1
|
Zhang X, Xu Z, Chen Q, Zhou Z. Notch signaling regulates pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1450038. [PMID: 39450276 PMCID: PMC11499121 DOI: 10.3389/fcell.2024.1450038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease associated with aging. The pathogenesis of pulmonary fibrosis remains unclear, however, alveolar epithelial cell injury, myofibroblast activation, and extracellular matrix (ECM) accumulation are recognized as key contributors. Moreover, recent studies have implicated cellular senescence, endothelial-mesenchymal transition (EndMT), and epigenetic modifications in the pathogenesis of fibrotic diseases. Various signaling pathways regulate pulmonary fibrosis, including the TGF-β, Notch, Wnt, Hedgehog, and mTOR pathways. Among these, the TGF-β pathway is extensively studied, while the Notch pathway has emerged as a recent research focus. The Notch pathway influences the fibrotic process by modulating immune cell differentiation (e.g., macrophages, lymphocytes), inhibiting autophagy, and promoting interstitial transformation. Consequently, inhibiting Notch signaling represents a promising approach to mitigating pulmonary fibrosis. In this review, we discuss the role of Notch signaling pathway in pulmonary fibrosis, aiming to offer insights for future therapeutic investigations.
Collapse
Affiliation(s)
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | | |
Collapse
|
2
|
Zhang H, Hua H, Wang C, Zhu C, Xia Q, Jiang W, Hu X, Zhang Y. Construction of an artificial neural network diagnostic model and investigation of immune cell infiltration characteristics for idiopathic pulmonary fibrosis. BMC Pulm Med 2024; 24:458. [PMID: 39289672 PMCID: PMC11409795 DOI: 10.1186/s12890-024-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a severe lung condition, and finding better ways to diagnose and treat the disease is crucial for improving patient outcomes. Our study sought to develop an artificial neural network (ANN) model for IPF and determine the immune cell types that differed between the IPF and control groups. METHODS From the Gene Expression Omnibus (GEO) database, we first obtained IPF microarray datasets. To conduct protein-protein interaction (PPI) networks and enrichment analyses, differentially expressed genes (DEGs) were screened between tissues of patients with IPF and tissues of controls. Afterward, we identified the important feature genes associated with IPF using random forest (RF) analysis, and then constructed and validated a prediction ANN mode. In addition, the proportions of immune cells were quantified using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) analysis, which was performed on microarray datasets based on gene expression profiling. RESULTS A total of 11 downregulated and 36 upregulated DEGs were identified. PPI networks and enrichment analyses were carried out; the immune system and extracellular matrix were the subjects of the enrichments. Using RF analysis, the significant feature genes LRRC17, COMP, ASPN, CRTAC1, POSTN, COL3A1, PEBP4, IL13RA2, and CA4 were identified. The nine feature gene scores were integrated into the ANN to develop a diagnostic prediction model. The receiver operating characteristic (ROC) curves demonstrated the strong diagnostic ability of the ANN in predicting IPF in the training and testing sets. An analysis of IPF tissues in comparison to normal tissues revealed a reduction in the infiltration of natural killer cells resting, monocytes, macrophages M0, and neutrophils; conversely, the infiltration of T cells CD4 memory resting, mast cells, and macrophages M0 increased. CONCLUSION LRRC17, COMP, ASPN, CRTAC1, POSTN, COL3A1, PEBP4, IL13RA2, and CA4 were determined as key feature genes for IPF. The nine feature genes in the ANN model will be extremely important for diagnosing IPF. It may be possible to use differentiated immune cells from IPF samples in comparison to normal samples as targets for immunotherapy in patients with IPF.
Collapse
Affiliation(s)
- Huizhe Zhang
- Department of Respiratory Medicine, Yancheng Hospital of Traditional Chinese Medicine; Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, 224005, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
| | - Cong Wang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Chenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Qingqing Xia
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Weilong Jiang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China.
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China.
| | - Xiaodong Hu
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China.
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China.
| | - Yufeng Zhang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China.
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China.
| |
Collapse
|
3
|
Xing H, Liang H. The clinical value of KL-6 for predicting the occurrence and severity of connective tissue disease-associated interstitial lung disease is not affected by CTD type or treatment. PeerJ 2024; 12:e17792. [PMID: 39131623 PMCID: PMC11317038 DOI: 10.7717/peerj.17792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Objective The aim of this study was to explore the potential values of Krebs von den Lungen-6 (KL-6), neutrophil to lymphocyte ratio (NLR), systemic immune inflammation (SII), platelet to lymphocyte ratio (PLR), monocyte to lymphocyte ratio (MLR) and red blood cell distribution width (RDW) in the diagnosis and evaluation of the severity of connective tissue disease-associated interstitial lung disease (CTD-ILD). Methods A total of 140 connective tissue disease (CTD) patients and 85 CTD-ILD patients were recruited for this study at Shanxi Provincial People's Hospital from May 2022 to May 2023. Patients were divided into subgroups based on medication history and CTD subtypes to compare and analyze the clinical data and laboratory parameters of CTD-ILD patients and CTD patients. The receiver operating characteristic curve (ROC) was used to evaluate the diagnostic efficacy of KL-6, NLR, SII, PLR, MLR, and RDW in identifying CTD-ILD patients from CTD patients. A Spearman correlation analysis was conducted to elucidate the correlations between these markers and the lung function parameters of forced vital capacity (FVC, %), forced expired volume in one second (FEV1, %), and diffusing capacity of carbon monoxide (DLCO, %). Finally, binary logistic regression analysis was applied to discern the independent risk factors for CTD-ILD. Results NLR, SII, MLR, RDW, and KL-6 displayed significant statistical differences in the experimental groups. In both untreated and treated subgroups, KL-6 displayed higher values for CTD-ILD than CTD among all CTD subtypes. In untreated subgroups, there were significant differences in MLR levels between rheumatoid arthritis (RA) and RA-ILD patients and in NLR levels between Sjögren syndrome (SjS) and SjS-ILD patients. There were also significant differences in RDW-SD between the "other CTD" and "other CTD-ILD" groups. In treated subgroups, there were significant differences in both RDW-SD and RDW-CV between RA and RA-ILD patients and in NLR, SII, MLR, PLR, and RDW-SD between "other CTD" and "other CTD-ILD" groups. ROC revealed that KL-6 emerged as the most effective predictor for CTD-ILD in both treated and untreated groups. The multivariate logistic regression analysis results showed that both KL-6 and age were independent risk factors for CTD-ILD. NLR, SII, and PLR were negatively correlated with DLCO (%) in the untreated CTD-ILD group, and KL-6 was negatively correlated with various lung function parameters in both treated and untreated CTD-ILD groups. Conclusion KL-6 emerged as the most promising biomarker for diagnosing CTD-ILD and assessing its severity. The diagnostic value of KL-6 was unaffected by medication interference and surpassed the value of other parameters, such as NLR, SII, MLR, and RDW. The diagnostic value of RDW-SD was higher than that of RDW-CV in CTD-ILD patients. NLR, SII, MLR, and PLR have potential value in diagnosing the different types of CTD-ILD.
Collapse
Affiliation(s)
- Huifang Xing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongping Liang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Shen S, Hu M, Peng Y, Zheng Y, Zhang R. Research Progress in pathogenesis of connective tissue disease-associated interstitial lung disease from the perspective of pulmonary cells. Autoimmun Rev 2024; 23:103600. [PMID: 39151642 DOI: 10.1016/j.autrev.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The lungs are a principal factor in the increased morbidity and mortality observed in patients with Connective Tissue Disease (CTD), frequently presenting as CTD-associated Interstitial Lung Disease (ILD). Currently, there is a lack of comprehensive descriptions of the pulmonary cells implicated in the development of CTD-ILD. This review leverages the Human Lung Cell Atlas (HLCA) and spatial multi-omics atlases to discuss the advancements in research on the pathogenesis of CTD-ILD from a pulmonary cell perspective. This facilitates a more precise localization of disease sites and a more systematic consideration of disease progression, supporting further mechanistic studies and targeted therapies.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Hu
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Peng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Zheng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rong Zhang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
5
|
Joerns EK, Karp D, Zhang S, Sparks JA, Adams TN, Makris UE, Newton CA. High Interleukin-13 level is associated with disease stability in interstitial Lung disease. Heliyon 2024; 10:e32118. [PMID: 38882341 PMCID: PMC11176841 DOI: 10.1016/j.heliyon.2024.e32118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Cytokines can help predict prognosis in interstitial lung disease (ILD) and to differentiate between ILD subtypes. The objectives of our study were to evaluate association of baseline cytokine levels with time to ILD progression and to compare baseline cytokine levels between ILD subtypes. Methods We quantified 27 cytokines using a multiplex assay in peripheral blood samples from 77 patients. Cox proportional hazards regression analysis was performed to evaluate cytokine impact on the time to progression in the total cohort and within each ILD type. We evaluated for significant differences in cytokine levels between ILD types using ANOVA, Wilcoxon signed-rank test and Tukey method. Results Higher IL-13 level was associated with longer time to progression (hazard ratio 0.52 [0.33-0.81], p-value 0.004). FGF-β, GM-CSF, and IL-17 levels differed significantly between fibrotic and inflammatory ILD subgroups. Conclusion IL-13 may be a useful biomarker predicting ILD stability.
Collapse
Affiliation(s)
- Elena K Joerns
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, Dallas, TX, USA
- Mayo Clinic, Department of Internal Medicine, Division of Rheumatology, Rochester, MN, USA
| | - David Karp
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, Dallas, TX, USA
| | - Song Zhang
- University of Texas Southwestern Medical Center, Department of Population and Data Sciences, Division of Biostatistics, Dallas, TX, USA
| | - Jeffrey A Sparks
- Brigham and Women's Hospital, Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, MA, USA
| | - Traci N Adams
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Dallas, TX, USA
| | - Una E Makris
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, Dallas, TX, USA
- Dallas Veterans Affairs Medical Center, Dallas, TX, USA
| | - Chad A Newton
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Dallas, TX, USA
| |
Collapse
|
6
|
Yang T, Pan Q, Yue R, Liu G, Zhou Y. Daphnetin alleviates silica-induced pulmonary inflammation and fibrosis by regulating the PI3K/AKT1 signaling pathway in mice. Int Immunopharmacol 2024; 133:112004. [PMID: 38613881 DOI: 10.1016/j.intimp.2024.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Silicosis is a hazardous occupational disease caused by inhalation of silica, characterized by persistent lung inflammation that leads to fibrosis and subsequent lung dysfunction. Moreover, the complex pathophysiology of silicosis, the challenges associated with early detection, and the unfavorable prognosis contribute to the limited availability of treatment options. Daphnetin (DAP), a natural lactone, has demonstrated various pharmacological properties, including anti-inflammatory, anti-fibrotic, and pulmonary protective effects. However, the effects of DAP on silicosis and its molecular mechanisms remain uncover. This study aimed to evaluate the therapeutic effects of DAP against pulmonary inflammation and fibrosis using a silica-induced silicosis mouse model, and investigate the potential mechanisms and targets through network pharmacology, proteomics, molecular docking, and cellular thermal shift assay (CETSA). Here, we found that DAP significantly alleviated silica-induced lung injury in mice with silicosis. The results of H&E staining, Masson staining, and Sirius red staining indicated that DAP effectively reduced the inflammatory response and collagen deposition over a 28-day period following lung exposure to silica. Furthermore, DAP reduced the number of TUNEL-positive cells, increased the expression levels of Bcl-2, and decreased the expression of Bax and cleaved caspase-3 in the mice with silicosis. More importantly, DAP suppressed the expression levels of NLRP3 signaling pathway-related proteins, including NLRP3, ASC, and cleaved caspase-1, thereby inhibiting silica-induced lung inflammation. Further studies demonstrated that DAP possesses the ability to inhibit the epithelial mesenchymal transition (EMT) induced by silica through the inhibition of the TGF-β1/Smad2/3 signaling pathway. The experimental results of proteomic analysis found that the PI3K/AKT1 signaling pathway was the key targets of DAP to alleviate lung injury induced by silica. DAP significantly inhibited the activation of the PI3K/AKT1 signaling pathway induced by silica in lung tissues. The conclusion was also verified by the results of molecular and CETSA. To further verify this conclusion, the activity of PI3K/AKT1 signaling pathway was inhibited in A549 cells using LY294002. When the A549 cells were pretreated with LY294002, the protective effect of DAP on silica-induced injury was lost. In conclusion, the results of this study suggest that DAP alleviates pulmonary inflammation and fibrosis induced by silica by modulating the PI3K/AKT1 signaling pathway, and holds promise as a potentially effective treatment for silicosis.
