1
|
Yang J, Yu YC, Wang ZX, Li QQ, Ding N, Leng XJ, Cai J, Zhang MY, Wang JJ, Zhou Y, Wei TH, Xue X, Dai WC, Sun SL, Yang Y, Li NG, Shi ZH. Research strategies of small molecules as chemotherapeutics to overcome multiple myeloma resistance. Eur J Med Chem 2024; 271:116435. [PMID: 38648728 DOI: 10.1016/j.ejmech.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.
Collapse
Affiliation(s)
- Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
2
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
3
|
Gobec M, Obreza A, Jukič M, Baumgartner A, Mihelčič N, Potočnik Š, Virant J, Mlinarič I, Stanislav R, Sosič GI. Design and synthesis of amino-substituted N-arylpiperidinyl-based inhibitors of the (immuno)proteasome. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:441-456. [PMID: 37708963 DOI: 10.2478/acph-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 09/16/2023]
Abstract
The constitutive proteasome and the immunoproteasome represent validated targets for pharmacological intervention in the context of various diseases, such as cancer, inflammation, and autoimmune diseases. The development of novel chemical scaffolds of non-peptidic nature, capable of inhibiting different catalytically active subunits of both isoforms, is a viable approach against these diseases. Such compounds are also useful as leads for the development of biochemical probes that enable the studies of the roles of both isoforms in various biological contexts. Here, we present a ligand-based computational design of (immuno)proteasome inhibitors, which resulted in the amino-substituted N-arylpiperidine-based compounds that can inhibit different subunits of the (immuno)proteasome in the low micromolar range. The compounds represent a useful starting point for further structure-activity relationship studies that will, hopefully, lead to non-peptidic compounds that could be used in pharmacological and biochemical studies of both proteasomes.
Collapse
Affiliation(s)
- Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Aleš Obreza
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Marko Jukič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
- Current address: University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, 2000 Maribor Slovenia
| | - Ana Baumgartner
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Nja Mihelčič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Špela Potočnik
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Julija Virant
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Raščan Stanislav
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
4
|
Anders HJ, Kitching AR, Leung N, Romagnani P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat Rev Immunol 2023; 23:453-471. [PMID: 36635359 PMCID: PMC9838307 DOI: 10.1038/s41577-022-00816-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/14/2023]
Abstract
'Glomerulonephritis' (GN) is a term used to describe a group of heterogeneous immune-mediated disorders characterized by inflammation of the filtration units of the kidney (the glomeruli). These disorders are currently classified largely on the basis of histopathological lesion patterns, but these patterns do not align well with their diverse pathological mechanisms and hence do not inform optimal therapy. Instead, we propose grouping GN disorders into five categories according to their immunopathogenesis: infection-related GN, autoimmune GN, alloimmune GN, autoinflammatory GN and monoclonal gammopathy-related GN. This categorization can inform the appropriate treatment; for example, infection control for infection-related GN, suppression of adaptive immunity for autoimmune GN and alloimmune GN, inhibition of single cytokines or complement factors for autoinflammatory GN arising from inborn errors in innate immunity, and plasma cell clone-directed or B cell clone-directed therapy for monoclonal gammopathies. Here we present the immunopathogenesis of GN and immunotherapies in use and in development and discuss how an immunopathogenesis-based GN classification can focus research, and improve patient management and teaching.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia
| | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
5
|
Culletta G, Tutone M, Ettari R, Perricone U, Di Chio C, Almerico AM, Zappalà M. Virtual Screening Strategy and In Vitro Tests to Identify New Inhibitors of the Immunoproteasome. Int J Mol Sci 2023; 24:10504. [PMID: 37445688 DOI: 10.3390/ijms241310504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Immunoproteasome inhibition is a promising strategy for the treatment of hematological malignancies, autoimmune diseases, and inflammatory diseases. The design of non-covalent inhibitors of the immunoproteasome β1i/β5i catalytic subunits could be a novel approach to avoid the drawbacks of the known covalent inhibitors, such as toxicity due to off-target binding. In this work, we report the biological evaluation of thirty-four compounds selected from a commercially available collection. These hit compounds are the outcomes of a virtual screening strategy including a dynamic pharmacophore modeling approach onto the β1i subunit and a pharmacophore/docking approach onto the β5i subunit. The computational studies were first followed by in vitro enzymatic assays at 100 μM. Only compounds capable of inhibiting the enzymatic activity by more than 50% were characterized in detail using Tian continuous assays, determining the dissociation constant (Ki) of the non-covalent complex where Ki is also the measure of the binding affinity. Seven out of thirty-four hits showed to inhibit β1i and/or β5i subunit. Compound 3 is the most active on the β1i subunit with Ki = 11.84 ± 1.63 µM, and compound 17 showed Ki = 12.50 ± 0.77 µM on the β5i subunit. Compound 2 showed inhibitory activity on both subunits (Ki = 12.53 ± 0.18 and Ki = 31.95 ± 0.81 on the β1i subunit and β5i subunit, respectively). The induced fit docking analysis revealed interactions with Thr1 and Phe31 of β1i subunit and that represent new key residues as reported in our previous work. Onto β5i subunit, it interacts with the key residues Thr1, Thr21, and Tyr169. This last hit compound identified represents an interesting starting point for further optimization of β1i/β5i dual inhibitors of the immunoproteasome.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Roberta Ettari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Ugo Perricone
- Drug Discovery Unit, Fondazione Ri.MED, 90133 Palermo, Italy
| | - Carla Di Chio
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Zappalà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
6
|
Ielo L, Patamia V, Citarella A, Schirmeister T, Stagno C, Rescifina A, Micale N, Pace V. Selective noncovalent proteasome inhibiting activity of trifluoromethyl-containing gem-quaternary aziridines. Arch Pharm (Weinheim) 2023:e2300174. [PMID: 37119396 DOI: 10.1002/ardp.202300174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) represents the principal proteolytic apparatus in the cytosol and nucleus of all eukaryotic cells. Nowadays, proteasome inhibitors (PIs) are well-known as anticancer agents. However, although three of them have been approved by the US Food and Drug Administration (FDA) for treating multiple myeloma and mantel cell lymphoma, they present several side effects and develop resistance. For these reasons, the development of new PIs with better pharmacological characteristics is needed. Recently, noncovalent inhibitors have gained much attention since they are less toxic as compared with covalent ones, providing an alternative mechanism for solid tumors. Herein, we describe a new class of bis-homologated chloromethyl(trifluoromethyl)aziridines as selective noncovalent PIs. In silico and in vitro studies were conducted to elucidate the mechanism of action of such compounds. Human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) penetration were also considered together with absorption, distribution, metabolism, and excretion (ADMET) predictions.
Collapse
Affiliation(s)
- Laura Ielo
- Department of Chemistry, University of Turin, Torino, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Pace
- Department of Chemistry, University of Turin, Torino, Italy
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Zeng G, Yu Q, Zhuang R, Zhu H, Shao J, Xi J, Zhang J. Recent Advances and Future Perspectives of Noncompetitive Proteasome Inhibitors. Bioorg Chem 2023; 135:106507. [PMID: 37030106 DOI: 10.1016/j.bioorg.2023.106507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.
