1
|
Wang K, Zeng H, Yang H. Daidzein improves muscle atrophy caused by lovastatin by regulating the AMPK/FOXO3a axis. Chin Med 2024; 19:180. [PMID: 39741316 DOI: 10.1186/s13020-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Lovastatin, the main lipid-lowering component in red yeast rice, is a golden anti-lipid drug, but its long-term application is continuously challenged by potential skeletal muscle atrophy. Daidzein, an isoflavone derived from soybeans and many Chinese medicines, shows therapeutic potential in treating muscle-related diseases and metabolic disorders. However, whether daidzein can improve lovastatin-induced muscle atrophy and the specific mechanism needs to further study. METHODS Lovastatin-induced mice and zebrafish muscle atrophy models were used to validate the protective effect of daidzein in vivo. And the lovastatin-induced C2C12 myotube atrophy model was employed to validate the therapeutic efficacy and investigate the specific mechanism of daidzein in vitro. We combined specific siRNA targeting FOXO3a and AMPK-selective inhibitor, agonist to elucidate AMPK/FOXO3a-dependent muscle-protective mechanism of daidzein. The anti-atrophy effects of daidzein through blockage of abnormal activation of AMPK/FOXO3a was presented in Immunofluorescence, H&E staining, Western blot, qRT-PCR. Serum creatine kinase level was detected by ELISA and we used mouse muscle grip instrument to detect the strength of mouse muscles. RESULTS In this study, we demonstrated that daidzein could dose-dependently alleviate lovastatin-induced mice skeletal muscle atrophy, reduce serum creatine kinase, and improve muscle grip strength in mice. Mechanistically, daidzein inhibited lovastatin-induced FOXO3a phosphorylation caused by AMPK activation, thereby inhibiting FOXO3a nuclear translocation to restrain the expression of muscle-related proteins Atrogin-1 and MuRF-1. In C2C12 myotube, administration of AMPK-selective inhibitor Compound C recapitulated the therapeutic effects of daidzein against lovastatin-induced myotubes atrophy, while the anti-atrophy effects of daidzein were lost in the presence of AMPK-selective agonist MK-3903. In lovastatin-induced mice muscle atrophy models, Compound C elicited similar anti-atrophy effects as daidzein, but this effect was not potentiated when it was applied in combination with daidzein, suggesting that daidzein exerted therapeutic efficacy dependent on blockage of AMPK activity. CONCLUSIONS Our study identified daidzein as an effective component that ameliorated lovastatin-induced skeletal muscle atrophy through blockage of abnormal activation of AMPK/FOXO3a and transcriptional activation of genes encoding downstream muscle-related proteins. Our results also highlighted the therapeutic potential by regulating the AMPK/FOXO3a axis in management of statin-induced myotoxicity.
Collapse
Affiliation(s)
- Keke Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Fedorov NS, Malomouzh AI, Petrov AM. Effects of membrane cholesterol-targeting chemicals on skeletal muscle contractions evoked by direct and indirect stimulation. J Muscle Res Cell Motil 2024; 45:221-231. [PMID: 38904733 DOI: 10.1007/s10974-024-09675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Cholesterol is one of the major components of plasma membrane, where its distribution is nonhomogeneous and it participates in lipid raft formation. In skeletal muscle cholesterol and lipid rafts seem to be important for excitation-contraction coupling and for neuromuscular transmission, involving cholesterol-rich synaptic vesicles. In the present study, nerve and muscle stimulation-evoked contractions were recorded to assess the role of cholesterol in contractile function of mouse diaphragm. Exposure to cholesterol oxidase (0.2 U/ml) and cholesterol-depleting agent methyl-β-cyclodextrin (1 mM) did not affect markedly contractile responses to both direct and indirect stimulation at low and high frequency. However, methyl-β-cyclodextrin at high concentration (10 mM) strongly decreased the force of both single and tetanus contractions induced by phrenic nerve stimulation. This decline in contractile function was more profoundly expressed when methyl-β-cyclodextrin application was combined with phrenic nerve activation. At the same time, 10 mM methyl-β-cyclodextrin had no effect on contractions upon direct muscle stimulation at low and high frequency. Thus, strong cholesterol depletion suppresses contractile function mainly due to disturbance of the neuromuscular communication, whereas muscle fiber contractility remains resistant to decline.
Collapse
Affiliation(s)
- Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia
- Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia.
- Kazan National Research Technical University named after A.N. Tupolev-KAI, 10, K. Marx St, Kazan, 420111, Russia.
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia
- Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
- Kazan State Medical University, 49 Butlerova St, Kazan, 420012, Russia
| |
Collapse
|
3
|
Padhi B, Liu R, Yang Y, Peng X, Li L, Zhang P, Zhang P. Using multiple drug similarity networks to promote adverse drug event detection. Heliyon 2024; 10:e39728. [PMID: 39748955 PMCID: PMC11693886 DOI: 10.1016/j.heliyon.2024.e39728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025] Open
Abstract
The occurrence of an adverse drug event (ADE) has become a serious social concern of public health. Early detection of ADEs can lower the risk of drug safety as well as the expense of the drug. While post-market spontaneous reports of ADEs remain a cornerstone of pharmacovigilance, most existing signal detection algorithms rely on substantial accumulated data, limiting their applicability to early ADE detection when reports are scarce. To address this issue, we propose a label propagation model for generating enhanced drug safety signals using multiple drug features. We first construct multiple drug similarity networks using a range of drug features. We then calculate initial drug safety signals using conventional signal detection algorithms. These original signals are subsequently propagated across each drug similarity network to obtain enhanced drug safety signals. We evaluate our proposed model using two common signal detection algorithms on data from the FDA Adverse Event Reporting System (FAERS). Results demonstrate that enhanced drug safety signals with pre-clinical information outperform the standard safety signal detection algorithms on early ADE detection. In addition, we systematically evaluate the performance of different drug similarities against different types of ADEs. Furthermore, we have developed a web interface (http://drug-drug-sim.aimedlab.net/) to display our multiple drug similarity scores, facilitating access to this valuable resource for drug safety monitoring.
Collapse
Affiliation(s)
- Biswajit Padhi
- Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210, USA
| | - Ruoqi Liu
- Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210, USA
| | - Yuedi Yang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, 410 W. 10th Street HITS 3000, Indianapolis, IN 46202, USA
| | - Xueqiao Peng
- Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, USA
| | - Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, 410 W. 10th Street HITS 3000, Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210, USA
- Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, USA
- Translational Data Analytics institute, The Ohio State University, 1760 Neil Ave, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Gawedzka A, Knapik-Czajka M, Drag J, Belczyk M, Radwanska E, Adamek D. Skeletal muscle fibre type-dependent effects of atorvastatin on the PI3K/Akt/mTOR signalling pathway and atrophy-related genes in rats. Mol Biol Rep 2024; 51:1062. [PMID: 39419905 PMCID: PMC11486814 DOI: 10.1007/s11033-024-10005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND One of the probable causes of statin myotoxicity is an imbalance between protein synthesis and degradation. These processes are regulated by the PI3K/Akt/mTOR pathway and the ubiquitin‒proteasome system (UPS). The aim of this study was to assess whether the effects of atorvastatin on PI3K/Akt/mTOR pathway downstream proteins, the FoxO3a transcription factor and the UPS genes, i.e., MuRF-1 and MAFbx, depend on muscle fibre type. METHODS AND RESULTS Atorvastatin (50 mg/kg) was administered to Wistar rats. The levels of selected PI3K/Akt/mTOR pathway proteins were assayed via Western blotting, whereas MuRF-1, MAFbx and FoxO3a mRNA levels were measured using reverse transcription quantitative polymerase chain reaction (RT‒qPCR). Gomöri trichrome staining was performed to assess skeletal muscle pathology. A decrease in the P-Akt/Akt ratio was observed in the gastrocnemius muscle (MG), whereas an increase in the P-Akt/Akt ratio was observed in the soleus muscle (SOL). FoxO3a gene expression increased in the SOL and extensor digitorum longus (EDL) muscles. MuRF-1 gene expression increased in the MG, and MAFbx expression increased in the EDL. No histopathological changes were observed in any of the tested muscles. CONCLUSIONS In the absence of overt muscle damage, atorvastatin decreased the P-Akt/Akt ratio in the MG, indicating an increase in inactive Akt. Consistent with the decrease in Akt activation, rpS6 phosphorylation decreased. In SOL, atorvastatin increased the P-Akt/Akt ratio, indicating Akt activation. P-FoxO3a and the P-FoxO3a/FoxO3a ratio increased, suggesting that FoxO3a inactivation occurred. Moreover, in the SOL, atorvastatin did not affect the expression of atrophy-related genes. These findings indicate that atorvastatin has no adverse effect on the Akt pathway in the SOL. Our results showed that the effects of atorvastatin on the Akt signalling pathway and atrophy-related gene expression depend on muscle type.
Collapse
Affiliation(s)
- Anna Gawedzka
- Department of Biochemical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., Krakow, 30-688, Poland.
| | - Malgorzata Knapik-Czajka
- Department of Biochemical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., Krakow, 30-688, Poland
| | - Jagoda Drag
- Department of Biochemical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., Krakow, 30-688, Poland
| | - Malgorzata Belczyk
- Department of Biochemical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., Krakow, 30-688, Poland
| | - Edyta Radwanska
- Department of Neuropathology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dariusz Adamek
- Department of Neuropathology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Lauritzen T, Munkhaugen J, Bergan S, Sverre E, Peersen K, Lindahl S, Husebye E, Vethe NT. Mevalonate in blood and muscle: Response to atorvastatin treatment and the relationship to statin intolerance in patients with coronary heart disease. Clin Transl Sci 2024; 17:e70025. [PMID: 39444168 PMCID: PMC11499300 DOI: 10.1111/cts.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 10/25/2024] Open
Abstract
Statin-associated muscle symptoms are frequently reported and often lead to discontinuation of statin therapy with an increased risk of cardiovascular events. In vitro studies suggest that statin-mediated inhibition of the mevalonate pathway leads to muscle cell toxicity. We aimed to determine the relationship between mevalonate, LDL-cholesterol, and atorvastatin metabolites in patients with coronary heart disease and self-perceived muscle side effects. Furthermore, we assessed the correlation between mevalonate in blood and muscle and the relationship to statin intolerance due to muscle symptoms. We used blood plasma from a randomized crossover trial (n = 70) and muscle biopsies and plasma from a subgroup in a subsequent open intervention study (n = 26). Both studies tested atorvastatin 40 mg/day. Seven patients did not tolerate ≥3 statins throughout the follow-up and were classified as statin-intolerant. Mevalonate in blood plasma decreased during atorvastatin treatment (median difference -38%, range -77% to 43%, p < 0.001), whereas mevalonate in muscle tissue was not lowered (0.05%, range -47% to 145%). Mevalonate correlated poorly with LDL-cholesterol and atorvastatin metabolites (Spearman's rho -0.28 to 0.10). The statin-intolerant patients had a smaller reduction in circulating mevalonate compared with the tolerant patients; median difference -8.1 (-22 to 3.5) nmol/L versus -25 (-93 to 12) nmol/L, p = 0.028. A similar observation was made for LDL-cholesterol. Cutoffs based on these biomarkers classified >50% correctly as tolerant. Inhibition of the mevalonate pathway does not appear to be the mechanism underlying statin intolerance in the present study. Further studies of mevalonate as a biomarker for statin tolerance are needed to clarify the potential.
