth factor (PDGF) pathway was established to control vascular remodeling and anti-PDGF receptor (PDGFR) drugs were shown to reverse the disease in experimental models. Four different isoforms of PDGF are produced by various cell types in the lung. PDGFs control vascular cells migration, proliferation and survival through binding to their receptors PDGFRα and β. They elicit multiple intracellular signaling pathways which have been particularly studied in pulmonary smooth muscle cells. Activation of the PDGF pathway has been demonstrated both in patients and in pulmonary hypertension (PH) experimental models. Tyrosine kinase inhibitors (TKI) are numerous but without real specificity and Imatinib, one of the most specific, resulted in beneficial effects. However, adverse events and treatment discontinuation discouraged to pursue this therapy. Novel therapeutic strategies are currently under experimental evaluation. For TKI, they include intratracheal drug administration, low dosage or nanoparticles delivery. Specific anti-PDGF and anti-PDGFR molecules can also be designed such as new TKI, soluble receptors, aptamers or oligonucleotides.
Collapse
Affiliation(s)
- Julien Solinc
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Jonathan Ribot
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Florent Soubrier
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - France Dierick
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Sophie Nadaud
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
- Correspondence: ; Tel.: +33-14077-9681
| |
Collapse
|
6
|
Lazarus HM, Denning J, Wring S, Palacios M, Hoffman S, Crizer K, Kamau‐Kelley W, Symonds W, Feldman J. A trial design to maximize knowledge of the effects of rodatristat ethyl in the treatment of pulmonary arterial hypertension (ELEVATE 2). Pulm Circ 2022; 12:e12088. [PMID: 35795492 PMCID: PMC9248796 DOI: 10.1002/pul2.12088] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/06/2022] Open
Abstract
Serotonin plays a key role in the development and maintenance of the pathobiology associated with pulmonary arterial hypertension (PAH). Platelet-driven and locally produced serotonin from lung tissue and arterial endothelial cells induce excessive growth of pulmonary artery smooth muscle cells. The unchecked growth of these cells is a major driver of PAH including the remodeling of pulmonary arteries that dramatically reduces the diameter and flexibility of the arterial lumen. Tryptophan hydroxylase 1 (TPH1) is the rate-limiting enzyme for biosynthesis of serotonin and is upregulated in PAH arterial endothelial cells, supporting TPH1 inhibition to treat PAH. Targeting the serotonin pathway via inhibition of peripheral serotonin and local production in diseased tissues, rather than individual receptor-mediated or receptor-independent mechanisms, may result in the ability to halt or reverse pulmonary vascular remodeling. Rodatristat ethyl, a prodrug for rodatristat, a potent, peripheral inhibitor of TPH1, has demonstrated efficacy in monocrotaline and SUGEN hypoxia nonclinical models of PAH and robust dose-dependent reductions of 5-hydroxyindoleacetic acid, the major metabolite of serotonin in plasma and urine of healthy human subjects. ELEVATE 2 (NCT04712669) is a Phase 2b, double-blind, multicenter trial where patients with PAH are randomized to placebo, 300 or 600 mg twice daily of rodatristat ethyl. The trial incorporates endpoints to generate essential clinical efficacy, safety, pharmacokinetic, and pharmacodynamic data needed to evaluate the ability of rodatristat ethyl to ameliorate PAH by halting or reversing pulmonary vascular remodeling through its unique mechanism of TPH1 inhibition. Herein we describe the experimental design highlighting the trial's unique features.
Collapse
|
7
|
Rosenkranz S, Feldman J, McLaughlin VV, Rischard F, Lange TJ, White RJ, Peacock AJ, Gerhardt F, Ebrahimi R, Brooks G, Satler C, Frantz RP. Selonsertib in adults with pulmonary arterial hypertension (ARROW): a randomised, double-blind, placebo-controlled, phase 2 trial. THE LANCET RESPIRATORY MEDICINE 2021; 10:35-46. [PMID: 34425071 DOI: 10.1016/s2213-2600(21)00032-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Data obtained in human lung tissue and preclinical models suggest that oxidative stress and increased apoptosis signal-regulating kinase 1 (ASK1) activity might have a prominent role in the pathobiology of pulmonary arterial hypertension (PAH). The purpose of this study was to determine the efficacy, safety, and tolerability of the ASK1 inhibitor selonsertib compared with placebo in patients with PAH. METHODS We did a randomised, double-blind, placebo-controlled, phase 2 trial at 46 centres located in Canada, France, Germany, Italy, the Netherlands, Spain, the UK, and the USA. Participants were aged 18-75 years and had an established diagnosis of idiopathic or hereditary PAH, or PAH associated with connective tissue disease, drugs or toxins, human immunodeficiency virus, or repaired congenital heart defects. Patients were stratified by PAH aetiology and background therapy, and randomly assigned (1:1:1:1) using an interactive voice-response or web-response system to placebo or selonsertib 2 mg, 6 mg, or 18 mg administered orally once daily. Both placebo and selonsertib were in tablet form. The primary efficacy endpoint was change in pulmonary vascular resistance, measured by right heart catheterisation, from baseline to week 24 in the full analysis set. Pair-wise comparisons between each of the selonsertib groups and the placebo group were made with a stratified Wilcoxon (van Elteren) rank sum test for participants without major protocol deviations who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT02234141. FINDINGS Between Dec 3, 2014, and Nov 13, 2015, 151 patients were enrolled and randomly assigned. Of 150 participants who received selonsertib or placebo, 134 (89%) completed 24 weeks of the randomly assigned treatment; all were on background PAH therapy (138 [92%] on combination therapy). 90 (60%) patients were in functional class II and 60 (40%) in functional class III. Mean baseline pulmonary vascular resistance was 772 (SD 334) dyn·s/cm5. Change in pulmonary vascular resistance was 6·0 dyn·s/cm5 (SD 28·0; n=31) for placebo, and 35·0 (35·4) dyn·s/cm5 (n=35; p=0·21 vs placebo) for 2 mg selonsertib, -28·0 (30·2) dyn·s/cm5 (n=34; p=0·27 vs placebo) for 6 mg selonsertib, and -21·0 (37·9) dyn·s/cm5 (n=36; p=0·60 vs placebo) for 18 mg selonsertib. The most frequent adverse events were headache (17 [15%]), abnormal dreams (eight [7%]), nausea (seven [6%]), and diarrhoea (seven [6%]) in the selonsertib groups, and headache (six [16%]), nausea (five [14%]), and diarrhoea (two [5%]) in the placebo group. Serious adverse events occurred in 23 (20%) of 113 selonsertib-treated patients and seven (19%) of 37 patients who received placebo. INTERPRETATION Selonsertib once daily for 24 weeks did not lead to a significant reduction in pulmonary vascular resistance or to clinical improvement in patients with PAH, but appeared to be safe and well tolerated. Although these data do not support the clinical use of selonsertib in PAH, further study of the potential of targeting the ASK1-p38 pathway in PAH is warranted. FUNDING Gilead Sciences.