Collapse
|
8
|
Amatuni A, Shuster A, Abegg D, Adibekian A, Renata H. Comprehensive Structure-Activity Relationship Studies of Cepafungin Enabled by Biocatalytic C-H Oxidations. ACS CENTRAL SCIENCE 2023; 9:239-251. [PMID: 36844499 PMCID: PMC9951290 DOI: 10.1021/acscentsci.2c01219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 06/18/2023]
Abstract
The cepafungins are a class of highly potent and selective eukaryotic proteasome inhibitor natural products with potential to treat refractory multiple myeloma and other cancers. The structure-activity relationship of the cepafungins is not fully understood. This Article chronicles the development of a chemoenzymatic approach to cepafungin I. A failed initial route involving derivatization of pipecolic acid prompted us to examine the biosynthetic pathway for the production of 4-hydroxylysine, which culminated in the development of a 9-step synthesis of cepafungin I. An alkyne-tagged analogue enabled chemoproteomic studies of cepafungin and comparison of its effects on global protein expression in human multiple myeloma cells to the clinical drug bortezomib. A preliminary series of analogues elucidated critical determinants of potency in proteasome inhibition. Herein we report the chemoenzymatic syntheses of 13 additional analogues of cepafungin I guided by a proteasome-bound crystal structure, 5 of which are more potent than the natural product. The lead analogue was found to have 7-fold greater proteasome β5 subunit inhibitory activity and has been evaluated against several multiple myeloma and mantle cell lymphoma cell lines in comparison to the clinical drug bortezomib.
Collapse
Affiliation(s)
- Alexander Amatuni
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps
Research, La Jolla, California 92037, United States
| | - Anton Shuster
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps
Research, La Jolla, California 92037, United States
| | - Daniel Abegg
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United
States
| | - Alexander Adibekian
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United
States
| | - Hans Renata
- Department
of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Lignet F, Esdar C, Walter-Bausch G, Friese-Hamim M, Stinchi S, Drouin E, El Bawab S, Becker AD, Gimmi C, Sanderson MP, Rohdich F. Translational PK/PD Modeling of Tumor Growth Inhibition and Target Inhibition to Support Dose Range Selection of the LMP7 Inhibitor M3258 in Relapsed/Refractory Multiple Myeloma. J Pharmacol Exp Ther 2023; 384:163-172. [PMID: 36273822 DOI: 10.1124/jpet.122.001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Abstract
M3258 is an orally bioavailable, potent, selective, reversible inhibitor of the large multifunctional peptidase 7 (LMP7, β5i, PSMB8) proteolytic subunit of the immunoproteasome, a component of the cellular protein degradation machinery, highly expressed in malignant hematopoietic cells including multiple myeloma. Here we describe the fit-for-purpose pharmacokinetic (PK)/pharmacodynamic (PD)/efficacy modeling of M3258 based on preclinical data from several species. The inhibition of LMP7 activity (PD) and tumor growth (efficacy) were tested in human multiple myeloma xenografts in mice. PK and efficacy data were correlated yielding a free M3258 concentration of 45 nM for half-maximal tumor growth inhibition (KC50). As M3258 only weakly inhibits LMP7 in mouse cells, both in vitro and in vivo bridging studies were performed in rats, monkeys, and dogs for translational modeling. These data indicated that the PD response in human xenograft models was closely reflected in dog PBMCs. A PK/PD model was established, predicting a free IC50 value of 9 nM for M3258 in dogs in vivo, in close agreement with in vitro measurements. In parallel, the human PK parameters of M3258 were predicted by various approaches including in vitro extrapolation and allometric scaling. Using PK/PD/efficacy simulations, the efficacious dose range and corresponding PD response in human were predicted. Taken together, these efforts supported the design of a phase Ia study of M3258 in multiple myeloma patients (NCT04075721). At the lowest tested dose level, the predicted exposure matched well with the observed exposure while the duration of LMP7 inhibition was underpredicted by the model. SIGNIFICANCE STATEMENT: M3258 is a novel inhibitor of the immunoproteasome subunit LMP7. The human PK and human efficacious dose range of M3258 were predicted using in vitro-in vivo extrapolation and allometric scaling methods together with a fit-for-purpose PK/PD and efficacy model based on data from several species. A comparison with data from the Phase Ia clinical study showed that the human PK was accurately predicted, while the extent and duration of PD response were more pronounced than estimated.
Collapse
Affiliation(s)
- Floriane Lignet
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Christina Esdar
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Gina Walter-Bausch
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Manja Friese-Hamim
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Sofia Stinchi
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Elise Drouin
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Samer El Bawab
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Andreas D Becker
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Claude Gimmi
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Michael P Sanderson
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Felix Rohdich
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| |
Collapse
|
10
|
Vriend J, Klonisch T. Genes of the Ubiquitin Proteasome System Qualify as Differential Markers in Malignant Glioma of Astrocytic and Oligodendroglial Origin. Cell Mol Neurobiol 2022; 43:1425-1452. [PMID: 35896929 PMCID: PMC10079750 DOI: 10.1007/s10571-022-01261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
We have mined public genomic datasets to identify genes coding for components of the ubiquitin proteasome system (UPS) that may qualify as potential diagnostic and therapeutic targets in the three major glioma types, astrocytoma (AS), glioblastoma (GBM), and oligodendroglioma (ODG). In the Sun dataset of glioma (GEO ID: GSE4290), expression of the genes UBE2S and UBE2C, which encode ubiquitin conjugases important for cell-cycle progression, distinguished GBM from AS and ODG. KEGG analysis showed that among the ubiquitin E3 ligase genes differentially expressed, the Notch pathway was significantly over-represented, whereas among the E3 ligase adaptor genes the Hippo pathway was over-represented. We provide evidence that the UPS gene contributions to the Notch and Hippo pathway signatures are related to stem cell pathways and can distinguish GBM from AS and ODG. In the Sun dataset, AURKA and TPX2, two cell-cycle genes coding for E3 ligases, and the cell-cycle gene coding for the E3 adaptor CDC20 were upregulated in GBM. E3 ligase adaptor genes differentially expressed were also over-represented for the Hippo pathway and were able to distinguish classic, mesenchymal, and proneural subtypes of GBM. Also over-expressed in GBM were PSMB8 and PSMB9, genes encoding subunits of the immunoproteasome. Our transcriptome analysis provides a strong rationale for UPS members as attractive therapeutic targets for the development of more effective treatment strategies in malignant glioma. Ubiquitin proteasome system and glioblastoma: E1-ubiquitin-activating enzyme, E2-ubiquitin-conjugating enzyme, E3-ubiquitin ligase. Ubiquitinated substrates of E3 ligases may be degraded by the proteasome. Expression of genes for specific E2 conjugases, E3 ligases, and genes for proteasome subunits may serve as differential markers of subtypes of glioblastoma.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada.
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada
| |
Collapse
|
11
|
Identification of N, C-capped di- and tripeptides as selective immunoproteasome inhibitors. Eur J Med Chem 2022; 234:114252. [DOI: 10.1016/j.ejmech.2022.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
12
|
Sato H, Inoue Y, Kawashima Y, Nakajima D, Ishikawa M, Konno R, Nakamura R, Kato D, Mitsunaga K, Yamamoto T, Yamaide A, Tomiita M, Hoshioka A, Ohara O, Shimojo N. In-Depth Serum Proteomics by DIA-MS with In Silico Spectral Libraries Reveals Dynamics during the Active Phase of Systemic Juvenile Idiopathic Arthritis. ACS OMEGA 2022; 7:7012-7023. [PMID: 35252692 PMCID: PMC8892657 DOI: 10.1021/acsomega.1c06681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 05/09/2023]
Abstract
In serum proteomics using mass spectrometry, the number of detectable proteins is reduced due to high-abundance proteins, such as albumin. However, recently developed data-independent acquisition mass spectrometry (DIA-MS) proteomics technology has made it possible to remarkably improve the number of proteins in a serum analysis by removing high-abundance proteins. Using this technology, we analyzed sera from patients with systemic juvenile idiopathic arthritis (sJIA), a rare pediatric disease. As a result, we identified 2727 proteins with a wide dynamic range derived from various tissue leakages. We also selected 591 proteins that differed significantly in their active phases. These proteins were involved in many inflammatory processes, and we also identified immunoproteasomes, which were not previously found in serum, suggesting that they may be involved in the pathogenesis of sJIA. A detailed high-depth DIA-MS proteomic analysis of serum may be useful for understanding the pathogenesis of sJIA and may provide clues for the development of new biomarkers.