Collapse
Affiliation(s)
- Trine Lauritzen
- Department of MedicineVestre Viken Trust, Drammen HospitalDrammenNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Laboratory MedicineVestre Viken Trust, Drammen HospitalDrammenNorway
| | - John Munkhaugen
- Department of MedicineVestre Viken Trust, Drammen HospitalDrammenNorway
- Department of Behavioural MedicineInstitute of Basic Medical Sciences, University of OsloOsloNorway
| | - Stein Bergan
- Department of PharmacologyOslo University HospitalOsloNorway
- Department of PharmacyUniversity of OsloOsloNorway
| | - Elise Sverre
- Department of MedicineVestre Viken Trust, Drammen HospitalDrammenNorway
| | - Kari Peersen
- Department of CardiologyVestfold Hospital TrustTønsbergNorway
| | - Sofia Lindahl
- Department of PharmacologyOslo University HospitalOsloNorway
| | - Einar Husebye
- Department of MedicineVestre Viken Trust, Drammen HospitalDrammenNorway
| | - Nils Tore Vethe
- Department of PharmacologyOslo University HospitalOsloNorway
- Department of PharmacyUniversity of OsloOsloNorway
| |
Collapse
|
7
|
Yasmin F, Najeeb H, Moeed A, Ali E, Umar M, Ullah I, Shah N, Alraies MC. Efficacy and Safety of Bempedoic Acid for Prevention of Adverse Cardiovascular Events and Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am J Ther 2024; 31:e566-e572. [PMID: 39121181 DOI: 10.1097/mjt.0000000000001715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Affiliation(s)
- Farah Yasmin
- Yale University School of Medicine, New Haven, CT
| | - Hala Najeeb
- Dow University of Health Sciences, Karachi, Pakistan
| | - Abdul Moeed
- Dow University of Health Sciences, Karachi, Pakistan
| | - Eman Ali
- Dow University of Health Sciences, Karachi, Pakistan
| | | | - Irfan Ullah
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | | | - M Chadi Alraies
- Detroit Medical Center, Cardiovascular Institute, Detroit, MI
| |
Collapse
|
8
|
Ahmad K, Manongi NJ, Rajapandian R, Moti Wala S, Al Edani EM, Samuel EA, Arcia Franchini AP. Effectiveness of Coenzyme Q10 Supplementation in Statin-Induced Myopathy: A Systematic Review. Cureus 2024; 16:e68316. [PMID: 39350827 PMCID: PMC11441719 DOI: 10.7759/cureus.68316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Statins are among the most widely prescribed drugs for treating dyslipidemia and reducing the incidence of heart disease and stroke. However, they come with a wide range of side effects, from myopathy to necrotizing rhabdomyolysis, as well as diabetes, hepatotoxicity, and sleep problems. The most common side effect of statins is statin-induced myopathy, often leading to discontinuation of statin therapy and noncompliance in many patients. This study aims to assess the effectiveness of coenzyme Q10 (CoQ10) supplementation as a treatment for patients with statin-induced myopathy. This systematic review was conducted by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement. Relevant studies were identified through searches of Medline, PMC, PubMed, Science Direct, and Google Scholar. Only randomized control trials and meta-analyses of oral CoQ10 supplementation versus placebo in adults with statin-associated myalgia were included. The risk of bias was assessed using the Cochrane Risk of Bias tool (The Cochrane Collaboration, London, England, UK) and the measurement tool for the "assessment of multiple systematic reviews" (AMSTAR tool). Out of 5,000 records identified, only five were selected for this review: one meta-analysis and four randomized controlled trials. All of these studies were conducted between 2010 and 2023, involving a total of 800 patients. All randomized controlled trials showed improvement in statin-associated myopathy with CoQ10 supplementation, along with or without a reduced dosage of statins, without any notable side effects of CoQ10. Therefore, it can be deduced that CoQ10 supplementation significantly ameliorates statin-induced musculoskeletal symptoms.
Collapse
Affiliation(s)
- Khoula Ahmad
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Naelijwa J Manongi
- Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ramkumar Rajapandian
- Trauma and Orthopedics, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sajida Moti Wala
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Esraa M Al Edani
- Dermatology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Essa A Samuel
- Physical Medicine and Rehabilitation, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ana P Arcia Franchini
- Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
9
|
Li J, Zang C, Lv H, Xiao Z, Li P, Xiao B, Zhou L. Association of lipid-lowering drugs with risk of sarcopenia: a drug target mendelian randomization study and meta-analysis. Hum Genomics 2024; 18:76. [PMID: 38961447 PMCID: PMC11223278 DOI: 10.1186/s40246-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Lipid-lowering drugs are widely used among the elderly, with some studies suggesting links to muscle-related symptoms. However, the causality remains uncertain. METHODS Using the Mendelian randomization (MR) approach, we assessed the causal effects of genetically proxied reduced low-density lipoprotein cholesterol (LDL-C) through inhibitions of hydroxy-methyl-glutaryl-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), and Niemann-Pick C1-like 1 (NPC1L1) on sarcopenia-related traits, including low hand grip strength, appendicular lean mass, and usual walking pace. A meta-analysis was conducted to combine the causal estimates from different consortiums. RESULTS Using LDL-C pooled data predominantly from UK Biobank, genetically proxied inhibition of HMGCR was associated with higher appendicular lean mass (beta = 0.087, P = 7.56 × 10- 5) and slower walking pace (OR = 0.918, P = 6.06 × 10- 9). In contrast, inhibition of PCSK9 may reduce appendicular lean mass (beta = -0.050, P = 1.40 × 10- 3), while inhibition of NPC1L1 showed no causal impact on sarcopenia-related traits. These results were validated using LDL-C data from Global Lipids Genetics Consortium, indicating that HMGCR inhibition may increase appendicular lean mass (beta = 0.066, P = 2.17 × 10- 3) and decelerate walking pace (OR = 0.932, P = 1.43 × 10- 6), whereas PCSK9 inhibition could decrease appendicular lean mass (beta = -0.048, P = 1.69 × 10- 6). Meta-analysis further supported the robustness of these causal associations. CONCLUSIONS Genetically proxied HMGCR inhibition may increase muscle mass but compromise muscle function, PCSK9 inhibition could result in reduced muscle mass, while NPC1L1 inhibition is not associated with sarcopenia-related traits and this class of drugs may serve as viable alternatives to sarcopenia individuals or those at an elevated risk.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenyang Zang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Xiao
- Department of Pathology, First Hospital of Changsha, Changsha, Hunan, China
| | - Peihong Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Chen K, Chen Y, Huang H. Exploring the Relationship Between Atorvastatin and Memory Loss: A Comprehensive Analysis Integrating Real-World Pharmacovigilance and Mendelian Randomization. Drugs R D 2024; 24:317-329. [PMID: 38963511 PMCID: PMC11315864 DOI: 10.1007/s40268-024-00474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Atorvastatin is a drug widely used to prevent cardiovascular and cerebrovascular diseases. Current observational studies suggest that atorvastatin may be associated with cognitive dysfunction (especially memory loss). However, some studies have suggested that dyslipidemia may be an important factor in cognitive dysfunction. The purpose of this study was to perform a pharmacovigilance analysis using real-world data from the US Food and Drug Administration's Adverse Event Reporting System (FAERS) to assess whether memory loss is an adverse effect of atorvastatin and to further clarify its causality through Mendelian randomization (MR). METHODS We extracted real-world data from the FAERS database (Quarter 1 2004 to Quarter 1 2023). Disproportionality analysis methods and measures of association such as the reporting odds ratio (OR), proportional reporting ratio, Bayesian confidence interval progressive neural network, and polynomial Gamma Poisson distribution reduction were used to assess whether memory loss was an adverse effect of atorvastatin. In addition, we used MR to evaluate causality in depth. RESULTS In the pharmacovigilance analysis of atorvastatin, we extracted four datasets of clinical symptoms associated with memory loss from the FAERS database [Amnesia (n = 1196), Memory impairment (n = 840), Transient global amnesia (n = 38), and Retrograde amnesia (n = 9)]. The reporting OR, proportional reporting ratio, Bayesian confidence interval progressive neural network, and Gamma Poisson distribution reduction all showed positive results for amnesia, transient global amnesia, and retrograde amnesia, while the reporting OR and Bayesian confidence interval progressive neural network also showed positive results for memory disorders. Thus, memory loss was a frequent side effect of atorvastatin. The MR analyses were used to further evaluate the association between statins and memory loss. The results of the MR analysis (statins and memory loss) are as follows: Ivw (mre) (β = 0.11 [OR = 1.11], P = 0.01 < 0.05) and the OR and β directions of MR-Egger and weighted mode were the same. The results of the MR analysis (statins and mitochondrial DNA copy number) are as follows: Ivw(mre) (β = -0.03 [OR = 0.96], P < 0.01) and the OR and β direction of MR-Egger and weighted mode are the same. The results of the MR analysis (DNA copy number and memory loss) are as follows: Ivw(β = - 0.06 [OR = 0.94], P = 0.04 < 0.05) and the OR and β direction of MR-Egger and weighted mode were the same. The pleiotropy test did not find horizontal diversity in our results. CONCLUSIONS This study suggests that memory loss is a notable adverse event associated with atorvastatin and provides evidence indicating a potential causal relationship between atorvastatin and memory loss. We also found that statins may further affect memory by affecting mitochondrial function. Therefore, in the clinical use of atorvastatin, it is important to carefully monitor the changes in cognitive function of patients. Second, a pharmacovigilance analysis combined with MR was used in this study to provide a new approach for the study of adverse drug reactions. This comprehensive analysis method helps to evaluate the safety of drugs and the risk of adverse reactions more comprehensively and provides doctors with a more accurate clinical decision-making basis.
Collapse
Affiliation(s)
- Kaiqin Chen
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yongtai Chen
- Department of Hepatobiliary Surgery, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Hesen Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiang'an Hospital of Xiamen University, No. 2000, Xiang'an East Road, Xiamen, 361100, Fujian, China.
| |
Collapse
|
11
|
Song R, Li J, Xiong Y, Huang H, Liu X, Li Q. Efficacy and safety of proprotein convertase subtilisin kexin type (PCSK9) inhibitors in patients with acute coronary syndrome: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e38360. [PMID: 39259104 PMCID: PMC11142774 DOI: 10.1097/md.0000000000038360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The effect of proprotein convertase subtilisin kexin type (PCSK9) inhibitors on blood lipids and major adverse cardiovascular events (MACEs) is still controversial for acute coronary syndrome (ACS) patients. This study aimed to evaluate the efficacy and safety of PCSK9 inhibitors for ACS patients. METHODS We searched the following databases until March 2023: PubMed, Embase, Cochrane, Web of Science, CNKI, Chongqing VIP Database and Wan Fang Database. Finally, all randomized controlled trials, retrospective studies and prospective studies were included in the analysis. RESULTS A total of 20 studies involving 48,621 patients were included in this meta-analysis. The results demonstrated that PCSK9 inhibitors group was more beneficial for ACS patients compared to control group (receiving statins alone or placebo). The meta-analysis showed: there was no significant difference in high density lipoprotein cholesterol between PCSK9 inhibitors group and control group (standard mean difference = 0.17, 95% confidence interval [CI]: -0.02 to 0.36, P = .08), while the level of low density lipoprotein cholesterol in PCSK9 inhibitors group was lower than that in control group (standard mean difference = -2.32, 95% CI: -2.81 to -1.83, P < .00001). Compared with the control group, the PCSK9 inhibitors group also decreased the levels of total cholesterol and triglycerides (mean difference = -1.24, 95% CI: -1.40 to -1.09, P < .00001, mean difference = -0.36, 95% CI: -0.56 to -0.16, P = .0004). Moreover, compared with the control group, PCSK9 inhibitors group could reduce the incidence of MACEs (relative risk [RR] = 0.87, 95% CI: 0.83-0.91; P < .00001). However, this study showed that the incidence of drug-induced adverse events in PCSK9 inhibitors group was higher than that in the control group (RR = 1.15, 95% CI: 1.05-1.25, P < .0001). CONCLUSION Although this study demonstrates that PCSK9 inhibitors have higher drug-induced adverse events, they can not only reduce low-density lipoprotein cholesterol levels but also reduce the incidence of MACEs simultaneously. However, these findings needed to be further verified through large sample, multicenter, double-blind randomized controlled trials.
