1
|
Rivera-Hernández G, Roether JA, Aquino C, Boccaccini AR, Sánchez ML. Delivery systems for astaxanthin: A review on approaches for in situ dosage in the treatment of inflammation associated diseases. Int J Pharm 2025; 669:125017. [PMID: 39626846 DOI: 10.1016/j.ijpharm.2024.125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Astaxanthin is a red-orange keto-carotenoid exhibiting antioxidant activity. AST is mainly used in the cosmetic, food, and healthcare industries. Nevertheless, because of its anti-inflammatory effects and immune modulation activity, AST use in pharmacology has been proposed as an alternative for treating neurodegenerative disorders, inflammatory bowel disease, arthritis, atherosclerosis, or diabetic foot ulcers, among others. However, before an AST clinical implementation, it is still necessary to solve challenges related to the use of AST, such as lack of solubility, poor bioavailability, and sensitivity to light, oxygen, and temperature. For that reason, the development of several biomaterials to encapsulate, protect, and dosage AST has been proposed in recent years. This review discusses the use of liposomes, hydrogels, and polymer micro and nanoparticles as vehicles for AST release based on available literature. Additionally, an analysis of released, encapsulated, and effective AST doses is presented, as well as the regulatory landscape of different delivery systems to reveal details of AST delivery, which should inform future strategies for implementing AST in the clinic.
Collapse
Affiliation(s)
- Gabriela Rivera-Hernández
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Judith A Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Carolina Aquino
- Departamento de ingeniería y ciencias exactas y naturales, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| | - Mirna L Sánchez
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| |
Collapse
|
2
|
You HS, Jang YS, Sathiyaseelan A, Ryu SJ, Lee HY, Baek JS. Antibiofilm and Anticancer Activity of Multi-Walled Carbon Nanotubes Fabricated with Hot-Melt Extruded Astaxanthin-Mediated Synthesized Silver Nanoparticles. Int J Nanomedicine 2025; 20:343-366. [PMID: 39802378 PMCID: PMC11725252 DOI: 10.2147/ijn.s485722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs. In this process, AST was extracted from Haematococcus pluvialis (H. pluvialis) and processed by hot melt extrusion (HME) to enhance the AST content of H. pluvialis. AST has strong antioxidative properties, which leads to anticancer activity. In addition, AgNPs are well known for their strong antibacterial properties. The antibiofilm and anticancer effects were studied comprehensively by loading the AST AgNPs onto MWCNT-Silica. Methods AgNPs-loaded MWCNT-silica (MWCNT-Ag) was prepared through the binding reaction of TSD and silanol groups and the aggregation interaction of Ag and TSD. To enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs, HME-treated H. pluvialis extract (HME-AST) was used as a reducing solution of silver ions. The increased AST content of HME-AST was confirmed by high-performance liquid chromatography (HPLC) analysis, and the total phenol and flavonoid content analysis confirmed that HME enhanced the active components of H. pluvialis. The antibiofilm activity of MWCNT-AST was investigated by biofilm inhibition and destruction test, SEM, and CLSM analysis, and the anticancer activity was investigated by WST assay, fluorescent staining analysis, and flow cytometry analysis. Results MWCNT-AST showed higher antioxidant activity and antibiofilm activity than MWCNT-Ag against E. coli, S. aureus, and methicillin-resistant S. aureus (MRSA). MWCNT-AST showed higher anticancer activity against breast cancer cells (MDA-MB-231) than MWCNT-Ag, and lower toxicity in normal cells HaCaT and NIH3T3. Conclusion MWCNT-AST exhibits higher antioxidant, antibiofilm, and anticancer activities than MWCNT-Ag, and exhibits lower toxicity to normal cells.
Collapse
Affiliation(s)
- Han-Sol You
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young-Sun Jang
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Su-Ji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ha-Yeon Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
- BeNatureBioLab, Chuncheon, 24206, Republic of Korea
| |
Collapse
|
3
|
Wang P, Yu X, Sun P, Pan K, Sun J, Guo Y, Liu Z, Jiao M, Deng J, Zhang H. Astaxanthin Increases Tumor Suppressor Gene Expression and Affects Cellular Biological Behavior in Oral Dysplastic Keratinocytes by Regulating DNA Methylation. J Oral Pathol Med 2025; 54:39-48. [PMID: 39668460 DOI: 10.1111/jop.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The inactivation of tumor suppressor genes (TSGs) caused by abnormal DNA methylation is confirmed to be widely present in oral potential malignant diseases (OPMDs). Carotenoids like lycopene and astaxanthin can regulate DNA methylation and exert anticancer effects. Therapeutic effect of astaxanthin in OPMDs and oral squamous cell carcinoma (OSCC) models is confirmed, but the relationship between the anti-cancer ability of astaxanthin and its DNA methylation regulation ability remains unclear. METHODS Whole-genome bisulfite sequencing (WGBS) were used to provide biological information associated with DNA methylation. Methylation specific PCR was used to detect the methylation level of specific sites. Related markers were evaluated by qRT-PCR and western blot. CCK8 assay, cell scratch assay, flow cytometric analysis were performed to investigate the cell viability, migration, cell cycle, and apoptosis after treated with concentrations of astaxanthin. RESULTS WGBS revealed that HOXA3 and SOX1 were the TSGs with significant differences in promoter CpG methylation of oral dysplastic keratinocytes (DOK) cells. After treatment with 8 μM astaxanthin, the promoter CpG methylation levels of the TSGs were significantly reduced, resulting in the increase in gene expression. The overall effect of astaxanthin on DOK cells is inhibiting cell viability, reducing cell migration, leading to cell cycle G0/G1 arrest, and promoting apoptosis. CONCLUSIONS This study confirmed significant differences in DNA methylation patterns among oral normal, dysplastic, and cancerous cells. Astaxanthin can reduce the promoter CpG methylation level of TSGs by reducing DNA methyltransferase 1 protein expression level, upregulating mRNA and protein expression, and subsequently modulating the biological behavior of DOK.
Collapse
Affiliation(s)
- Peiyan Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaofei Yu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Pei Sun
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Keqing Pan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jian Sun
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, Shandong, China
| | - Yiqing Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zhaochen Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Mengyu Jiao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, Shandong, China
| | - Hui Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Zhang Y, Wang X, Su D, Zhao L, Leng K, Miao J, Yu Y. Enhancing astaxanthin accumulation in immobilized Haematococcus pluvialis via alginate hydrogel membrane. Int J Biol Macromol 2024; 292:139145. [PMID: 39725098 DOI: 10.1016/j.ijbiomac.2024.139145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Immobilized cultivation is anticipated to be effective for enhancing both biomass and astaxanthin accumulation in Haematococcus pluvialis (H. pluvialis). A novel fabrication method of alginate hydrogel membrane (AHM) was introduced for immobilized cultivation of H. pluvialis. This method incorporates cotton gauze into a hydrogel with a low sodium alginate (SA) concentration of 0.5 %, utilizing endogenous calcification. The optimized culture strategy achieved a peak astaxanthin productivity of 256.3 mg·m-2·d-1 with an inoculum of 16 g·m-2 under light irradiation of 300 μmol·m-2·s-1 on day 4, resulting in a 70.8 % increase in astaxanthin yield over the control group. Furthermore, a recovery method for H. pluvialis and SA from AHM was explored, using Na2CO3 to disintegrate AHM to recover all the microalgal cells and SA with a recovery rate of 88.7 %. Collectively, these findings suggest that immobilized cultivation using AHM is an effective strategy for boosting biomass and astaxanthin accumulation in H. pluvialis.