Collapse
Affiliation(s)
- Hironori Sato
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
- Department
of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan
| | - Yuzaburo Inoue
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
- Division
of Cancer Genetics, Chiba Cancer Center
Research Institute, Chiba, Chiba 260-8717, Japan
| | - Yusuke Kawashima
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Nakajima
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masaki Ishikawa
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ryo Konno
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ren Nakamura
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daigo Kato
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Kanako Mitsunaga
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Takeshi Yamamoto
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
- Benaroya
Research Institute at Virginia Mason, Seattle, Washington 98101-2795, United States
| | - Akiko Yamaide
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Minako Tomiita
- Department
of Clinical Research, National Hospital
Organization Shimoshizu National Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Akira Hoshioka
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Osamu Ohara
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Naoki Shimojo
- Center for
Preventive Medical Sciences, Chiba University, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
13
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Modulation of Cellular Redox Parameters for Improving Therapeutic Responses in Multiple Myeloma. Antioxidants (Basel) 2022; 11:antiox11030455. [PMID: 35326105 PMCID: PMC8944660 DOI: 10.3390/antiox11030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Raised oxidative stress and abnormal redox status are typical features of multiple myeloma cells, and the identification of the intimate mechanisms that regulate the relationships between neoplastic cells and redox homeostasis may reveal possible new anti-myeloma therapeutic targets to increase the effectiveness of anti-myeloma drugs synergistically or to eradicate drug-resistant clones while reducing toxicity toward normal cells. An alteration of the oxidative state is not only responsible for the onset of multiple myeloma and its progression, but it also appears essential for the therapeutic response and for developing any chemoresistance. Our review aimed to evaluate the literature’s current data on the effects of oxidative stress on the response to drugs generally employed in the therapy of multiple myeloma, such as proteasome inhibitors, immunomodulators, and autologous transplantation. In the second part of the review, we analyzed the possibility of using other substances, often of natural origin, to modulate the oxidative stress to interfere with the progression of myelomatous disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
14
|
Cao Y, Tu Y, Fu L, Yu Q, Gao L, Zhang M, Zeng L, Zhang C, Shao J, Zhu H, Zhou Y, Li J, Zhang J. Metabolism guided optimization of peptidomimetics as non-covalent proteasome inhibitors for cancer treatment. Eur J Med Chem 2022; 233:114211. [PMID: 35218994 DOI: 10.1016/j.ejmech.2022.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
A series of novel non-covalent peptidomimetic proteasome inhibitors possessing bulky group at the C-terminus and N-alkylation at the N-terminus were designed with the aim to increase metabolic stabilities in vivo. All the target compounds were screened for their inhibitory activities against human 20S proteasome, and most analogs exhibited notable potency compared with the positive control bortezomib with IC50 values lower than 10 nM, which also displayed potent cytotoxic activities against multiple myeloma (MM) cell lines and human acute myeloid leukemia (AML) cells. Furthermore, whole blood stability and in vivo proteasome inhibitory activity experiments of selected compounds were conducted for further evaluation, and the representative compound 43 (IC50 = 8.39 ± 2.32 nM, RPMI-8226: IC50 = 15.290 ± 2.281 nM, MM-1S: IC50 = 9.067 ± 3.103 nM, MV-4-11: IC50 = 2.464 ± 0.713 nM) revealed a half-life extension of greater than 9-fold (329.21 min VS 36.79 min) and potent proteasome inhibitory activity in vivo. The positive results confirmed the reliability of the metabolism guided optimization strategy, and the analogs discovered are potential leads for exploring new anti-MM drugs.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, 312000, China
| | - Qian Yu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Mengmeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Metria Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Metria Medica, Chinese Academy of Sciences, Guangdong, 528400, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| |
Collapse
|
15
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
16
|
Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection. Cancers (Basel) 2022; 14:cancers14030606. [PMID: 35158874 PMCID: PMC8833500 DOI: 10.3390/cancers14030606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is essential that we reconsider our methods for diagnosing and monitoring multiple myeloma disease. This fact needs the integration of serology, histology, radiology, and genetic data; therefore, multiple myeloma study has generated massive quantities of granular high-dimensional data exceeding human understanding. With improved computational techniques, artificial intelligence tools for data processing and analysis are becoming more and more relevant. Artificial intelligence represents a wide set of algorithms for which machine learning and deep learning are presently among the most impactful. This review focuses on artificial intelligence applications in multiple myeloma research, first illustrating machine learning and deep learning procedures and workflow, followed by how these algorithms are used for multiple myeloma diagnosis, prognosis, bone lesions identification, and evaluation of response to the treatment. Abstract Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
Collapse
|
17
|
Development of isoquinolinone derivatives as immunoproteasome inhibitors. Bioorg Med Chem Lett 2022; 55:128478. [PMID: 34838650 DOI: 10.1016/j.bmcl.2021.128478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
The inhibition of immunoproteasome is considered nowadays a promising strategy for the treatment of hematologic malignancies. In this paper we report the design, synthesis, and biological evaluation as immunoproteasome inhibitors of a new series of isoquinolinone derivatives characterized by a (E)-prop-1-ene fragment that connects the heterocycle to a distal amide functionality. Among all the synthesized compounds, we identified an inhibitor with Ki values in the low micromolar or submicromolar range towards the chymotrypsin-like activities of both proteasome and immunoproteasome (β5c, β5i and β1i subunits). Molecular modeling studies suggest that the most potent compound of the series may act a single-site binder. In particular, through its isopentyl group, it might dock into P1 site in the case of the β1i catalytic subunit, while in the case of β5c and β5i subunits, the P3 site might be the preferred binding site.