Collapse
Affiliation(s)
- Ruohong Song
- Department of Cardiology, Sichuan Tianfu New District People’s Hospital, Chengdu, China
| | - Jinsong Li
- Department of Cardiology, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Hui Huang
- Department of Cardiology, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xiaojian Liu
- Department of Cardiology, Sichuan Tianfu New District People’s Hospital, Chengdu, China
| | - Qiyong Li
- Department of Cardiology, Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
12
|
Qaisar R, Khan IM, Karim A, Muhammad T, Ahmad F. Lipid-Lowering Medications are Associated with Reduced Sarcopenia-Related Quality of Life in Older Adults with Hyperlipidemia. Drugs Aging 2024; 41:443-453. [PMID: 38564165 DOI: 10.1007/s40266-024-01111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Statins medications negatively affect age-associated loss of muscle mass and strength, termed sarcopenia, and neuromuscular junction (NMJ) integrity. However, their association with the sarcopenia-related-quality-of-life (SarQoL) is unknown. METHODS In this cross-sectional, case control study, we recruited male nonusers (n = 75 and age 75.2 ± 5.9 years) and users (n = 77 and age 77.1 ± 6.2 years) of statins to evaluate SarQoL and handgrip strength (HGS). We also measured plasma C-terminal agrin fragment-22 (CAF22) as a marker of NMJ degradation. RESULTS Statin users had higher CAF22, and lower HGS, and cumulative SarQoL scores than non-users (all p < 0.05). Plasma CAF22 exhibited negative correlations with SarQoL scores for physical and mental health, locomotion, functionality, activities-of-daily-living, and cumulative SarQoL in statins users and non-users (all p < 0.05). Lastly, the cumulative SarQoL scores exhibited positive associations with HGS and gait speed in the study participants (all p < 0.05). CONCLUSIONS Collectively, statin usage was associated with NMJ degradation and reduced SarQoL. Statins should be cautiously prescribed in patients with sarcopenia with reduced QoL.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, M27-122, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Imran M Khan
- Burn and Plastic Surgery Center, Hayatabad Medical Complex, Hayatabad, Peshawar, Pakistan
| | - Asima Karim
- Department of Basic Medical Sciences, M27-122, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, M27-122, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Lauritzen T, Munkhaugen J, Bergan S, Peersen K, Svarstad AC, Andersen AM, Pahnke J, Husebye E, Vethe NT. The atorvastatin metabolite pattern in muscle tissue and blood plasma is associated with statin muscle side effects in patients with coronary heart disease; An exploratory case-control study. ATHEROSCLEROSIS PLUS 2024; 55:31-38. [PMID: 38293288 PMCID: PMC10825484 DOI: 10.1016/j.athplu.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Background and aims Statin-associated muscle symptoms (SAMS) is a prevalent cause of statin discontinuation. It is challenging and time-consuming for clinicians to assess whether symptoms are caused by the statin or not, and diagnostic biomarkers are requested. Atorvastatin metabolites have been associated with SAMS. We aimed to compare atorvastatin pharmacokinetics between coronary heart disease (CHD) patients with and without clinically statin intolerance and statin-dependent histopathological alterations in muscle tissue. Secondarily we aimed to assess genetic variants relevant for the observed pharmacokinetic variables. Methods Twenty-eight patients with CHD and subjective SAMS were included in the exploratory MUSE biomarker study in 2020. Participants received atorvastatin 40 mg/day for seven weeks followed by no statins for eight weeks. Muscle biopsies and blood were collected at the end of each period. Four patients were categorized as clinically intolerant to ≥3 statins prior to study start whereas four patients had signs of muscle cell damage during treatment. Results We found significantly lower levels of atorvastatin acids, and higher lactone/acid ratios in the statin intolerant, both in muscle and plasma. With optimal cut-off, the combination of 2-OH-atorvastatin acid and the 2-OH-atorvastatin lactone/acid ratio provided sensitivity, specificity, and predictive values of 100 %. Patients with variants in UGT1A1 and UGT1A3 had higher lactone metabolite levels than those with wild type, both in muscle and plasma. Conclusion Atorvastatin metabolites appear promising as biomarkers for the identification of clinical statin intolerance in patients with self-perceived SAMS, but the findings have to be confirmed in larger studies.
Collapse
Affiliation(s)
- Trine Lauritzen
- Department of Medicine, Vestre Viken Trust, Drammen Hospital, Drammen, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Laboratory Medicine, Vestre Viken Trust, Drammen Hospital, Drammen, Norway
| | - John Munkhaugen
- Department of Medicine, Vestre Viken Trust, Drammen Hospital, Drammen, Norway
- Department of Behavioural Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kari Peersen
- Department of Cardiology, Vestfold Hospital Trust, Tønsberg, Norway
| | | | | | - Jens Pahnke
- Section of Neuropathology Research1, Departments of Clinical Medicine and Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Einar Husebye
- Department of Medicine, Vestre Viken Trust, Drammen Hospital, Drammen, Norway
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Kwon J, Kim MS, Blagojevic C, Mailloux J, Medwid S, Tirona RG, Wang R, Schwarz UI. Differential effects of OATP2B1 on statin accumulation and toxicity in a beta cell model. Toxicol Mech Methods 2024; 34:130-147. [PMID: 37771097 DOI: 10.1080/15376516.2023.2262568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
An increased risk of new-onset diabetes mellitus has been recently reported for statin therapy, and experimental studies have shown reduced glucose-stimulated insulin secretion (GSIS) and mitochondrial dysfunction in beta cells with effects differing among agents. Organic anion transporting polypeptide (OATP) 2B1 contributes to hepatic uptake of rosuvastatin, atorvastatin and pravastatin, three known substrates. Since OATP2B1 is present in beta cells of the human pancreas, we investigated if OATP2B1 facilitates the local accumulation of statins in a rat beta cell model INS-1 832/13 (INS-1) thereby amplifying statin-induced toxicity. OATP2B1 overexpression in INS-1 cells via adenoviral transduction showed 2.5-, 1.8- and 1.4-fold higher cellular retention of rosuvastatin, atorvastatin and pravastatin, respectively, relative to LacZ control, while absolute intracellular concentration was about twice as high for the lipophilic atorvastatin compared to the more hydrophilic rosuvastatin and pravastatin. After 24 h statin treatment at high concentrations, OATP2B1 enhanced statin toxicity involving activation of intrinsic apoptosis (caspase 3/7 activation) and mitochondrial dysfunction (NADH dehydrogenase activity) following rosuvastatin and atorvastatin, which was partly reversed by isoprenoids. OATP2B1 had no effect on statin-induced reduction in GSIS, mitochondrial electron transport chain complex expression or caspase 9 activation. We confirmed a dose-dependent reduction in insulin secretion by rosuvastatin and atorvastatin in native INS-1 with a modest change in cellular ATP. Collectively, our results indicate a role of OATP2B1, which is abundant in human beta cells, in statin accumulation and statin-induced toxicity but not insulin secretion of rosuvastatin and atorvastatin in INS-1 cells.
Collapse
Affiliation(s)
- Jihoon Kwon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michelle S Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Christina Blagojevic
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jaymie Mailloux
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Samantha Medwid
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rennian Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
Wirth T, Guis S. Statin-induced myopathy: A rare entity? Joint Bone Spine 2024; 91:105630. [PMID: 37634874 DOI: 10.1016/j.jbspin.2023.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/15/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Theo Wirth
- Service de rhumatologie, AP-HM, Marseille, France; Inserm UMRs1097 arthrites auto-immunes, Aix-Marseille université, Marseille, France
| | - Sandrine Guis
- Service de rhumatologie, AP-HM, Marseille, France; Inserm UMRs1097 arthrites auto-immunes, Aix-Marseille université, Marseille, France.
| |
Collapse
|
16
|
Sainz de Medrano Sainz JI, Brunet Serra M. Influencia de la farmacogenética en la diversidad de respuesta a las estatinas asociada a las reacciones adversas. ADVANCES IN LABORATORY MEDICINE 2023; 4:353-364. [PMID: 38106494 PMCID: PMC10724860 DOI: 10.1515/almed-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Introducción Las estatinas son unos de los medicamentos más prescritos en los países desarrollados por ser el tratamiento de elección para reducir los niveles de colesterol ayudando así a prevenir la enfermedad cardiovascular. Sin embargo, un gran número de pacientes sufre reacciones adversas, en especial miotoxicidad. Entre los factores que influyen en la diversidad de respuesta, la farmacogenética puede jugar un papel relevante especialmente en la prevención de los efectos adversos asociados a estos medicamentos. Contenido Revisión de los conocimientos actuales sobre la influencia de la farmacogenética en la aparición y prevención de las reacciones adversas asociadas a estatinas, así como del beneficio clínico del test farmacogenético anticipado. Resumen Variaciones genéticas en SLCO1B1 (rs4149056) para todas las estatinas; en ABCG2 (rs2231142) para rosuvastatina; o en CYP2C9 (rs1799853 y rs1057910) para fluvastatina están asociadas a un incremento de las reacciones adversas de tipo muscular y a una baja adherencia al tratamiento. Además, diversos fármacos inhibidores de estos transportadores y enzimas de biotransformación incrementan la exposición sistémica de las estatinas favoreciendo la aparición de las reacciones adversas. Perspectiva La implementación clínica del análisis anticipado de este panel de farmacogenética evitaría en gran parte la aparición de reacciones adversas. Además, la estandarización en la identificación de los efectos adversos, en la metodología e interpretación del genotipo, permitirá obtener resultados más concluyentes sobre la asociación entre las variantes genéticas del SLCO1B1, ABCG y CYP2C9 y la aparición de reacciones adversas y establecer recomendaciones para alcanzar tratamientos más personalizados para cada estatina.
Collapse
Affiliation(s)
- Jaime I. Sainz de Medrano Sainz
- Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, España
| | - Mercè Brunet Serra
- Jefa de sección de Farmacología y Toxicología, Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, España
| |
Collapse
|
17
|
Sainz de Medrano Sainz JI, Brunet Serra M. Influence of pharmacogenetics on the diversity of response to statins associated with adverse drug reactions. ADVANCES IN LABORATORY MEDICINE 2023; 4:341-352. [PMID: 38106499 PMCID: PMC10724874 DOI: 10.1515/almed-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Background Statins are one of the most prescribed medications in developed countries as the treatment of choice for reducing cholesterol and preventing cardiovascular diseases. However, a large proportion of patients experience adverse drug reactions, especially myotoxicity. Among the factors that influence the diversity of response, pharmacogenetics emerges as a relevant factor of influence in inter-individual differences in response to statins and can be useful in the prevention of adverse drug effects. Content A systematic review was performed of current knowledge of the influence of pharmacogenetics on the occurrence and prevention of statin-associated adverse reactions and clinical benefits of preemptive pharmacogenetics testing. Summary Genetic variants SLCO1B1 (rs4149056) for all statins; ABCG2 (rs2231142) for rosuvastatin; or CYP2C9 (rs1799853 and rs1057910) for fluvastatin are associated with an increase in muscle-related adverse effects and poor treatment adherence. Besides, various inhibitors of these transporters and biotransformation enzymes increase the systemic exposure of statins, thereby favoring the occurrence of adverse drug reactions. Outlook The clinical preemptive testing of this pharmacogenetic panel would largely prevent the incidence of adverse drug reactions. Standardized methods should be used for the identification of adverse effects and the performance and interpretation of genotyping test results. Standardization would allow to obtain more conclusive results about the association between SLCO1B1, ABCG and CYP2C9 variants and the occurrence of adverse drug reactions. As a result, more personalized recommendations could be established for each statin.