Collapse
Affiliation(s)
- Yating Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xixi Wang
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Dong Su
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ling Zhao
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Kailiang Leng
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Junkui Miao
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Yueqin Yu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
5
|
Jannel S, Caro Y, Bermudes M, Petit T. Study on Newly Isolated Dysmorphococcus Strains from Reunion Island as Potential Sources of High-Value Carotenoids. Foods 2024; 13:3922. [PMID: 39682994 DOI: 10.3390/foods13233922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Certain secondary carotenoids, such as astaxanthin and canthaxanthin, are of growing economic interest in the fields of human nutrition, food, health and cosmetics, as well as feed and aquaculture, particularly due to their numerous biological activities, such as their remarkable antioxidant properties. The present study was devoted to assessing, in a photobioreactor, the feasibility of cultivating newly isolated Dysmorphococcus strains from the biodiversity of Reunion Island for the production of these valuable xanthophylls. The results showed that all these strains were capable of producing and accumulating canthaxanthin and astaxanthin in response to environmental stresses. Among them, a strain which presented interesting morphological, genetic and biochemical properties as compared to the other Dysmorphococcus strains was further cultivated in a 3 L benchtop photobioreactor and was found to produce maximum carotenoid-rich biomass concentrations and productivities of about 4 g L-1 dw and 0.055 g L-1 d-1 dw, respectively. We also found that the biomass contained up to 1.2 mg g-1 dw of canthaxanthin and 0.7 mg g-1 dw of different forms of astaxanthin, mainly astaxanthin monoesters. The productivity of these carotenoids was found to be lower than those observed for other microalgal species previously reported, and we suggested that further optimizations with respect to the cultivation and the carotenogenesis induction processes are needed to improve productivities and to make this locally isolated Dysmorphococcus strain useful for future commercial production of natural canthaxanthin and astaxanthin.
Collapse
Affiliation(s)
- Samuel Jannel
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, ChemBioPro (EA2212), Université de la Réunion, 15 Avenue René Cassin, FR-97490 Sainte-Clotilde, La Réunion, France
- Green Mascareignes Technologies SAS, 2 rue Maxime Rivière, FR-97490 Sainte-Clotilde, La Réunion, France
| | - Yanis Caro
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, ChemBioPro (EA2212), Université de la Réunion, 15 Avenue René Cassin, FR-97490 Sainte-Clotilde, La Réunion, France
- Département HSE, IUT de La Réunion, 40 Avenue de Soweto, FR-97410 Saint-Pierre, La Réunion, France
| | - Marc Bermudes
- Green Mascareignes Technologies SAS, 2 rue Maxime Rivière, FR-97490 Sainte-Clotilde, La Réunion, France
| | - Thomas Petit
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, ChemBioPro (EA2212), Université de la Réunion, 15 Avenue René Cassin, FR-97490 Sainte-Clotilde, La Réunion, France
- Département HSE, IUT de La Réunion, 40 Avenue de Soweto, FR-97410 Saint-Pierre, La Réunion, France
| |
Collapse
|
6
|
Jannel S, Caro Y, Bermudes M, Petit T. Exploration of the Biotechnological Potential of Two Newly Isolated Haematococcus Strains from Reunion Island for the Production of Natural Astaxanthin. Foods 2024; 13:3681. [PMID: 39594096 PMCID: PMC11593811 DOI: 10.3390/foods13223681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Haematococcus lacustris is a freshwater green microalgae species able to produce and accumulate astaxanthin in response to environmental stresses such as high light and nutrient deprivation. Astaxanthin is a xanthophyll carotenoid of growing economic interest due to its numerous biological activities, notably its strong antioxidant properties, which can be valued in the fields of nutrition, health, feed and aquaculture. The present study aims at evaluating the capacity of two newly isolated Haematococcus strains from the biodiversity of Reunion Island, to be cultivated in a photobioreactor and to produce astaxanthin. The results showed that both strains were able to grow in various nutritive media and to produce and accumulate astaxanthin in response to stresses, mainly in the form of astaxanthin monoesters, which represented up to 2% of the dry biomass weight and which were mostly composed of linoleic and linolenic acids. In fed-batch cultures using 3 L benchtop photobioreactors, the concentrations of biomass enriched in astaxanthin reached up to 3 g L-1 (dry weight) with biomass productivities of 0.04 and 0.02 g L-1 d-1 based on the durations of the vegetative stage and of the entire culture, respectively. In these cultures, the astaxanthin productivities were found to reach on average around 0.25 mg L-1 d-1. Although these results were relatively low compared to the literature, the possibility of improving growth conditions in order to improve biomass and astaxanthin yields, to guarantee economic viability for cultivation at a commercial scale, was further discussed.
Collapse
Affiliation(s)
- Samuel Jannel
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels—ChemBioPro (EA2212), Université de La Réunion, 15 Avenue René Cassin, FR-97490 Sainte-Clotilde, La Réunion, France
- Green Mascareignes Technologies SAS, 2 rue Maxime Rivière, FR-97490 Sainte-Clotilde, La Réunion, France
| | - Yanis Caro
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels—ChemBioPro (EA2212), Université de La Réunion, 15 Avenue René Cassin, FR-97490 Sainte-Clotilde, La Réunion, France
- Département HSE, IUT de La Réunion, 40 Avenue de Soweto, FR-97410 Saint-Pierre, La Réunion, France
| | - Marc Bermudes
- Green Mascareignes Technologies SAS, 2 rue Maxime Rivière, FR-97490 Sainte-Clotilde, La Réunion, France
| | - Thomas Petit
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels—ChemBioPro (EA2212), Université de La Réunion, 15 Avenue René Cassin, FR-97490 Sainte-Clotilde, La Réunion, France
- Département HSE, IUT de La Réunion, 40 Avenue de Soweto, FR-97410 Saint-Pierre, La Réunion, France
| |
Collapse
|
7
|
Gil TY, Sim HY, Lee HY, Ryu S, Baek JS, Kim DG, Sim J, An HJ. Hot-Melt Extrusion Drug Delivery System-Formulated Haematococcus pluvialis Extracts Regulate Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages. Mar Drugs 2024; 22:512. [PMID: 39590792 PMCID: PMC11595552 DOI: 10.3390/md22110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Haematococcus pluvialis contains valuable bioactive compounds, including astaxanthin, proteins, and fatty acids. Astaxanthin is known for its various health benefits, such as preserving the redox balance and reducing inflammation. However, its low stability and poor water solubility present challenges for various applications. Hot-melt extrusion (HME) technology enhances the aqueous solubility of H. pluvialis extracts, increasing the usable astaxanthin content through nanoencapsulation (HME-DDS-applied extracts, ASX-60F and ASX-100F). This study compared the effects of HME-DDS-derived extracts (ASX-60F and ASX-100F) and the non-applied extract (ASX-C) under inflammatory and oxidative stress conditions. In animal models of sepsis, 60F and 100F treatment exhibited higher survival rates and a lower expression of pro-inflammatory biomarkers compared to those treated with C. In lipopolysaccharide-stimulated RAW 264.7 macrophages, nitric oxide (NO) production and the expression of pro-inflammatory mediators such as cyclooxygenase-2 and inducible NO synthase were reduced by 60F or 100F treatments via ERK/p-38 mitogen-activated protein kinase (MAPK) signaling. Moreover, 60F or 100F inhibited reactive oxygen species production regulated by nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Collectively, these findings suggest that HME-DDS-derived H. pluvialis extracts exert anti-inflammatory and antioxidant effects by inhibiting MAPK phosphorylation and activating Nrf2/HO-1 expression.