Collapse
|
18
|
Allegra A, Rizzo V, Innao V, Alibrandi A, Mazzeo A, Leanza R, Terranova C, Gentile L, Girlanda P, Allegra AG, Alonci A, Musolino C. Diagnostic utility of Sudoscan for detecting bortezomib-induced painful neuropathy: a study on 18 patients with multiple myeloma. Arch Med Sci 2022; 18:696-703. [PMID: 35591819 PMCID: PMC9102521 DOI: 10.5114/aoms/114269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION In the past few years, treatment of multiple myeloma has undergone a deep change for the employment of novel treatment comprising proteasome inhibitors. Bortezomib is a first-line drug in therapy of multiple myeloma. The onset of peripheral neuropathy is a dose-limiting collateral effect of the drug. This neuropathy is a distal symmetric neuropathy that affects both large and small fibers. Nerve conduction study (NCS) can be used for the diagnosis of bortezomib neuropathy, but this technique demonstrates alterations of the large nerve fibers. Sudoscan is a novel technique utilized to offer an evaluation of sudomotor function. The main objective of this study was to compare the sensitivity and diagnostic specificity of Sudoscan with respect to the nerve conduction study after bortezomib treatment. MATERIAL AND METHODS A total of 18 multiple myeloma patients were studied, 10 (55.5%) men and 8 (44.5%) women. Patients were analyzed at baseline and after 6 months of treatment with bortezomib. Subjects were submitted to nerve conduction study and electrochemical skin conductance evaluation with the Sudoscan device. Patients were also submitted to a clinical measure of pain and neuropathy. RESULTS At baseline NCS showed that only the mean sural SAP amplitude was below the 2SD lower limit of normal in 3 (16.7%) patients, while at same time we found an alteration of Sudoscan profiles in 2 (11.1%) patients. After 6 months of treatment, the NCS profiles were altered in 13 (72.2%) patients, and the Sudoscan profiles were modified in 11 (61.1%) subjects. CONCLUSIONS Our results suggest that Sudoscan can be considered for the diagnosis of bortezomib-induced neuropathy. It is objective, reproducible, and surely easier than the traditional nerve conduction study. Sudoscan may be a useful help to manage the therapeutic interventions in multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Anna Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rossana Leanza
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luca Gentile
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Andrea Alonci
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
20
|
Kollár L, Gobec M, Proj M, Smrdel L, Knez D, Imre T, Gömöry Á, Petri L, Ábrányi-Balogh P, Csányi D, Ferenczy GG, Gobec S, Sosič I, Keserű GM. Fragment-Sized and Bidentate (Immuno)Proteasome Inhibitors Derived from Cysteine and Threonine Targeting Warheads. Cells 2021; 10:3431. [PMID: 34943940 PMCID: PMC8700061 DOI: 10.3390/cells10123431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the β5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and β5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the β5, β5i, β1, and β1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either β5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Lara Smrdel
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| | - Ágnes Gömöry
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Dorottya Csányi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| |
Collapse
|
21
|
A Cell-Based Platform for the Investigation of Immunoproteasome Subunit β5i Expression and Biology of β5i-Containing Proteasomes. Cells 2021; 10:cells10113049. [PMID: 34831272 PMCID: PMC8616536 DOI: 10.3390/cells10113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using a CRISPR-Cas9 nickase technology, four cell lines: histiocytic lymphoma, colorectal adenocarcinoma, cervix adenocarcinoma, and hepatocarcinoma were modified to express proteasomes with mCherry-tagged β5i subunit, which is a catalytic subunit of iPs and intPs. Importantly, the expression of the chimeric gene in modified cells is under the control of endogenous regulatory mechanisms and is increased following IFN-γ and/or TNF-α stimulation. Fluorescent proteasomes retain catalytic activity and are distributed within the nucleus and cytoplasm. RNAseq reveals marginal differences in gene expression profiles between the modified and wild-type cell lines. Predominant metabolic pathways and patterns of expressed receptors were identified for each cell line. Using established cell lines, we demonstrated that anti-cancer drugs Ruxolitinib, Vincristine and Gefitinib stimulated the expression of β5i-containing proteasomes, which might affect disease prognosis. Taken together, obtained cell lines can be used as a platform for real-time studies of immunoproteasome gene expression, localization of iPs and intPs, interaction of non-constitutive proteasomes with other proteins, proteasome trafficking and many other aspects of proteasome biology in living cells. Moreover, the established platform might be especially useful for fast and large-scale experiments intended to evaluate the effects of different conditions including treatment with various drugs and compounds on the proteasome pool.
Collapse
|
22
|
Allegra A, Tonacci A, Musolino C, Pioggia G, Gangemi S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front Immunol 2021; 12:738915. [PMID: 34759921 PMCID: PMC8573331 DOI: 10.3389/fimmu.2021.738915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Secondary immunodeficiency is reported in most patients with hematological malignancies such as chronic lymphocytic leukemia and multiple myeloma. The aim of our review was to evaluate the existing literature data on patients with hematological malignancies, with regard to the effect of immunodeficiency on the outcome, the clinical and therapeutic approach, and on the onset of noninfectious complications, including thrombosis, pleural effusion, and orofacial complications. Immunodeficiency in these patients has an intense impact on their risk of infection, in turn increasing morbidity and mortality even years after treatment completion. However, these patients with increased risk of severe infectious diseases could be treated with adequate vaccination coverage, but the vaccines' administration can be associated with a decreased immune response and an augmented risk of adverse reactions. Probably, immunogenicity of the inactivated is analogous to that of healthy subjects at the moment of vaccination, but it undertakes a gradual weakening over time. However, the dispensation of live attenuated viral vaccines is controversial because of the risk of the activation of vaccine viruses. A particular immunization schedule should be employed according to the clinical and immunological condition of each of these patients to guarantee a constant immune response without any risks to the patients' health.
Collapse
MESH Headings
- Animals
- Humans
- Immunocompromised Host
- Immunogenicity, Vaccine
- Immunologic Deficiency Syndromes/epidemiology
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/therapy
- Incidence
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Multiple Myeloma/epidemiology
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Opportunistic Infections/epidemiology
- Opportunistic Infections/immunology
- Opportunistic Infections/prevention & control
- Risk Factors
- Vaccination
- Vaccine Efficacy
- Vaccines/administration & dosage
- Vaccines/adverse effects
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Allegra A, Di Gioacchino M, Tonacci A, Petrarca C, Musolino C, Gangemi S. Multiple Myeloma Cell-Derived Exosomes: Implications on Tumorigenesis, Diagnosis, Prognosis and Therapeutic Strategies. Cells 2021; 10:2865. [PMID: 34831088 PMCID: PMC8616233 DOI: 10.3390/cells10112865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a hematological disease that is still not curable. The bone marrow milieu, with cellular and non-cellular elements, participate in the creation of a pro-tumoral environment enhancing growth and survival of MM plasma cells. Exosomes are vesicles oscillating in dimension between 50 nm and 100 nm in size that can be released by various cells and contribute to the pathogenesis and progression of MM. Exosomes enclose proteins, cytokines, lipids, microRNAs, long noncoding RNAs, and circular RNAs able to regulate interactions between MM plasma cells and adjacent cells. Through exosomes, mesenchymal stem cells confer chemoresistance to MM cells, while myeloma cells promote angiogenesis, influence immune response, cause bone lesions, and have an impact on the outcome of MM patients. In this review, we analyze the role played by exosomes in the progression of monoclonal gammopathies and the effects on the proliferation of neoplastic plasma cells, and discuss the possible employment of exosomes as potential targets for the treatment of MM patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Alessandro Tonacci
- National Research Council of Italy (IFC-CNR), Clinical Physiology Institute, 56124 Pisa, Italy;
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- National Research Council of Italy (IFC-CNR), Clinical Physiology Institute, 56124 Pisa, Italy;
- Department of Medicine and Science of Ageing, G. D’Annunzio University, 66100 Chieti, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
24
|
Nanomedicine for Immunotherapy Targeting Hematological Malignancies: Current Approaches and Perspective. NANOMATERIALS 2021; 11:nano11112792. [PMID: 34835555 PMCID: PMC8619332 DOI: 10.3390/nano11112792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Conventional chemotherapy has partial therapeutic effects against hematological malignancies and is correlated with serious side effects and great risk of relapse. Recently, immunotherapeutic drugs have provided encouraging results in the treatment of hematological malignancies. Several immunotherapeutic antibodies and cell therapeutics are in dynamic development such as immune checkpoint blockades and CAR-T treatment. However, numerous problems restrain the therapeutic effectiveness of tumor immunotherapy as an insufficient anti-tumor immune response, the interference of an immune-suppressive bone marrow, or tumoral milieu with the discharge of immunosuppressive components, access of myeloid-derived suppressor cells, monocyte intrusion, macrophage modifications, all factors facilitating the tumor to escape the anti-cancer immune response, finally reducing the efficiency of the immunotherapy. Nanotechnology can be employed to overcome each of these aspects, therefore having the possibility to successfully produce anti-cancer immune responses. Here, we review recent findings on the use of biomaterial-based nanoparticles in hematological malignancies immunotherapy. In the future, a deeper understanding of tumor immunology and of the implications of nanomedicine will allow nanoparticles to revolutionize tumor immunotherapy, and nanomedicine approaches will reveal their great potential for clinical translation.