Collapse
Affiliation(s)
- Tianye Yang
- School of Pharmaceutical Science, Wuhan University, Wuhan 430071, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China.
| | - Qian Pan
- Department of Space Physics, Electronic Information School, Hubei Luojia Laboratory, Wuhan University, 430072 Wuhan, China
| | - Rujing Yue
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China
| | - Guanghui Liu
- Department of Ophthalmology, Affiliated People's Hospital (Fujian Provincial People's Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Yuanyuan Zhou
- School of Pharmaceutical Science, Wuhan University, Wuhan 430071, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China
| |
Collapse
|
7
|
Iturbe-Fernández D, Pulito-Cueto V, Mora-Cuesta VM, Remuzgo-Martínez S, Ferrer-Pargada DJ, Genre F, Alonso-Lecue P, López-Mejías R, Atienza-Mateo B, González-Gay MA, Cifrián-Martínez JM. Osteopontin as a Biomarker in Interstitial Lung Diseases. Biomedicines 2024; 12:1108. [PMID: 38791069 PMCID: PMC11118604 DOI: 10.3390/biomedicines12051108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Osteopontin (OPN) is a glycoprotein involved in Th1 and Th17 differentiation, and inflammation and tissue remodeling. OPN is a biomarker of disease activity in patients with autoimmune inflammatory conditions. This study aimed to assess the diagnostic and prognostic value of OPN in interstitial lung diseases (ILDs). Between May 2016 and October 2019, 344 patients with ILD were recruited at the Hospital Universitario Marqués de Valdecilla (Spain) and were prospectively followed-up. This study involved the determination of OPN serum levels by ELISA and OPN RNA expression quantified using qPCR. Six genetic polymorphisms in OPN (rs28357094, rs2853749, rs2853750, rs11728697, rs7695531, and rs1126616) were genotyped using TaqMan assays. OPN serum levels were also assessed in 140 healthy controls. OPN serum levels (median [interquartile range]) were significantly higher in ILD patients than in controls (1.05 [0.75-1.51] ng/mL versus 0.81 [0.65-0.98] ng/mL in healthy controls; p < 0.01). OPN serum levels were inversely correlated with the forced vital capacity. OPN serum levels were also higher in ILD patients who died or underwent lung transplantation when compared with the remaining ILD patients (1.15 [0.80-1.72] ng/mL versus 0.99 [0.66-1.32] ng/mL; p = 0.05). Survival worsened in ILD patients with OPN > 1.03 ng/mL at 1, 3, and 5 years. No statistically significant differences in the genetic frequencies of OPN polymorphisms or the RNA expression were found among the different ILD groups. Elevated levels of OPN in the serum may be a useful indicator in identifying patients with ILD who are more likely to experience poor outcomes.
Collapse
Affiliation(s)
- David Iturbe-Fernández
- Pneumology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (V.M.M.-C.); (D.J.F.-P.)
| | - Verónica Pulito-Cueto
- Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (V.P.-C.); (S.R.-M.); (F.G.); (P.A.-L.); (R.L.-M.); (B.A.-M.)
| | - Víctor M. Mora-Cuesta
- Pneumology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (V.M.M.-C.); (D.J.F.-P.)
| | - Sara Remuzgo-Martínez
- Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (V.P.-C.); (S.R.-M.); (F.G.); (P.A.-L.); (R.L.-M.); (B.A.-M.)
| | - Diego J. Ferrer-Pargada
- Pneumology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (V.M.M.-C.); (D.J.F.-P.)
| | - Fernanda Genre
- Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (V.P.-C.); (S.R.-M.); (F.G.); (P.A.-L.); (R.L.-M.); (B.A.-M.)
| | - Pilar Alonso-Lecue
- Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (V.P.-C.); (S.R.-M.); (F.G.); (P.A.-L.); (R.L.-M.); (B.A.-M.)
| | - Raquel López-Mejías
- Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (V.P.-C.); (S.R.-M.); (F.G.); (P.A.-L.); (R.L.-M.); (B.A.-M.)
| | - Belén Atienza-Mateo
- Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (V.P.-C.); (S.R.-M.); (F.G.); (P.A.-L.); (R.L.-M.); (B.A.-M.)
- Division of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Miguel A. González-Gay
- Medicine and Psychiatry Department, University of Cantabria, 39005 Santander, Spain;
- Division of Rheumatology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - José M. Cifrián-Martínez
- Pneumology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (V.M.M.-C.); (D.J.F.-P.)
- Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (V.P.-C.); (S.R.-M.); (F.G.); (P.A.-L.); (R.L.-M.); (B.A.-M.)
| |
Collapse
|
8
|
Shi X, Chen Y, Shi M, Gao F, Huang L, Wang W, Wei D, Shi C, Yu Y, Xia X, Song N, Chen X, Distler JHW, Lu C, Chen J, Wang J. The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases. Lipids Health Dis 2024; 23:98. [PMID: 38570797 PMCID: PMC10988923 DOI: 10.1186/s12944-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Chen
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Gao
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Lihao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wei Wang
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dong Wei
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chenyi Shi
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuexin Yu
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Xueyi Xia
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Fudan Zhangjiang Institute, Shanghai, People's Republic of China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen, Nuremberg, Germany
| | - Chenqi Lu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China.
- Center for Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Ferrigno I, Verzellesi L, Ottone M, Bonacini M, Rossi A, Besutti G, Bonelli E, Colla R, Facciolongo N, Teopompi E, Massari M, Mancuso P, Ferrari AM, Pattacini P, Trojani V, Bertolini M, Botti A, Zerbini A, Giorgi Rossi P, Iori M, Salvarani C, Croci S. CCL18, CHI3L1, ANG2, IL-6 systemic levels are associated with the extent of lung damage and radiomic features in SARS-CoV-2 infection. Inflamm Res 2024:10.1007/s00011-024-01852-1. [PMID: 38308760 DOI: 10.1007/s00011-024-01852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE AND DESIGN We aimed to identify cytokines whose concentrations are related to lung damage, radiomic features, and clinical outcomes in COVID-19 patients. MATERIAL OR SUBJECTS Two hundred twenty-six patients with SARS-CoV-2 infection and chest computed tomography (CT) images were enrolled. METHODS CCL18, CHI3L1/YKL-40, GAL3, ANG2, IP-10, IL-10, TNFα, IL-6, soluble gp130, soluble IL-6R were quantified in plasma samples using Luminex assays. The Mann-Whitney U test, the Kruskal-Wallis test, correlation and regression analyses were performed. Mediation analyses were used to investigate the possible causal relationships between cytokines, lung damage, and outcomes. AVIEW lung cancer screening software, pyradiomics, and XGBoost classifier were used for radiomic feature analyses. RESULTS CCL18, CHI3L1, and ANG2 systemic levels mainly reflected the extent of lung injury. Increased levels of every cytokine, but particularly of IL-6, were associated with the three outcomes: hospitalization, mechanical ventilation, and death. Soluble IL-6R showed a slight protective effect on death. The effect of age on COVID-19 outcomes was partially mediated by cytokine levels, while CT scores considerably mediated the effect of cytokine levels on outcomes. Radiomic-feature-based models confirmed the association between lung imaging characteristics and CCL18 and CHI3L1. CONCLUSION Data suggest a causal link between cytokines (risk factor), lung damage (mediator), and COVID-19 outcomes.
Collapse
Affiliation(s)
- Ilaria Ferrigno
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Verzellesi
- Unit of Medical Physics, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marta Ottone
- Unit of Epidemiology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Rossi
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Besutti
- Unit of Radiology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences With Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Efrem Bonelli
- Unit of Radiology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Clinical Chemistry and Endocrinology Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rossana Colla
- Clinical Chemistry and Endocrinology Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Nicola Facciolongo
- Unit of Respiratory Diseases, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Teopompi
- Multidisciplinary Internal Medicine Unit, Guastalla Hospital, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marco Massari
- Unit of Infectious Diseases, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pamela Mancuso
- Unit of Epidemiology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Maria Ferrari
- Department of Emergency, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pierpaolo Pattacini
- Unit of Radiology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valeria Trojani
- Unit of Medical Physics, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marco Bertolini
- Unit of Medical Physics, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Botti
- Unit of Medical Physics, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Paolo Giorgi Rossi
- Unit of Epidemiology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mauro Iori
- Unit of Medical Physics, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences With Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
10
|
Tomoto M, Mineharu Y, Sato N, Tamada Y, Nogami-Itoh M, Kuroda M, Adachi J, Takeda Y, Mizuguchi K, Kumanogoh A, Natsume-Kitatani Y, Okuno Y. Idiopathic pulmonary fibrosis-specific Bayesian network integrating extracellular vesicle proteome and clinical information. Sci Rep 2024; 14:1315. [PMID: 38225283 PMCID: PMC10789725 DOI: 10.1038/s41598-023-50905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by severe lung fibrosis and a poor prognosis. Although the biomolecules related to IPF have been extensively studied, molecular mechanisms of the pathogenesis and their association with serum biomarkers and clinical findings have not been fully elucidated. We constructed a Bayesian network using multimodal data consisting of a proteome dataset from serum extracellular vesicles, laboratory examinations, and clinical findings from 206 patients with IPF and 36 controls. Differential protein expression analysis was also performed by edgeR and incorporated into the constructed network. We have successfully visualized the relationship between biomolecules and clinical findings with this approach. The IPF-specific network included modules associated with TGF-β signaling (TGFB1 and LRC32), fibrosis-related (A2MG and PZP), myofibroblast and inflammation (LRP1 and ITIH4), complement-related (SAA1 and SAA2), as well as serum markers, and clinical symptoms (KL-6, SP-D and fine crackles). Notably, it identified SAA2 associated with lymphocyte counts and PSPB connected with the serum markers KL-6 and SP-D, along with fine crackles as clinical manifestations. These results contribute to the elucidation of the pathogenesis of IPF and potential therapeutic targets.