Collapse
Affiliation(s)
- Stephan Rosenkranz
- Department of Cardiology, Heart Center at the University of Cologne, and Cologne Cardiovascular Research Center, University of Cologne, Germany.
| | | | - Vallerie V McLaughlin
- Division of Cardiovascular Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | | | - Tobias J Lange
- Dept of Internal Medicine II, Pulmonology, University Medical Center Regensburg, Germany
| | - R James White
- University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew J Peacock
- Scottish Pulmonary Vascular Unit, Regional Heart & Lung Centre, Glasgow, UK
| | - Felix Gerhardt
- Department of Cardiology, Heart Center at the University of Cologne, and Cologne Cardiovascular Research Center, University of Cologne, Germany
| | | | | | | | - Robert P Frantz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
8
|
Ferguson BS, Wennersten SA, Demos-Davies KM, Rubino M, Robinson EL, Cavasin MA, Stratton MS, Kidger AM, Hu T, Keyse SM, McKnight RA, Lane RH, Nozik ES, Weiser-Evans MCM, McKinsey TA. DUSP5-mediated inhibition of smooth muscle cell proliferation suppresses pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2021; 321:H382-H389. [PMID: 34142888 PMCID: PMC8410116 DOI: 10.1152/ajpheart.00115.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary hypertension (PH) is associated with structural remodeling of pulmonary arteries (PAs) because of excessive proliferation of fibroblasts, endothelial cells, and smooth muscle cells (SMCs). The peptide hormone angiotensin II (ANG II) contributes to pulmonary vascular remodeling, in part, through its ability to trigger extracellular signal-regulated kinase (ERK1/2) activation. Here, we demonstrate that the ERK1/2 phosphatase, dual-specificity phosphatase 5 (DUSP5), functions as a negative regulator of ANG II-mediated SMC proliferation and PH. In contrast to wild-type controls, Dusp5 null mice infused with ANG II developed PH and right ventricular (RV) hypertrophy. PH in Dusp5 null mice was associated with thickening of the medial layer of small PAs, suggesting an in vivo role for DUSP5 as a negative regulator of ANG II-dependent SMC proliferation. Consistent with this, overexpression of DUSP5 blocked ANG II-mediated proliferation of cultured human pulmonary artery SMCs (hPASMCs) derived from patients with idiopathic PH or from failed donor controls. Collectively, the data support a role for DUSP5 as a feedback inhibitor of ANG II-mediated ERK signaling and PASMC proliferation and suggest that disruption of this circuit leads to adverse cardiopulmonary remodeling.NEW & NOTEWORTHY Dual-specificity phosphatases (DUSPs) serve critical roles in the regulation of mitogen-activated protein kinases, but their functions in the cardiovascular system remain poorly defined. Here, we provide evidence that DUSP5, which resides in the nucleus and specifically dephosphorylates extracellular signal-regulated kinase (ERK1/2), blocks pulmonary vascular smooth muscle cell proliferation. In response to angiotensin II infusion, mice lacking DUSP5 develop pulmonary hypertension and right ventricular cardiac hypertrophy. These findings illustrate DUSP5-mediated suppression of ERK signaling in the lungs as a protective mechanism.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sara A Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly M Demos-Davies
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marcello Rubino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maria A Cavasin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew S Stratton
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew M Kidger
- Stress Response Laboratory, Division of Cellular Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tianjing Hu
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephen M Keyse
- Stress Response Laboratory, Division of Cellular Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | | | | - Eva S Nozik
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mary C M Weiser-Evans
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
9
|
Loginova SY, Shсhukina VN, Savenko SV, Borisevich SV. [ In vitro activity of human recombinant alpha-2b interferon against SARS-CoV-2 virus]. Vopr Virusol 2021; 66:123-128. [PMID: 33993682 DOI: 10.36233/0507-4088-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The pandemic spread of a new coronavirus infection, COVID-19, has caused a global emergency and attracted the attention of public health professionals and the population of all countries. A significant increase in the number of new cases of SARS-CoV-2 infection demonstrates the urgency of finding drugs effective against this pathogen.The aim of this work was to evaluate the in vitro antiviral efficacy of human recombinant alpha-2b interferon (IFN-α2b) against SARS-CoV-2 virus. MATERIAL AND METHODS The experiments had been carried out on Vero Cl008, the continuous line of African green monkey (Chlorocebus sabaeus) kidney cells. The effectiveness of the drugs was assessed by the suppression of viral reproduction in vitro. The biological activity was determined using titration of a virus-containing suspension in a Vero Cl008 cell culture by the formation of negative colonies. RESULTS The antiviral efficacy of the IFN-α2b-based medications, which have a high safety profile and proven efficacy in the prevention and treatment of influenza and acute respiratory viral infections (ARVI), has been studied against the new pandemic SARS-CoV-2 virus in vitro experiments in Vero C1008 cell culture. IFN-α2b effectively inhibits the reproduction of the virus when applied both 24 hrs before and 2 hrs after infection. In the IFN-α2b concentration range 102-106 IU/ml a complete suppression of the reproduction of the SARS-CoV-2 virus had been demonstrated. DISCUSSION IFN-α2b demonstrated in vitro high antiviral activity against SARS-CoV-2. In addition, the substance has a high chemotherapeutic index (>1000). CONCLUSION Medications for intranasal use based on IFN-α2b have high antiviral activity and are promising drugs for in vivo study in terms of prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- S Ya Loginova
- FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defense of Russia
| | - V N Shсhukina
- FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defense of Russia
| | - S V Savenko
- FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defense of Russia
| | - S V Borisevich
- FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defense of Russia
| |
Collapse
|
10
|
Jasińska-Stroschein M. Toward Better Reproducibility in Experimental Research on New Agents for Pulmonary Hypertension. An Analysis of Data from Four Hundred Animal Studies. Cardiovasc Drugs Ther 2020; 35:707-718. [PMID: 33294946 PMCID: PMC8266793 DOI: 10.1007/s10557-020-07109-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Pre-clinical data can provide a rationale for subsequent clinical trials and they are the first step in drug development; however, the therapeutic effect observed during animal studies does not necessarily translate to similar results in humans. METHODS Taking the example of pulmonary hypertension, the present study explores whether the methodological aspects of preclinical experiments can determine the final result. RESULTS The present paper describes a systematic analysis of 409 studies conducted on a variety of animal models to identify potential drug candidates for PH treatment; it explores the influence of various aspects of study design on the final outcome, e.g. type of animal model of PH, dosage schedules of tested agents, type of anesthesia, measurement of exercise intolerance or animal survival. CONCLUSIONS The animal models of PH used for pre-clinical studies are diverse and there are several methodological items within the established protocols that can determine the obtained result. Graphical abstract.