Collapse
|
25
|
Sloot W, Glaser N, Hansen A, Hellmann J, Jaeckel S, Johannes S, Knippel A, Lai V, Onidi M. Improved nonclinical safety profile of a novel, highly selective inhibitor of the immunoproteasome subunit LMP7 (M3258). Toxicol Appl Pharmacol 2021; 429:115695. [PMID: 34419493 DOI: 10.1016/j.taap.2021.115695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023]
Abstract
M3258 is the first selective inhibitor of the immunoproteasome subunit LMP7 (Large multifunctional protease 7) in early clinical development with the potential to improve therapeutic utility in patients of multiple myeloma (MM) or other hematological malignancies. Safety pharmacology studies with M3258 did not reveal any functional impairments of the cardiovascular system in several in vitro tests employing human cardiomyocytes and cardiac ion channels (including hERG), guinea pig heart refractory period and force contraction, and rat aortic contraction as well as in cardiovascular function tests in dogs. Following single dose M3258 administration to rats, no changes were observed on respiratory function by using whole body plethysmography, nor did it change (neuro)behavioral parameters in a battery of tests. Based on pivotal 4-week toxicity studies with daily oral dosing of M3258, the identified key target organs of toxicity were limited to the lympho-hematopoietic system in rats and dogs, and to the intestine with its local lymphoid tissues in dogs only. Importantly, the stomach, nervous system, heart, lungs, and kidneys, that may be part of clinically relevant toxicities as reported for pan-proteasome inhibitors, were spared with M3258. Therefore, it is anticipated that by targeting highly selective and potent inhibition of LMP7, the resulting favorable safety profile of M3258 together with the maintained potent anti-tumor activity as previously reported in mouse MM xenograft models, may translate into an improved benefit-risk profile in MM patients.
Collapse
Affiliation(s)
- Willem Sloot
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany.
| | - Nina Glaser
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Annika Hansen
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Juergen Hellmann
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Sven Jaeckel
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Sigrid Johannes
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Anja Knippel
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Valentina Lai
- Istituto di Ricerche Biomediche "Antoine Marxer" - RBM; Colleretto Giacosa, Italy
| | - Manuela Onidi
- Istituto di Ricerche Biomediche "Antoine Marxer" - RBM; Colleretto Giacosa, Italy
| |
Collapse
|
26
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
27
|
Kammerl IE, Hardy S, Flexeder C, Urmann A, Peierl J, Wang Y, Vosyka O, Frankenberger M, Milger K, Behr J, Koch A, Merl-Pham J, Hauck SM, Pilette C, Schulz H, Meiners S. Activation of immune cell proteasomes in peripheral blood of smokers and COPD patients - implications for therapy. Eur Respir J 2021; 59:13993003.01798-2021. [PMID: 34561290 PMCID: PMC8891681 DOI: 10.1183/13993003.01798-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 11/05/2022]
Abstract
Immune cells contain a specialised type of proteasome, i.e. the immunoproteasome, which is required for intracellular protein degradation. Immunoproteasomes are key regulators of immune cell differentiation, inflammatory activation and autoimmunity. Immunoproteasome function in peripheral immune cells might be altered by smoking and in COPD thereby affecting immune cell responses.We here analysed the expression and activity of proteasome complexes in peripheral blood mononuclear cells (PBMC) isolated from healthy male young smokers as well as from patients with severe COPD and compared them to matching controls. Proteasome expression was upregulated in COPD patients as assessed by RT-qPCR and mass spectrometry-based proteomics analysis. Proteasome activity was quantified using activity-based probes and native gel analysis. We observed distinct activation of immunoproteasomes in the peripheral blood cells of young male smokers and severely ill COPD patients. Native gel analysis and linear regression modeling confirmed robust activation and elevated assembly of 20S proteasomes, which correlated significantly with reduced lung function parameters in COPD patients. The immunoproteasome was distinctly activated in COPD patients upon inflammatory cytokine stimulation of PBMCs in vitro Inhibition of the immunoproteasome reduced proinflammatory cytokine expression in COPD-derived blood immune cells.Given the crucial role of chronic inflammatory signalling and the emerging involvement of autoimmune responses in COPD, therapeutic targeting of the immunoproteasome might represent a novel therapeutic concept for COPD.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sophie Hardy
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Cliniques universitaires Saint-Luc, department of pulmonology, and Institute of Experimental and Clinical Research (IREC), Pole of pulmonology, ENT and dermatology, Université catholique de Louvain, Brussels, Belgium
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Andrea Urmann
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Julia Peierl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yuqin Wang
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Vosyka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marion Frankenberger
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Medicine V, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Medicine V, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea Koch
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dept. of Pneumology, Teaching Hospital Pyhrn-Eisenwurzen Klinikum Steyr, Austria
| | - Juliane Merl-Pham
- Research Unit Protein Science, Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Charles Pilette
- Cliniques universitaires Saint-Luc, department of pulmonology, and Institute of Experimental and Clinical Research (IREC), Pole of pulmonology, ENT and dermatology, Université catholique de Louvain, Brussels, Belgium
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
28
|
Allegra A, Sant'Antonio E, Musolino C, Ettari R. New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Curr Med Chem 2021; 29:2412-2437. [PMID: 34521320 DOI: 10.2174/0929867328666210914120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Several neurotransmitters and neuropeptides were reported to join to or to cooperate with different cells of the immune system, bone marrow, and peripheral cells and numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs, and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part to the leukemogenesis and lymphomagenesis process, and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide's role in haematological malignancies and the possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | | | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina. Italy
| |
Collapse
|
29
|
Wang X, Wang Y, Li Z, Qin J, Wang P. Regulation of Ferroptosis Pathway by Ubiquitination. Front Cell Dev Biol 2021; 9:699304. [PMID: 34485285 PMCID: PMC8414903 DOI: 10.3389/fcell.2021.699304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Ferroptosis is an iron-dependent form of programmed cell death, which plays crucial roles in tumorigenesis, ischemia–reperfusion injury and various human degenerative diseases. Ferroptosis is characterized by aberrant iron and lipid metabolisms. Mechanistically, excess of catalytic iron is capable of triggering lipid peroxidation followed by Fenton reaction to induce ferroptosis. The induction of ferroptosis can be inhibited by sufficient glutathione (GSH) synthesis via system Xc– transporter-mediated cystine uptake. Therefore, induction of ferroptosis by inhibition of cystine uptake or dampening of GSH synthesis has been considered as a novel strategy for cancer therapy, while reversal of ferroptotic effect is able to delay progression of diverse disorders, such as cardiopathy, steatohepatitis, and acute kidney injury. The ubiquitin (Ub)–proteasome pathway (UPP) dominates the majority of intracellular protein degradation by coupling Ub molecules to the lysine residues of protein substrate, which is subsequently recognized by the 26S proteasome for degradation. Ubiquitination is crucially involved in a variety of physiological and pathological processes. Modulation of ubiquitination system has been exhibited to be a potential strategy for cancer treatment. Currently, more and more emerged evidence has demonstrated that ubiquitous modification is involved in ferroptosis and dominates the vulnerability to ferroptosis in multiple types of cancer. In this review, we will summarize the current findings of ferroptosis surrounding the viewpoint of ubiquitination regulation. Furthermore, we also highlight the potential effect of ubiquitination modulation on the perspective of ferroptosis-targeted cancer therapy.