Collapse
Affiliation(s)
- Mei Tomoto
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yohei Mineharu
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yoshinori Tamada
- Innovation Center for Health Promotion, Hirosaki University, 5 Zaifu-Cho Hirosaki City, Aomori, 036-8562, Japan
| | - Mari Nogami-Itoh
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
| | - Masataka Kuroda
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Yayoi Natsume-Kitatani
- Innovation Center for Health Promotion, Hirosaki University, 5 Zaifu-Cho Hirosaki City, Aomori, 036-8562, Japan.
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan.
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15, Kuramoto-Cho, Tokushima City, Tokushima, 770-8503, Japan.
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Biomedical Computational Intelligence Unit, HPC- and AI-Driven Drug Development Platform Division, RIKEN Center for Computational Science, 7-1-26, Minatojima-Minami-Machi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
11
|
Zhu H, Zhou A, Zhang M, Pan L, Wu X, Fu C, Gong L, Yang W, Liu D, Cheng Y. Comprehensive analysis of an endoplasmic reticulum stress-related gene prediction model and immune infiltration in idiopathic pulmonary fibrosis. Front Immunol 2024; 14:1305025. [PMID: 38274787 PMCID: PMC10808546 DOI: 10.3389/fimmu.2023.1305025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease. This study aimed to investigate the involvement of endoplasmic reticulum stress (ERS) in IPF and explore its correlation with immune infiltration. Methods ERS-related differentially expressed genes (ERSRDEGs) were identified by intersecting differentially expressed genes (DEGs) from three Gene Expression Omnibus datasets with ERS-related gene sets. Gene Set Variation Analysis and Gene Ontology were used to explore the potential biological mechanisms underlying ERS. A nomogram was developed using the risk signature derived from the ERSRDEGs to perform risk assessment. The diagnostic value of the risk signature was evaluated using receiver operating characteristics, calibration, and decision curve analyses. The ERS score of patients with IPF was measured using a single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm. Subsequently, a prognostic model based on the ERS scores was established. The proportion of immune cell infiltration was assessed using the ssGSEA and CIBERSORT algorithms. Finally, the expression of ERSRDEGs was validated in vivo and in vitro via RT-qPCR. Results This study developed an 8-ERSRDEGs signature. Based on the expression of these genes, we constructed a diagnostic nomogram model in which agouti-related neuropeptide had a significantly greater impact on the model. The area under the curve values for the predictive value of the ERSRDEGs signature were 0.975 and 1.000 for GSE70866 and GSE110147, respectively. We developed a prognostic model based on the ERS scores of patients with IPF. Furthermore, we classified patients with IPF into two subtypes based on their signatures. The RT-qPCR validation results supported the reliability of most of our conclusions. Conclusion We developed and verified a risk model using eight ERSRDEGs. These eight genes can potentially affect the progression of IPF by regulating ERS and immune responses.
Collapse
Affiliation(s)
- Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital (The First People’s Hospital of Zunyi) of Zunyi Medical University, Zunyi, China
| | - Aiming Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Menglin Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Anshun, Anshun, China
| | - Lin Pan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Chenkun Fu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital (The First People’s Hospital of Zunyi) of Zunyi Medical University, Zunyi, China
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daishun Liu
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yiju Cheng
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Fourth People’s Hospital of Guiyang, Guiyang, China
| |
Collapse
|
12
|
Muruganandam M, Ariza-Hutchinson A, Patel RA, Sibbitt WL. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J Inflamm Res 2023; 16:4633-4660. [PMID: 37868834 PMCID: PMC10590076 DOI: 10.2147/jir.s379815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vascular damage, vasoinstability, and decreased perfusion with ischemia, inflammation, and exuberant fibrosis of the skin and internal organs. Biomarkers are analytic indicators of the biological and disease processes within an individual that can be accurately and reproducibly measured. The field of biomarkers in SSc is complex as recent studies have implicated at least 240 pathways and dysregulated proteins in SSc pathogenesis. Anti-nuclear antibodies (ANA) are classical biomarkers with well-described clinical classifications and are present in more than 90% of SSc patients and include anti-centromere, anti-Th/To, anti-RNA polymerase III, and anti-topoisomerase I antibodies. Transforming growth factor-β (TGF-β) is central to the fibrotic process of SSc and is intimately intertwined with other biomarkers. Tyrosine kinases, interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysophosphatidic acid receptors, and amino acid metabolites are new biomarkers with the potential for developing new therapeutic agents. Other biomarkers implicated in SSc-ILD include signal transducer and activator of transcription 4 (STAT4), CD226 (DNAX accessory molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor-associated kinase-1 (IRAK1), connective tissue growth factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain (CD3ζ) or CD247, the NLR family, SP-D (surfactant protein), KL-6, leucine-rich α2-glycoprotein-1 (LRG1), CCL19, genetic factors including DRB1 alleles, the interleukins (IL-1, IL-4, IL-6, IL-8, IL-10 IL-13, IL-16, IL-17, IL-18, IL-22, IL-32, and IL-35), the chemokines CCL (2,3,5,13,20,21,23), CXC (8,9,10,11,16), CX3CL1 (fractalkine), and GDF15. Adiponectin (an indicator of PPAR activation) and maresin 1 are reduced in SSc patients. A new trend has been the use of biomarker panels with combined complex multifactor analysis, machine learning, and artificial intelligence to determine disease activity and response to therapy. The present review is an update of the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Maheswari Muruganandam
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Angie Ariza-Hutchinson
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rosemina A Patel
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wilmer L Sibbitt
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
13
|
La Rocca G, Ferro F, Sambataro G, Elefante E, Fonzetti S, Fulvio G, Navarro IC, Mosca M, Baldini C. Primary-Sjögren's-Syndrome-Related Interstitial Lung Disease: A Clinical Review Discussing Current Controversies. J Clin Med 2023; 12:3428. [PMID: 37240535 PMCID: PMC10218845 DOI: 10.3390/jcm12103428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Lung involvement, especially interstitial lung disease, is a potentially severe extra-glandular manifestation of Primary Sjogren's Syndrome (pSS-ILD). ILD can manifest either as a late complication of pSS or anticipate sicca symptoms, likely reflecting two different patho-physiological entities. Presence of lung involvement in pSS subjects can remain subclinical for a long time; therefore, patients should be actively screened, and lung ultrasound is currently being investigated as a potential low cost, radiation-free, easily repeatable screening tool for detection of ILD. In contrast, rheumatologic evaluation, serology testing, and minor salivary gland biopsy are crucial for the recognition of pSS in apparently idiopathic ILD patients. Whether the HRCT pattern influences prognosis and treatment response in pSS-ILD is not clear; a UIP pattern associated with a worse prognosis in some studies, but not in others. Many aspects of pSS-ILD, including its actual prevalence, association with specific clinical-serological characteristics, and prognosis, are still debated by the current literature, likely due to poor phenotypic stratification of patients in clinical studies. In the present review, we critically discuss these and other clinically relevant "hot topics" in pSS-ILD. More specifically, after a focused discussion, we compiled a list of questions regarding pSS-ILD that, in our opinion, are not easily answered by the available literature. We subsequently tried to formulate adequate answers on the basis of an extensive literature search and our clinical experience. At the same, we highlighted different issues that require further investigation.
Collapse
Affiliation(s)
- Gaetano La Rocca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Francesco Ferro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Gianluca Sambataro
- Department of Clinical and Experimental Medicine, Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy;
- Artroreuma S.R.L., Rheumatology Outpatient Clinic Associated with the National Health System, Corso S. Vito 53, 95030 Catania, Italy
| | - Elena Elefante
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Silvia Fonzetti
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Giovanni Fulvio
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Inmaculada C. Navarro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Marta Mosca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Chiara Baldini
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| |
Collapse
|
14
|
Aversa Z, Atkinson EJ, Carmona EM, White TA, Heeren AA, Jachim SK, Zhang X, Cummings SR, Chiarella SE, Limper AH, LeBrasseur NK. Biomarkers of cellular senescence in idiopathic pulmonary fibrosis. Respir Res 2023; 24:101. [PMID: 37029417 PMCID: PMC10080755 DOI: 10.1186/s12931-023-02403-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/19/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Cellular senescence is a cell fate in response to diverse forms of age-related damage and stress that has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The associations between circulating levels of candidate senescence biomarkers and disease outcomes have not been specifically studied in IPF. In this study we assessed the circulating levels of candidate senescence biomarkers in individuals affected by IPF and controls and evaluated their ability to predict disease outcomes. METHODS We measured the plasma concentrations of 32 proteins associated with senescence in Lung Tissue Research Consortium participants and studied their relationship with the diagnosis of IPF, parameters of pulmonary and physical function, health-related quality of life, mortality, and lung tissue expression of P16, a prototypical marker of cellular senescence. A machine learning approach was used to evaluate the ability of combinatorial biomarker signatures to predict disease outcomes. RESULTS The circulating levels of several senescence biomarkers were significantly elevated in persons affected by IPF compared to controls. A subset of biomarkers accurately classified participants as having or not having the disease and was significantly correlated with measures of pulmonary function, health-related quality of life and, to an extent, physical function. An exploratory analysis revealed senescence biomarkers were also associated with mortality in IPF participants. Finally, the plasma concentrations of several biomarkers were associated with their expression levels in lung tissue as well as the expression of P16. CONCLUSIONS Our results suggest that circulating levels of candidate senescence biomarkers are informative of disease status, pulmonary and physical function, and health-related quality of life. Additional studies are needed to validate the combinatorial biomarkers signatures that emerged using a machine learning approach.
Collapse
Affiliation(s)
- Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Eva M Carmona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Amanda A Heeren
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sarah K Jachim
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Steven R Cummings
- Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | | | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Krebs von den Lungen-6 (KL-6) as a diagnostic marker for pulmonary fibrosis: A systematic review and meta-analysis. Clin Biochem 2023; 114:30-38. [PMID: 36706799 DOI: 10.1016/j.clinbiochem.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a respiratory disease with end-stage pathological changes of interstitial lung disease that severely affects the survival of patients. Among the many biomarkers that have been identified, serum Krebs von den Lungen-6 (KL-6) is by far the most frequent marker for detecting pulmonary fibrosis. METHODS We searched Medline (Pubmed), Embase, Web of science, and Cochrane databases for articles published between inception and August 2022 in order to explore the association between KL-6 and pulmonary fibrosis. Characteristics of patients and studies included in the articles were extracted by two independent investigators according to the inclusion and exclusion criteria. We reflected the accuracy of KL-6 in distinguishing between PF and non-PF by calculating sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and area under the curve by SROC curves. The presence of heterogeneity was reflected by I2 in the forest plot, and then the source of heterogeneity was investigated by meta-regression. RESULTS We searched for 939 research papers, of which 16 met the inclusion criteria. Meta-analysis showed a sensitivity of 0.87 (95 % CI: 0.78-0.92), specificity of 0.91 (95 % CI: 0.86-0.95), positive likelihood ratio of 10.2 (95 % CI: 6.1, 17.0) and negative likelihood ratio of 0.14 (95 % CI: 0.08, 0.25) for KL-6 in diagnosing pulmonary fibrosis. The area under the receiver operating characteristic curve was 0.95 (95 % CI: 0.93-0.97). The results showed significant heterogeneity in both sensitivity and specificity (I2 = 94.55 and 91.52, respectively). Meta-regression analysis identified race as the cause of sensitivity heterogeneity and assay methodology as the cause of specificity heterogeneity. CONCLUSIONS The analysis of this study suggests that serum KL-6 is a better tool for the diagnosis of pulmonary fibrosis when factors such as disease cause and control group category are not specifically considered.