Collapse
|
11
|
Lisi L, Lacal PM, Barbaccia ML, Graziani G. Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochem Pharmacol 2020; 180:114169. [PMID: 32710969 PMCID: PMC7375972 DOI: 10.1016/j.bcp.2020.114169] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) declared the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) a global pandemic. As of July 2020, SARS-CoV-2 has infected more than 14 million people and provoked more than 590,000 deaths, worldwide. From the beginning, a variety of pharmacological treatments has been empirically used to cope with the life-threatening complications associated with Corona Virus Disease 2019 (COVID-19). Thus far, only a couple of them and not consistently across reports have been shown to further decrease mortality, respect to what can be achieved with supportive care. In most cases, and due to the urgency imposed by the number and severity of the patients' clinical conditions, the choice of treatment has been limited to repurposed drugs, approved for other indications, or investigational agents used for other viral infections often rendered available on a compassionate-use basis. The rationale for drug selection was mainly, though not exclusively, based either i) on the activity against other coronaviruses or RNA viruses in order to potentially hamper viral entry and replication in the epithelial cells of the airways, and/or ii) on the ability to modulate the excessive inflammatory reaction deriving from dysregulated host immune responses against the SARS-CoV-2. In several months, an exceptionally large number of clinical trials have been designed to evaluate the safety and efficacy of anti-COVID-19 therapies in different clinical settings (treatment or pre- and post-exposure prophylaxis) and levels of disease severity, but only few of them have been completed so far. This review focuses on the molecular mechanisms of action that have provided the scientific rationale for the empirical use and evaluation in clinical trials of structurally different and often functionally unrelated drugs during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Lucia Lisi
- Dipartimento di Bioetica e Sicurezza, Sezione di Farmacologia, Catholic University Medical School, 00168 Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
12
|
Al-Hilal TA, Keshavarz A, Kadry H, Lahooti B, Al-Obaida A, Ding Z, Li W, Kamm R, McMurtry IF, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Pulmonary-arterial-hypertension (PAH)-on-a-chip: fabrication, validation and application. LAB ON A CHIP 2020; 20:3334-3345. [PMID: 32749432 PMCID: PMC7592346 DOI: 10.1039/d0lc00605j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Currently used animal and cellular models for pulmonary arterial hypertension (PAH) only partially recapitulate its pathophysiology in humans and are thus inadequate in reproducing the hallmarks of the disease, inconsistent in portraying the sex-disparity, and unyielding to combinatorial study designs. Here we sought to deploy the ingenuity of microengineering in developing and validating a tissue chip model for human PAH. We designed and fabricated a microfluidic device to emulate the luminal, intimal, medial, adventitial, and perivascular layers of a pulmonary artery. By growing three types of pulmonary arterial cells (PACs)-endothelial, smooth muscle, and adventitial cells, we recreated the PAH pathophysiology on the device. Diseased (PAH) PACs, when grown on the chips, moved of out their designated layers and created phenomena similar to the major pathologies of human PAH: intimal thickening, muscularization, and arterial remodeling and show an endothelial to mesenchymal transition. Flow-induced stress caused control cells, grown on the chips, to undergo morphological changes and elicit arterial remodeling. Our data also suggest that the newly developed chips can be used to elucidate the sex disparity in PAH and to study the therapeutic efficacy of existing and investigational anti-PAH drugs. We believe this miniaturized device can be deployed for testing various prevailing and new hypotheses regarding the pathobiology and drug therapy in human PAH.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, 1300 Coulter Dr., Amarillo, 79119 Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hsu JY, Major JL, Riching AS, Sen R, Pires da Silva J, Bagchi RA. Beyond the genome: challenges and potential for epigenetics-driven therapeutic approaches in pulmonary arterial hypertension. Biochem Cell Biol 2020; 98:631-646. [PMID: 32706995 DOI: 10.1139/bcb-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew S Riching
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rwik Sen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Pires da Silva
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Benavides-Cordoba V. Drug Repositioning for COVID-19. Colomb Med (Cali) 2020; 51:e4279. [PMID: 33012890 PMCID: PMC7518729 DOI: 10.25100/cm.v51i2.4279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Drug repositioning is a strategy that identifies new uses of approved drugs to treat conditions different from their original purpose. With the advance of COVID-19 and the pandemic declaration; It has become the closest alternative to reduce the advance of the virus. Antimalarial, antiviral drugs, antibiotics, glucocorticoids, monoclonal antibodies, among others, are being studied; their findings, although preliminary, could establish a starting point in the search for a solution. In this review, we present a selection of drugs, of different classes and with potential activity against COVID-19, whose trials are ongoing; and as proofs of concept, double blind, add-on event-driven, would allow proposing research that generates results in less time and preserving quality criteria for drug development and approval by regulatory agencies.
Collapse
|
15
|
Lythgoe MP, Middleton P. Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends Pharmacol Sci 2020; 41:363-382. [PMID: 32291112 PMCID: PMC7144665 DOI: 10.1016/j.tips.2020.03.006] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 12/05/2022]
Abstract
COVID-19 has rapidly developed into a worldwide pandemic with a significant health and economic burden. There are currently no approved treatments or preventative therapeutic strategies. Hundreds of clinical studies have been registered with the intention of discovering effective treatments. Here, we review currently registered interventional clinical trials for the treatment and prevention of COVID-19 to provide an overall summary and insight into the global response.
Collapse
Affiliation(s)
- Mark P Lythgoe
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.
| | - Paul Middleton
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Marys Hospital, Praed Street, London, W21, NY, UK
| |
Collapse
|
16
|
Alcántara-Vázquez O, Villamil-Hernández MT, Sánchez-López A, Pertz HH, Villalón CM, Centurión D. Blocking properties of terguride at the 5-HT 2 receptor subtypes mediating cardiovascular responses in the rat. Can J Physiol Pharmacol 2020; 98:511-521. [PMID: 32268074 DOI: 10.1139/cjpp-2019-0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro studies have suggested that terguride blocks the contractile and relaxant responses produced by 5-hydroxytryptamine (5-HT) via 5-HT2A/2B receptors. This study has now investigated terguride's blocking properties on central/peripheral 5-HT2 receptors in anaesthetized or pithed rats. Male Wistar anaesthetized/pithed rats were cannulated for recording blood pressure and heart rate and for i.v. administration of several compounds. In both groups of rats, i.v. bolus injections of 5-HT or (±)-DOI (a 5-HT2 receptor agonist; 1-1000 μg/kg) produced dose-dependent increases in diastolic blood pressure and heart rate. These responses were dose-dependently antagonized by terguride (10-3000 μg/kg). In anaesthetized rats, i.v. bolus injections of BW723C86 (a 5-HT2B receptor agonist; 1-1000 μg/kg) produced dose-dependent increases in diastolic blood pressure and not dose-dependent increases in heart rate, while in pithed rats, these responses were attenuated. The vasopressor responses elicited by BW723C86 in anaesthetized rats were dose-dependently blocked by terguride (10-300 μg/kg), whereas its the tachycardic responses were dose-independently blocked. These results, taken together, suggest that terguride behaved as an antagonist at the 5-HT2 receptors located in the central nervous system and (or) the systemic vasculature. This is the first evidence demonstrating that terguride can block central/peripheral 5-HT2 receptors mediating cardiovascular responses in anaesthetized or pithed rats.