Collapse
Affiliation(s)
- Xinbo Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanjin Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zan Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Sanderson MP, Friese-Hamim M, Walter-Bausch G, Busch M, Gaus S, Musil D, Rohdich F, Zanelli U, Downey-Kopyscinski SL, Mitsiades CS, Schadt O, Klein M, Esdar C. M3258 Is a Selective Inhibitor of the Immunoproteasome Subunit LMP7 (β5i) Delivering Efficacy in Multiple Myeloma Models. Mol Cancer Ther 2021; 20:1378-1387. [PMID: 34045234 PMCID: PMC9398180 DOI: 10.1158/1535-7163.mct-21-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023]
Abstract
Large multifunctional peptidase 7 (LMP7/β5i/PSMB8) is a proteolytic subunit of the immunoproteasome, which is predominantly expressed in normal and malignant hematolymphoid cells, including multiple myeloma, and contributes to the degradation of ubiquitinated proteins. Described herein for the first time is the preclinical profile of M3258; an orally bioavailable, potent, reversible and highly selective LMP7 inhibitor. M3258 demonstrated strong antitumor efficacy in multiple myeloma xenograft models, including a novel model of the human bone niche of multiple myeloma. M3258 treatment led to a significant and prolonged suppression of tumor LMP7 activity and ubiquitinated protein turnover and the induction of apoptosis in multiple myeloma cells both in vitro and in vivo Furthermore, M3258 showed superior antitumor efficacy in selected multiple myeloma and mantle cell lymphoma xenograft models compared with the approved nonselective proteasome inhibitors bortezomib and ixazomib. The differentiated preclinical profile of M3258 supported the initiation of a phase I study in patients with multiple myeloma (NCT04075721).
Collapse
Affiliation(s)
- Michael P. Sanderson
- Merck KGaA, Darmstadt, Germany.,Corresponding Author: Michael P. Sanderson, Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany. Phone: 49-615-1725-6970; Fax: 49-61-517-2914-9106; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Klein M, Busch M, Friese-Hamim M, Crosignani S, Fuchss T, Musil D, Rohdich F, Sanderson MP, Seenisamy J, Walter-Bausch G, Zanelli U, Hewitt P, Esdar C, Schadt O. Structure-Based Optimization and Discovery of M3258, a Specific Inhibitor of the Immunoproteasome Subunit LMP7 (β5i). J Med Chem 2021; 64:10230-10245. [PMID: 34228444 DOI: 10.1021/acs.jmedchem.1c00604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (β1, β2, and β5). LMP7 (β5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.
Collapse
Affiliation(s)
- Markus Klein
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Michael Busch
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | - Thomas Fuchss
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Djordje Musil
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Felix Rohdich
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | | | - Ugo Zanelli
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Philip Hewitt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | - Oliver Schadt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| |
Collapse
|
32
|
Immunoproteasome and Non-Covalent Inhibition: Exploration by Advanced Molecular Dynamics and Docking Methods. Molecules 2021; 26:molecules26134046. [PMID: 34279386 PMCID: PMC8271555 DOI: 10.3390/molecules26134046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune, inflammatory diseases, and hematologic malignancies. Recently, a new series of amide derivatives as non-covalent inhibitors of the β1i subunit with Ki values in the low/submicromolar ranges have been identified. Here, we investigated the binding mechanism of the most potent and selective inhibitor, N-benzyl-2-(2-oxopyridin-1(2H)-yl)propanamide (1), to elucidate the steps from the ligand entrance into the binding pocket to the ligand-induced conformational changes. We carried out a total of 400 ns of MD-binding analyses, followed by 200 ns of plain MD. The trajectories clustering allowed identifying three representative poses evidencing new key interactions with Phe31 and Lys33 together in a flipped orientation of a representative pose. Further, Binding Pose MetaDynamics (BPMD) studies were performed to evaluate the binding stability, comparing 1 with four other inhibitors of the β1i subunit: N-benzyl-2-(2-oxopyridin-1(2H)-yl)acetamide (2), N-cyclohexyl-3-(2-oxopyridin-1(2H)-yl)propenamide (3), N-butyl-3-(2-oxopyridin-1(2H)-yl)propanamide (4), and (S)-2-(2-oxopyridin-1(2H)-yl)-N,4-diphenylbutanamide (5). The obtained results in terms of free binding energy were consistent with the experimental values of inhibition, confirming 1 as a lead compound of this series. The adopted methods provided a full dynamic description of the binding events, and the information obtained could be exploited for the rational design of new and more active inhibitors.
Collapse
|
33
|
Li X, Hong D, Zhang M, Xu L, Zhou Y, Li J, Liu T. Development of peptide epoxyketones as selective immunoproteasome inhibitors. Eur J Med Chem 2021; 221:113556. [PMID: 34087498 DOI: 10.1016/j.ejmech.2021.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022]
Abstract
A series of epoxyketone analogues with varying N-caps and P3-configurations were designed, synthesized and evaluated. We found that D-Ala in P3 was crucial for β5i selectivity over β5c. Notably, compounds 20j (β5i IC50 = 26.0 nM, 25-fold selectivity) and 20l (β5i IC50 = 25.1 nM, 24-fold selectivity) with the D-configuration at P3 were the most selective inhibitors. Although 20j and 20l showed only moderate anti-proliferative activity against RPMI-8226 and MM.1S cell lines, based on our experiments, it indicates that the inhibition of β5i alone is not sufficient to exert anticancer effects and may rely on the complementary inhibition of β1i, β5c and β5i. These data further increase our understanding of immunoproteasome inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Duidui Hong
- Jiangsu Shengdia Industrial Co. Ltd., NO. 161 Shaoxing Road, Xiacheng District, Hangzhou, 310004, PR China
| | - Mengmeng Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
34
|
Allegra A, Imbesi C, Bitto A, Ettari R. Drug Repositioning for the Treatment of Hematologic Disease: Limits, Challenges and Future Perspectives. Curr Med Chem 2021; 28:2195-2217. [PMID: 33138750 DOI: 10.2174/0929867327999200817102154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication. In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects. Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| |
Collapse
|
35
|
Innao V, Allegra A, Ginaldi L, Pioggia G, De Martinis M, Musolino C, Gangemi S. Reviewing the Significance of Vitamin D Substitution in Monoclonal Gammopathies. Int J Mol Sci 2021; 22:4922. [PMID: 34066482 PMCID: PMC8124934 DOI: 10.3390/ijms22094922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Vitamin D is a steroid hormone that is essential for bone mineral metabolism and it has several other effects in the body, including anti-cancer actions. Vitamin D causes a reduction in cell growth by interrupting the cell cycle. Moreover, the active form of vitamin D, i.e., 1,25-dihydroxyvitamin D, exerts various effects via its interaction with the vitamin D receptor on the innate and adaptive immune system, which could be relevant in the onset of tumors. Multiple myeloma is a treatable but incurable malignancy characterized by the growth of clonal plasma cells in protective niches in the bone marrow. In patients affected by multiple myeloma, vitamin D deficiency is commonly correlated with an advanced stage of the disease, greater risk of progression, the development of pathological fractures, and a worse prognosis. Changes in the vitamin D receptor often contribute to the occurrence and progress of deficiencies, which can be overcome by supplementation with vitamin D or analogues. However, in spite of the findings available in the literature, there is no clear standard of care and clinical practice varies. Further research is needed to better understand how vitamin D influences outcomes in patients with monoclonal gammopathies.