Collapse
Affiliation(s)
- Tae-Young Gil
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ha-Yeon Sim
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ha-Yeon Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-Y.L.); (S.R.); (J.-S.B.)
| | - Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-Y.L.); (S.R.); (J.-S.B.)
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-Y.L.); (S.R.); (J.-S.B.)
- BeNatureBioLab, Chuncheon 24206, Republic of Korea
| | - Dae Geun Kim
- LED Agri-bio Fusion Technology Research Center (LAFTRC), Jeonbuk National University, Jeonbuk 54596, Republic of Korea;
| | - Jaehoon Sim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
8
|
Zeng L, Jin X, Xiao QA, Jiang W, Han S, Chao J, Zhang D, Xia X, Wang D. Ferroptosis: action and mechanism of chemical/drug-induced liver injury. Drug Chem Toxicol 2024; 47:1300-1311. [PMID: 38148561 DOI: 10.1080/01480545.2023.2295230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.
Collapse
Affiliation(s)
- Li Zeng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xueli Jin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Wei Jiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Singh N, Tyagi N, Singh M, Kushwaha HR, Sharma RK, Shree P, Mittal A, Chopra R, Garg M. Characterization, phytochemical profiling, antioxidant, and cytotoxicity of underutilized medicinal plants and composite flour. Food Chem 2024; 456:139985. [PMID: 38878533 DOI: 10.1016/j.foodchem.2024.139985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024]
Abstract
In this investigation, three medicinal plant powders and a composite flour developed from them were analyzed. FESEM/EDS illustrated irregularly shaped particles in the plant powders except for Withania, which had round to oval shape particles. XRD analysis displayed a semi-crystalline nature of powders, except for Asparagus, which showed amorphous behavior. Both methanol and ethanol plant extracts exhibited significantly higher antioxidants, total phenols, and cell viability. Amongst, optimized composite flour (OCF) methanolic extract demonstrated the highest total phenolic content (69.2 ± 0.11 μg GAE/ml), potent cell viability against A549 cells (3.35 ± 0.15% at 50 μg/ml), and strong free-radical scavenging activity (48.89 ± 0.67 at 200 μg/ml). GCMS and FTIR analyses of the methanolic extracts demonstrated the presence of essential phytoconstituents and functional groups. In silico studies of the phytocomponents, ethyl isoallocholate, 3-Deoxy-d-mannoic lactone, and 4,5-Diamino-2-hydroxypyrimidine suggested good binding affinity against BAX, P53, and EGFR proteins with no toxicity and a good drug score.
Collapse
Affiliation(s)
- Neha Singh
- Department of Food Technology, Bhaskaracharya College of Applied Science, University of Delhi, New Delhi, India.
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manish Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hemant Ritturaj Kushwaha
- School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Rakesh Kumar Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, India.
| | - Pallee Shree
- Department of Zoology, Lady Irwin College, University of Delhi, New Delhi, India
| | - Avneesh Mittal
- Department of Electronics, Bhaskaracharya College of Applied Science, University of Delhi, New Delhi, India.
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Meenakshi Garg
- Department of Food Technology, Bhaskaracharya College of Applied Science, University of Delhi, New Delhi, India.
| |
Collapse
|
10
|
Xie X, Zhong M, Huang X, Yuan X, Mahna N, Mussagy CU, Ren M. Astaxanthin biosynthesis for functional food development and space missions. Crit Rev Biotechnol 2024:1-15. [PMID: 39428346 DOI: 10.1080/07388551.2024.2410364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga Haematococcuspluvialis, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Moyu Zhong
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xinxin Huang
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinrui Yuan
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Malan A, Choudhary M, Kaur Bamrah P, Kumari D. Potential benefits of marine-derived compounds for slowing the advancement of Alzheimer's disease. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-26. [PMID: 39373659 DOI: 10.1080/10286020.2024.2409869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The incidence of Alzheimer's is increasing and poses a significant social and economic burden. The pathogenesis involved in the expansion of AD includes neuronal oxidative damage, tau phosphorylation, amyloid beta aggregation, neuroinflammation, etc. Despite enormous efforts, there is currently no effective treatment or cure for this condition in the allopathic system. Marine compounds are appealing options and have a strong neuroprotective impact. Marine-derived compounds from sponges, algae, and marine invertebrates can be used for neuroprotection, with fewer adverse effects than synthetic drugs. Various compounds such as bryostatin-1, docosahexaenoic acid, spirolides, and astaxanthin, GV-971, have demonstrated outstanding activity and bioavailability.
Collapse
Affiliation(s)
- Aditya Malan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Manjusha Choudhary
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Prabhjeet Kaur Bamrah
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Dipender Kumari
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| |
Collapse
|
12
|
Saddiqa A, Faisal Z, Akram N, Afzaal M, Saeed F, Ahmed A, Almudaihim A, Touqeer M, Ahmed F, Asghar A, Saeed M, Hailu GG. Algal pigments: Therapeutic potential and food applications. Food Sci Nutr 2024; 12:6956-6969. [PMID: 39479711 PMCID: PMC11521690 DOI: 10.1002/fsn3.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Algae-derived natural compounds have shown significant potential in treating various health conditions, including cancer, obesity, diabetes, and inflammation. Recent advancements in nanotechnology have enabled the development of precise drug delivery systems and diagnostic tools utilizing these compounds. Central to this innovation are the vibrant pigments found in algae chlorophylls, carotenoids, and phycobiliproteins which not only impart color but also possess notable nutritional, medicinal, and antioxidant properties. These pigments are extensively used in supplements and the food industry for their health benefits. Emerging research highlights the role of algal pigments in promoting gut health by modulating gut microbiota. This review comprehensively examines the therapeutic benefits of algae, recent progress in algal-derived nanoparticle technology, and the synergistic effects of algae and their pigments on gut health. Novel insights and recent data underscore the transformative potential of algal compounds in modern medicine and nutrition.