Collapse
Affiliation(s)
- Jaime I. Sainz de Medrano Sainz
- Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mercè Brunet Serra
- Jefa de sección de Farmacología y Toxicología, Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Zheng P, Zhang Q, Ma W, Hu R, Gu Y, Bian Z, Yang D, Chen X, Wu H. Low-dose atorvastatin protects skeletal muscle mitochondria in high-fat diet-fed mice with mitochondrial autophagy inhibition and fusion enhancement. Eur J Pharmacol 2023; 959:176085. [PMID: 37806539 DOI: 10.1016/j.ejphar.2023.176085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Despite the great clinical benefits of statins in cardiovascular diseases, their widespread use may lead to adverse muscle reactions associated with mitochondrial dysfunction. Some studies have demonstrated that statins provide substantial improvement to skeletal muscle health in mice. Our previous study found that oral treatment with atorvastatin (Ator, 3 mg/kg) protected myocardial mitochondria in high-fat diet (HFD)-fed mice. Therefore, this study aimed to explore the influence of low-dose Ator (3 mg/kg) on mitochondria in skeletal muscle under cholesterol overload. Male C57BL/6J mice were fed a HFD for 18 weeks and orally administered Ator (3 mg/kg) during the last 12 weeks. Ator treatment had no effects on elevated serum cholesterol and glucose levels in HFD-fed mice. Serum creatine kinase levels and the cross-sectional area of muscle cells were not affected by HFD feeding or Ator treatment. Increased expression of PINK1-LC3 II (activated mitophagy), MFN2 (fusion), and PGC-1α (biogenesis) proteins was induced in the skeletal muscles of HFD-fed mice. Treatment with Ator inhibited PINK1 and LC3 II protein expression, but further promoted MFN1, MFN2, and OPA1 expression. The impairments in mitochondrial quality and morphology in HFD-fed mice were attenuated by treatment with Ator. Furthermore, Ator treatment enhanced glucose oxidation capacity and restored ATP production in the skeletal muscles of HFD-fed mice. The study reveals that low-dose Ator has a protective effect on muscle mitochondria in mice, likely through inhibiting mitophagy and enhancing mitochondrial fusion. This suggests that skeletal muscle mitochondria may be one of low-dose Ator-mediated protective targets.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Qian Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Wenjing Ma
- Core Facility of The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Ran Hu
- Core Facility of The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yilu Gu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhiping Bian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China; Core Facility of The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xiangjian Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Hengfang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
19
|
Li L, Huang C, Pang J, Huang Y, Chen X, Chen G. Advances in research on cell models for skeletal muscle atrophy. Biomed Pharmacother 2023; 167:115517. [PMID: 37738794 DOI: 10.1016/j.biopha.2023.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Skeletal muscle, the largest organ in the human body, plays a crucial role in supporting and defending the body and is essential for movement. It also participates in regulating the processes of protein synthesis and degradation. Inhibition of protein synthesis and activation of degradation metabolism can both lead to the development of skeletal muscle atrophy, a pathological condition characterized by a decrease in muscle mass and fiber size. Many physiological and pathological conditions can cause a decline in muscle mass, but the underlying mechanisms of its pathogenesis remain incompletely understood, and the selection of treatment strategies and efficacy evaluations vary. Moreover, the early symptoms of this condition are often not apparent, making it easily overlooked in clinical practice. Therefore, it is necessary to develop and use cell models to understand the etiology and influencing factors of skeletal muscle atrophy. In this review, we summarize the methods used to construct skeletal muscle cell models, including hormone, inflammation, cachexia, genetic engineering, drug, and physicochemical models. We also analyze, compare, and evaluate the various construction and assessment methods.
Collapse
Affiliation(s)
- Liwei Li
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Chunman Huang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Jingqun Pang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Yongbin Huang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Xinxin Chen
- Institute of Health Promotion and Medical Communication Studies, Affliated Hospital of Guangdong Medical University, South Renmin Road 57, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Guanghua Chen
- Orthopaedic Center, Affliated Hospital of Guangdong Medical University, South Renmin Road 57, Xiashan District, Zhanjiang 524000, Guangdong, China.
| |
Collapse
|
20
|
Golomb BA, Han JH, Langsjoen PH, Dinkeloo E, Zemljic-Harpf AE. Statin Use in Relation to COVID-19 and Other Respiratory Infections: Muscle and Other Considerations. J Clin Med 2023; 12:4659. [PMID: 37510774 PMCID: PMC10380486 DOI: 10.3390/jcm12144659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Statins have been widely advocated for use in COVID-19 based on large favorable observational associations buttressed by theoretical expected benefits. However, past favorable associations of statins to pre-COVID-19 infection outcomes (also buttressed by theoretical benefits) were unsupported in meta-analysis of RCTs, RR = 1.00. Initial RCTs in COVID-19 appear to follow this trajectory. Healthy-user/tolerator effects and indication bias may explain these disparities. Moreover, cholesterol drops in proportion to infection severity, so less severely affected individuals may be selected for statin use, contributing to apparent favorable statin associations to outcomes. Cholesterol transports fat-soluble antioxidants and immune-protective vitamins. Statins impair mitochondrial function in those most reliant on coenzyme Q10 (a mevalonate pathway product also transported on cholesterol)-i.e., those with existing mitochondrial compromise, whom data suggest bear increased risks from both COVID-19 and from statins. Thus, statin risks of adverse outcomes are amplified in those patients at risk of poor COVID-19 outcomes-i.e., those in whom adjunctive statin therapy may most likely be given. High reported rates of rhabdomyolysis in hospitalized COVID-19 patients underscore the notion that statin-related risks as well as benefits must be considered. Advocacy for statins in COVID-19 should be suspended pending clear evidence of RCT benefits, with careful attention to risk modifiers.
Collapse
Affiliation(s)
- Beatrice A. Golomb
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Jun Hee Han
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | | | - Eero Dinkeloo
- Navy and Marine Corps Public Health Center, Portsmouth, VA 23704, USA;
| | - Alice E. Zemljic-Harpf
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92093, USA
| |
Collapse
|
21
|
Peyrel P, Mauriège P, Frenette J, Laflamme N, Greffard K, Dufresne SS, Huth C, Bergeron J, Joanisse DR. Impact of statin withdrawal on perceived and objective muscle function. PLoS One 2023; 18:e0281178. [PMID: 37315062 DOI: 10.1371/journal.pone.0281178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/07/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND AND AIMS Statin-associated muscle symptoms (SAMS) are frequently reported. Nevertheless, few data on objective measures of muscle function are available. Recent data suggesting an important nocebo effect with statin use could confound such effects. The objective was to assess if subjective and objective measures of muscle function improve after drug withdrawal in SAMS reporters. METHODS Patients (59 men, 33 women, 50.3±9.6 yrs.) in primary cardiovascular prevention composed three cohorts: statin users with (SAMS, n = 61) or without symptoms (No SAMS, n = 15), and controls (n = 16) (registered at clinicaltrials.gov, NCT01493648). Force (F), endurance (E) and power (P) of the leg extensors (ext) and flexors (fle) and handgrip strength (Fhg) were measured using isokinetic and handheld dynamometers, respectively. A 10-point visual analogue scale (VAS) was used to self-assess SAMS intensity. Measures were taken before and after two months of withdrawal. RESULTS Following withdrawal, repeated-measures analyses show improvements for the entire cohort in Eext, Efle, Ffle, Pext and Pfle (range +7.2 to +13.3%, all p≤0.02). Post-hoc analyses show these changes to occur notably in SAMS (+8.8 to +16.6%), concurrent with a decrease in subjective perception of effects in SAMS (VAS, from 5.09 to 1.85). Fhg was also improved in SAMS (+4.0 to +6.2%) when compared to No SAMS (-1.7 to -4.2%) (all p = 0.02). CONCLUSIONS Whether suffering from "true" SAMS or nocebo, those who reported SAMS had modest but relevant improvements in muscle function concurrent with a decrease in subjective symptoms intensity after drug withdrawal. Greater attention by clinicians to muscle function in frail statin users appears warranted. TRIAL REGISTRATION This study is registered in clinicaltrials.gov (NCT01493648).
Collapse
Affiliation(s)
- Paul Peyrel
- Department of Kinesiology, Université Laval, Québec, Québec, Canada
- Research Center of the University Institute of Cardiology and Pulmonology of Quebec, Québec, Québec, Canada
| | - Pascale Mauriège
- Department of Kinesiology, Université Laval, Québec, Québec, Canada
- Research Center of the University Institute of Cardiology and Pulmonology of Quebec, Québec, Québec, Canada
| | - Jérôme Frenette
- CHU de Québec - Université Laval Research Center, Québec, Québec, Canada
- Department of Rehabilitation, Université Laval, Québec, Québec, Canada
| | - Nathalie Laflamme
- CHU de Québec - Université Laval Research Center, Québec, Québec, Canada
| | - Karine Greffard
- CHU de Québec - Université Laval Research Center, Québec, Québec, Canada
| | - Sébastien S Dufresne
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Claire Huth
- Department of Kinesiology, Université Laval, Québec, Québec, Canada
- Research Center of the University Institute of Cardiology and Pulmonology of Quebec, Québec, Québec, Canada
| | - Jean Bergeron
- CHU de Québec - Université Laval Research Center, Québec, Québec, Canada
- Department of Laboratory Medicine and of Medicine, Université Laval, Québec, Québec, Canada
| | - Denis R Joanisse
- Department of Kinesiology, Université Laval, Québec, Québec, Canada
- Research Center of the University Institute of Cardiology and Pulmonology of Quebec, Québec, Québec, Canada
| |
Collapse
|
22
|
German CA, Liao JK. Understanding the molecular mechanisms of statin pleiotropic effects. Arch Toxicol 2023; 97:1529-1545. [PMID: 37084080 PMCID: PMC10119541 DOI: 10.1007/s00204-023-03492-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Statins represent the cornerstone of pharmacotherapy for the prevention of atherosclerotic cardiovascular disease. These medications not only reduce low-density lipoprotein cholesterol (LDL-C) via inhibition of 3-hydroxy-3-methylglutarate attached to CoA reductase, the key rate-limiting step in the cholesterol biosynthetic pathway, but also upregulate expression of the low-density lipoprotein receptor, improving serum clearance. Given LDL-C is a causal risk factor for the development of atherosclerosis, these complementary mechanisms largely explain why statin therapy leads to reductions in major adverse cardiovascular events. However, decades of basic and clinical research have suggested that statins may exert other effects independent of LDL-C lowering, termed pleiotropic effects, which have become a topic of debate among the scientific community. While some literature suggests statins may improve plaque stability, reduce inflammation and thrombosis, decrease oxidative stress, and improve endothelial function and vascular tone, other studies have suggested potential harmful pleiotropic effects related to increased risk of muscle-related side effects, diabetes, hemorrhagic stroke, and cognitive decline. Furthermore, the introduction of newer, non-statin LDL-C lowering therapies, including ezetimibe, proprotein convertase subtilisin/Kexin Type 9, and bempedoic acid, have challenged the statin pleiotropy theory. This review aims to provide a historical background on the development of statins, explore the mechanistic underpinnings of statin pleiotropy, review the available literature, and provide up to date examples that suggest statins may exert effects outside of LDL-C lowering and the cardiovascular system.