Collapse
Affiliation(s)
- Oscar Alcántara-Vázquez
- Centro Interdisciplinario de Ciencias de la Salud, Unidad Milpa Alta, IPN, Ex-Hacienda del Mayorazgo, Km. 39.5 Carretera Xochimilco-Oaxtepec, C.P 12000, México City, México
| | - Ma Trinidad Villamil-Hernández
- Centro Interdisciplinario de Ciencias de la Salud, Unidad Milpa Alta, IPN, Ex-Hacienda del Mayorazgo, Km. 39.5 Carretera Xochimilco-Oaxtepec, C.P 12000, México City, México
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P.14330, Mexico City, Mexico
| | - Heinz H Pertz
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2, 14195 Berlin (Dahlem), Germany
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P.14330, Mexico City, Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P.14330, Mexico City, Mexico
| |
Collapse
|
17
|
Sommer N, Ghofrani HA, Pak O, Bonnet S, Provencher S, Sitbon O, Rosenkranz S, Hoeper MM, Kiely DG. Current and future treatments of pulmonary arterial hypertension. Br J Pharmacol 2020; 178:6-30. [PMID: 32034759 DOI: 10.1111/bph.15016] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic options for pulmonary arterial hypertension (PAH) have increased over the last decades. The advent of pharmacological therapies targeting the prostacyclin, endothelin, and NO pathways has significantly improved outcomes. However, for the vast majority of patients, PAH remains a life-limiting illness with no prospect of cure. PAH is characterised by pulmonary vascular remodelling. Current research focusses on targeting the underlying pathways of aberrant proliferation, migration, and apoptosis. Despite success in preclinical models, using a plethora of novel approaches targeting cellular GPCRs, ion channels, metabolism, epigenetics, growth factor receptors, transcription factors, and inflammation, successful transfer to human disease with positive outcomes in clinical trials is limited. This review provides an overview of novel targets addressed by clinical trials and gives an outlook on novel preclinical perspectives in PAH. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Natascha Sommer
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Hossein A Ghofrani
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Department of Medicine, Imperial College London, London, UK
| | - Oleg Pak
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Sebastien Bonnet
- Groupe de recherche en hypertension pulmonaire Centre de recherche de IUCPQ, Universite Laval Quebec, Quebec City, Quebec, Canada
| | - Steve Provencher
- Groupe de recherche en hypertension pulmonaire Centre de recherche de IUCPQ, Universite Laval Quebec, Quebec City, Quebec, Canada
| | - Olivier Sitbon
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France. AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. Inserm UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Stephan Rosenkranz
- Klinik III für Innere Medizin, Cologne Cardiovascular Research Center (CCRC), Heart Center at the University of Cologne, Cologne, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Jasemi SV, Khazaei H, Aneva IY, Farzaei MH, Echeverría J. Medicinal Plants and Phytochemicals for the Treatment of Pulmonary Hypertension. Front Pharmacol 2020; 11:145. [PMID: 32226378 PMCID: PMC7080987 DOI: 10.3389/fphar.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary hypertension (PH) is a progressive disease that is associated with pulmonary arteries remodeling, right ventricle hypertrophy, right ventricular failure and finally death. The present study aims to review the medicinal plants and phytochemicals used for PH treatment in the period of 1994 – 2019. Methods PubMed, Cochrane and Scopus were searched based on pulmonary hypertension, plant and phytochemical keywords from August 23, 2019. All articles that matched the study based on title and abstract were collected, non-English, repetitive and review studies were excluded. Results Finally 41 studies remained from a total of 1290. The results show that many chemical treatments considered to this disease are ineffective in the long period because they have a controlling role, not a therapeutic one. On the other hand, plants and phytochemicals could be more effective due to their action on many mechanisms that cause the progression of PH. Conclusion Studies have shown that herbs and phytochemicals used to treat PH do their effects from six mechanisms. These mechanisms include antiproliferative, antioxidant, antivascular remodeling, anti-inflammatory, vasodilatory and apoptosis inducing actions. According to the present study, many of these medicinal plants and phytochemicals can have effects that are more therapeutic than chemical drugs if used appropriately.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
19
|
Stearman RS, Bui QM, Speyer G, Handen A, Cornelius AR, Graham BB, Kim S, Mickler EA, Tuder RM, Chan SY, Geraci MW. Systems Analysis of the Human Pulmonary Arterial Hypertension Lung Transcriptome. Am J Respir Cell Mol Biol 2020; 60:637-649. [PMID: 30562042 DOI: 10.1165/rcmb.2018-0368oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary artery pressure and vascular resistance, typically leading to right heart failure and death. Current therapies improve quality of life of the patients but have a modest effect on long-term survival. A detailed transcriptomics and systems biology view of the PAH lung is expected to provide new testable hypotheses for exploring novel treatments. We completed transcriptomics analysis of PAH and control lung tissue to develop disease-specific and clinical data/tissue pathology gene expression classifiers from expression datasets. Gene expression data were integrated into pathway analyses. Gene expression microarray data were collected from 58 PAH and 25 control lung tissues. The strength of the dataset and its derived disease classifier was validated using multiple approaches. Pathways and upstream regulators analyses was completed with standard and novel graphical approaches. The PAH lung dataset identified expression patterns specific to PAH subtypes, clinical parameters, and lung pathology variables. Pathway analyses indicate the important global role of TNF and transforming growth factor signaling pathways. In addition, novel upstream regulators and insight into the cellular and innate immune responses driving PAH were identified. Finally, WNT-signaling pathways may be a major determinant underlying the observed sex differences in PAH. This study provides a transcriptional framework for the PAH-diseased lung, supported by previously reported findings, and will be a valuable resource to the PAH research community. Our investigation revealed novel potential targets and pathways amenable to further study in a variety of experimental systems.