Collapse
|
16
|
Xiao T, Ren S, Bao J, Gao D, Sun R, Gu X, Gao J, Chen S, Jin J, Wei L, Wu C, Yang C, Yang G, Zhou H. Vorapaxar proven to be a promising candidate for pulmonary fibrosis by intervening in the PAR1/JAK2/STAT1/3 signaling pathway-an experimental in vitro and vivo study. Eur J Pharmacol 2023; 943:175438. [PMID: 36682482 DOI: 10.1016/j.ejphar.2022.175438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease, and its 5-year mortality rate is even higher than the mortality rate of some cancers. Fibrosis can cause irreversible damage to lung structure and function. Treatment options for IPF remain limited, and there is an urgent need to develop effective therapeutic drugs. Protease activated receptor-1 (PAR-1) is a G-protein-coupled receptor and is considered a potential target for the treatment of fibrotic diseases. Vorapaxar is a clinically approved PAR-1 antagonist for cardiovascular protection. The purpose of this study was to explore the potential effect and mechanism of Vorapaxar on pulmonary fibrosis in vivo and in vitro. In the experimental animal model, Vorapaxar can effectively alleviate bleomycin (BLM)-induced pulmonary fibrosis. Treatment with 2.5, 5 or 10 mg/kg Vorapaxar once a day reduced the degree of fibrosis in a dose-dependent manner. The expression of fibronectin, collagen and α smooth muscle actin decreased significantly at the messenger RNA (mRNA) and protein levels in treated mice. In vitro, our results showed that Vorapaxar could inhibit the activation of fibroblasts induced by thrombin in a dose-dependent manner. In terms of mechanism, Vorapaxar inhibits the signal transduction of JAK2/STAT1/3 by inhibiting the activation of protease activated receptor 1, which reduces the expression of HSP90β and the interaction between HSP90β and transforming growth factor-β (TGFβ) receptor II and inhibits the TGFβ/Smad signaling pathway. In conclusion, Vorapaxar inhibits the activation of pulmonary fibroblasts induced by thrombin by targeting protease activated receptor 1 and alleviates BLM-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Shanfa Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Jiali Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Dandi Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ronghao Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd, Tianjin, 301700, China
| | - Shanshan Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Longhu Middle Ring Road, Zhengzhou, Jinshui District, Henan Province, China
| | - Jin Jin
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Luqing Wei
- Tianjin Beichen Hospital, No. 7, Beiyi Road, Beichen District, Tianjin, 300400, China
| | - Chunwa Wu
- Tianjin Beichen Hospital, No. 7, Beiyi Road, Beichen District, Tianjin, 300400, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| |
Collapse
|
17
|
Zhang Y, Wang C, Xia Q, Jiang W, Zhang H, Amiri-Ardekani E, Hua H, Cheng Y. Machine learning-based prediction of candidate gene biomarkers correlated with immune infiltration in patients with idiopathic pulmonary fibrosis. Front Med (Lausanne) 2023; 10:1001813. [PMID: 36860337 PMCID: PMC9968813 DOI: 10.3389/fmed.2023.1001813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Objective This study aimed to identify candidate gene biomarkers associated with immune infiltration in idiopathic pulmonary fibrosis (IPF) based on machine learning algorithms. Methods Microarray datasets of IPF were extracted from the Gene Expression Omnibus (GEO) database to screen for differentially expressed genes (DEGs). The DEGs were subjected to enrichment analysis, and two machine learning algorithms were used to identify candidate genes associated with IPF. These genes were verified in a validation cohort from the GEO database. Receiver operating characteristic (ROC) curves were plotted to assess the predictive value of the IPF-associated genes. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used to evaluate the proportion of immune cells in IPF and normal tissues. Additionally, the correlation between the expression of IPF-associated genes and the infiltration levels of immune cells was examined. Results A total of 302 upregulated and 192 downregulated genes were identified. Functional annotation, pathway enrichment, Disease Ontology and gene set enrichment analyses revealed that the DEGs were related to the extracellular matrix and immune responses. COL3A1, CDH3, CEBPD, and GPIHBP1 were identified as candidate biomarkers using machine learning algorithms, and their predictive value was verified in a validation cohort. Additionally, ROC analysis revealed that the four genes had high predictive accuracy. The infiltration levels of plasma cells, M0 macrophages and resting dendritic cells were higher and those of resting natural killer (NK) cells, M1 macrophages and eosinophils were lower in the lung tissues of patients with IPF than in those of healthy individuals. The expression of the abovementioned genes was correlated with the infiltration levels of plasma cells, M0 macrophages and eosinophils. Conclusion COL3A1, CDH3, CEBPD, and GPIHBP1 are candidate biomarkers of IPF. Plasma cells, M0 macrophages and eosinophils may be involved in the development of IPF and may serve as immunotherapeutic targets in IPF.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Cong Wang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Qingqing Xia
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Weilong Jiang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Huizhe Zhang
- Department of Respiratory Medicine, Yancheng Hospital of Traditional Chinese Medicine, Yancheng Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Ehsan Amiri-Ardekani
- Department of Phytopharmaceuticals (Traditional Pharmacy), Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,*Correspondence: Ehsan Amiri-Ardekani,
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China,Haibing Hua,
| | - Yi Cheng
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yi Cheng,
| |
Collapse
|
18
|
Cooley JC, Javkhlan N, Wilson JA, Foster DG, Edelman BL, Ortiz LA, Schwartz DA, Riches DW, Redente EF. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 2023; 8:e163762. [PMID: 36752201 PMCID: PMC9977433 DOI: 10.1172/jci.insight.163762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
Patients with progressive fibrosing interstitial lung diseases (PF-ILDs) carry a poor prognosis and have limited therapeutic options. A hallmark feature is fibroblast resistance to apoptosis, leading to their persistence, accumulation, and excessive deposition of extracellular matrix. A complex balance of the B cell lymphoma 2 (BCL-2) protein family controlling the intrinsic pathway of apoptosis and fibroblast reliance on antiapoptotic proteins has been hypothesized to contribute to this resistant phenotype. Examination of lung tissue from patients with PF-ILD (idiopathic pulmonary fibrosis and silicosis) and mice with PF-ILD (repetitive bleomycin and silicosis) showed increased expression of antiapoptotic BCL-2 family members in α-smooth muscle actin-positive fibroblasts, suggesting that fibroblasts from fibrotic lungs may exhibit increased susceptibility to inhibition of antiapoptotic BCL-2 family members BCL-2, BCL-XL, and BCL-W with the BH3 mimetic ABT-263. We used 2 murine models of PF-ILD to test the efficacy of ABT-263 in reversing established persistent pulmonary fibrosis. Treatment with ABT-263 induced fibroblast apoptosis, decreased fibroblast numbers, and reduced lung collagen levels, radiographic disease, and histologically evident fibrosis. Our studies provide insight into how fibroblasts gain resistance to apoptosis and become sensitive to the therapeutic inhibition of antiapoptotic proteins. By targeting profibrotic fibroblasts, ABT-263 offers a promising therapeutic option for PF-ILDs.
Collapse
Affiliation(s)
- Joseph C. Cooley
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nomin Javkhlan
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jasmine A. Wilson
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Daniel G. Foster
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Benjamin L. Edelman
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Luis A. Ortiz
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A. Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David W.H. Riches
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
19
|
Glenn LM, Troy LK, Corte TJ. Novel diagnostic techniques in interstitial lung disease. Front Med (Lausanne) 2023; 10:1174443. [PMID: 37188089 PMCID: PMC10175799 DOI: 10.3389/fmed.2023.1174443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Research into novel diagnostic techniques and targeted therapeutics in interstitial lung disease (ILD) is moving the field toward increased precision and improved patient outcomes. An array of molecular techniques, machine learning approaches and other innovative methods including electronic nose technology and endobronchial optical coherence tomography are promising tools with potential to increase diagnostic accuracy. This review provides a comprehensive overview of the current evidence regarding evolving diagnostic methods in ILD and to consider their future role in routine clinical care.
Collapse
Affiliation(s)
- Laura M. Glenn
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Laura M. Glenn,
| | - Lauren K. Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
20
|
Seeliger B, Carleo A, Wendel-Garcia PD, Fuge J, Montes-Warboys A, Schuchardt S, Molina-Molina M, Prasse A. Changes in serum metabolomics in idiopathic pulmonary fibrosis and effect of approved antifibrotic medication. Front Pharmacol 2022; 13:837680. [PMID: 36059968 PMCID: PMC9428132 DOI: 10.3389/fphar.2022.837680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality and morbidity. Approval of antifibrotic therapy has ameliorated disease progression, but therapy response is heterogeneous and to date, adequate biomarkers predicting therapy response are lacking. In recent years metabolomic technology has improved and is broadly applied in cancer research thus enabling its use in other fields. Recently both aberrant metabolic and lipidomic pathways have been described to influence profibrotic responses. We thus aimed to characterize the metabolomic and lipidomic changes between IPF and healthy volunteers (HV) and analyze metabolomic changes following treatment with nintedanib and pirfenidone. We collected serial serum samples from two IPF cohorts from Germany (n = 122) and Spain (n = 21) and additionally age-matched healthy volunteers (n = 16). Metabolomic analysis of 630 metabolites covering 14 small molecule and 12 different lipid classes was carried out using flow injection analysis tandem mass spectrometry for lipids and liquid chromatography tandem mass spectrometry for small molecules. Levels were correlated with survival and disease severity. We identified 109 deregulated analytes in IPF compared to HV in cohort 1 and 112 deregulated analytes in cohort 2. Metabolites which were up-regulated in both cohorts were mainly triglycerides while the main class of down-regulated metabolites were phosphatidylcholines. Only a minority of de-regulated analytes were small molecules. Triglyceride subclasses were inversely correlated with baseline disease severity (GAP-score) and a clinical compound endpoint of lung function decline or death. No changes in the metabolic profiles were observed following treatment with pirfenidone. Nintedanib treatment induced up-regulation of triglycerides and phosphatidylcholines. Patients in whom an increase in these metabolites was observed showed a trend towards better survival using the 2-years composite endpoint (HR 2.46, p = 0.06). In conclusion, we report major changes in metabolites in two independent cohorts testing a large number of patients. Specific lipidic metabolite signatures may serve as biomarkers for disease progression or favorable treatment response to nintedanib.