Collapse
Affiliation(s)
- Charles A German
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - James K Liao
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
23
|
Cárdenas JDG, Oliveira VHF, Borsari AL, Marinello PC, Longenecker CT, Deminice R. Statin protects men but not women with HIV against loss of muscle mass, strength, and physical function: a pilot study. Sci Rep 2023; 13:4693. [PMID: 36949103 PMCID: PMC10033712 DOI: 10.1038/s41598-023-31643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Statins are cholesterol-lowering drugs commonly used among people with HIV, associated with an increased risk of myopathies. Considering that cardiovascular disease, statin therapy, and sarcopenia are independently prevalent in people with HIV, clarity on the potential benefits or harms of statin therapy on muscle health is useful to provide insight into ways to maximize skeletal muscle health and minimize CVD risk in this population. We aimed to study the effects of statin therapy on strength, muscle mass, and physical function parameters in people with HIV. This was a pilot cross-sectional study. People with HIV on continuous statin therapy (n = 52) were paired 1:1 according to age (people with HIV 53.9 ± 8.2 and people with HIV on statins 53.9 ± 8.4 years), sex, body mass index (Body mass index, people with HIV 28.6 ± 5.3 and people with HIV on statins 28.8 ± 6.3 kg/m2), and race with people with HIV not using statin (n = 52). Participants were evaluated for muscle strength (i.e. handgrip strength), lean and fat body mass (using bioelectric impedance analysis), and physical function (i.e. Short Physical Performance Battery-SPPB). Isokinetic strength and appendicular lean mass (using dual-energy X-ray absorptiometry), more accurate strength and body composition measures, were determined in 38% of the participants. Overall, statin usage does not exacerbated loss of muscle strength (32.2 ± 11.5 vs. 30.3 ± 9.6 kg, p > 0.05) muscle mass (7.6 ± 1.8 vs. 7.7 ± 1.1 kg/m2, p > 0.05), and impaired physical performance (10.1 ± 1.8 vs. 9.7 ± 2.1 points, p > 0.05) of PLWH. When analyzed by sex, men living with HIV on statins usage presented higher appendicular muscle mass (28.4 ± 3.1 vs. 26.2 ± 4.9 kg, p < 0.05) handgrip strength (42.1 ± 8.8 vs. 37.1 ± 8.3 kg, p < 0.05) and physical function through SPPB score (10.9 ± 1.3 vs. 9.5 ± 2.1, p < 0.05) than men living with HIV not on statins treatment. The same protection was not observed in women. This data was demonstrated when muscle mass and strength were determined clinically (i.e. handgrip strength and electrical impedance) and when more precise laboratory measurements of muscle mass and strength were conducted (i.e. isokinetic strength and DXA scans). Statin does not exacerbate muscle wasting, strength loss, or muscle dysfunction among people with HIV. Indeed, statins may protect men, but not woman with HIV against HIV and antiretroviral therapy-induced loss of muscle mass and strength.
Collapse
Affiliation(s)
- José David G Cárdenas
- Health Sciences Graduate Studies, State University of Londrina, Londrina, Paraná, Brazil
| | - Vitor H F Oliveira
- Department of Child, Family and Population Health Nursing, University of Washington, Seattle, Washington, USA
- Department of Physical Education, State University of Londrina, Londrina, Paraná, Brazil
| | - Ana L Borsari
- Department of Physical Education, State University of Londrina, Londrina, Paraná, Brazil
| | - Poliana C Marinello
- Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Chris T Longenecker
- Department of Cardiology and Global Health, University of Washington, Seattle, Washington, USA
| | - Rafael Deminice
- Health Sciences Graduate Studies, State University of Londrina, Londrina, Paraná, Brazil.
- Department of Physical Education, State University of Londrina, Londrina, Paraná, Brazil.
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 km 380, Campus Universitário, Londrina, PR, Brazil.
| |
Collapse
|
24
|
Significance of Statin-Associated Muscle Symptoms and Its Impact on Patients Adherence and Outcomes. J Cardiovasc Pharmacol 2023; 81:185-191. [PMID: 36459061 DOI: 10.1097/fjc.0000000000001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
ABSTRACT Statin-associated muscle symptoms (SAMS) are one of the most common side effects of statins. This study aimed to explore the significance of SAMS among statin users by comparing statin users with a control group. To achieve our aims, a propensity score matching the retrospective cohort study was conducted in a single center tertiary hospital. The statin muscle symptoms were assessed using the Proposed Statin Myalgia Index Score, whereas the patient's adherence to medications was evaluated using the Morisky Medication Adherence Scale-8. We included 743 patients in our study; of them, 64.9% were on statin, whereas the rest were controls (35.1%). After propensity score matching, patients on statin had significantly higher rates of SAMS (5.0%) compared with control (1.6%) (AOR = 3.209; 95% CI: 1.020-10.091). However, there was no significant difference between statin users and controls in medications nonadherence ( P -value = 0.820). Our analysis among statins users revealed that moderate-intensity (2.671; 95% CI: 1.691-3.310) and high-intensity (3.552; 95% CI: 2.190-4.129) statin therapy was significantly associated with SAMS. In addition, autoimmune diseases were significantly associated with SAMS occurrence (AOR = 32.301; 95% CI: 1.785-584.374). Also, patients on PPIs had significantly less occurrence of SAMS (AOR = 0.145; 95% CI: 0.044-0.483), whereas patients on antiepileptic drugs had significantly higher SAMS occurrence (AOR = 72.337; 95% CI: 2.649-1975.201). Regarding MACE among statin users, there was no significant difference in the 1-year or 5-year MACE rate between statin users and controls. Our study suggests that SAMS are significant among statin users and must be addressed by health care providers to ensure that patients are still adherent to their medications and hence protected against cardiac events.
Collapse
|
25
|
Peyrel P, Mauriège P, Frenette J, Laflamme N, Greffard K, Huth C, Bergeron J, Joanisse DR. Statin withdrawal and health-related quality of life in a primary cardiovascular prevention cohort. Qual Life Res 2023:10.1007/s11136-023-03362-9. [PMID: 36781811 DOI: 10.1007/s11136-023-03362-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE While some work has been done on Health-Related Quality of Life (HRQoL) in statin users, none has focused specifically on statin-associated muscle symptoms (SAMS) sufferers. The objective was to assess self-reported HRQoL, before and after statin withdrawal, in patients reporting SAMS. We hypothesized that the presence of SAMS associated with decreased self-reported physical and mental well-being. METHODS Patients (50 men/28 women [M/W], aged 49 ± 9 years [Mean ± SD]) in primary cardiovascular prevention were recruited into three cohorts: statin users with (SAMS, 29 M/18W) or without symptoms (No SAMS, 10 M/5W) and controls (11 M/5W). The Short Form 36 Health Survey (SF-36) was used to assess HRQoL. All variables were measured before and after 2 months of statin withdrawal, and repeated measures analyses were used to verify withdrawal and group effects as well as their interaction. RESULTS SF-36 physical and mental component scores (respectively, PCS and MCS) were lower in the SAMS group compared with other groups (both p < 0.01). Statin withdrawal led to an increase in LDL cholesterol for statin users (+69.0%, p < 0.01) and an improvement in well-being in the SAMS group, other groups showing no change. A time x category interaction (p = 0.02) was seen for PCS and post hoc analyses showed that statin withdrawal improved PCS and MCS (respectively, +12.5% [ES 0.77] and +5.1% [ES 0.27], both p < 0.05) in the SAMS group. CONCLUSION Patients self-reporting SAMS showed improved HRQoL following drug withdrawal, but this was mirrored by a rise in LDL cholesterol. These findings should be considered by clinicians in the evaluation and follow-up of treatment with statins.
Collapse
Affiliation(s)
- P Peyrel
- Department of Kinesiology, Université Laval, Québec, QC, G1V 0A6, Canada.,Research Center of the University Institute of Cardiology and Pulmonology of Québec, Québec, QC, G1V 4G5, Canada
| | - P Mauriège
- Department of Kinesiology, Université Laval, Québec, QC, G1V 0A6, Canada.,Research Center of the University Institute of Cardiology and Pulmonology of Québec, Québec, QC, G1V 4G5, Canada
| | - J Frenette
- CHU de Québec-Université Laval Research Center, Québec, QC, G1V 4G2, Canada.,Department of Rehabilitation, Université Laval, Québec, QC, G1V 0A6, Canada
| | - N Laflamme
- CHU de Québec-Université Laval Research Center, Québec, QC, G1V 4G2, Canada
| | - K Greffard
- CHU de Québec-Université Laval Research Center, Québec, QC, G1V 4G2, Canada
| | - C Huth
- Department of Kinesiology, Université Laval, Québec, QC, G1V 0A6, Canada.,Research Center of the University Institute of Cardiology and Pulmonology of Québec, Québec, QC, G1V 4G5, Canada
| | - J Bergeron
- CHU de Québec-Université Laval Research Center, Québec, QC, G1V 4G2, Canada.,Department of Laboratory Medicine and of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - D R Joanisse
- Department of Kinesiology, Université Laval, Québec, QC, G1V 0A6, Canada. .,Research Center of the University Institute of Cardiology and Pulmonology of Québec, Québec, QC, G1V 4G5, Canada.
| |
Collapse
|
26
|
Muraine L, Bensalah M, Butler-Browne G, Bigot A, Trollet C, Mouly V, Negroni E. Update on anti-fibrotic pharmacotherapies in skeletal muscle disease. Curr Opin Pharmacol 2023; 68:102332. [PMID: 36566666 DOI: 10.1016/j.coph.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Fibrosis, defined as an excessive accumulation of extracellular matrix, is the end point of a defective regenerative process, unresolved inflammation and/or chronic damage. Numerous muscle disorders (MD) are characterized by high levels of fibrosis associated with muscle wasting and weakness. Fibrosis alters muscle homeostasis/regeneration and fiber environment and may interfere with gene and cell therapies. Slowing down or reversing fibrosis is a crucial therapeutic goal to maintain muscle identity in the context of therapies. Several pathways are implicated in the modulation of the fibrotic progression and multiple therapeutic compounds targeting fibrogenic signals have been tested in MDs, mostly in the context of Duchenne Muscular Dystrophy. In this review, we present an up-to-date overview of pharmacotherapies that have been tested to reduce fibrosis in the skeletal muscle.
Collapse
Affiliation(s)
- Laura Muraine
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Mona Bensalah
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
27
|
Lashgari NA, Roudsari NM, Zadeh SST, Momtaz S, Abbasifard M, Reiner Ž, Abdolghaffari AH, Sahebkar A. Statins block mammalian target of rapamycin pathway: a possible novel therapeutic strategy for inflammatory, malignant and neurodegenerative diseases. Inflammopharmacology 2023; 31:57-75. [PMID: 36574095 PMCID: PMC9792946 DOI: 10.1007/s10787-022-01077-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 12/28/2022]
Abstract
Inflammation plays a critical role in several diseases such as cancer, gastric, heart and nervous system diseases. Data suggest that the activation of mammalian target of rapamycin (mTOR) pathway in epithelial cells leads to inflammation. Statins, the inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), seem to be able to inhibit the mTOR. Statins are considered to have favorable effects on inflammatory diseases by reducing the complications caused by inflammation and by regulating the inflammatory process and cytokines secretion. This critical review collected data on this topic from clinical, in vivo and in vitro studies published between 1998 and June 2022 in English from databases including PubMed, Google Scholar, Scopus, and Cochrane libraries.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran
- Toxicology and Diseases Group (TDG), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.
- Toxicology and Diseases Group (TDG), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Petrosyan AS, Rud' RS, Polyakov PP, Kade AK, Zanin SA. The Pathogenetic Basis of the Action of Bempedoic Acid. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-12-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The modern cardiology has a wide range of medications which affect various pathogenetic links of atherosclerosis, but even the best of them still obtain disadvantages causing intolerance and medicine discontinuation. The development of new hypolipidemic medications will allow not only to introduce alternative therapies into the cardiology practice, but also to completely execute the strategy of residual risk reduction by utilizing rational combinations of medications. One of such alternatives could be bempedoic acid, which can have a positive effect on a number of endpoints as the results of third phase trials have shown. These effects are also confirmed in Mendelian randomization studies. The mechanism of action of bempedoic acid is presumably associated with inhibition of the activity of ATP citrate lyase – the enzyme responsible for the breakdown of citrate into acetyl-CoA and oxaloacetate. Acetyl-CoA, in turn, is used by the cell to synthesize cholesterol and fatty acids. Thus, bempedoic acid affects in the same metabolic pathway as statins, but at an earlier stage. According to this, it is possible that medications of these classes will have similar side effects and pleiotropic effects associated with modulation of the mevalonic pathway, such as prenylation regulatory proteins (small GTPases) or reduction of coenzyme Q synthesis. However, there are also some specific features of the pharmacodynamics and pharmacokinetics of bempedoic acid to be considered. In particular, once entered the body, it must be activated via esterification by very long-chain acyl-CoA synthetase-1. The enzyme isoform required for this process is expressed in a tissue-specific manner and, for example, is absent in skeletal myocytes. In addition, citrate, oxaloacetate, and acetyl-CoA are important regulators of many intracellular processes: metabolism, growth and proliferation, mechanotransduction, posttranslational modifications of histones and other proteins. The levels of all three substances are altered by bempedoic acid, although no firm conclusions about the effects of these changes can be drawn at this time. The mentioned features probably have a significant impact on the clinical profile of bempedoic acid and underlie the differences from statins already observed in third phase trials, including, for example, a reduced risk of the onset or worsening of diabetes mellitus while taking bempedoic acid.