Collapse
Affiliation(s)
- Ayesha Saddiqa
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human Nutrition and DieteticsIqra UniversityKarachiPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Abeer Almudaihim
- Department of Clinical NutritionKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Muhammad Touqeer
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Mubarra Saeed
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
13
|
Rodrigues VD, Boaro BL, Laurindo LF, Chagas EFB, de Lima EP, Laurindo LF, Barbalho SM. Exploring the benefits of astaxanthin as a functional food ingredient: Its effects on oxidative stress and reproductive outcomes in women with PCOS - A systematic review and single-arm meta-analysis of randomized clinical trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03432-w. [PMID: 39269488 DOI: 10.1007/s00210-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological-endocrinological disorder characterized by hyperandrogenism, menstrual irregularities, and metabolic disturbances. Recent research has highlighted the role of oxidative stress and chronic inflammation in exacerbating PCOS symptoms and impeding reproductive outcomes. Astaxanthin, a potent antioxidant found in marine organisms, has been suggested as a potential therapeutic intervention due to its ability to reduce oxidative stress and inflammation. This meta-analysis systematically reviews randomized controlled trials assessing the impact of astaxanthin supplementation on oxidative stress and reproductive outcomes in women with PCOS. Data from four trials were analyzed, focusing on markers of oxidative stress and reproductive health metrics. The meta-analysis utilized fixed and random-effects models to synthesize results, with heterogeneity assessed using Chi-square and I2 statistics. The findings indicate that while astaxanthin significantly improves markers of total antioxidant capacity (TAC) in follicular fluid, it does not show a consistent effect on other oxidative stress biomarkers such as malondialdehyde (MDA), catalase (CAT), or superoxide dismutase (SOD). Reproductive outcomes, including oocyte quality and the number of high-quality embryos, showed moderate improvements, although effects on fertilization rates and pregnancy outcomes were insignificant. The analysis highlights variability in study designs and dosing, suggesting a need for further research with standardized protocols and larger sample sizes. Future studies should focus on determining optimal dosing, exploring mechanistic pathways, and investigating the combined effects of astaxanthin with other interventions. Longitudinal studies are needed to assess long-term benefits and safety, and personalized approaches could enhance treatment efficacy for individuals with PCOS.
Collapse
Affiliation(s)
- Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José Do Rio Preto (FAMERP), São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| |
Collapse
|
14
|
Xiong Z, Li Z, Sima X, Zeng Z. Astaxanthin reduces TBPH-induced neurobehavioral deficits in mice by the ROS-ERK1/2-FOS pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116674. [PMID: 38964056 DOI: 10.1016/j.ecoenv.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The persistence of the novel brominated flame retardant, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), in the environment and its potential for bioaccumulation in living organisms, including humans, further exacerbate its health risks. Therefore, ongoing research is crucial for fully understanding the extent of TBPH's neurotoxicity and for developing effective mitigation strategies. This study aims to investigate the potential neurotoxicity of TBPH on mouse neurobehavior and to evaluate the protective effects of the natural antioxidant astaxanthin (AST) against TBPH-induced neurotoxicity. The results indicate that exposure to TBPH can lead to a decline in learning and memory abilities and abnormal behaviors in mice, which may be associated with oxidative stress responses and apoptosis in the hippocampus. TBPH may disrupt the normal function of hippocampal neurons by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Mice exposed to TBPH treated with AST showed improved learning and memory abilities in the Morris water maze (MWM) and Step-down test (SDT). AST, through its antioxidant action, was able to significantly reduce the increase in reactive oxygen species (ROS) levels induced by TBPH, the increased expression of apoptosis markers, and the activation of the ERK1/2-FOS signaling pathway, alleviating TBPH-induced apoptosis in hippocampal neurons and improving neurobehavioral outcomes. These findings suggest that AST may alleviate the neurotoxicity of TBPH by modulating molecular events related to apoptosis and the ERK1/2-FOS signaling pathway. Thus, this study provides evidence for AST as a potential interventional strategy for the prevention or treatment of cognitive decline associated with environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Zhenkun Xiong
- Department of Neurosurgery, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang NO.1 People's Hospital, Jiangxi 332000, PR China
| | - Zhenhua Li
- Department of Cardiothoracic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xueqin Sima
- Department of Histology and Embryology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
15
|
Fereidouni F, Kashani L, Amidi F, Khodarahmian M, Zhaeentan S, Ardehjani NA, Rastegar T. Astaxanthin treatment decreases pro-inflammatory cytokines and improves reproductive outcomes in patients with polycystic ovary syndrome undergoing assisted reproductive technology: A randomized clinical trial. Inflammopharmacology 2024; 32:2337-2347. [PMID: 38916710 DOI: 10.1007/s10787-024-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024]
Abstract
RESEARCH QUESTION In a randomized, triple-blind, placebo-controlled clinical trial (RCT), we investigated the effect of astaxanthin (AST) on pro-inflammatory cytokines, oxidative stress (OS) markers, and assisted reproductive technology (ART) outcomes in 44 infertile Polycystic Ovary Syndrome (PCOS) patients. DESIGN Patients with PCOS were randomly divided into two groups. The intervention group received 6 mg AST, and the control group received placebo daily for 8 weeks. Blood samples were obtained from all patients before and after intervention and follicular fluid (FF) was collected during the ART procedure. Interleukin (IL) -6, IL-1β were evaluated from serum samples and FF and OS markers (malondialdehyde [MDA], catalase [CAT], superoxide dismutase [SOD], and reactive oxygen species [ROS]) were measured from FF. The groups were compared for ART outcomes as well. RESULTS A significant decrease in IL-6 and IL-1β concentrations (both, P = < 0.01) serum levels was found following AST treatment. FF cytokine levels and OS markers did not differ significantly between the groups. Reproductive outcomes, including the number of oocytes retrieved (P = 0.01), the MII oocyte count (P = 0.007), oocyte maturity rate (MII %) (P = 0.02) and number of frozen embryos (P = 0.03) significantly improved after intervention. No significant differences were found in chemical, clinical and multiple pregnancies between the groups. CONCLUSIONS AST pretreatment may modify inflammation and improve ART outcomes in PCOS infertile patients. Further investigations are recommended to verify these findings.