Collapse
Affiliation(s)
- Robert S Stearman
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Quan M Bui
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gil Speyer
- 2 Quantitative Medicine and Systems Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona.,3 Research Computing, Arizona State University, Tempe, Arizona
| | - Adam Handen
- 4 Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Amber R Cornelius
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian B Graham
- 5 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado; and
| | - Seungchan Kim
- 6 Department of Electrical and Computer Engineering, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, Texas
| | - Elizabeth A Mickler
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rubin M Tuder
- 5 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado; and
| | - Stephen Y Chan
- 4 Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mark W Geraci
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
20
|
Hu CJ, Poth JM, Zhang H, Flockton A, Laux A, Kumar S, McKeon B, Mouradian G, Li M, Riddle S, Pugliese SC, Brown RD, Wallace EM, Graham BB, Frid MG, Stenmark KR. Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. Eur Respir J 2019; 54:13993003.00378-2019. [PMID: 31515405 DOI: 10.1183/13993003.00378-2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/28/2019] [Indexed: 11/05/2022]
Abstract
Most published studies addressing the role of hypoxia inducible factors (HIFs) in hypoxia-induced pulmonary hypertension development employ models that may not recapitulate the clinical setting, including the use of animals with pre-existing lung/vascular defects secondary to embryonic HIF ablation or activation. Furthermore, critical questions including how and when HIF signalling contributes to hypoxia-induced pulmonary hypertension remain unanswered.Normal adult rodents in which global HIF1 or HIF2 was inhibited by inducible gene deletion or pharmacological inhibition (antisense oligonucleotides (ASO) and small molecule inhibitors) were exposed to short-term (4 days) or chronic (4-5 weeks) hypoxia. Haemodynamic studies were performed, the animals euthanised, and lungs and hearts obtained for pathological and transcriptomic analysis. Cell-type-specific HIF signals for pulmonary hypertension initiation were determined in normal pulmonary vascular cells in vitro and in mice (using cell-type-specific HIF deletion).Global Hif1a deletion in mice did not prevent hypoxia-induced pulmonary hypertension at 5 weeks. Mice with global Hif2a deletion did not survive long-term hypoxia. Partial Hif2a deletion or Hif2-ASO (but not Hif1-ASO) reduced vessel muscularisation, increases in pulmonary arterial pressures and right ventricular hypertrophy in mice exposed to 4-5 weeks of hypoxia. A small molecule HIF2 inhibitor (PT2567) significantly attenuated early events (monocyte recruitment and vascular cell proliferation) in rats exposed to 4 days of hypoxia, as well as vessel muscularisation, tenascin C accumulation and pulmonary hypertension development in rats exposed to 5 weeks of hypoxia. In vitro, HIF2 induced a distinct set of genes in normal human pulmonary vascular endothelial cells, mediating inflammation and proliferation of endothelial cells and smooth muscle cells. Endothelial Hif2a knockout prevented hypoxia-induced pulmonary hypertension in mice.Inhibition of HIF2 (but not HIF1) can provide a therapeutic approach to prevent the development of hypoxia-induced pulmonary hypertension. Future studies are needed to investigate the role of HIFs in pulmonary hypertension progression and reversal.
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Dept of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO, USA.,Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA.,These authors share first authorship.,These authors are joint corresponding authors
| | - Jens M Poth
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA.,Dept of Anesthesiology and Intensive Care Medicine, University Medical Center, Rheinische Friedrich Wilhelms University of Bonn, Bonn, Germany.,These authors share first authorship
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Amanda Flockton
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Aya Laux
- Dept of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO, USA
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Brittany McKeon
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Gary Mouradian
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Steven C Pugliese
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | | | - Brian B Graham
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA .,These authors are joint corresponding authors
| |
Collapse
|
21
|
Gulinello M, Mitchell HA, Chang Q, Timothy O'Brien W, Zhou Z, Abel T, Wang L, Corbin JG, Veeraragavan S, Samaco RC, Andrews NA, Fagiolini M, Cole TB, Burbacher TM, Crawley JN. Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem 2019; 165:106780. [PMID: 29307548 PMCID: PMC6034984 DOI: 10.1016/j.nlm.2018.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
Behavioral neuroscience research incorporates the identical high level of meticulous methodologies and exacting attention to detail as all other scientific disciplines. To achieve maximal rigor and reproducibility of findings, well-trained investigators employ a variety of established best practices. Here we explicate some of the requirements for rigorous experimental design and accurate data analysis in conducting mouse and rat behavioral tests. Novel object recognition is used as an example of a cognitive assay which has been conducted successfully with a range of methods, all based on common principles of appropriate procedures, controls, and statistics. Directors of Rodent Core facilities within Intellectual and Developmental Disabilities Research Centers contribute key aspects of their own novel object recognition protocols, offering insights into essential similarities and less-critical differences. Literature cited in this review article will lead the interested reader to source papers that provide step-by-step protocols which illustrate optimized methods for many standard rodent behavioral assays. Adhering to best practices in behavioral neuroscience will enhance the value of animal models for the multiple goals of understanding biological mechanisms, evaluating consequences of genetic mutations, and discovering efficacious therapeutics.
Collapse
Affiliation(s)
- Maria Gulinello
- IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Heather A Mitchell
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Qiang Chang
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - W Timothy O'Brien
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhaolan Zhou
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ted Abel
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Current affiliation: Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Li Wang
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Joshua G Corbin
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Surabi Veeraragavan
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodney C Samaco
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nick A Andrews
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michela Fagiolini
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Toby B Cole
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Burbacher
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline N Crawley
- IDDRC Rodent Behavior Core, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
22
|
Stenmark KR, Graham BB. Urocortin 2: will a drug targeting both the vasculature and the right ventricle be the future of pulmonary hypertension therapy? Cardiovasc Res 2019; 114:1057-1059. [PMID: 29800416 DOI: 10.1093/cvr/cvy117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine; and
| | - Brian B Graham
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine; and.,Program in Translational Lung Research, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA
| |
Collapse
|
23
|
Wilkins MR. Apoptosis Signal-Regulating Kinase 1 Inhibition in Pulmonary Hypertension. Too Much to ASK? Am J Respir Crit Care Med 2019; 197:286-288. [PMID: 28930481 DOI: 10.1164/rccm.201709-1814ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Martin R Wilkins
- 1 Department of Medicine Imperial College London London, United Kingdom
| |
Collapse
|
24
|
Semen KO, Bast A. Towards improved pharmacotherapy in pulmonary arterial hypertension. Can diet play a role? Clin Nutr ESPEN 2019; 30:159-169. [DOI: 10.1016/j.clnesp.2018.12.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023]
|
25
|
Zeng ZH, Wu WH, Peng Q, Sun YH, Liu JX. MicroRNA‑132 mediates proliferation and migration of pulmonary smooth muscle cells via targeting PTEN. Mol Med Rep 2019; 19:3823-3830. [PMID: 30896881 DOI: 10.3892/mmr.2019.10053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive disease characterized by the remodeling of small pulmonary arteries. The aberrant proliferation of pulmonary arterial smooth muscle cells (PASMCs) is the primary feature of PAH. MicroRNA (miR)‑132 has been demonstrated to inhibit the proliferation of vascular smooth muscle cells and repress neointimal formation. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a direct target of miR‑132 that has been revealed to be involved in the development of PAH. However, the role of miR‑132 in PAH remains unclear. The present study demonstrated that miR‑132 expression was upregulated in monocrotaline‑induced PAH rats and platelet‑derived growth factor‑induced PASMCs. In addition, treatment of PASMCs with miR‑132 mimics inhibited their proliferation, whereas miR‑132 inhibition exhibited the opposite effects. Furthermore, miR‑132 mimics promoted cell migration and maintained the PASMC contractile phenotype. Finally, the expression levels of PTEN were significantly decreased in PAH and PASMCs treated with miR‑132 mimics. Taken collectively, the data suggested that miR‑132 regulated PASMC function via PTEN and that it may be used as a potential target for the treatment of PAH.