Collapse
Affiliation(s)
| | - R. S. Rud'
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
29
|
Natural bioactive flavonoids as promising agents in alleviating exercise-induced fatigue. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Andronie-Cioară FL, Jurcău A, Jurcău MC, Nistor-Cseppentö DC, Simion A. Cholesterol Management in Neurology: Time for Revised Strategies? J Pers Med 2022; 12:jpm12121981. [PMID: 36556202 PMCID: PMC9784893 DOI: 10.3390/jpm12121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Statin therapy has been extensively evaluated and shown to reduce the incidence of new or recurrent vascular events, ischemic stroke included. As a consequence, each published guideline pushes for lower low-density cholesterol levels in the population at large, recommending increased statin doses and/or adding new cholesterol-lowering molecules. Neurologists find it sometimes difficult to apply these guidelines, having to confront situations such as (1) ischemic strokes, mainly cardioembolic ones, in patients with already low LDL-cholesterol levels; (2) myasthenic patients, whose lifespan has been extended by available treatment, and whose age and cholesterol levels put them at risk for ischemic stroke; (3) patients with myotonic dystrophy, whose disease often associates diabetes mellitus and heart conduction defects, and in whom blood cholesterol management is also not settled. As such, further trials are needed to address these issues.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioară
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Maria Carolina Jurcău
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Aurel Simion
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
31
|
Zhang Z, Deng C, Ma X, Wu Q, Zhou F, Liu X. The association between statin use and osteoarthritis-related outcomes: An updated systematic review and meta-analysis. Front Pharmacol 2022; 13:1003370. [PMID: 36506528 PMCID: PMC9729269 DOI: 10.3389/fphar.2022.1003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: Findings among studies evaluating the effect of statin use and OA development in a 2020 meta-analysis of data from 11 observational studies of statin use and osteoarthritis (OA) revealed controversial results. We aimed to determine the associations between statin use and OA-related outcomes in an updated meta-analysis. Methods: The protocol was registered with PROSPERO (CRD42020163983). A systematic literature retrieval was performed in the online databases, including PubMed, Cochrane Library, Embase, Web of Science, and Scopus, from inception to 1 June 2022, for clinical studies that compared the effects of statin users vs. nonusers on OA-related outcomes risks. Systematic reviews and meta-analyses were performed to estimate the correlations between statin use and OA-related outcomes. Tendency analysis was also used to estimate dose-response effects. The risk of bias was evaluated with the Newcastle-Ottawa scale. Results: We included 23 studies involving more than 6,000,000 participants. Statin use was associated with increased OA risk (OR 1.099 [95%CI 1.002-1.206, p = 0.045]). Higher statin doses had higher OA risk (simvastatin equivalent daily of >40 mg). OA and related surgery risks were significantly reduced in statin users using antihypertensive drugs (AHDs). No significant differences were seen in other outcomes. Conclusion: This meta-analysis inferred that statin use might be associated with increased OA development, especially at higher doses. The present study highlights the importance of recognizing potential OA risk in the population with long-term and/or high-dose statin use, especially in older populations. In addition, AHDs are associated with lower OA risk and fewer surgeries in hypertensive statin users. Due to limitations of heterogeneity and confounders, more rigorous studies are needed to define the correlations between statin use and OA-related outcomes.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunbo Deng
- Department of Orthopedics, Central Hospital of Shenyang Medical College, Shenyang, China
| | - Xun Ma
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fenghua Zhou
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Termkwancharoen C, Malakul W, Phetrungnapha A, Tunsophon S. Naringin Ameliorates Skeletal Muscle Atrophy and Improves Insulin Resistance in High-Fat-Diet-Induced Insulin Resistance in Obese Rats. Nutrients 2022; 14:nu14194120. [PMID: 36235772 PMCID: PMC9571698 DOI: 10.3390/nu14194120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Obesity causes progressive lipid accumulation and insulin resistance within muscle cells and affects skeletal muscle fibres and muscle mass that demonstrates atrophy and dysfunction. This study investigated the effects of naringin on the metabolic processes of skeletal muscle in obese rats. Male Sprague Dawley rats were divided into five groups: the control group with normal diet and the obese groups, which were induced with a high-fat diet (HFD) for the first 4 weeks and then treated with 40 mg/kg of simvastatin and 50 and 100 mg/kg of naringin from week 4 to 8. The naringin-treated group showed reduced body weight, biochemical parameters, and the mRNA expressions of protein degradation. Moreover, increased levels of antioxidant enzymes, glycogen, glucose uptake, the expression of the insulin receptor substrate 1 (IRS-1), the glucose transporter type 4 (GLUT4), and the mRNA expressions of protein synthesis led to improved muscle mass in the naringin-treated groups. The in vitro part showed the inhibitory effects of naringin on digestive enzymes related to lipid and glucose homeostasis. This study demonstrates the potential benefits of naringin as a supplement for treating muscle abnormalities in obese rats by modulating the antioxidative status, regulating protein metabolism, and improved insulin resistance in skeletal muscle of HFD-induced insulin resistance in obese rats.
Collapse
Affiliation(s)
- Chutimon Termkwancharoen
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Amnat Phetrungnapha
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sakara Tunsophon
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-964655
| |
Collapse
|
33
|
Rhabdomyolysis-Induced AKI (RIAKI) Including the Role of COVID-19. Int J Mol Sci 2022; 23:ijms23158215. [PMID: 35897810 PMCID: PMC9329740 DOI: 10.3390/ijms23158215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/08/2023] Open
Abstract
Rhabdomyolysis is a compound disease that may be induced by many factors, both congenital and acquired. Statin therapy is considered one of the most common acquired factors. However, recent scientific reports suggest that serious complications such as rhabdomyolysis are rarely observed. Researchers suggest that, in many cases, side effects that occur with statin therapy, including muscle pain, can be avoided with lower-dose statin therapy or in combination therapy with other drugs. One of the most recent agents discovered to contribute to rhabdomyolysis is COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rhabdomyolysis is defined as a damage to striated muscle cells with escape of intracellular substances into the bloodstream. These substances, including myoglobin, creatine kinase (CK), potassium, and uridine acid, are markers of muscle damage and early complications of rhabdomyolysis. Symptoms may be helpful in establishing the diagnosis. However, in almost 50% of patients, they do not occur. Therefore, the diagnosis is confirmed by serum CK levels five times higher than the upper limit of normal. One of the late complications of this condition is acute kidney injury (AKI), which is immediately life-threatening and has a high mortality rate among patients. Therefore, the prompt detection and treatment of rhabdomyolysis is important. Markers of muscle damage, such as CK, lactate dehydrogenase (LDH), myoglobin, troponins, and aspartate aminotransferase (AST), are important in diagnosis. Treatment of rhabdomyolysis is mainly based on early, aggressive fluid resuscitation. However, therapeutic interventions, such as urinary alkalinization with sodium bicarbonate or the administration of mannitol or furosemide, have not proven to be beneficial. In some patients who develop AKI in the course of rhabdomyolysis, renal replacement therapy (RRT) is required.
Collapse
|
34
|
Liu C, Yan W, Shi J, Wang S, Peng A, Chen Y, Huang K. Biological Actions, Implications, and Cautions of Statins Therapy in COVID-19. Front Nutr 2022; 9:927092. [PMID: 35811982 PMCID: PMC9257176 DOI: 10.3389/fnut.2022.927092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) showed worse prognosis and higher mortality in individuals with obesity. Dyslipidemia is a major link between obesity and COVID-19 severity. Statins as the most common lipid regulating drugs have shown favorable effects in various pathophysiological states. Importantly, accumulating observational studies have suggested that statin use is associated with reduced risk of progressing to severe illness and in-hospital death in COVID-19 patients. Possible explanations underlie these protective impacts include their abilities of reducing cholesterol, suppressing viral entry and replication, anti-inflammation and immunomodulatory effects, as well as anti-thrombosis and anti-oxidative properties. Despite these benefits, statin therapies have side effects that should be considered, such as elevated creatinine kinase, liver enzyme and serum glucose levels, which are already elevated in severe COVID-19. Concerns are also raised whether statins interfere with the efficacy of COVID-19 vaccines. Randomized controlled trials are being conducted worldwide to confirm the values of statin use for COVID-19 treatment. Generally, the results suggest no necessity to discontinue statin use, and no evidence suggesting interference between statins and COVID-19 vaccines. However, concomitant administration of statins and COVID-19 antiviral drug Paxlovid may increase statin exposure and the risk of adverse effects, because most statins are metabolized mainly through CYP3A4 which is potently inhibited by ritonavir, a major component of Paxlovid. Therefore, more clinical/preclinical studies are still warranted to understand the benefits, harms and mechanisms of statin use in the context of COVID-19.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Wang
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anlin Peng
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Nsaibia MJ, Devendran A, Goubaa E, Bouitbir J, Capoulade R, Bouchareb R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J Clin Med 2022; 11:jcm11123331. [PMID: 35743402 PMCID: PMC9225514 DOI: 10.3390/jcm11123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation. Inflammation and growth factors actively promote the synthesis of the extracellular matrix (ECM) and trigger an osteogenic program. The accumulation of ECM proteins promotes lipid adhesion to valve tissue, which could initiate the osteogenic program in interstitial valve cells. Statin treatment has been shown to have the ability to diminish the death rate in subjects with atherosclerotic impediments by decreasing the serum LDL cholesterol levels. However, the use of HMG-CoA inhibitors (statins) as cholesterol-lowering therapy did not significantly reduce the progression or the severity of aortic valve calcification. However, new clinical trials targeting Lp(a) or PCSK9 are showing promising results in reducing the severity of aortic stenosis. In this review, we discuss the implication of lipids in aortic valve calcification and the current findings on the effect of lipid-lowering therapy in aortic stenosis.
Collapse
Affiliation(s)
- Mohamed J. Nsaibia
- Department of Cell Biology and Molecular Medicine, Rutgers University, Newark, NJ 07103, USA;
| | - Anichavezhi Devendran
- Department of Medicine, Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Eshak Goubaa
- Thomas Jefferson University East Falls, Philadelphia, PA 19144, USA;
| | - Jamal Bouitbir
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, 4056 Basel, Switzerland;
| | - Romain Capoulade
- L’institut Du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France;
| | - Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(212)-241-8471
| |
Collapse
|
36
|
Harnett J, Climstein M, Walsh J, Gifford J. The Use of Medications and Dietary Supplements by Masters Athletes - a Review. Curr Nutr Rep 2022; 11:253-262. [PMID: 35635719 PMCID: PMC9174319 DOI: 10.1007/s13668-022-00398-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE OF REVIEW Masters athletes (MA) are generally considered healthier than their sedentary peers. However, the prevalence of chronic conditions in any population increases with age. Treatments involve pharmacological and non-pharmacological interventions. A substantial proportion of the general population also use dietary supplements (DS). This raises questions about the potential for drug-nutrient interactions which may lead to adverse effects. We sought to determine the potential for drug-nutrient interactions MA may be exposed to by examining the prevalence of chronic conditions treated with medications and their DS use. RECENT FINDINGS Common conditions in MA include hypertension, hyperlipidemia, asthma, osteoarthritis, depression and anxiety. Treatments may involve prescribed medications. Few recent studies were identified on DS use; however, indications are for around 60% prevalence of supplement usage. The higher prevalence of DS use by MA may result in drug-nutrient interactions that impact the effectiveness and safety of prescribed medications for chronic conditions.