Collapse
Affiliation(s)
- Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ladan Kashani
- Department of infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Zhaeentan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Ajabi Ardehjani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Campos-Sánchez JC, Esteban MÁ. Effects of dietary astaxanthin on immune status and lipid metabolism in gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109731. [PMID: 38944253 DOI: 10.1016/j.fsi.2024.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Astaxanthin (AX) is a carotenoid known to have one of the highest documented antioxidant capacities and has attracted considerable scientific and commercial interest. The incorporation of AX into aquaculture practices has been associated with improved pigmentation, modulation of the immune and endocrine systems, stress reduction, reproductive efficiency and general fish health. This study describes the effects of dietary AX (0, control, 20, 100 and 500 mg kg-1 AX per kg of diet) for 15 and 30 days on growth performance, immune and antioxidant status, histology and gene expression in gilthead seabream (Sparus aurata). Fish fed diets enriched with 500 mg kg-1 of AX for 15 days decreased in skin mucus peroxidase activity while at 30 days of trial, fish fed a diet supplemented with 20 mg kg-1 AX increased the peroxidase activity in serum. In addition, bactericidal activity against Vibrio harveyi increased in the skin mucus of fish fed any of the AX supplemented diets. Regarding antioxidant activities in the liver, catalase and glutathione reductase were decreased and increased, respectively, in fish fed a diet supplemented with 500 mg kg-1 of AX. Finally, although the expression of up to 21 inflammatory and lipid metabolism-related genes was analysed in visceral adipose tissue, only the expression of the interleukin 6 (il6) gene was up-regulated in fish fed a diet supplemented with 20 mg kg-1 of AX. The present results provide a detailed insight into the potent antioxidant properties of AX and its possible modulatory effects on the immune status and lipid metabolism of seabream, which may be of interest to the aquaculture sector.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
17
|
Marzagalli M, Battaglia S, Raimondi M, Fontana F, Cozzi M, Ranieri FR, Sacchi R, Curti V, Limonta P. Anti-Inflammatory and Antioxidant Properties of a New Mixture of Vitamin C, Collagen Peptides, Resveratrol, and Astaxanthin in Tenocytes: Molecular Basis for Future Applications in Tendinopathies. Mediators Inflamm 2024; 2024:5273198. [PMID: 39108992 PMCID: PMC11303056 DOI: 10.1155/2024/5273198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024] Open
Abstract
Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1β) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1β secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | | | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Marco Cozzi
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | | | - Roberto Sacchi
- Department of Earth and Environmental SciencesUniversity of Pavia, Pavia 27100, Italy
| | - Valeria Curti
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| |
Collapse
|
18
|
Coleman B, Vereecke E, Van Laere K, Novoveska L, Robbens J. Genetic Engineering and Innovative Cultivation Strategies for Enhancing the Lutein Production in Microalgae. Mar Drugs 2024; 22:329. [PMID: 39195445 DOI: 10.3390/md22080329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Carotenoids, with their diverse biological activities and potential pharmaceutical applications, have garnered significant attention as essential nutraceuticals. Microalgae, as natural producers of these bioactive compounds, offer a promising avenue for sustainable and cost-effective carotenoid production. Despite the ability to cultivate microalgae for its high-value carotenoids with health benefits, only astaxanthin and β-carotene are produced on a commercial scale by Haematococcus pluvialis and Dunaliella salina, respectively. This review explores recent advancements in genetic engineering and cultivation strategies to enhance the production of lutein by microalgae. Techniques such as random mutagenesis, genetic engineering, including CRISPR technology and multi-omics approaches, are discussed in detail for their impact on improving lutein production. Innovative cultivation strategies are compared, highlighting their advantages and challenges. The paper concludes by identifying future research directions, challenges, and proposing strategies for the continued advancement of cost-effective and genetically engineered microalgal carotenoids for pharmaceutical applications.
Collapse
Affiliation(s)
- Bert Coleman
- Aquatic Environment and Quality, Cell Blue Biotech and Food Integrity, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Elke Vereecke
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
- Center for Plant Systems Biology, Flemish Institute for Biotechnology (VIB), Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | | | - Johan Robbens
- Aquatic Environment and Quality, Cell Blue Biotech and Food Integrity, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Jacobsenstraat 1, 8400 Ostend, Belgium
| |
Collapse
|
19
|
Bouayed J, Vahid F. Carotenoid pattern intake and relation to metabolic status, risk and syndrome, and its components - divergent findings from the ORISCAV-LUX-2 survey. Br J Nutr 2024; 132:50-66. [PMID: 38639131 PMCID: PMC11420883 DOI: 10.1017/s0007114524000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Carotenoids are generally associated with health-beneficial effects; however, their intake patterns related to the metabolic syndrome (MetS) and its components remain controversial. This cross-sectional study investigated associations between dietary intakes of individual carotenoids, fruits and vegetables, and the MetS and its components. Dietary intakes of 1346 participants of the Observation des Risques et de la Santé Cardio-Vasculaire au Luxembourg (ORISCAV-LUX-2) study were investigated by a 174-item FFQ, and carotenoid intake was determined by linking findings using mainly the USDA food databases. Components of MetS and complementary variables, including anthropometric (BMI, waist circumferences and waist:hip ratio) and biological parameters (TAG, HDL-cholesterol, fasting blood glucose and blood pressure), were measured. Logistic (for MetS) and linear multivariable regression models (including assessing MetS as scores) adjusted for various confounders were created. α-and β-Carotene, as well as lutein + zeaxanthin, were inversely associated with MetS (also when it was measured on a continuous scale), reducing the odds for MetS by up to 48 %. However, lycopene, phytoene and phytofluene were rather positively associated with MetS scores and its components, though these adverse effects disappeared, at least for lycopene, when controlling for intakes of tomato-based convenience foods, in line with indicating a rather unhealthy/westernised diet. All these associations remained significant when including fruits and vegetables as confounders, suggesting that carotenoids were related to MetS independently from effects within fruits and vegetables. Thus, a high intake of carotenoids was bidirectionally associated with MetS, its severity, risk and its components, depending on the type of carotenoid. Future investigations are warranted to explore the inverse role that tomato-based carotenoids appear to suggest in relation to the MetS.
Collapse
Affiliation(s)
- Jaouad Bouayed
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, 57000Metz, France
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
20
|
Mussagy CU. Advances in microbial astaxanthin production. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:105-120. [PMID: 39059842 DOI: 10.1016/bs.aambs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
This work explores astaxanthin (AXT), a valuable xanthophyll ketocarotenoid pigment with significant health benefits and diverse applications across various industries. It discusses the prevalence of synthetic AXT, and the development of natural-based alternatives derived from microorganisms such as microalgae, bacteria, and yeast. The chapter examines the potential of microbial AXT production, highlighting the advantages and challenges associated with natural AXT. Key microorganisms like Haematococcus pluvialis, Paracoccus carotinifaciens, and Phaffia rhodozyma are emphasized for their role in commercially producing this valuable ketocarotenoid. The narrative covers the complexities and opportunities in microbial AXT production, from cell structure implications to downstream processing strategies. Additionally, the chapter addresses current applications, commercialization trends, and market dynamics of natural microbial AXT, emphasizing the importance of cost-effective production, regulatory compliance, and technological advancements to reduce the market cost of the final product. As demand for natural microbial-based AXT rises, this chapter envisions a future where research, innovation, and collaboration drive sustainable and competitive microbial AXT production, fostering growth in this dynamic market.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile.
| |
Collapse
|
21
|
Ceprián N, Martínez de Toda I, Maté I, Garrido A, Gimenez-Llort L, De la Fuente M. Prodromic Inflammatory-Oxidative Stress in Peritoneal Leukocytes of Triple-Transgenic Mice for Alzheimer's Disease. Int J Mol Sci 2024; 25:6976. [PMID: 39000092 PMCID: PMC11241217 DOI: 10.3390/ijms25136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic mice for AD (3xTgAD) and non-transgenic mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1β, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD mice show a worse pro-inflammatory response and higher oxidative stress than NTg mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.