Collapse
Affiliation(s)
- Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.D.M.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.D.M.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
36
|
Allegra A, Innao V, Polito F, Oteri R, Alibrandi A, Allegra AG, Oteri G, Di Giorgio RM, Musolino C, Aguennouz M. SIRT2 and SIRT3 expression correlates with redox imbalance and advanced clinical stage in patients with multiple myeloma. Clin Biochem 2021; 93:42-49. [PMID: 33861984 DOI: 10.1016/j.clinbiochem.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Sirtuins comprise seven family elements (SIRT1-7) involved in various cell signalling pathways comprising cancer inhibition and tumorigenesis. The present study aims to evaluate SIRT2 and SIRT3 gene expression and potential redox reactions in patients with multiple myeloma (MM) at onset and its correlation with disease status, extent and presence of organ damage secondary to myeloma. DESIGN & METHODS Total RNA was extracted from 17 MM patients and 10 controls to assess gene expression using real-time PCR. The NAD+/NADH ratio as well as the levels of glutathione peroxidase (GPx) and hydrogen peroxide (HP) in peripheral blood mononuclear cells (PBMCs) were determined using established biochemical assays. RESULTS SIRT2 and SIRT3 expression is reduced in MM patients compared to healthy controls. Correlational analysis demonstrated that SIRT2 reduction is associated with advanced clinical stage and with more advanced bone lesions than in the remaining patients. SIRT3 expression is correlated with lytic bone lesions. Biochemical analysis indicated an imbalance of oxidative stress biomarkers with low concentrations of the antioxidant enzyme GPx, low amounts of NAD + and higher concentrations of pro-oxidant enzyme HP in PBMCs of MM patients compared to controls. Moreover, MM patients with bone lesions had lower concentrations of NAD + and GPx in PBMCs than patients without signs of bone disease. In addition, MM patients had higher quantities of intracellular HP than controls. CONCLUSIONS Our results demonstrate that SIRT2 and SIRT3 are downregulated in MM and that lower concentrations correlate with an advanced stage of disease and redox imbalance. We conclude that SIRT2 and SIRT3 together with oxidative stress biomarkers, may be useful for improved risk stratification of MM patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy.
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - Francesca Polito
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - Giacomo Oteri
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Italy
| | - Rosa Maria Di Giorgio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - M'hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
37
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
38
|
Kollár L, Gobec M, Szilágyi B, Proj M, Knez D, Ábrányi-Balogh P, Petri L, Imre T, Bajusz D, Ferenczy GG, Gobec S, Keserű GM, Sosič I. Discovery of selective fragment-sized immunoproteasome inhibitors. Eur J Med Chem 2021; 219:113455. [PMID: 33894528 DOI: 10.1016/j.ejmech.2021.113455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (β5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the β5i subunit was shown and selectivity against the β5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the β5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Bence Szilágyi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
39
|
Rotondo A, Zappalà M, Previti S, Di Chio C, Allegra A, Ettari R. Design and NMR conformational analysis in solution of β5i-selective inhibitors of immunoproteasome. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
41
|
Potential Role of microRNAs in inducing Drug Resistance in Patients with Multiple Myeloma. Cells 2021; 10:cells10020448. [PMID: 33672466 PMCID: PMC7923438 DOI: 10.3390/cells10020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis for newly diagnosed subjects with multiple myeloma (MM) has significantly progressed in recent years. However, most MM patients relapse and after several salvage therapies, the onset of multidrug resistance provokes the occurrence of a refractory disease. A continuous and bidirectional exchange of information takes place between the cells of the microenvironment and neoplastic cells to solicit the demands of cancer cells. Among the molecules serving as messengers, there are microRNAs (miRNA), a family of small noncoding RNAs that regulate gene expression. Numerous miRNAs are associated with drug resistance, also in MM, and the modulation of their expression or activity might be explored to reverse it. In this review we report the most recent studies concerning the relationship between miRNAs and chemoresistance to the most frequently used drugs, such as proteasome inhibitors, steroids, alkylating agents and immunomodulators. The experimental use of antagomirs or miRNA mimics have successfully been proven to counteract chemoresistance and display synergistic effects with antimyeloma drugs which could represent a fundamental moment to overcome resistance in MM treatment.
Collapse
|
42
|
Wang J, Liang B, Chen Y, Fuk-Woo Chan J, Yuan S, Ye H, Nie L, Zhou J, Wu Y, Wu M, Huang LS, An J, Warshel A, Yuen KY, Ciechanover A, Huang Z, Xu Y. A new class of α-ketoamide derivatives with potent anticancer and anti-SARS-CoV-2 activities. Eur J Med Chem 2021; 215:113267. [PMID: 33639344 PMCID: PMC7873610 DOI: 10.1016/j.ejmech.2021.113267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022]
Abstract
Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome’s substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Boqiang Liang
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Yiling Chen
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hui Ye
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Linlin Nie
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Jiao Zhou
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yi Wu
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Meixian Wu
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Lina S Huang
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jing An
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aaron Ciechanover
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Yan Xu
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
43
|
Yamamoto L, Amodio N, Gulla A, Anderson KC. Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities. Front Oncol 2021; 10:606368. [PMID: 33585226 PMCID: PMC7873734 DOI: 10.3389/fonc.2020.606368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells that grow within a permissive bone marrow microenvironment (BMM). The bone marrow milieu supports the malignant transformation both by promoting uncontrolled proliferation and resistance to cell death in MM cells, and by hampering the immune response against the tumor clone. Hence, it is expected that restoring host anti-MM immunity may provide therapeutic benefit for MM patients. Already several immunotherapeutic approaches have shown promising results in the clinical setting. In this review, we outline recent findings demonstrating the potential advantages of targeting the immunosuppressive bone marrow niche to restore effective anti-MM immunity. We discuss different approaches aiming to boost the effector function of T cells and/or exploit innate or adaptive immunity, and highlight novel therapeutic opportunities to increase the immunogenicity of the MM clone. We also discuss the main challenges that hamper the efficacy of immune-based approaches, including intrinsic resistance of MM cells to activated immune-effectors, as well as the protective role of the immune-suppressive and inflammatory bone marrow milieu. Targeting mechanisms to convert the immunologically “cold” to “hot” MM BMM may induce durable immune responses, which in turn may result in long-lasting clinical benefit, even in patient subgroups with high-risk features and poor survival.
Collapse
Affiliation(s)
- Leona Yamamoto
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Gulla
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Kenneth Carl Anderson
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
44
|
Du SH, Xiang YJ, Liu L, Nie M, Hou Y, Wang L, Li BB, Xu M, Teng QL, Peng J, Hou M, Shi Y. Co-Inhibition of the Immunoproteasome Subunits LMP2 and LMP7 Ameliorates Immune Thrombocytopenia. Front Immunol 2021; 11:603278. [PMID: 33552061 PMCID: PMC7855704 DOI: 10.3389/fimmu.2020.603278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
The immunoproteasome, a special isoform of the 20S proteasome, is expressed when the cells receive an inflammatory signal. Immunoproteasome inhibition proved efficacy in the treatment of autoimmune diseases. However, the role of the immunoproteasome in the pathogenesis of immune thrombocytopenia (ITP) remains unknown. We found that the expression of the immunoproteasome catalytic subunit, large multifunctional protease 2 (LMP2), was significantly upregulated in peripheral blood mononuclear cells of active ITP patients compared to those of healthy controls. No significant differences in LMP7 expression were observed between patients and controls. ML604440, an specific LMP2 inhibitor, had no significant impact on the platelet count of ITP mice, while ONX-0914 (an inhibitor of both LMP2 and LMP7) increased the number of platelets. In vitro assays revealed that ONX-0914 decreased the expression of FcγRI in ITP mice and decreased that of FcγRIII in ITP patients, inhibited the activation of CD4+ T cells, and affected the differentiation of Th1 cells in patients with ITP. These results suggest that the inhibition of immunoproteasome is a potential therapeutic approach for ITP patients.