Collapse
Affiliation(s)
- Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Alfonso Carleo
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | | | - Jan Fuge
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ana Montes-Warboys
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Maria Molina-Molina
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- *Correspondence: Antje Prasse,
| |
Collapse
|
21
|
Bartold K, Iskierko Z, Borowicz P, Noworyta K, Lin CY, Kalecki J, Sharma PS, Lin HY, Kutner W. Molecularly imprinted polymer-based extended-gate field-effect transistor (EG-FET) chemosensor for selective determination of matrix metalloproteinase-1 (MMP-1) protein. Biosens Bioelectron 2022; 208:114203. [PMID: 35395618 DOI: 10.1016/j.bios.2022.114203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
A conducting molecularly imprinted polymer (MIP) film was integrated with an extended-gate field-effect transistor (EG-FET) transducer to determine epitopes of matrix metalloproteinase-1 (MMP-1) protein biomarker of idiopathic pulmonary fibrosis (IPF) selectively. Most suitable epitopes for imprinting were selected with Basic Local Alignment Search Tool software. From a pool of MMP-1 epitopes, the two, i.e., MIAHDFPGIGHK and HGYPKDIYSS, the relatively short ones, most promising for MMP-1 determination, were selected, mainly considering their advantageous outermost location in the protein molecule and stability against aggregation. MIPs templated with selected epitopes of the MMP-1 protein were successfully prepared by potentiodynamic electropolymerization and simultaneously deposited as thin films on electrodes. The chemosensors, constructed of MIP films integrated with EG-FET, proved useful in determining these epitopes even in a medium as complex as a control serum. The limit of detection for the MIAHDFPGIGHK and HGYPKDIYSS epitope was ∼60 and 20 nM, respectively. Moreover, the chemosensors selectively recognized whole MMP-1 protein in the 50-500 nM concentration range in buffered control serum samples.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Chu-Yun Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| |
Collapse
|
22
|
Decato BE, Leeming DJ, Sand JMB, Fischer A, Du S, Palmer SM, Karsdal M, Luo Y, Minnich A. LPA 1 antagonist BMS-986020 changes collagen dynamics and exerts antifibrotic effects in vitro and in patients with idiopathic pulmonary fibrosis. Respir Res 2022; 23:61. [PMID: 35303880 PMCID: PMC8933988 DOI: 10.1186/s12931-022-01980-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease with limited treatment options. A phase 2 trial (NCT01766817) showed that twice-daily treatment with BMS-986020, a lysophosphatidic acid receptor 1 (LPA1) antagonist, significantly decreased the slope of forced vital capacity (FVC) decline over 26 weeks compared with placebo in patients with IPF. This analysis aimed to better understand the impact of LPA1 antagonism on extracellular matrix (ECM)-neoepitope biomarkers and lung function through a post hoc analysis of the phase 2 study, along with an in vitro fibrogenesis model. METHODS Serum levels of nine ECM-neoepitope biomarkers were measured in patients with IPF. The association of biomarkers with baseline and change from baseline FVC and quantitative lung fibrosis as measured with high-resolution computed tomography, and differences between treatment arms using linear mixed models, were assessed. The Scar-in-a-Jar in vitro fibrogenesis model was used to further elucidate the antifibrotic mechanism of BMS-986020. RESULTS In 140 patients with IPF, baseline ECM-neoepitope biomarker levels did not predict FVC progression but was significantly correlated with baseline FVC and lung fibrosis measurements. Most serum ECM-neoepitope biomarker levels were significantly reduced following BMS-986020 treatment compared with placebo, and several of the reductions correlated with FVC and/or lung fibrosis improvement. In the Scar-in-a-Jar in vitro model, BMS-986020 potently inhibited LPA1-induced fibrogenesis. CONCLUSIONS BMS-986020 reduced serum ECM-neoepitope biomarkers, which were previously associated with IPF prognosis. In vitro, LPA promoted fibrogenesis, which was LPA1 dependent and inhibited by BMS-986020. Together these data elucidate a novel antifibrotic mechanism of action for pharmacological LPA1 blockade. Trial registration ClinicalTrials.gov identifier: NCT01766817; First posted: January 11, 2013; https://clinicaltrials.gov/ct2/show/NCT01766817 .
Collapse
Affiliation(s)
- Benjamin E Decato
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA
| | | | | | - Aryeh Fischer
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA
| | - Shuyan Du
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA
| | - Scott M Palmer
- Duke University Medical Center, 2085 Msrb2 2 Genome Ct., Durham, NC, 27710, USA
| | - Morten Karsdal
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | - Yi Luo
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA
| | - Anne Minnich
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA.
| |
Collapse
|
23
|
Xue M, Zhang T, Lin R, Zeng Y, Cheng ZJ, Li N, Zheng P, Huang H, Zhang XD, Wang H, Sun B. Clinical utility of heparin‐binding protein as an acute‐phase inflammatory marker in interstitial lung disease. J Leukoc Biol 2022; 112:861-873. [PMID: 35156235 DOI: 10.1002/jlb.3ma1221-489r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mingshan Xue
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Teng Zhang
- Faculty of Health Sciences University of Macau Taipa Macau China
| | - Runpei Lin
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Yifeng Zeng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Zhangkai Jason Cheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Ning Li
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Peiyan Zheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Huimin Huang
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | | | - Hongman Wang
- Department of Respiratory and Critical Care Medicine The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai China
| | - Baoqing Sun
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| |
Collapse
|
24
|
Shi X, Chen Y, Liu Q, Mei X, Liu J, Tang Y, Luo R, Sun D, Ma Y, Wu W, Tu W, Zhao Y, Xu W, Ke Y, Jiang S, Huang Y, Zhang R, Wang L, Chen Y, Xia J, Pu W, Zhu H, Zuo X, Li Y, Xu J, Gao F, Wei D, Chen J, Yin W, Wang Q, Dai H, Yang L, Guo G, Cui J, Song N, Zou H, Zhao S, Distler JH, Jin L, Wang J. LDLR dysfunction induces LDL accumulation and promotes pulmonary fibrosis. Clin Transl Med 2022; 12:e711. [PMID: 35083881 PMCID: PMC8792399 DOI: 10.1002/ctm2.711] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Treatments for pulmonary fibrosis (PF) are ineffective because its molecular pathogenesis and therapeutic targets are unclear. Here, we show that the expression of low-density lipoprotein receptor (LDLR) was significantly decreased in alveolar type II (ATII) and fibroblast cells, whereas it was increased in endothelial cells from systemic sclerosis-related PF (SSc-PF) patients and idiopathic PF (IPF) patients compared with healthy controls. However, the plasma levels of low-density lipoprotein (LDL) increased in SSc-PF and IPF patients. The disrupted LDL-LDLR metabolism was also observed in four mouse PF models. Upon bleomycin (BLM) treatment, Ldlr-deficient (Ldlr-/-) mice exhibited remarkably higher LDL levels, abundant apoptosis, increased fibroblast-like endothelial and ATII cells and significantly earlier and more severe fibrotic response compared to wild-type mice. In vitro experiments revealed that apoptosis and TGF-β1 production were induced by LDL, while fibroblast-like cell accumulation and ET-1 expression were induced by LDLR knockdown. Treatment of fibroblasts with LDL or culture medium derived from LDL-pretreated endothelial or epithelial cells led to obvious fibrotic responses in vitro. Similar results were observed after LDLR knockdown operation. These results suggest that disturbed LDL-LDLR metabolism contributes in various ways to the malfunction of endothelial and epithelial cells, and fibroblasts during pulmonary fibrogenesis. In addition, pharmacological restoration of LDLR levels by using a combination of atorvastatin and alirocumab inhibited BLM-induced LDL elevation, apoptosis, fibroblast-like cell accumulation and mitigated PF in mice. Therefore, LDL-LDLR may serve as an important mediator in PF, and LDLR enhancing strategies may have beneficial effects on PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Yahui Chen
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Xueqian Mei
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Jing Liu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
| | - Yulong Tang
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Ruoyu Luo
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Dayan Sun
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yanyun Ma
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Wenzhen Tu
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yinhuan Zhao
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Weihong Xu
- The Clinical Laboratory of Tongren HosipitalShanghai Jiaotong UniversityShanghaiP. R. China
| | - Yuehai Ke
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang ProvinceP. R. China
| | - Shuai Jiang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yan Huang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Rui Zhang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Lei Wang
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yuanyuan Chen
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Jingjing Xia
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Weilin Pu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Honglin Zhu
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yisha Li
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Fei Gao
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Dong Wei
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Jingyu Chen
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Qingwen Wang
- Rheumatology and Immunology DepartmentPeking University Shenzhen HospitalShenzhenP. R. China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
| | - Libing Yang
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
- School of MedicineTsinghua UniversityBeijingP. R. China
| | - Gang Guo
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Jimin Cui
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan UniversityFudan Zhangjiang InstituteShanghaiP. R. China
| | - Hejian Zou
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
| | - Shimin Zhao
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiP. R. China
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
| | - Li Jin
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| |
Collapse
|
25
|
Review: Serum Biomarkers of Lung Fibrosis in Interstitial Pneumonia with Autoimmune Features-What Do We Already Know? J Clin Med 2021; 11:jcm11010079. [PMID: 35011819 PMCID: PMC8745166 DOI: 10.3390/jcm11010079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial pneumonia with autoimmune features (IPAF) belongs to a group of diseases called interstitial lung diseases (ILDs), which are disorders of a varied prognosis and course. Finding sufficiently specific and sensitive biomarkers would enable the progression to be predicted, the natural history to be monitored and patients to be stratified according to their treatment. To assess the significance of pulmonary fibrosis biomarkers studied thus far, we searched the PubMed, Medline and Cochrane Library databases for papers published between January 2015 and June 2021. We focused on circulating biomarkers. A primary review of the databases identified 38 articles of potential interest. Overall, seven articles fulfilled the inclusion criteria. This review aims to assess the diagnostic and prognostic value of molecules such as KL-6, SP-A, SP-D, circulating fibrocytes, CCL2, CXCL13, CXCL9, CXCL10 and CXCL11. All of these biomarkers have previously been studied in idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD). IPAF is a disorder of a heterogeneous nature. It explains the lack of coherent observations in terms of correlations with functional parameters. There is still no meta-analysis of pulmonary fibrosis biomarkers in IPAF. This is mainly due to the heterogeneity of the methodology and groups analysed in the research. More research in this area is needed.