Collapse
Affiliation(s)
- Noemí Ceprián
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Irene Martínez de Toda
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Ianire Maté
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Antonio Garrido
- Department of Biosciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Lydia Gimenez-Llort
- Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Mónica De la Fuente
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
22
|
Utomo NP, Pinzon RT, Latumahina PK, Damayanti KRS. Astaxanthin and improvement of dementia: A systematic review of current clinical trials. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100226. [PMID: 39036318 PMCID: PMC11260299 DOI: 10.1016/j.cccb.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024]
Abstract
Worldwide, the incidence of neurodegenerative diseases especially dementia is steadily increasing due to the aging population. Abundant research emerges on the probability of combating or preventing the degeneration process, with the most established one being to tackle the existence of oxidative stress and free radicals production due to their nature of aggravating dementia. Astaxanthin, a marine carotenoid, was proven to be a protective agent of cerebral ischemia through many animal model clinical trials. This review summarizes the evidence of Astaxanthin's benefits for cognitive function across clinical trials done in older age. The results are of interest as its supplementation does not exhibit unwanted issues on the consumer based on physical and laboratory examinations. Despite not being supported statistically, however, subjective and objective cognitive amelioration were reported according to the majority of this review's trial subjects. Although there is no clear and direct mechanism for cognitive improvement by Astaxanthin activity in the body systems, the encouragement of Astaxanthin supplementation should be considered as the elderly with dementia may highly benefit from the improved cognitive function.
Collapse
Affiliation(s)
- Nunki Puspita Utomo
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Rizaldy Taslim Pinzon
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Patrick Kurniawan Latumahina
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Kadex Reisya Sita Damayanti
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| |
Collapse
|
23
|
Ha M, Yang Y, Wu M, Gong T, Chen Z, Yu L. Astaxanthin could regulate the gut-kidney axis to mitigate kidney injury in high-fat diet/streptozotocin-induced diabetic mice. INT J VITAM NUTR RES 2024; 94:187-197. [PMID: 37434308 DOI: 10.1024/0300-9831/a000786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Accumulating evidences have shown the beneficial effects of astaxanthin (AST) supplementation on metabolic diseases prevention and treatment. The goal of present study was to reveal the favorable interactions among AST supplementation, gut microbiota, and kidneys in vivo, so as to attenuate kidney impairment in diabetic mice. Twenty C57BL/6J mice were assigned to a normal control group and a diabetic model group induced by a high-fat diet plus low-dose streptozotocin, and then the diabetic mice were fed with a high-fat diet without or with AST [0.01% (AST_a) or 0.02% (AST_b)] for 12 weeks. When compared to the diabetes kidney disease (DKD) group, AST supplementation delayed the renal pathological progression, reduced fasting blood glucose (AST_b: 1.53-fold, p<0.05), repressed levels of lipopolysaccharide (LPS; AST_a: 1.24-fold, p=0.008; AST_b: 1.43-fold, p<0.001) and TMAO (AST_a: 1.51-fold, p=0.001; AST_b: 1.40-fold, p=0.003), inhibited IL-6 (AST_a: 1.40-fold, p=0.004; AST_b: 1.57-fold, p=0.001) and reactive oxygen species (ROS; AST_a: 1.30-fold, p=0.004; AST_b: 1.53-fold, p<0.001), as well as regulated the Sirt1/PGC-1α/NFκB p65 signaling pathway. Moreover, the results of 16S rRNA gene-based Illumina deep sequencing in each group revealed that dietary AST supplementation also favorably modulated the gut microbiota compared with the DKD group, as evidenced by the inhibition of the harmful bacteria Clostridium_sensu_stricto_1, Romboutsia, and Coriobacteriaceae_UCG-002, and the enhancement of the probiotics such as Lachnospiraceae_NK4A136_group, Roseburia, and Ruminococcaceae. Taken together, dietary AST supplementation could protect kidneys against inflammation and oxidative stress by adjusting the gut-kidney axis in diabetic mice.
Collapse
Affiliation(s)
- Mei Ha
- School of Nursing, Army Medical University, Chongqing, PR China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, PR China
| | - Mingzhu Wu
- Key Lab of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China
| | - Ting Gong
- Chongqing Medical and Pharmaceutical College, PR China
| | - Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, PR China
| | - Luo Yu
- School of Nursing, Army Medical University, Chongqing, PR China
| |
Collapse
|
24
|
Arefpour H, Rasaei N, Amini MR, Salavatizadeh M, Hashemi M, Makhtoomi M, Hajiaqaei M, Gholizadeh M, Askarpour M, Hekmatdoost A. The effects of astaxanthin supplementation on liver enzyme levels. INT J VITAM NUTR RES 2024; 94:434-442. [PMID: 38407143 DOI: 10.1024/0300-9831/a000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
According to previous studies, astaxanthin exerts various biological effects due to its anti-inflammatory and antioxidant capabilities; however, its effects on liver enzymes have not yet been well elucidated. Therefore, we conducted a meta-analysis to assess astaxanthin's effects on liver enzymes. A systematic literature search was conducted using scientific databases including PubMed, Scopus, Web of Science, the Cochrane databases, and Google Scholar up to February 2023 to find relevant randomized controlled trials (RCTs) examining the effects of astaxanthin supplementation on alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP). A random-effects model was used for the estimation of the pooled weighted mean difference (WMD). Overall, we included five trials involving 196 subjects. The duration of the intervention was between 4 and 48 weeks, and the dose was between 6 and 12 mg/day. ALT levels increased in the intervention group compared to the control group following astaxanthin supplementation (WMD: 1.92 U/L, 95% CI: 0.16 to 3.68, P=0.03), whereas supplementation with astaxanthin had a non-significant effect on AST (WMD: 0.72 U/L, 95% CI: -0.85 to 2.29, P=0.36), GGT (WMD: 0.48 U/L, 95% CI: -2.71 to 3.67, P=0.76), and ALP levels (WMD: 2.85 U/L, 95% CI: -7.94 to 13.63, P=0.60) compared to the placebo group. Our data showed that astaxanthin supplementation increases ALT concentrations in adults without affecting the levels of other liver enzymes. Further long-term and well-designed RCTs are necessary to assess and confirm these findings.