Collapse
Affiliation(s)
- Joanna Harnett
- Nutritional Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2005 Australia
| | - Mike Climstein
- Clinical Exercise Physiology, Faculty of Health, Southern Cross University, Bilinga, QLD 4225 Australia
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, The University of Sydney, Camperdown, Australia
| | - Joe Walsh
- Sport Science Institute, Sydney, NSW Australia
| | - Janelle Gifford
- Discipline of Exercise and Sport Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2005 Australia
- Sport and Physical Activity Research and Teaching Network, The University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Jiang C, Liu Y, Wang Y, Su E, Du L, Tang Y, Xie J, Wei D. Hypolipidemic effects of the fermented soymilk with a novel
Lactiplantibacillus plantarum
strain X7021 on mice via modulating lipid metabolism and gut microbiota. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chentian Jiang
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Yafan Liu
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Yijia Wang
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Erzheng Su
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Ya‐Jie Tang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) Shanghai 200237 China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) Shanghai 200237 China
| |
Collapse
|
38
|
Assessment of the Preventive Effect of L-carnitine on Post-statin Muscle Damage in a Zebrafish Model. Cells 2022; 11:cells11081297. [PMID: 35455976 PMCID: PMC9032104 DOI: 10.3390/cells11081297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Statins, such as lovastatin, are lipid-lowering drugs (LLDs) that have been used to treat hypercholesterolaemia, defined as abnormally elevated cholesterol levels in the patient’s blood. Although statins are considered relatively safe and well tolerated, recipients may suffer from adverse effects, including post-statin myopathies. Many studies have shown that supplementation with various compounds may be beneficial for the prevention or treatment of side effects in patients undergoing statin therapy. In our study, we investigated whether L-carnitine administered to zebrafish larvae treated with lovastatin alleviates post-statin muscle damage. We found that exposure of zebrafish larvae to lovastatin caused skeletal muscle disruption observed as a reduction of birefringence, changes in muscle ultrastructure, and an increase in atrogin-1. Lovastatin also affected heart performance and swimming behaviour of larvae. Our data indicated that the muscle-protective effect of L-carnitine is partial. Some observed myotoxic effects, such as disruption of skeletal muscle and increase in atrogin-1 expression, heart contraction could be rescued by the addition of L-carnitine. Others, such as slowed heart rate and reduced locomotion, could not be mitigated by L-carnitine supplementation.
Collapse
|
39
|
Tocotrienols Attenuate White Adipose Tissue Accumulation and Improve Serum Cholesterol Concentration in High-Fat Diet-Treated Mice. Molecules 2022; 27:molecules27072188. [PMID: 35408585 PMCID: PMC9000465 DOI: 10.3390/molecules27072188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Tocotrienols (T3s), which are vitamin E homologs, have not only antioxidant function but also inhibitory effects on body weight gain and hepatic lipid droplet accumulation. However, the mechanisms of the anti-obesity effects of T3s are not yet understood. In this study, C57BL/6 mice were fed a high-fat diet in the presence or absence of T3s. Treatment with T3s inhibited white adipose tissue accumulation and elevation of serum cholesterol concentrations. Additionally, to clarify the relationship between obesity-induced cognitive dysfunction and the neuroprotective effect of T3s, cognitive function, brain oxidation, and protein expression levels of brain-derived neurotrophic factor (BDNF), which is strongly involved in neuronal growth and differentiation, were measured. Although mice behaviors were improved by oral T3 intake, there were no significant differences in brain oxidation levels and BDNF expression. These results suggest that T3s attenuate obesity via inhibition of body fat and serum cholesterol increase.
Collapse
|
40
|
Susekov AV. Topical issues concerning modern lipid-lowering therapy. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.1.201484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypercholesterolemia (high levels of atherogenic lipoproteins) is the main modifiable cardiovascular risk factor in most of the populations, including the Russian population. 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) have been used in clinical practice for more than 40 years and have a substantial evidence-based proof of efficacy and safety. Unfortunately, the most of the patients with high cardiovascular risk, including the Russian Federation, still receive initial statin doses and only in 10% of the cases we can reach the recommended target level of low-density lipoprotein cholesterol. This article deals with the current principles of statin therapy according to the latest guidelines and shows updated information concerning the optimization of statin therapy in the elderly and in patients with chronic kidney disease. This article, as well, shows the safety of applying HMG-CoA reductase inhibitors (impact on muscles, liver and cognitive impairments). In addition, the review presents the algorithms for the combination therapy of statins and ezetimibe.
Collapse
|
41
|
Gora AH, Rehman S, Kiron V, Dias J, Fernandes JMO, Olsvik PA, Siriyappagouder P, Vatsos I, Schmid-Staiger U, Frick K, Cardoso M. Management of Hypercholesterolemia Through Dietary ß-glucans–Insights From a Zebrafish Model. Front Nutr 2022; 8:797452. [PMID: 35096942 PMCID: PMC8790573 DOI: 10.3389/fnut.2021.797452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Consumption of lipid-rich foods can increase the blood cholesterol content. β-glucans have hypocholesterolemic effect. However, subtle changes in their molecular branching can influence bioactivity. Therefore, a comparative investigation of the cholesterol-lowering potential of two β-glucans with different branching patterns and a cholesterol-lowering drug, namely simvastatin was undertaken employing the zebrafish (Danio rerio) model of diet-induced hypercholesterolemia. Fish were allocated to 5 dietary treatments; a control group, a high cholesterol group, two β-glucan groups, and a simvastatin group. We investigated plasma total cholesterol, LDL and HDL cholesterol levels, histological changes in the tissues, and explored intestinal transcriptomic changes induced by the experimental diets. Dietary cholesterol likely caused the suppression of endogenous cholesterol biosynthesis, induced dysfunction of endoplasmic reticulum and mitochondria, and altered the histomorphology of the intestine. The two β-glucans and simvastatin significantly abated the rise in plasma cholesterol levels and restored the expression of specific genes to alleviate the endoplasmic reticulum-related effects induced by the dietary cholesterol. Furthermore, the distinct patterns of transcriptomic changes in the intestine elicited by the oat and microalga β-glucans impacted processes such as fatty acid metabolism, protein catabolic processes, and nuclear division. Oat and microalgal β-glucans also altered the pattern of lipid deposition in the liver. Our study provides insights into the effectiveness of different β-glucans to alleviate dysfunctions in lipid metabolism caused by dietary cholesterol.
Collapse
Affiliation(s)
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- *Correspondence: Viswanath Kiron
| | | | | | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ioannis Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Innovation Field Algae Biotechnology-Development, Stuttgart, Germany
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
42
|
Wei J, Huan Y, Heng Z, Zhao C, Jia L, Yu Y, Gao Y. Dynamic urine proteome changes in a rat model of simvastatin-induced skeletal muscle injury. J Proteomics 2022; 254:104477. [PMID: 34990819 DOI: 10.1016/j.jprot.2021.104477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Statin-associated muscle symptoms (SAMS) are the main side effects of statins. Currently, there are no effective biomarkers for accurate clinical diagnosis. Urine is not subject to homeostatic control and therefore accumulates early changes, making it an ideal biomarker source. We therefore examined urine proteome changes associated with SAMS. Here, we established a SAMS rat model by intragastric intubation with simvastatin (80 mg/kg). Biochemical analyses and hematoxylin and eosin staining were used to evaluate the degree of muscle injury. The urine proteome on days 3, 6, 9 and 14 was profiled using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Differential proteins on day 14 of SAMS were mainly associated with glycolysis/gluconeogenesis, pyruvate metabolism, metabolism of reactive oxygen species and apoptosis, which were associated with the pathological mechanism of SAMS. Among the 14 differential proteins on day 3, Fibrinogen gamma chain (FIBG), Osteopontin (OSTP) and C-reactive protein (CRP) were associated with muscle damage, while EH domain-containing protein 1(EHD1), Cubilin (CUBN) and Fibronectin (FINC) were associated with the pathogenic mechanisms of SAMS. Our preliminary results indicated that the urine proteome can reflect early changes in the SAMS rat model, providing the potential for monitoring drug side effects in future clinical research. SIGNIFICANCE: This study demonstrate that the early muscle damage caused by simvastatin can be reflected in urinary proteins. The urine proteome also has the potential to reflect the pharmacology and toxicology of drugs in future clinical research.
Collapse
Affiliation(s)
- Jing Wei
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Yuhang Huan
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing 100875, China; Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Ziqi Heng
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Chenyang Zhao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Lulu Jia
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuncui Yu
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing 100875, China.
| |
Collapse
|
43
|
Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res 2021; 175:105986. [PMID: 34800627 DOI: 10.1016/j.phrs.2021.105986] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
During cardiac reperfusion after myocardial infarction, the heart is subjected to cascading cycles of ischaemia reperfusion injury (IRI). Patients presenting with this injury succumb to myocardial dysfunction resulting in myocardial cell death, which contributes to morbidity and mortality. New targeted therapies are required if the myocardium is to be protected from this injury and improve patient outcomes. Extensive research into the role of mitochondria during ischaemia and reperfusion has unveiled one of the most important sites contributing towards this injury; specifically, the opening of the mitochondrial permeability transition pore. The opening of this pore occurs during reperfusion and results in mitochondria swelling and dysfunction, promoting apoptotic cell death. Activation of mitochondrial ATP-sensitive potassium channels (mitoKATP) channels, uncoupling proteins, and inhibition of glycogen synthase kinase-3β (GSK3β) phosphorylation have been identified to delay mitochondrial permeability transition pore opening and reduce reactive oxygen species formation, thereby decreasing infarct size. Statins have recently been identified to provide a direct cardioprotective effect on these specific mitochondrial components, all of which reduce the severity of myocardial IRI, promoting the ability of statins to be a considerate preconditioning agent. This review will outline what has currently been shown in regard to statins cardioprotective effects on mitochondria during myocardial IRI.
Collapse
Affiliation(s)
- Abigail R Bland
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Fergus M Payne
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Wang Y, Wang C, Xie M, Tang T, Wang Z, Nie X. Atorvastatin causes oxidative stress and alteration of lipid metabolism in estuarine goby Mugilogobius abei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117879. [PMID: 34391042 DOI: 10.1016/j.envpol.2021.117879] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The potential effects of the environmental residues of Atorvastatin (ATV) as a widely used antilipemic agent on aquatic organisms deserve more investigations because of its high detection frequency in environment. The responses of Nrf2/Keap1 signaling pathway (including the transcriptional expression of Nrf2, Keap1, GCLC, GPx, GST, SOD, CAT, Trx2, TrxR, HMG-CoAR and PGC-1α) in Mugilogobius abei were investigated under acute and sub-chronic exposure of ATV in the simulated laboratory conditions. The changes of related enzymatic activity (GST, GPx, SOD, CAT and TrxR) and the content of GSH and MDA combining with the observation of histology sections of liver in M. abei were also addressed. The results show Nrf2 and its downstream antioxidant genes were induced to different degrees under ATV exposure. The activities of antioxidant enzymes were inhibited at 24 h and 72 h but induced/recovered at 168 h. Correspondingly, negatively correlated to GSH, MDA increased first but reduced then. Notably, with the increase of exposure concentration/time, the volume of lipid cells in liver decreased, suggesting more lipid decomposition. Therefore, lipid metabolism was suppressed (down-regulation of PGC-1α) and cholesterol biosynthesis was induced (up-regulation of HMG-COAR) at 168 h. In short, ATV brings oxidative stress to M. abei in the initial phase. However, with the increase of exposure time, ATV activates Nrf2/Keap1 signaling pathway and improves the antioxidant capacity of M. abei to reverse this adverse effect. ATV also affects lipid metabolism of M. abei by reducing cholesterol content and accelerating lipid decomposition.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Meinan Xie
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tianli Tang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Zhaohui Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
45
|
Cell-Permeable Succinate Rescues Mitochondrial Respiration in Cellular Models of Amiodarone Toxicity. Int J Mol Sci 2021; 22:ijms222111786. [PMID: 34769217 PMCID: PMC8583998 DOI: 10.3390/ijms222111786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Amiodarone is a potent antiarrhythmic drug and displays substantial liver toxicity in humans. It has previously been demonstrated that amiodarone and its metabolite (desethylamiodarone, DEA) can inhibit mitochondrial function, particularly complexes I (CI) and II (CII) of the electron transport system in various animal tissues and cell types. The present study, performed in human peripheral blood cells, and one liver-derived human cell line, is primarily aimed at assessing the concentration-dependent effects of these drugs on mitochondrial function (respiration and cellular ATP levels). Furthermore, we explore the efficacy of a novel cell-permeable succinate prodrug in alleviating the drug-induced acute mitochondrial dysfunction. Amiodarone and DEA elicit a concentration-dependent impairment of mitochondrial respiration in both intact and permeabilized platelets via the inhibition of both CI- and CII-supported respiration. The inhibitory effect seen in human platelets is also confirmed in mononuclear cells (PBMCs) and HepG2 cells. Additionally, amiodarone elicits a severe concentration-dependent ATP depletion in PBMCs, which cannot be explained solely by mitochondrial inhibition. The succinate prodrug NV118 alleviates the respiratory deficit in platelets and HepG2 cells acutely exposed to amiodarone. In conclusion, amiodarone severely inhibits metabolism in primary human mitochondria, which can be counteracted by increasing mitochondrial function using intracellular delivery of succinate.