Collapse
|
26
|
Serum Krebs von den Lungen-6 for Predicting the Severity of COVID-19 Lung Injury: A Systematic Review and Meta-Analysis. IRANIAN BIOMEDICAL JOURNAL 2021; 25:381-9. [PMID: 34641641 PMCID: PMC8744693 DOI: 10.52547/ibj.25.6.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Lung injury is common in coronavirus disease 2019 (COVID-19) patients. The severity of lung injury appears to be reflected in serum Krebs von den Lungen-6 (KL-6), a glycoprotein expressed on type II alveolar epithelium. This study aims to assess the role of serum KL-6 in reflecting the severity of lung injury in COVID-19 patients. Methods A systematic search was conducted in Scopus, PubMed, Wiley Online Library, and ProQuest. Articles were screened based on several eligibility criteria and assessed for study quality using Newcastle-Ottawa Scale. Results This systematic review included four studies involving a total of 151 adult COVID-19 patients. Pooled analysis revealed that serum KL-6 was significantly higher in severe patients (SMD = 1.16; 95% CI = 0.69–1.63) with moderately high pooled sensitivity (79%; 95% CI = 61–91%) and specificity (86%; 95% CI = 72–95%). Conclusion High serum KL-6 may depict more severe lung injury in COVID-19 patients with moderately high sensitivity and specificity.
Collapse
|
27
|
Clynick B, Corte TJ, Jo HE, Stewart I, Glaspole IN, Grainge C, Maher TM, Navaratnam V, Hubbard R, Hopkins PMA, Reynolds PN, Chapman S, Zappala C, Keir GJ, Cooper WA, Mahar AM, Ellis S, Goh NS, De Jong E, Cha L, Tan DBA, Leigh L, Oldmeadow C, Walters EH, Jenkins RG, Moodley Y. Biomarker signatures for progressive idiopathic pulmonary fibrosis. Eur Respir J 2021; 59:13993003.01181-2021. [PMID: 34675050 DOI: 10.1183/13993003.01181-2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/03/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Idiopathic Pulmonary Fibrosis (IPF) is a progressive lung disease in which circulatory biomarkers has the potential for guiding management in clinical practice. OBJECTIVES We assessed the prognostic role of serum biomarkers in three independent IPF cohorts, the Australian IPF Registry (AIPFR), Trent Lung Fibrosis (TLF) and Prospective Observation of Fibrosis in the Lung Clinical Endpoints (PROFILE). METHODS In the AIPFR, candidate proteins were assessed by ELISA as well as in an unbiased proteomic approach. Least absolute shrinkage and selection operator (LASSO) regression was used to restrict the selection of markers that best accounted for the progressor phenotype at one-year in AIPFR, and subsequently prospectively selected for replication in the validation TLF cohort and assessed retrospectively in PROFILE. Four significantly replicating biomarkers were aggregated into a progression index (PI) model based on tertiles of circulating concentrations. MAIN RESULTS One-hundred and eighty-nine participants were included in the AIPFR cohort, 205 participants from the TLF, and 122 participants from the PROFILE cohorts. Differential biomarker expression was observed by ELISA and replicated for osteopontin, matrix metallopeptidase-7, intercellular adhesion molecule-1 and periostin for those with a progressor phenotype at one-year. Proteomic data did not replicate. The PI in the AIPFR, TLF and PROFILE predicted risk of progression, mortality and progression-free survival. A statistical model incorporating PI demonstrated the capacity to distinguish disease progression at 12 months, which was increased beyond the clinical GAP model alone in all cohorts, and significantly so within incidence based TLF and PROFILE cohorts. CONCLUSION A panel of circulatory biomarkers can provide potentially valuable clinical assistance in the prognosis of IPF patients.
Collapse
Affiliation(s)
- Britt Clynick
- Centre of Research Excellence in Pulmonary Fibrosis, Australia .,Institute for Respiratory Health Inc, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia.,The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors
| | - Tamera J Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Australia.,The University of Sydney Central Clinical School, Camperdown, New South Wales, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors
| | - Helen E Jo
- Centre of Research Excellence in Pulmonary Fibrosis, Australia.,The University of Sydney Central Clinical School, Camperdown, New South Wales, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Iain Stewart
- NIHR Biomedical Research Centre, Respiratory Theme, University of Nottingham, Nottingham, UK
| | - Ian N Glaspole
- Monash University, Clayton, Victoria, Australia.,Alfred Hospital, Melbourne, Victoria, Australia
| | - Christopher Grainge
- University of Newcastle, Callaghan, New South Wales, Australia.,John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | | | - Vidya Navaratnam
- NIHR Biomedical Research Centre, Respiratory Theme, University of Nottingham, Nottingham, UK.,Nottingham University Hospitals, Nottingham, UK
| | - Richard Hubbard
- NIHR Biomedical Research Centre, Respiratory Theme, University of Nottingham, Nottingham, UK
| | - Peter M A Hopkins
- University of Queensland, St Lucia, Queensland, Australia.,Prince Charles Hospital, Chermside, Queensland, Australia
| | - Paul N Reynolds
- University of Adelaide, Adelaide, South Australia, Australia.,Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Sally Chapman
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | - Gregory J Keir
- University of Queensland, St Lucia, Queensland, Australia
| | - Wendy A Cooper
- The University of Sydney Central Clinical School, Camperdown, New South Wales, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Western Sydney University, Sydney, New South Wales, Australia
| | - Annabelle M Mahar
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Samantha Ellis
- Monash University, Clayton, Victoria, Australia.,Alfred Hospital, Melbourne, Victoria, Australia
| | - Nicole S Goh
- Austin Hospital, Heidelberg, Victoria, Australia.,Institute of Breathing and Sleep, Heidelberg, Victoria, Australia
| | - Emma De Jong
- Institute for Respiratory Health Inc, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Lilian Cha
- Institute for Respiratory Health Inc, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Dino B A Tan
- Institute for Respiratory Health Inc, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Lucy Leigh
- University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Christopher Oldmeadow
- University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - E Haydn Walters
- Centre of Research Excellence in Pulmonary Fibrosis, Australia.,Alfred Hospital, Melbourne, Victoria, Australia.,University of Tasmania, Hobart, Tasmania, Australia.,University of Melbourne, Parkville, Victoria, Australia.,Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - R Gisli Jenkins
- NIHR Biomedical Research Centre, Respiratory Theme, University of Nottingham, Nottingham, UK
| | - Yuben Moodley
- Centre of Research Excellence in Pulmonary Fibrosis, Australia.,Institute for Respiratory Health Inc, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia.,Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
28
|
Extracellular Heat Shock Proteins as Therapeutic Targets and Biomarkers in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms22179316. [PMID: 34502225 PMCID: PMC8430559 DOI: 10.3390/ijms22179316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.
Collapse
|
29
|
Cabrera Cesar E, Lopez-Lopez L, Lara E, Hidalgo-San Juan MV, Parrado Romero C, Palencia JLRS, Martín-Montañez E, Garcia-Fernandez M. Serum Biomarkers in Differential Diagnosis of Idiopathic Pulmonary Fibrosis and Connective Tissue Disease-Associated Interstitial Lung Disease. J Clin Med 2021; 10:jcm10143167. [PMID: 34300333 PMCID: PMC8307287 DOI: 10.3390/jcm10143167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction: The goal of this study is to determine whether Advanced glycosylated end-products (AGE), Advanced oxidation protein products (AOPP) and Matrix metalloproteinase 7 (MMP7) could be used as differential biomarkers for idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD). Method: Seventy-three patients were enrolled: 29 with IPF, 14 with CTD-ILD, and 30 healthy controls. The study included a single visit by participants. A blood sample was drawn and serum was analysed for AGE using spectrofluorimetry, AOPP by spectrophotometry, and MMP7 using sandwich-type enzyme-linked immunosorbent assay. Results: AGE, AOPP and MMP7 serum levels were significantly higher in both IPF and CTD-ILD patients versus healthy controls; and AGE was also significantly elevated in CTD-ILD compared to the IPF group. AGE plasma levels clearly distinguished CTD-ILD patients from healthy participants (AUC = 0.95; 95% IC 0.86–1), whereas in IPF patients, the distinction was moderate (AUC = 0.78; 95% IC 0.60–0.97). Conclusion: In summary, our results provide support for the potential value of serum AGE, AOPP and MMP7 concentrations as diagnostic biomarkers in IPF and CTD-ILD to differentiate between ILD patients and healthy controls. Furthermore, this study provides evidence, for the first time, for the possible use of AGE as a differential diagnostic biomarker to distinguish between IPF and CTD-ILD. The value of these biomarkers as additional tools in a multidisciplinary approach to IPF and CTD-ILD diagnosis needs to be considered and further explored. Multicentre studies are necessary to understand the role of AGE in differential diagnosis.
Collapse
Affiliation(s)
- Eva Cabrera Cesar
- Respiratory Service, Universitary Virgen de la Victoria Hospital, 29010 Málaga, Spain; (L.L.-L.); (M.V.H.-S.J.)
- Correspondence: ; Tel.: +34-646-905-201
| | - Lidia Lopez-Lopez
- Respiratory Service, Universitary Virgen de la Victoria Hospital, 29010 Málaga, Spain; (L.L.-L.); (M.V.H.-S.J.)
| | - Estrella Lara
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| | | | - Concepcion Parrado Romero
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| | - Jose Luis Royo Sánchez Palencia
- Department of Biochemistry, Biomedical Research Institute of Málaga, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
| | - Elisa Martín-Montañez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain;
| | - Maria Garcia-Fernandez
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| |
Collapse
|
30
|
Li X, Cai H, Cai Y, Zhang Q, Ding Y, Zhuang Q. Investigation of a Hypoxia-Immune-Related Microenvironment Gene Signature and Prediction Model for Idiopathic Pulmonary Fibrosis. Front Immunol 2021; 12:629854. [PMID: 34194423 PMCID: PMC8236709 DOI: 10.3389/fimmu.2021.629854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background There is growing evidence found that the role of hypoxia and immune status in idiopathic pulmonary fibrosis (IPF). However, there are few studies about the role of hypoxia and immune status in the lung milieu in the prognosis of IPF. This study aimed to develop a hypoxia-immune-related prediction model for the prognosis of IPF. Methods Hypoxia and immune status were estimated with microarray data of a discovery cohort from the GEO database using UMAP and ESTIMATE algorithms respectively. The Cox regression model with the LASSO method was used for identifying prognostic genes and developing hypoxia-immune-related genes. Cibersort was used to evaluate the difference of 22 kinds of immune cell infiltration. Three independent validation cohorts from GEO database were used for external validation. Peripheral blood mononuclear cell (PBMC) and bronchoalveolar lavage fluid (BALF) were collected to be tested by Quantitative reverse transcriptase-PCR (qRT-PCR) and flow cytometry from 22 clinical samples, including 13 healthy controls, six patients with non-fibrotic pneumonia and three patients with pulmonary fibrosis. Results Hypoxia and immune status were significantly associated with the prognosis of IPF patients. High hypoxia and high immune status were identified as risk factors for overall survival. CD8+ T cell, activated CD4+ memory T cell, NK cell, activated mast cell, M1 and M0 macrophages were identified as key immune cells in hypoxia-immune-related microenvironment. A prediction model for IPF prognosis was established based on the hypoxia-immune-related one protective and nine risk DEGs. In the independent validation cohorts, the prognostic prediction model performed the significant applicability in peripheral whole blood, peripheral blood mononuclear cell, and lung tissue of IPF patients. The preliminary clinical specimen validation suggested the reliability of most conclusions. Conclusions The hypoxia-immune-based prediction model for the prognosis of IPF provides a new idea for prognosis and treatment.