Collapse
Affiliation(s)
- Hoda Arefpour
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Iran
| | - Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohtaram Hashemi
- Student Research Committee, Semnan University of Medical Sciences, Iran
| | - Maede Makhtoomi
- Student Research Committee, Shiraz University of Medical Science, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Science, Iran
| | - Mahdi Hajiaqaei
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Iran
| | - Mohammad Gholizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
25
|
Blagov AV, Summerhill VI, Sukhorukov VN, Zhigmitova EB, Postnov AY, Orekhov AN. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Front Pharmacol 2024; 15:1378335. [PMID: 38818374 PMCID: PMC11137403 DOI: 10.3389/fphar.2024.1378335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
The excessive production of various reactive oxidant species over endogenous antioxidant defense mechanisms leads to the development of a state of oxidative stress, with serious biological consequences. The consequences of oxidative stress depend on the balance between the generation of reactive oxidant species and the antioxidant defense and include oxidative damage of biomolecules, disruption of signal transduction, mutation, and cell apoptosis. Accumulating evidence suggests that oxidative stress is involved in the physiopathology of various debilitating illnesses associated with chronic inflammation, including cardiovascular diseases, diabetes, cancer, or neurodegenerative processes, that need continuous pharmacological treatment. Oxidative stress and chronic inflammation are tightly linked pathophysiological processes, one of which can be simply promoted by another. Although, many antioxidant trials have been unsuccessful (some of the trials showed either no effect or even harmful effects) in human patients as a preventive or curative measure, targeting oxidative stress remains an interesting therapeutic approach for the development of new agents to design novel anti-inflammatory drugs with a reliable safety profile. In this regard, several natural antioxidant compounds were explored as potential therapeutic options for the treatment of chronic inflammatory diseases. Several metalloenzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, are among the essential enzymes that maintain the low nanomolar physiological concentrations of superoxide (O2•-) and hydrogen peroxide (H2O2), the major redox signaling molecules, and thus play important roles in the alteration of the redox homeostasis. These enzymes have become a striking source of motivation to design catalytic drugs to enhance the action of these enzymes under pathological conditions related to chronic inflammation. This review is focused on several major representatives of natural and synthetic antioxidants as potential drug candidates for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | | | - Anton Y. Postnov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| |
Collapse
|
26
|
Du Y, Shuai Y, Liu Z, Li H, Yin Y. Astaxanthin Synergizes with Ionizing Radiation (IR) in Oral Squamous Cell Carcinoma (OSCC). Mol Biotechnol 2024; 66:1220-1228. [PMID: 38103098 DOI: 10.1007/s12033-023-01024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Astaxanthin (ATX) is known for its antioxidant and anti-inflammation functions yet its role in cancers requires more research. This study is aimed to reveal the potential synergetic effect of ATX with ionizing radiation (IR) in OSCC. Cell survival was measured after human OSCC cells including CAL27 and SCC9, and normal human oral keratinocytes (NHOKs) were treated with different concentrations of ATX for 24 h. Colony formation assays were performed after OSCC cells were treated with IR, ATX (20 μ M), or combined and survival fraction was analyzed. Malondialdehyde (MDA), glutathione (GSH), and intercellular iron levels were measured. Western blot method was used to measure the ferroptosis-related proteins, GPX4, SLC7A11, and ACSL4. In xenograft mice model, we evaluated the tumor volumes, tumor growth, and examined the GPX4/ACSL4 proteins in tumor tissues using Immunohistochemistry (IHC). ATX inhibited viability of OSCC cells but not NHOK. In OSCC cells, ATX further enhanced the cell death induced by IR. In addition, ATX promoted the MDA content, Iron levels but inhibited the GSH regulated by IR in cells. ATX could synergize with IR, further inhibiting GPX4, SLC7A11 and promoting ACSL4 in OSCC cells. In vivo, ATX and IR treatment inhibited OSCC tumor growth and the group with combined treatment showed the most inhibitory effect. GPX4 was inhibited by IR and further inhibited in the combined group while ACSL4 was promoted by IR and enhanced more significantly in the combined group. ATX might synergize with IR treatment in OSCC partly via ferroptosis.
Collapse
Affiliation(s)
- Yuheng Du
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanjie Shuai
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhuang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ye Yin
- Department of Stomatology, PLA 983rd Hospital, Tianjin, 300000, China.
| |
Collapse
|
27
|
Ozavize SF, Qiu CW, Wu F. Astaxanthin induces plant tolerance against cadmium by reducing cadmium uptake and enhancing carotenoid metabolism for antioxidant defense in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108622. [PMID: 38677187 DOI: 10.1016/j.plaphy.2024.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Soil cadmium (Cd) contamination poses a significant threat to global food security and the environment. Astaxanthin (AX), a potent biological antioxidant belonging to the carotenoid group, has been demonstrated to confer tolerance against diverse abiotic stresses in plants. This study investigated the potential of AX in mitigating Cd-induced damage in wheat seedlings. Morpho-physiological, ultrastructural, and biochemical analyses were conducted to evaluate the impact of AX on Cd-exposed wheat seedlings. Illumina-based gene expression profiling was employed to uncover the molecular mechanisms underlying the protective effects of AX. The addition of 100 μM AX alleviated Cd toxicity by enhancing various parameters: growth, photosynthesis, carotenoid content, and total antioxidant capacity (T-AOC), while reducing Cd accumulation, malondialdehyde (MDA), and hydrogen peroxide (H2O2) levels. RNA sequencing analysis revealed differentially expressed genes associated with Cd uptake and carotenoid metabolism, such as zinc/iron permease (ZIP), heavy metal-associated protein (HMA), 3-beta hydroxysteroid dehydrogenase/isomerase (3-beta-HSD), and thiolase. These findings suggest that AX enhances Cd tolerance in wheat seedlings by promoting the expression of detoxification and photosynthesis-related genes. This research offers valuable insights into the potential use of AX to address Cd contamination in agricultural systems, highlighting the significance of antioxidant supplementation in plant stress management.
Collapse
Affiliation(s)
- Suleiman Fatimoh Ozavize
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
28
|
Cunha FFMD, Tonon AP, Machado F, Travassos LR, Grazzia N, Possatto JF, Sant'ana AKCD, Lopes RDM, Rodrigues T, Miguel DC, Gadelha FR, Arruda DC. Astaxanthin induces autophagy and apoptosis in murine melanoma B16F10-Nex2 cells and exhibits antitumor activity in vivo. J Chemother 2024; 36:222-237. [PMID: 37800867 DOI: 10.1080/1120009x.2023.2264585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Countless efforts have been made to prevent and suppress the formation and spread of melanoma. Natural astaxanthin (AST; extracted from the alga Haematococcus pluvialis) showed an antitumor effect on various cancer cell lines due to its interaction with the cell membrane. This study aimed to characterize the antitumor effect of AST against B16F10-Nex2 murine melanoma cells using cell viability assay and evaluate its mechanism of action using electron microscopy, western blotting analysis, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and mitochondrial membrane potential determination. Astaxanthin exhibited a significant cytotoxic effect in murine melanoma cells with features of apoptosis and autophagy. Astaxanthin also decreased cell migration and invasion in vitro assays at subtoxic concentrations. In addition, assays were conducted in metastatic cancer models in mice where AST significantly decreased the development of pulmonary nodules. In conclusion, AST has cytotoxic effect in melanoma cells and inhibits cell migration and invasion, indicating a promising use in cancer treatment.