Collapse
|
46
|
Mueller AM, Liakoni E, Schneider C, Burkard T, Jick SS, Krähenbühl S, Meier CR, Spoendlin J. The Risk of Muscular Events Among New Users of Hydrophilic and Lipophilic Statins: an Observational Cohort Study. J Gen Intern Med 2021; 36:2639-2647. [PMID: 33751411 PMCID: PMC8390626 DOI: 10.1007/s11606-021-06651-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Statins are effective lipid-lowering drugs for the prevention of cardiovascular disease, but muscular adverse events can limit their use. Hydrophilic statins (pravastatin, rosuvastatin) may cause less muscular events than lipophilic statins (e.g. simvastatin, atorvastatin) due to lower passive diffusion into muscle cells. OBJECTIVE To compare the risk of muscular events between statins at comparable lipid-lowering doses and to evaluate if hydrophilic statins are associated with a lower muscular risk than lipophilic statins. DESIGN/SETTING Propensity score-matched cohort study using data from the United Kingdom-based Clinical Practice Research Datalink (CPRD) GOLD. PATIENTS New statin users. Cohort 1: pravastatin 20-40 mg (hydrophilic) vs simvastatin 10-20 mg (lipophilic), cohort 2: rosuvastatin 5-40 mg (hydrophilic) vs atorvastatin 10-80 mg (lipophilic), and cohort 3: simvastatin 40-80 mg vs atorvastatin 10-20 mg. MAIN MEASURES The outcome was a first record of a muscular event (myopathy, myalgia, myositis, rhabdomyolysis) during a maximum follow-up of 1 year. KEY RESULTS The propensity score-matched cohorts consisted of 1) 9,703, 2) 7,032, and 3) 37,743 pairs of statin users. Comparing the risk of muscular events between low-intensity pravastatin vs low-intensity simvastatin yielded a HR of 0.86 (95% CI 0.64-1.16). In the comparison of moderate- to high-intensity rosuvastatin vs equivalent doses of atorvastatin, we observed a HR of 1.17 (95% CI 0.88-1.56). Moderate- to high-intensity simvastatin was associated with a HR of 1.33 (95% CI 1.16-1.53), when compared with atorvastatin at equivalent doses. LIMITATIONS We could not conduct other pairwise comparisons of statins due to small sample size. In the absence of a uniform definition on the comparability of statin doses, the applied dose ratios may not fully match with all literature sources. CONCLUSIONS Our results do not suggest a systematically lower risk of muscular events for hydrophilic statins when compared to lipophilic statins at comparable lipid-lowering doses.
Collapse
Affiliation(s)
- Alexandra M Mueller
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| | - Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cornelia Schneider
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| | - Theresa Burkard
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| | - Susan S Jick
- Boston Collaborative Drug Surveillance Program, Lexington, MA, USA.,Boston University School of Public Health, Boston, MA, USA
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Christoph R Meier
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland. .,Hospital Pharmacy, University Hospital Basel, Basel, Switzerland. .,Boston Collaborative Drug Surveillance Program, Lexington, MA, USA.
| | - Julia Spoendlin
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
47
|
Chong RQ, Gelissen I, Chaar B, Penm J, Cheung JMY, Harnett JE. Do medicines commonly used by older adults impact their nutrient status? EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2021; 3:100067. [PMID: 35480616 PMCID: PMC9031754 DOI: 10.1016/j.rcsop.2021.100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Chronic health conditions and polypharmacy are common among the older population and associated with increased risks of adverse events, medicine-interactions, geriatric syndromes, falls and mortality. Poor nutrition is also common in older people. Causal associations between medication use and older people's nutrient status is seldom discussed. Objectives The objectives of this review were to summarise the literature reporting associations between medicines commonly prescribed to older adults and nutrient deficiencies, and to discuss the clinical implications and management. Methods Medicine information resources (n = 5) were searched for information about nutrient deficiencies associated with common medicines used by older people and listed within the top 50 medicines prescribed by volume on the Australian Pharmaceutical Benefits Scheme. This was followed by a search for clinical studies published on PubMed from inception to April 2020. Data was extracted, tabulated and summarised with clinical information relevant to pharmacists and clinicians involved in the care of older people taking medicines. Results A total of 23 clinical studies were identified reporting medicine-induced nutrient deficiencies in older adults. Vitamin B12, sodium, magnesium were identified as the 3 main nutrients susceptible to deficiency by medicines used to treat cardiovascular disease, neurological conditions, gastrointestinal conditions, and diabetes. The coenzyme CoQ10 was depleted by statins.Conclusion: Certain medicines commonly prescribed to older adults are associated with nutrient deficiencies that may be clinically significant. Given the high prevalence of comorbidities and polypharmacy it is possible that some of these individual drug-induced nutrient deficiencies are compounded, warranting both clinical and research attention.
Collapse
Affiliation(s)
- Rui Qi Chong
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Ingrid Gelissen
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Betty Chaar
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Jonathan Penm
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Janet MY Cheung
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Joanna E. Harnett
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Ballantyne CM, Bays H, Catapano AL, Goldberg A, Ray KK, Saseen JJ. Role of Bempedoic Acid in Clinical Practice. Cardiovasc Drugs Ther 2021; 35:853-864. [PMID: 33818688 PMCID: PMC8266788 DOI: 10.1007/s10557-021-07147-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Many patients do not achieve optimal low-density lipoprotein cholesterol (LDL-C) levels with statins alone; others are unable to tolerate statin therapy. Additional non-statin treatment options including ezetimibe, proprotein convertase subtilisin/kexin type 9 inhibitors, and bile acid sequestrants are often necessary to further reduce the risk of atherosclerotic cardiovascular disease. This review provides practical guidance as to the use of bempedoic acid to lower LDL-C and includes direction as to which patients may benefit and advice for safety monitoring during treatment. Bempedoic acid, a new class of agent, is a prodrug converted to bempedoyl-CoA by very long-chain acyl-CoA synthetase 1, an enzyme with high expression in the liver but that is undetectable in the skeletal muscle. Bempedoic acid inhibits the enzyme adenosine triphosphate (ATP)-citrate lyase, which lies two steps upstream from β-hydroxy β-methylglutaryl-CoA reductase in the cholesterol biosynthesis pathway. In clinical trials conducted in patients with or at risk for atherosclerotic cardiovascular disease or familial heterozygous hypercholesterolemia, bempedoic acid in combination with statins and/or ezetimibe significantly reduced LDL-C, apolipoprotein B, and high-sensitivity C-reactive protein compared with placebo. Bempedoic acid is generally well tolerated with no clinically meaningful increase in muscle-related symptoms relative to placebo, even in patients taking maximally tolerated statins. A small increase in serum uric acid (mean increase 0.8 mg/dL) is the most noteworthy adverse effect. Bempedoic acid provides an effective and generally well-tolerated medication to further reduce LDL-C in patients taking maximally tolerated statins or manage LDL-C levels in those who are unable to take statins. The potential for a reduced incidence of major cardiovascular events with bempedoic acid is being investigated in the CLEAR Outcomes trial, with results expected in 2023.
Collapse
Affiliation(s)
- Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, BCM 285, Houston, TX, 77030, USA.
| | - Harold Bays
- Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Milan, Italy
| | - Anne Goldberg
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Joseph J Saseen
- Departments of Clinical Pharmacy and Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
49
|
Implications on the Therapeutic Potential of Statins via Modulation of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9599608. [PMID: 34373771 PMCID: PMC8349293 DOI: 10.1155/2021/9599608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/20/2021] [Indexed: 01/05/2023]
Abstract
Statins, which are functionally known as 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) inhibitors, are lipid-lowering compounds widely prescribed in patients with cardiovascular diseases (CVD). Several biological and therapeutic functions have been attributed to statins, including neuroprotection, antioxidation, anti-inflammation, and anticancer effects. Pharmacological characteristics of statins have been attributed to their involvement in the modulation of several cellular signaling pathways. Over the past few years, the therapeutic role of statins has partially been attributed to the induction of autophagy, which is critical in maintaining cellular homeostasis and accounts for the removal of unfavorable cells or specific organelles within cells. Dysregulated mechanisms of the autophagy pathway have been attributed to the etiopathogenesis of various disorders, including neurodegenerative disorders, malignancies, infections, and even aging. Autophagy functions as a double-edged sword during tumor metastasis. On the one hand, it plays a role in inhibiting metastasis through restricting necrosis of tumor cells, suppressing the infiltration of the inflammatory cell to the tumor niche, and generating the release of mediators that induce potent immune responses against tumor cells. On the other hand, autophagy has also been associated with promoting tumor metastasis. Several anticancer medications which are aimed at inducing autophagy in the tumor cells are related to statins. This review article discusses the implications of statins in the induction of autophagy and, hence, the treatment of various disorders.
Collapse
|
50
|
Steinmeyer J, Flechtenmacher J. Drug-induced Myopathies. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2021; 161:175-181. [PMID: 34320661 DOI: 10.1055/a-1488-6912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Differential diagnosis of muscle pain and weakness is extensive, including neurological, vertebral, arthrogenic, vascular, traumatic, immunological, endocrine, genetic and infectious aetiologies, as well as medication or toxin-related causes. Muscles are highly sensitive to a large number of drugs, especially with high doses. Although many drug classes can cause toxic myopathy, a significant number of cases are caused by lipid-lowering drugs, long-term use of corticosteroids, and, most often, alcohol misuse. Some drug interactions, e.g. those that are metabolised via the enzyme CYP3A4, can increase the serum levels of the drugs and drug-induced toxicity. A careful history of patient's drug and alcohol consumption is therefore vital. Clinical symptoms depend on the drug, dosage and patient's sensitivity. They can vary from asymptomatic increase in serum levels of creatine kinase, mild myalgia and cramps to muscle weakness, rhabdomyolysis, kidney failure and even death. The pathogenesis is often only partially known and multifactorial. Toxic myopathy is often reversible once the drug is discontinued, alternative drug therapy is started or a different dosage regimen is chosen. Complications such as acute kidney failure must be avoided, and analgesic therapy may be indicated.
Collapse
Affiliation(s)
- Jürgen Steinmeyer
- Laboratory for Experimental Orthopaedics, Dept. of Orthopaedics, Justus Liebig University Giessen, Giessen, Germany
| | - Johannes Flechtenmacher
- Professional Association for Orthopaedic and Trauma Surgery (BVOU), Berlin, Germany.,Ortho-Zentrum, Orthopaedic Group Practice at Ludwigsplatz, Karlsruhe, Germany
| |
Collapse
|