Collapse
Affiliation(s)
- Xinyu Li
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Haozheng Cai
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yufeng Cai
- School of Life Science, Central South University, Changsha, China
| | - Quyan Zhang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yinghe Ding
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
31
|
Shao T, Shi X, Yang S, Zhang W, Li X, Shu J, Alqalyoobi S, Zeki AA, Leung PS, Shuai Z. Interstitial Lung Disease in Connective Tissue Disease: A Common Lesion With Heterogeneous Mechanisms and Treatment Considerations. Front Immunol 2021; 12:684699. [PMID: 34163483 PMCID: PMC8215654 DOI: 10.3389/fimmu.2021.684699] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
Connective tissue disease (CTD) related interstitial lung disease (CTD-ILD) is one of the leading causes of morbidity and mortality of CTD. Clinically, CTD-ILD is highly heterogenous and involves rheumatic immunity and multiple manifestations of respiratory complications affecting the airways, vessels, lung parenchyma, pleura, and respiratory muscles. The major pathological features of CTD are chronic inflammation of blood vessels and connective tissues, which can affect any organ leading to multi-system damage. The human lung is particularly vulnerable to such damage because anatomically it is abundant with collagen and blood vessels. The complex etiology of CTD-ILD includes genetic risks, epigenetic changes, and dysregulated immunity, which interact leading to disease under various ill-defined environmental triggers. CTD-ILD exhibits a broad spectra of clinical manifestations: from asymptomatic to severe dyspnea; from single-organ respiratory system involvement to multi-organ involvement. The disease course is also featured by remissions and relapses. It can range from stability or slow progression over several years to rapid deterioration. It can also present clinically as highly progressive from the initial onset of disease. Currently, the diagnosis of CTD-ILD is primarily based on distinct pathology subtype(s), imaging, as well as related CTD and autoantibodies profiles. Meticulous comprehensive clinical and laboratory assessment to improve the diagnostic process and management strategies are much needed. In this review, we focus on examining the pathogenesis of CTD-ILD with respect to genetics, environmental factors, and immunological factors. We also discuss the current state of knowledge and elaborate on the clinical characteristics of CTD-ILD, distinct pathohistological subtypes, imaging features, and related autoantibodies. Furthermore, we comment on the identification of high-risk patients and address how to stratify patients for precision medicine management approaches.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Xiaodong Shi
- Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Shanpeng Yang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingwei Shu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shehabaldin Alqalyoobi
- Internal Medicine - Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, Greenville, NC, United States
| | - Amir A. Zeki
- University of California (U.C.), Davis, Lung Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis School of Medicine, University of California, Davis, Davis, CA, United States
| | - Patrick S. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Ruan H, Gao S, Li S, Luan J, Jiang Q, Li X, Yin H, Zhou H, Yang C. Deglycosylated Azithromycin Attenuates Bleomycin-Induced Pulmonary Fibrosis via the TGF-β1 Signaling Pathway. Molecules 2021; 26:molecules26092820. [PMID: 34068694 PMCID: PMC8126120 DOI: 10.3390/molecules26092820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening lung disease characterized by the proliferation of myofibroblasts and deposition of extracellular matrix that results in irreversible distortion of the lung structure and the formation of focal fibrosis. The molecular mechanism of IPF is not fully understood, and there is no satisfactory treatment. However, most studies suggest that abnormal activation of transforming growth factor-β1 (TGF-β1) can promote fibroblast activation and epithelial to mesenchymal transition (EMT) to induce pulmonary fibrosis. Deglycosylated azithromycin (Deg-AZM) is a compound we previously obtained by removing glycosyls from azithromycin; it was demonstrated to exert little or no antibacterial effects. Here, we discovered a new function of Deg-AZM in pulmonary fibrosis. In vivo experiments showed that Deg-AZM could significantly reduce bleomycin-induced pulmonary fibrosis and restore respiratory function. Further study revealed the anti-inflammatory and antioxidant effects of Deg-AZM in vivo. In vitro experiments showed that Deg-AZM inhibited TGF-β1 signaling, weakened the activation and differentiation of lung fibroblasts, and inhibited TGF-β1-induced EMT in alveolar epithelial cells. In conclusion, our findings show that Deg-AZM exerts antifibrotic effects by inhibiting TGF-β1-induced myofibroblast activation and EMT.
Collapse
Affiliation(s)
- Hao Ruan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (S.G.); (S.L.); (J.L.); (Q.J.); (X.L.)
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (S.G.); (S.L.); (J.L.); (Q.J.); (X.L.)
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (S.G.); (S.L.); (J.L.); (Q.J.); (X.L.)
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (S.G.); (S.L.); (J.L.); (Q.J.); (X.L.)
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (S.G.); (S.L.); (J.L.); (Q.J.); (X.L.)
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (S.G.); (S.L.); (J.L.); (Q.J.); (X.L.)
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Huijun Yin
- China Resources Pharmaceutical Group Limited, Beijing 100000, China
- Correspondence: (H.Y.); (H.Z.); (C.Y.); Tel.: +1-331-111-3030 (H.Y.); +1-502-220-6769 (H.Z.); +1-590-135-1388 (C.Y.)
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (S.G.); (S.L.); (J.L.); (Q.J.); (X.L.)
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
- Correspondence: (H.Y.); (H.Z.); (C.Y.); Tel.: +1-331-111-3030 (H.Y.); +1-502-220-6769 (H.Z.); +1-590-135-1388 (C.Y.)
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (S.G.); (S.L.); (J.L.); (Q.J.); (X.L.)
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
- Correspondence: (H.Y.); (H.Z.); (C.Y.); Tel.: +1-331-111-3030 (H.Y.); +1-502-220-6769 (H.Z.); +1-590-135-1388 (C.Y.)
| |
Collapse
|
33
|
van der Ploeg EA, Melgert BN, Burgess JK, Gan CT. The potential of biomarkers of fibrosis in chronic lung allograft dysfunction. Transplant Rev (Orlando) 2021; 35:100626. [PMID: 33992914 DOI: 10.1016/j.trre.2021.100626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/27/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) is the major long-term cause of morbidity and mortality after lung transplantation. Both bronchiolitis obliterans syndrome and restrictive lung allograft syndrome, two main types of CLAD, lead to fibrosis in either the small airways or alveoli and pleura. Pathological pathways in CLAD and other types of fibrosis, for example idiopathic pulmonary fibrosis, are assumed to overlap and therefore fibrosis biomarkers could aid in the early detection of CLAD. These biomarkers could help to differentiate between different phenotypes of CLAD and could, in comparison to biomarkers of inflammation, possibly distinguish an infectious event from CLAD when a decline in lung function is present. This review gives an overview of known CLAD specific biomarkers, describes new promising fibrosis biomarkers currently investigated in other types of fibrosis, and discusses the possible use of these fibrosis biomarkers for CLAD.
Collapse
Affiliation(s)
- Eline A van der Ploeg
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Medicine, PO Box 30. 001, 9700, RB, Groningen, the Netherlands.
| | - Barbro N Melgert
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, PO box 196, 9700, AD, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, the Netherlands.
| | - Janette K Burgess
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, PO Box 30.001, 9700, RB, Groningen, the Netherlands.
| | - C Tji Gan
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Medicine, PO Box 30. 001, 9700, RB, Groningen, the Netherlands.
| |
Collapse
|
34
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
35
|
Loarce-Martos J, Leon-Roman F, Garrote-Corral S. Recent advances in quantitative computerized tomography and home spirometry for diagnosing and monitoring of interstitial lung disease associated with connective tissue diseases: A narrative review. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_304_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
36
|
Jee AS, Sheehy R, Hopkins P, Corte TJ, Grainge C, Troy LK, Symons K, Spencer LM, Reynolds PN, Chapman S, de Boer S, Reddy T, Holland AE, Chambers DC, Glaspole IN, Jo HE, Bleasel JF, Wrobel JP, Dowman L, Parker MJS, Wilsher ML, Goh NSL, Moodley Y, Keir GJ. Diagnosis and management of connective tissue disease-associated interstitial lung disease in Australia and New Zealand: A position statement from the Thoracic Society of Australia and New Zealand. Respirology 2020; 26:23-51. [PMID: 33233015 PMCID: PMC7894187 DOI: 10.1111/resp.13977] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/26/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Pulmonary complications in CTD are common and can involve the interstitium, airways, pleura and pulmonary vasculature. ILD can occur in all CTD (CTD-ILD), and may vary from limited, non-progressive lung involvement, to fulminant, life-threatening disease. Given the potential for major adverse outcomes in CTD-ILD, accurate diagnosis, assessment and careful consideration of therapeutic intervention are a priority. Limited data are available to guide management decisions in CTD-ILD. Autoimmune-mediated pulmonary inflammation is considered a key pathobiological pathway in these disorders, and immunosuppressive therapy is generally regarded the cornerstone of treatment for severe and/or progressive CTD-ILD. However, the natural history of CTD-ILD in individual patients can be difficult to predict, and deciding who to treat, when and with what agent can be challenging. Establishing realistic therapeutic goals from both the patient and clinician perspective requires considerable expertise. The document aims to provide a framework for clinicians to aid in the assessment and management of ILD in the major CTD. A suggested approach to diagnosis and monitoring of CTD-ILD and, where available, evidence-based, disease-specific approaches to treatment have been provided.