Collapse
Affiliation(s)
- Sheng-hong Du
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Yu-jiao Xiang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mu Nie
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Wang
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Ban-ban Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-liang Teng
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
45
|
Schiffrer ES, Proj M, Gobec M, Rejc L, Šterman A, Mravljak J, Gobec S, Sosič I. Synthesis and Biochemical Evaluation of Warhead-Decorated Psoralens as (Immuno)Proteasome Inhibitors. Molecules 2021; 26:molecules26020356. [PMID: 33445542 PMCID: PMC7826781 DOI: 10.3390/molecules26020356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. Selective inhibition of its catalytic activities is therefore a viable approach for the treatment of these diseases. However, the development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. We previously reported 7H-furo[3,2-g]chromen-7-one (psoralen)-based compounds with an oxathiazolone warhead as selective inhibitors of the chymotrypsin-like (β5i) subunit of immunoproteasome. Here, we describe the influence of the electrophilic warhead variations at position 3 of the psoralen core on the inhibitory potencies. Despite mapping the chemical space with different warheads, all compounds showed decreased inhibition of the β5i subunit of immunoproteasome in comparison to the parent oxathiazolone-based compound. Although suboptimal, these results provide crucial information about structure–activity relationships that will serve as guidance for the further design of (immuno)proteasome inhibitors.
Collapse
Affiliation(s)
- Eva Shannon Schiffrer
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Luka Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Andrej Šterman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Janez Mravljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
- Correspondence: ; Tel.: +386-1-4769-569
| |
Collapse
|
46
|
Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. ACTA ACUST UNITED AC 2020; 28:159-183. [PMID: 33704184 PMCID: PMC7816176 DOI: 10.3390/curroncol28010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The use of viruses for tumour treatment has been imagined more than one hundred years ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously, it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate, proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses operate via a multiplicity of systems, including mutation of tumour milieu and a composite change of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential to recognize the most efficient virus or treatment combinations for specific haematological diseases, and the combinations able to induce the strongest immune response.
Collapse
|
47
|
Maurits E, Degeling CG, Kisselev AF, Florea BI, Overkleeft HS. Structure-Based Design of Fluorogenic Substrates Selective for Human Proteasome Subunits. Chembiochem 2020; 21:3220-3224. [PMID: 32598532 PMCID: PMC7754458 DOI: 10.1002/cbic.202000375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Indexed: 11/07/2022]
Abstract
Proteasomes are established therapeutic targets for hematological cancers and promising targets for autoimmune diseases. In the past, we have designed and synthesized mechanism-based proteasome inhibitors that are selective for the individual catalytic activities of human constitutive proteasomes and immunoproteasomes: β1c, β1i, β2c, β2i, β5c and β5i. We show here that by taking the oligopeptide recognition element and substituting the electrophile for a fluorogenic leaving group, fluorogenic substrates are obtained that report on the proteasome catalytic activity also targeted by the parent inhibitor. Though not generally applicable (β5c and β2i substrates showing low activity), effective fluorogenic substrates reporting on the individual activity of β1c, β1i, β2c and β5i subunits in Raji (human B cell) lysates and purified 20S proteasome were identified in this manner. Our work thus adds to the expanding proteasome research toolbox through the identification of new and/or more effective subunit-selective fluorogenic substrates.
Collapse
Affiliation(s)
- Elmer Maurits
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Christian G. Degeling
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Alexei F. Kisselev
- Department of Drug Discovery and DevelopmentHarrison School of PharmacyAuburn UniversityAuburnAL 36849USA
| | - Bogdan I. Florea
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
48
|
Allegra AG, Mannino F, Innao V, Musolino C, Allegra A. Radioprotective Agents and Enhancers Factors. Preventive and Therapeutic Strategies for Oxidative Induced Radiotherapy Damages in Hematological Malignancies. Antioxidants (Basel) 2020; 9:antiox9111116. [PMID: 33198328 PMCID: PMC7696711 DOI: 10.3390/antiox9111116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy plays a critical role in the management of a wide range of hematologic malignancies. It is well known that the post-irradiation damages both in the bone marrow and in other organs are the main causes of post-irradiation morbidity and mortality. Tumor control without producing extensive damage to the surrounding normal cells, through the use of radioprotectors, is of special clinical relevance in radiotherapy. An increasing amount of data is helping to clarify the role of oxidative stress in toxicity and therapy response. Radioprotective agents are substances that moderate the oxidative effects of radiation on healthy normal tissues while preserving the sensitivity to radiation damage in tumor cells. As well as the substances capable of carrying out a protective action against the oxidative damage caused by radiotherapy, other substances have been identified as possible enhancers of the radiotherapy and cytotoxic activity via an oxidative effect. The purpose of this review was to examine the data in the literature on the possible use of old and new substances to increase the efficacy of radiation treatment in hematological diseases and to reduce the harmful effects of the treatment.
Collapse
Affiliation(s)
- Andrea Gaetano Allegra
- Radiation Oncology Unit, Department of Biomedical, Experimental, and Clinical Sciences “Mario Serio”, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50100 Florence, Italy;
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125 Messina, Italy;
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
- Correspondence: ; Tel.: +39-090-221-2364
| |
Collapse
|
49
|
Cao Y, Zhu H, He R, Kong L, Shao J, Zhuang R, Xi J, Zhang J. Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4327-4342. [PMID: 33116419 PMCID: PMC7585272 DOI: 10.2147/dddt.s265793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Proteasome is vital for intracellular protein homeostasis as it eliminates misfolded and damaged protein. Inhibition of proteasome has been validated as a powerful strategy for anti-cancer therapy, and several drugs have been approved for treatment of multiple myeloma. Recent studies indicate that proteasome has potent therapeutic effects on a variety of diseases besides cancer, including parasite infectious diseases, bacterial/fungal infections diseases, neurodegenerative diseases and autoimmune diseases. In this review, recent developments of proteasome inhibitors for various diseases and related structure activity relationships are going to be summarized.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| |
Collapse
|
50
|
Nadeem O, Tai YT, Anderson KC. Immunotherapeutic and Targeted Approaches in Multiple Myeloma. Immunotargets Ther 2020; 9:201-215. [PMID: 33117743 PMCID: PMC7569026 DOI: 10.2147/itt.s240886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
The multiple myeloma (MM) therapeutic landscape has evolved significantly with the approval of numerous novel agents, including next generation proteasome inhibitors (PIs), immunomodulatory agents (IMIDs), and monoclonal antibodies (MoABs) targeting CD38 and SLAMF7. While these discoveries have led to an unprecedented improval in patient outcomes, the disease still remains incurable. Immunotherapeutic approaches have shown substantial promise in recent studies of chimeric antigen receptor T-cell (CAR T-cell) therapy, bispecific antibodies, and antibody drug conjugates targeting B-cell maturation antigen (BCMA). This review will highlight these novel and targeted therapies in MM, with particular focus on PIs, IMIDs, MoAb and BCMA-directed immunotherapy.
Collapse
Affiliation(s)
- Omar Nadeem
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|