Collapse
Affiliation(s)
- Zhen-Hua Zeng
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System Biomedical Research Center, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Wei-Hua Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Qi Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Ya-Hui Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Jian-Xin Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| |
Collapse
|
26
|
Yamamura A, Nayeem MJ, Al Mamun A, Takahashi R, Hayashi H, Sato M. Platelet-derived growth factor up-regulates Ca 2+-sensing receptors in idiopathic pulmonary arterial hypertension. FASEB J 2019; 33:7363-7374. [PMID: 30865840 DOI: 10.1096/fj.201802620r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease associated with remodeling of the pulmonary artery. We previously reported that the Ca2+-sensing receptor (CaSR) is up-regulated in pulmonary arterial smooth muscle cells (PASMCs) from patients with idiopathic PAH (IPAH) and contributes to enhanced Ca2+ responses and excessive cell proliferation. However, the mechanisms underlying the up-regulation of CaSR have not yet been elucidated. We herein examined involvement of platelet-derived growth factor (PDGF) on CaSR expression, Ca2+ responses, and proliferation in PASMCs. The expression of PDGF receptors was higher in PASMCs from patients with IPAH than in PASMCs from normal subjects. In addition, PDGF-induced activation of PDGF receptors and their downstream molecules [ERK1/2, p38, protein kinase B, and signal transducer and activator of transcription (STAT) 1/3] were sustained longer in PASMCs from patients with IPAH. The PDGF-induced CaSR up-regulation was attenuated by small interfering RNA knockdown of PDGF receptors and STAT1/3, and by the treatment with imatinib. In monocrotaline-induced pulmonary hypertensive rats, the up-regulation of CaSR was reduced by imatinib. The combination of NPS2143 and imatinib additively inhibited the development of pulmonary hypertension. These results suggest that enhanced PDGF signaling is involved in CaSR up-regulation, leading to excessive PASMC proliferation and vascular remodeling in patients with IPAH. The linkage between CaSR and PDGF signals is a novel pathophysiological mechanism contributing to the development of PAH.-Yamamura, A., Nayeem, M. J., Al Mamun, A., Takahashi, R., Hayashi, H., Sato, M. Platelet-derived growth factor up-regulates Ca2+-sensing receptors in idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | | | | | - Rie Takahashi
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Hisaki Hayashi
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
27
|
Sitbon O, Gomberg-Maitland M, Granton J, Lewis MI, Mathai SC, Rainisio M, Stockbridge NL, Wilkins MR, Zamanian RT, Rubin LJ. Clinical trial design and new therapies for pulmonary arterial hypertension. Eur Respir J 2019; 53:13993003.01908-2018. [PMID: 30545975 PMCID: PMC6351342 DOI: 10.1183/13993003.01908-2018] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Until 20 years ago the treatment of pulmonary arterial hypertension (PAH) was based on case reports and small series, and was largely ineffectual. As a deeper understanding of the pathogenesis and pathophysiology of PAH evolved over the subsequent two decades, coupled with epidemiological studies defining the clinical and demographic characteristics of the condition, a renewed interest in treatment development emerged through collaborations between international experts, industry and regulatory agencies. These efforts led to the performance of robust, high-quality clinical trials of novel therapies that targeted putative pathogenic pathways, leading to the approval of more than 10 novel therapies that have beneficially impacted both the quality and duration of life. However, our understanding of PAH remains incomplete and there is no cure. Accordingly, efforts are now focused on identifying novel pathogenic pathways that may be targeted, and applying more rigorous clinical trial designs to better define the efficacy of these new potential treatments and their role in the management scheme. This article, prepared by a Task Force comprised of expert clinicians, trialists and regulators, summarises the current state of the art, and provides insight into the opportunities and challenges for identifying and assessing the efficacy and safety of new treatments for this challenging condition. State of the art and research perspectives in clinical trial design and new therapies for pulmonary arterial hypertensionhttp://ow.ly/VHQ030mfRxc
Collapse
Affiliation(s)
- Olivier Sitbon
- Université Paris-Sud, Hôpital Bicêtre, INSERM UMR_S999, Le Kremlin-Bicêtre, France
| | | | - John Granton
- University Health Network-General Division, University of Toronto, Toronto, ON, Canada
| | - Michael I Lewis
- Pulmonary/Critical Care Division and Smidt Heart Institute, Cedars Sinai Medical Center, UCLA, Los Angeles, CA, USA
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care, Dept of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Martin R Wilkins
- Dept of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Roham T Zamanian
- Dept of Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Lewis J Rubin
- San Diego School of Medicine, University of California, La Jolla, CA, USA
| |
Collapse
|
28
|
Hu CJ, Zhang H, Laux A, Pullamsetti SS, Stenmark KR. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol 2018; 597:1103-1119. [PMID: 29920674 PMCID: PMC6375873 DOI: 10.1113/jp275857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic pulmonary hypertension (PH) is characterized by the accumulation of persistently activated cell types in the pulmonary vessel exhibiting aberrant expression of genes involved in apoptosis resistance, proliferation, inflammation and extracellular matrix (ECM) remodelling. Current therapies for PH, focusing on vasodilatation, do not normalize these activated phenotypes. Furthermore, current approaches to define additional therapeutic targets have focused on determining the initiating signals and their downstream effectors that are important in PH onset and development. Although these approaches have produced a large number of compelling PH treatment targets, many promising human drugs have failed in PH clinical trials. Herein, we propose that one contributing factor to these failures is that processes important in PH development may not be good treatment targets in the established phase of chronic PH. We hypothesize that this is due to alterations of chromatin structure in PH cells, resulting in functional differences between the same factor or pathway in normal or early PH cells versus cells in chronic PH. We propose that the high expression of genes involved in the persistently activated phenotype of PH vascular cells is perpetuated by an open chromatin structure and multiple transcription factors (TFs) via the recruitment of high levels of epigenetic regulators including the histone acetylases P300/CBP, histone acetylation readers including BRDs, the Mediator complex and the positive transcription elongation factor (Abstract figure). Thus, determining how gene expression is controlled by examining chromatin structure, TFs and epigenetic regulators associated with aberrantly expressed genes in pulmonary vascular cells in chronic PH, may uncover new PH therapeutic targets.
![]()
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
29
|
Fox CJ, Cornett EM, Hart BM, Kaye AJ, Patil SS, Turpin MC, Valdez A, Urman RD, Kaye AD. Pulmonary vasodilators: Latest evidence and outcomes in the perioperative setting. Best Pract Res Clin Anaesthesiol 2018; 32:237-250. [PMID: 30322463 DOI: 10.1016/j.bpa.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Numerous conditions give rise to pulmonary arterial hypertension (PAH), with most of them being idiopathic. Signs and symptoms are generally difficult to recognize initially because they present as nonspecific and typically are mistaken for age-related physiological processes or alternate medical conditions. Many advances have been made toward PAH-specific therapies that have led to advanced clinical management of the disease. The present investigation describes new pulmonary vasodilator agents that are currently available or under development that could impact perioperative management. The 6-min walk test is the gold standard in assessing the efficacy of any pulmonary hypertension treatment, and the only drug to show any mortality benefit in pulmonary hypertension is epoprostenol. The present investigation also describes the latest evidence on using these medications in the perioperative period, including clinical trials and practice guidelines. Future direction for research and clinical management of pulmonary hypertension is described.