Collapse
Affiliation(s)
- Adelle S Jee
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, NSW, Australia.,NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Robert Sheehy
- Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Peter Hopkins
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant service, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, NSW, Australia.,NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Christopher Grainge
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,Department of Respiratory Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Lauren K Troy
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Karen Symons
- Department of Respiratory Medicine, Alfred Hospital, Melbourne, VIC, Australia
| | - Lissa M Spencer
- Department of Physiotherapy, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Paul N Reynolds
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Lung Research Laboratory, University of Adelaide, Adelaide, SA, Australia
| | - Sally Chapman
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Sally de Boer
- Respiratory Services, Auckland District Health Board, Auckland, New Zealand
| | - Taryn Reddy
- Department of Medical Imaging, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Anne E Holland
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,Department of Allergy, Immunology and Respiratory Medicine, Monash University, Melbourne, VIC, Australia.,Department of Physiotherapy, Alfred Health, Melbourne, VIC, Australia.,Institute for Breathing and Sleep, Melbourne, VIC, Australia
| | - Daniel C Chambers
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant service, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Ian N Glaspole
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,Department of Respiratory Medicine, Alfred Hospital, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Helen E Jo
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, NSW, Australia.,NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Jane F Bleasel
- Central Clinical School, University of Sydney, Sydney, NSW, Australia.,Department of Rheumatology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jeremy P Wrobel
- Advanced Lung Disease Unit, Fiona Stanley Hospital, Perth, WA, Australia.,Department of Medicine, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Leona Dowman
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,Department of Allergy, Immunology and Respiratory Medicine, Monash University, Melbourne, VIC, Australia.,Physiotherapy Department, Austin Health, Melbourne, VIC, Australia
| | - Matthew J S Parker
- Central Clinical School, University of Sydney, Sydney, NSW, Australia.,NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,Department of Rheumatology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Margaret L Wilsher
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,Respiratory Services, Auckland District Health Board, Auckland, New Zealand.,Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nicole S L Goh
- Department of Respiratory Medicine, Alfred Hospital, Melbourne, VIC, Australia.,Institute for Breathing and Sleep, Melbourne, VIC, Australia.,Department of Respiratory Medicine, Austin Hospital, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Yuben Moodley
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia.,University of Western Australia, Institute for Respiratory Health, Perth, WA, Australia.,Department of Respiratory Medicine, Fiona Stanley Hospital, Perth, WA, Australia
| | - Gregory J Keir
- Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Cameli P, Bergantini L, D'alessandro M, Vietri L, Refini RM, Pieroni M, Sestini P, Bargagli E. Alveolar nitric oxide is related to periostin levels in idiopathic pulmonary fibrosis. Minerva Med 2020; 111:324-329. [DOI: 10.23736/s0026-4806.19.06321-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Patrucco F, Bellan M, Solidoro P. Serum biomarkers in idiopathic pulmonary fibrosis. Panminerva Med 2020; 63:199-200. [PMID: 32759912 DOI: 10.23736/s0031-0808.20.04049-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Filippo Patrucco
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy - .,Unit of Respiratory Diseases, Department of Specialty Medicine, Maggiore della Carità University Hospital, Novara, Italy -
| | - Mattia Bellan
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy.,Center for Autoimmune and Allergic Diseases (CAAD), Novara, Italy
| | - Paolo Solidoro
- Department of Medical Sciences, University of Turin, Turin, Italy.,Unit of Pneumology, Department of Cardiovascular and Thoracic Surgery, Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
39
|
Ng KH, Chen DY, Lin CH, Chao WC, Chen YM, Chen YH, Huang WN, Hsieh TY, Lai KL, Tang KT, Chen HH. Risk of interstitial lung disease in patients with newly diagnosed systemic autoimmune rheumatic disease: A nationwide, population-based cohort study. Semin Arthritis Rheum 2020; 50:840-845. [PMID: 32896697 DOI: 10.1016/j.semarthrit.2020.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To assess interstitial lung disease (ILD) risk among patients newly diagnosed with systemic autoimmune rheumatic diseases (SARDs) including rheumatoid arthritis (RA), dermatomyositis (DMtis), polymyositis (PM), systemic sclerosis (SSc), systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS). METHOD Using the 1997-2013 Taiwanese National Health Insurance Research Database, we identified 62,930 newly diagnosed SARD patients from 2001 to 2013. We selected 251,720 individuals without SARD diagnoses who were matched (1:4) with SARD patients by age, sex and year of index date. We compared the incidence rates (IRs) of ILD (consistent diagnosis with ICD-9 code 515, 516.3, 516.8, 516.9 or 517 after a ILD-related radiological or pathological procedure) between the specific SARD subgroups and the corresponding non-SARD comparison groups. Using multivariable Cox regression analyses, we estimated hazard ratios (HRs) with 95% confidence intervals (CIs) of ILD in the various SARD groups compared with comparison groups after adjusting for age, sex and Charlson comorbidity index. RESULTS The IR of ILD was greatest among patients with SSc (1,364 per 105 years), followed by DMtis (1,011 per 105 years), PM (831 per 105 years), pSS (196 per 105 years), RA (109 per 105 years) and SLE (120 per 105 years). Multivariable analyses showed that the risk of ILD was increased among patients with SSc (HR, 172.63), DMtis (HR, 119.61), PM (HR, 84.89), SLE (HR, 32.18), pSS (HR, 17.54), or RA (HR, 8.29). CONCLUSION This population-based, cohort study demonstrates that the risk of ILD is significantly increased in patients with newly diagnosed SARDs.
Collapse
Affiliation(s)
- Kooi-Heng Ng
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung 40447, Taiwan; Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan; Department of Healthcare Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wen-Cheng Chao
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Business Administration, National Changhua University of Education, Changhua, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Science and Rong-Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Nan Huang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsu-Yi Hsieh
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan; Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan; Program of Business, Feng Chia University, Taichung, Taiwan
| | - Kuo-Lung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Science and Rong-Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
40
|
Li X, Yu H, Liang L, Bi Z, Wang Y, Gao S, Wang M, Li H, Miao Y, Deng R, Ma L, Luan J, Li S, Liu M, Lin J, Zhou H, Yang C. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol 2020; 178:114097. [PMID: 32535102 DOI: 10.1016/j.bcp.2020.114097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive-fibrosing lung disease with high mortality and limited therapy, which characterized by myofibroblasts proliferation and extracellular matrix deposition. Myricetin, a natural flavonoid, has been shown to possess a variety of biological characteristics including anti-inflammatory and anti-tumor. In this study we explored the potential effect and mechanisms of myricetin on pulmonary fibrosis in vivo and vitro. The in vivo studies showed that myricetin effectively alleviated bleomycin (BLM)-induced pulmonary fibrosis. KEGG analysis of RNA-seq data indicated that myricetin could regulate the transforming growth factor (TGF)-β signaling pathway. In vitro studies indicated that myricetin could dose-dependently suppress TGF-β1/Smad signaling and attenuate TGF-β1-induced fibroblast activation and epithelial-mesenchymal transition (EMT). Molecular docking indicated that heat shock protein (HSP) 90β may be a potential target of myricetin, and MST assay demonstrated that the dissociation constant (Kd) of myricetin and HSP90β was 331.59 nM. We demonstrated that myricetin interfered with the binding of HSP90β and TGF-β receptor II and impeded fibroblast activation and EMT. In conclusion, myricetin impedes TGF-β1-induced lung fibroblast activation and EMT via targeting HSP90β and attenuates BLM-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Haiyan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Lu Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Ruxia Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Ling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Menghan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
41
|
Nihtyanova SI, Denton CP. Pathogenesis of systemic sclerosis associated interstitial lung disease. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:6-16. [PMID: 35382227 PMCID: PMC8922569 DOI: 10.1177/2397198320903867] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Systemic sclerosis is an autoimmune disease leading to vasculopathy and fibrosis
of skin and internal organs. Despite likely shared pathogenic mechanisms, the
patterns of skin and lung fibrosis differ. Pathogenesis of interstitial lung
disease, a major cause of death in systemic sclerosis, reflects the intrinsic
disease pathobiology and is associated with distinct clinical phenotypes and
laboratory characteristics. The commonest histological pattern of systemic
sclerosis–interstitial lung disease is non-specific interstitial pneumonia.
Systemic sclerosis–interstitial lung disease pathogenesis involves multiple
components, including susceptibility and triggering factors, which could be
genetic or environmental. The process is amplified likely through ongoing
inflammation and the link between inflammatory activity and fibrosis with IL6
emerging as a key mediator. The disease is driven by epithelial injury,
reflected by markers in the serum, such as surfactant proteins and KL-6. In
addition, mediators that are produced by epithelial cells and that regulate
inflammatory cell trafficking may be important, especially CCL2. Other factors,
such as CXCL4 and CCL18, point towards immune-mediated damage or injury
response. Monocytes and alternatively activated macrophages appear to be
important. Transforming growth factor beta appears central to pathogenesis and
regulates epithelial repair and fibroblast activation. Understanding
pathogenesis may help to unravel the stages of systemic sclerosis–interstitial
lung disease, risks of progression and determinants of outcome. With this
article, we set out to review the multiple factors, including genetic,
environmental, cellular and molecular, that may be involved in the pathogenesis
of systemic sclerosis–interstitial lung disease and the mechanisms leading to
sustained fibrosis. We propose a model for the pathogenesis of systemic
sclerosis–interstitial lung disease, based on the available literature.
Collapse
Affiliation(s)
- Svetlana I Nihtyanova
- Centre for Rheumatology and Connective Tissue Diseases, University College London, London, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, University College London, London, UK
| |
Collapse
|
42
|
Current and Emerging Drug Therapies for Connective Tissue Disease-Interstitial Lung Disease (CTD-ILD). Drugs 2020; 79:1511-1528. [PMID: 31399860 DOI: 10.1007/s40265-019-01178-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interstitial lung disease (ILD) can be associated with all connective tissue diseases and is an important cause of morbidity and mortality. The management of connective tissue disease-interstitial lung disease (CTD-ILD) is challenging due substantial heterogeneity in disease behaviour and paucity of controlled clinical trials to guide treating clinicians. Not all patients require treatment, and the decision to treat needs to be individualised based on a patient's observed disease behaviour, baseline and longitudinal lung function measurements, extent of lung involvement on radiology and patient factors including age, co-morbidities and personal preference. If indicated, treatment of the CTD-ILD is largely with immunomodulation, with the aim to prevent progression of the ILD before further irreversible lung injury and disability occurs. Corticosteroids, cyclophosphamide, mycophenolate mofetil and azathioprine are the most common immunosuppressive agents currently used to treat CTD-ILD, demonstrating stability of lung function in case series and a small number of randomised controlled trials in ILD associated with systemic sclerosis. Biological and non-biological disease-modifying anti-rheumatic drugs, and the anti-fibrotics nintedanib and pirfenidone, have revolutionised the treatment of connective tissue diseases and idiopathic ILD, respectively. Furthermore, anti-fibrotics have recently demonstrated safety and efficacy in ILD associated with systemic sclerosis. There remains a critical unmet need to clarify when and in whom to initiate treatment, and which agent(s) to utilise to achieve optimal outcomes for CTD-ILD patients whilst minimising harms through prospective multicentre trials. This review highlights the challenges faced when treating patients with CTD-ILD and summarises available evidence for current, emerging and novel therapies.
Collapse
|
43
|
Ballester B, Milara J, Cortijo J. Mucins as a New Frontier in Pulmonary Fibrosis. J Clin Med 2019; 8:jcm8091447. [PMID: 31514468 PMCID: PMC6780288 DOI: 10.3390/jcm8091447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 3–5 years after diagnosis. Recent evidence identifies mucins as key effectors in cell growth and tissue remodeling processes compatible with the processes observed in IPF. Mucins are classified in two groups depending on whether they are secreted (secreted mucins) or tethered to cell membranes (transmembrane mucins). Secreted mucins (MUC2, MUC5AC, MUC5B, MUC6-8 and MUC19) are released to the extracellular medium and recent evidence has shown that a promoter polymorphism in the secreted mucin MUC5B is associated with IPF risk. Otherwise, transmembrane mucins (MUC1, MUC3, MUC4, MUC12-17 and MUC20) have a receptor-like structure, sensing the external environment and activating intracellular signal transduction pathways essential for mucosal maintenance and damage repair. In this context, the extracellular domain can be released to the external environment by metalloproteinase action, increased in IPF, thus activating fibrotic processes. For example, several studies have reported increased serum extracellular secreted KL6/MUC1 during IPF acute exacerbation. Moreover, MUC1 and MUC4 overexpression in the main IPF cells has been observed. In this review we summarize the current knowledge of mucins as promising druggable targets for IPF.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain
- Research and teaching Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| |
Collapse
|