Collapse
Affiliation(s)
- Charles J Fox
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Brendon M Hart
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Aaron J Kaye
- Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Shilpadevi S Patil
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Michelle Carroll Turpin
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | - Angelica Valdez
- Northwestern State University, 1800 Line Ave, Shreveport, LA, 71106, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Alan D Kaye
- Department of Anesthesiology, LSU Health Sciences Center, Room 656, 1542 Tulane Ave., New Orleans, LA, 70112, USA.
| |
Collapse
|
30
|
Corneal Endothelial Cell Integrity in Precut Human Donor Corneas Enhanced by Autocrine Vasoactive Intestinal Peptide. Cornea 2017; 36:476-483. [PMID: 28181929 PMCID: PMC5334175 DOI: 10.1097/ico.0000000000001136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To demonstrate that vasoactive intestinal peptide (VIP), a corneal endothelial (CE) cell autocrine factor, maintains the integrity of corneal endothelium in human donor corneoscleral explants precut for endothelial keratoplasty. METHODS Twelve paired human donor corneoscleral explants used as control versus VIP-treated explants (10 nM, 30 minutes, 37°C) were shipped (4°C) to the Lions Eye Institute for Transplantation and Research for precutting (Moria CBM-ALTK Keratome), shipped back to the laboratory, and cultured in ciliary neurotrophic factor (CNTF, 0.83 nM, 37°C, 24 hours). Trephined endothelial discs (8-8.5 mm) were analyzed for differentiation markers (N-cadherin, CNTF receptor α subunit [CNTFRα], and connexin 43) by Western blot after a quarter of the discs from 4 paired explants were cut away and stained with alizarin red S for microscopic damage analysis. Two additional paired explants (6 days in culture) were stained for panoramic view of central CE damage. RESULTS VIP treatment increased N-cadherin and CNTFRα levels (mean ± SEM) to 1.38 ± 0.11-fold (P = 0.003) and 1.46 ± 0.22-fold (P = 0.03) of paired controls, respectively, whereas CE cell CNTF responsiveness in upregulation of connexin 43 increased to 2.02 ± 0.5 (mean ± SEM)-fold of the controls (P = 0.04). CE damage decreased from (mean ± SEM) 10.0% ± 1.2% to 1.6% ± 0.3% (P < 0.0001) and 9.1% ± 1.1% to 2.4% ± 1.0% (P = 0.0006). After 6 days in culture, the damage in whole CE discs decreased from 20.0% (control) to 5.5% (VIP treated). CONCLUSIONS VIP treatment before precut enhanced the preservation of corneal endothelium.
Collapse
|
31
|
Ghataorhe P, Rhodes CJ, Harbaum L, Attard M, Wharton J, Wilkins MR. Pulmonary arterial hypertension - progress in understanding the disease and prioritizing strategies for drug development. J Intern Med 2017; 282:129-141. [PMID: 28524624 DOI: 10.1111/joim.12623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH), at one time a largely overlooked disease, is now the subject of intense study in many academic and biotech groups. The availability of new treatments has increased awareness of the condition. This in turn has driven a change in the demographics of PAH, with an increase in the mean age at diagnosis. The diagnosis of PAH in more elderly patients has highlighted the need for careful phenotyping of patients and for further studies to understand how best to manage pulmonary hypertension associated with, for example, left heart disease. The breadth and depth of expertise focused on unravelling the molecular pathology of PAH has yielded novel insights, including the role of growth factors, inflammation and metabolic remodelling. The description of the genetic architecture of PAH is accelerating in parallel, with novel variants, such as those reported in potassium two-pore domain channel subfamily K member 3 (KCNK3), adding to the list of more established mutations in genes associated with bone morphogenetic protein receptor type 2 (BMPR2) signalling. These insights have supported a paradigm shift in treatment strategies away from simply addressing the imbalance of vasoactive mediators observed in PAH towards tackling more directly the structural remodelling of the pulmonary vasculature. Here, we summarize the changing clinical and molecular landscape of PAH. We highlight novel drug therapies that are in various stages of clinical development, targeting for example cell proliferation, metabolic, inflammatory/immune and BMPR2 dysfunction, and the challenges around developing these treatments. We argue that advances in the treatment of PAH will come through deep molecular phenotyping with the integration of clinical, genomic, transcriptomic, proteomic and metabolomic information in large populations of patients through international collaboration. This approach provides the best opportunity for identifying key signalling pathways, both as potential drug targets and as biomarkers for patient selection. The expectation is that together these will enable the prioritization of potential therapies in development and the evolution of personalized medicine for PAH.
Collapse
Affiliation(s)
- P Ghataorhe
- Department of Medicine, Imperial College London, London, UK
| | - C J Rhodes
- Department of Medicine, Imperial College London, London, UK
| | - L Harbaum
- Department of Medicine, Imperial College London, London, UK
| | - M Attard
- Department of Medicine, Imperial College London, London, UK
| | - J Wharton
- Department of Medicine, Imperial College London, London, UK
| | - M R Wilkins
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
32
|
Soto M, Bang SI, McCombs J, Rodgers KE. Renin Angiotensin system-modifying therapies are associated with improved pulmonary health. Clin Diabetes Endocrinol 2017; 3:6. [PMID: 28702260 PMCID: PMC5488416 DOI: 10.1186/s40842-017-0044-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/22/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pulmonary diseases are often complicated and have diverse etiologies. One common factor is the lack of therapeutics available for these diseases. The goal of this study was to investigate the impact of Renin-Angiotensin System (RAS)-modifying medications on incidence and time to pulmonary complications. METHODS A retrospective analysis was conducted using claims data from a US commercial insurance company (2007-2013). The study consisted of patients with an emerging hypertension (HTN) diagnosis. Cox analysis was used to look at the effect of angiotensin converting enzyme inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) in this population. The events included pneumonia and influenza (infectious), Chronic obstructive pulmonary disease (COPD) and allied conditions (inflammatory), and other diseases (structural). RESULTS A total of 215,225 patients were followed in the study. These fell into three groups depending on the first prescribed anti-hypertension medication; ACE-Is (47.21%), ARBs (11.40%) and calcium channel blockers (CCBs)/Diuretics-Control (41.39%). The use of ACE-I as first treatment significantly reduced the incidence of infectious (Hazard Ratio (HR) 0.886, 95% Confidence Interval (95% CI) 0.859-0.886), inflammatory (HR 0.924, 95% CI 0.906-0.942) and structural outcomes (HR 0.865, 95% CI 0.847-0.885); it also increased the time (delayed) to diagnosis with prolonged treatment. Primary ARB use only significantly lowered the incidence of structural outcomes (HR 0.900, 95% CI 0.868-0.933); prolonged treatment did reduce incidence of all three diagnosis groups and significantly delayed disease onset. CONCLUSIONS There is an association between the use of ACE-Is and ARBs and a delay in the progression of pulmonary complications in vulnerable populations. Research into the RAS may identify future therapies for patients with potential chronic pulmonary conditions.
Collapse
Affiliation(s)
- Maira Soto
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave.,PSC 530, Los Angeles, CA 90033 USA
| | - Soo I. Bang
- Department of Pharmaceutical and Health Economics, School of Pharmacy, University of Southern California, 635 Downey Way, VPD 212B, Los Angeles, CA 90089 USA
| | - Jeff McCombs
- Department of Pharmaceutical and Health Economics, School of Pharmacy, University of Southern California, 635 Downey Way, VPD 212B, Los Angeles, CA 90089 USA
| | - Kathleen E. Rodgers
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave.,PSC 530, Los Angeles, CA 90033 USA
| |
Collapse
|
33
|
Newman JH, Rich S, Abman SH, Alexander JH, Barnard J, Beck GJ, Benza RL, Bull TM, Chan SY, Chun HJ, Doogan D, Dupuis J, Erzurum SC, Frantz RP, Geraci M, Gillies H, Gladwin M, Gray MP, Hemnes AR, Herbst RS, Hernandez AF, Hill NS, Horn EM, Hunter K, Jing ZC, Johns R, Kaul S, Kawut SM, Lahm T, Leopold JA, Lewis GD, Mathai SC, McLaughlin VV, Michelakis ED, Nathan SD, Nichols W, Page G, Rabinovitch M, Rich J, Rischard F, Rounds S, Shah SJ, Tapson VF, Lowy N, Stockbridge N, Weinmann G, Xiao L. Enhancing Insights into Pulmonary Vascular Disease through a Precision Medicine Approach. A Joint NHLBI-Cardiovascular Medical Research and Education Fund Workshop Report. Am J Respir Crit Care Med 2017; 195:1661-1670. [PMID: 28430547 PMCID: PMC5476915 DOI: 10.1164/rccm.201701-0150ws] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The Division of Lung Diseases of the NHLBI and the Cardiovascular Medical Education and Research Fund held a workshop to discuss how to leverage the anticipated scientific output from the recently launched "Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics" (PVDOMICS) program to develop newer approaches to pulmonary vascular disease. PVDOMICS is a collaborative, protocol-driven network to analyze all patient populations with pulmonary hypertension to define novel pulmonary vascular disease (PVD) phenotypes. Stakeholders, including basic, translational, and clinical investigators; clinicians; patient advocacy organizations; regulatory agencies; and pharmaceutical industry experts, joined to discuss the application of precision medicine to PVD clinical trials. Recommendations were generated for discussion of research priorities in line with NHLBI Strategic Vision Goals that include: (1) A national effort, involving all the stakeholders, should seek to coordinate biosamples and biodata from all funded programs to a web-based repository so that information can be shared and correlated with other research projects. Example programs sponsored by NHLBI include PVDOMICS, Pulmonary Hypertension Breakthrough Initiative, the National Biological Sample and Data Repository for PAH, and the National Precision Medicine Initiative. (2) A task force to develop a master clinical trials protocol for PVD to apply precision medicine principles to future clinical trials. Specific features include: (a) adoption of smaller clinical trials that incorporate biomarker-guided enrichment strategies, using adaptive and innovative statistical designs; and (b) development of newer endpoints that reflect well-defined and clinically meaningful changes. (3) Development of updated and systematic variables in imaging, hemodynamic, cellular, genomic, and metabolic tests that will help precisely identify individual and shared features of PVD and serve as the basis of novel phenotypes for therapeutic interventions.
Collapse
Affiliation(s)
- John H. Newman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Stuart Rich
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Steven H. Abman
- Pediatric Heart and Lung Center, University of Colorado, Aurora, Colorado
| | | | | | | | - Raymond L. Benza
- Department of Cardiovascular Disease, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Todd M. Bull
- Division of Pulmonary and Critical Care Medicine and
| | - Stephen Y. Chan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Jocelyn Dupuis
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Serpil C. Erzurum
- Department of Pathobiology, and
- Department of Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Mark Geraci
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Hunter Gillies
- Independent Consultant and Pharmaceutical Physician, Half Moon Bay, California
| | - Mark Gladwin
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Roy S. Herbst
- Division of Medical Oncology, Department of Medicine, Yale University, New Haven, Connecticut
| | | | - Nicholas S. Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts University, Boston, Massachusetts
| | - Evelyn M. Horn
- Division of Cardiology, Cornell University, New York, New York
| | - Kendall Hunter
- College of Engineering and Applied Science, University of Colorado, Denver, Colorado
| | - Zhi-Cheng Jing
- FuWai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Roger Johns
- Department of Anesthesiology and Critical Care and
| | | | - Steven M. Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tim Lahm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Jane A. Leopold
- Division of Cardiology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Greg D. Lewis
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen C. Mathai
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Vallerie V. McLaughlin
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Steven D. Nathan
- Advanced Lung Disease Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - William Nichols
- Department of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | | | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, California
| | - Jonathan Rich
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Franz Rischard
- Division of Cardiology, University of Arizona, Tucson, Arizona
| | - Sharon Rounds
- Department of Medicine and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Victor F. Tapson
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Naomi Lowy
- Division of Cardiovascular and Renal Products, Food and Drug Administration, Office of Drug Evaluation I, Office of New Drugs, Food and Drug Administration Silver Spring, Maryland; and
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Food and Drug Administration, Office of Drug Evaluation I, Office of New Drugs, Food and Drug Administration Silver Spring, Maryland; and
| | - Gail Weinmann
- Division of Lung Diseases, NHLBI, National Institutes of Health, Bethesda, Maryland
| | - Lei Xiao
- Division of Lung Diseases, NHLBI, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
Simonneau G, Hoeper MM, McLaughlin V, Rubin L, Galiè N. Future perspectives in pulmonary arterial hypertension. Eur Respir Rev 2016; 25:381-389. [PMID: 27903660 PMCID: PMC9487553 DOI: 10.1183/16000617.0084-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022] Open
Abstract
While there have been advances in the field of pulmonary arterial hypertension (PAH), disease management remains suboptimal for many patients. The development of novel treatments and strategies can provide opportunities to target other mechanisms that play a role in the complex pathobiology of PAH outside of the three main pathophysiological pathways. In this review, we highlight some of the potential PAH therapies or techniques that are being, or have been, investigated in phase II clinical trials. This review also discusses potential points for consideration in the development of novel therapies that target putative disease mediators or modifiers. Novel therapies and well-designed trials are important for improving the management of PAH patientshttp://ow.ly/YHPY304XdvH
Collapse
|