Collapse
Affiliation(s)
| | - Angela Pedroso Tonon
- Instituto de Física e Biotecnologia, Universidade de São Paulo, São Carlos, Brazil
- Institute of Environmental Science and Technology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fabricio Machado
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luis Rodolpho Travassos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Nathalia Grazzia
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Rayssa de Mello Lopes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Danilo Ciccone Miguel
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Denise Costa Arruda
- Núcleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes, UMC, Mogi das Cruzes, Brazil
| |
Collapse
|
29
|
Hu W, Seah V, Huang V, Kim JE. Effect of Antioxidant Supplementation on Macular Pigment Optical Density and Visual Functions: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2024; 15:100216. [PMID: 38582248 PMCID: PMC11052915 DOI: 10.1016/j.advnut.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Antioxidants are bioactive molecules that function to scavenge free radicals and balance oxidative stress. Although all antioxidants can act as reactive oxygen species scavengers, their efficacy on eye health may vary. Moreover, the comparative effectiveness and potential additive effect between groups of antioxidants, hitherto, have not been systematically studied. A systematic review and network meta-analysis were conducted to investigate the comparative or additive effect of dietary antioxidant supplements on eye health. Four databases (PubMed, Embase, CINAHL, and Cochrane) were searched, and relevant randomized controlled trials were identified. Out of 60 articles selected for systematic review, 38 were included in the network meta-analysis, categorized into 8 distinct antioxidant-supplemented groups and placebo. All groups significantly increased macular pigment optical density and contrast sensitivity at low spatial frequency, whereas only the antioxidant mixture + lutein (L) + fatty acid combination exhibited significant improvements in visual acuity (hazard ratio = -0.15; 95% confidence interval: -0.28, -0.02) and L + zeaxanthin combination for photostress recovery time (hazard ratio = -5.75; 95% confidence interval: -8.80, -1.70). Especially, the L + zeaxanthin + fatty acid combination was ranked best for macular pigment optical density (surface under the cumulative ranking: 99.3%) and second best for contrast sensitivity at low spatial frequency (67.7%). However, these findings should be interpreted with caution due to low quality of evidence, primarily influenced by indirectness and potential publication bias. Overall, antioxidant supplementation was estimated to improve eye health parameters, whereas different combinations of antioxidants may also have varying effects on improving visual health from multiple perspectives. This study was registered at PROSPERO as CRD42022369250.
Collapse
Affiliation(s)
- Weili Hu
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Vernice Seah
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Vanessa Huang
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Mbiandjeu SCT, Siciliano A, Mattè A, Federti E, Perduca M, Melisi D, Andolfo I, Amoresano A, Iolascon A, Valenti MT, Turrini F, Bovi M, Pisani A, Recchiuti A, Mattoscio D, Riccardi V, Dalle Carbonare L, Brugnara C, Mohandas N, De Franceschi L. Nrf2 Plays a Key Role in Erythropoiesis during Aging. Antioxidants (Basel) 2024; 13:454. [PMID: 38671902 PMCID: PMC11047311 DOI: 10.3390/antiox13040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is characterized by increased oxidation and reduced efficiency of cytoprotective mechanisms. Nuclear factor erythroid-2-related factor (Nrf2) is a key transcription factor, controlling the expression of multiple antioxidant proteins. Here, we show that Nrf2-/- mice displayed an age-dependent anemia, due to the combined contributions of reduced red cell lifespan and ineffective erythropoiesis, suggesting a role of Nrf2 in erythroid biology during aging. Mechanistically, we found that the expression of antioxidants during aging is mediated by activation of Nrf2 function by peroxiredoxin-2. The absence of Nrf2 resulted in persistent oxidation and overactivation of adaptive systems such as the unfolded protein response (UPR) system and autophagy in Nrf2-/- mouse erythroblasts. As Nrf2 is involved in the expression of autophagy-related proteins such as autophagy-related protein (Atg) 4-5 and p62, we found impairment of late phase of autophagy in Nrf2-/- mouse erythroblasts. The overactivation of the UPR system and impaired autophagy drove apoptosis of Nrf2-/- mouse erythroblasts via caspase-3 activation. As a proof of concept for the role of oxidation, we treated Nrf2-/- mice with astaxanthin, an antioxidant, in the form of poly (lactic-co-glycolic acid) (PLGA)-loaded nanoparticles (ATS-NPs) to improve its bioavailability. ATS-NPs ameliorated the age-dependent anemia and decreased ineffective erythropoiesis in Nrf2-/- mice. In summary, we propose that Nrf2 plays a key role in limiting age-related oxidation, ensuring erythroid maturation and growth during aging.
Collapse
Affiliation(s)
| | - Angela Siciliano
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
- Department of Medicine, AOUI Verona, 37134 Verona, Italy
| | - Alessandro Mattè
- Department of Medicine, University of Verona, 37134 Verona, Italy; (S.C.T.M.); (A.M.); (D.M.)
| | - Enrica Federti
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
- Department of Medicine, AOUI Verona, 37134 Verona, Italy
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.P.); (M.B.); (A.P.)
| | - Davide Melisi
- Department of Medicine, University of Verona, 37134 Verona, Italy; (S.C.T.M.); (A.M.); (D.M.)
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (I.A.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy
| | - Angela Amoresano
- Department of Chimical Sciences, University Federico II, 80138 Naples, Italy;
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (I.A.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy
| | | | | | - Michele Bovi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.P.); (M.B.); (A.P.)
| | - Arianna Pisani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.P.); (M.B.); (A.P.)
| | - Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science, “G. d’Annunzio” University Chieti–Pescara, 66013 Chieti, Italy; (A.R.); (D.M.)
| | - Domenico Mattoscio
- Department of Medical, Oral, and Biotechnology Science, “G. d’Annunzio” University Chieti–Pescara, 66013 Chieti, Italy; (A.R.); (D.M.)
| | - Veronica Riccardi
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
| | - Luca Dalle Carbonare
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
- Department of Medicine, AOUI Verona, 37134 Verona, Italy
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA 02114, USA;
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Narla Mohandas
- New York Blood Center Enterprises, New York, NY 10065, USA;
| | - Lucia De Franceschi
- Dipartimento Ingegneria per la Medicina di Innovazione—DIMI, University of Verona, 37134 Verona, Italy; (A.S.); (E.F.); (V.R.); (L.D.C.)
- Department of Medicine, AOUI Verona, 37134 Verona, Italy
| |
Collapse
|
31
|
Li Q, Jia M, Song H, Peng J, Zhao W, Zhang W. Astaxanthin Inhibits STING Carbonylation and Enhances Antiviral Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1188-1195. [PMID: 38391298 DOI: 10.4049/jimmunol.2300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
STING-mediated DNA sensing pathway plays a crucial role in the innate antiviral immune responses. Clarifying its regulatory mechanism and searching STING agonists has potential clinical implications. Although multiple STING agonists have been developed to target cancer, there are few for the treatment of infectious diseases. Astaxanthin, a natural and powerful antioxidant, serves many biological functions and as a potential candidate drug for many diseases. However, how astaxanthin combats viruses and whether astaxanthin regulates the cyclic GMP-AMP synthase-STING pathway remains unclear. In this study, we showed that astaxanthin markedly inhibited HSV-1-induced lipid peroxidation and inflammatory responses and enhanced the induction of type I IFN in C57BL/6J mice and mouse primary peritoneal macrophages. Mechanistically, astaxanthin inhibited HSV-1 infection and oxidative stress-induced STING carbonylation and consequently promoted STING translocation to the Golgi apparatus and oligomerization, which activated STING-dependent host defenses. Thus, our study reveals that astaxanthin displays a strong antiviral activity by targeting STING, suggesting that astaxanthin might be a promising STING agonist and a therapeutic target for viral infectious diseases.
Collapse
Affiliation(s)
- Qizhao Li
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mutian Jia
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weifang Zhang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Mussagy CU, Dias ACRV, Santos-Ebinuma VC, Shaaban Sadek M, Ahmad M, de Andrade CR, Haddad FF, Dos Santos JL, Scarim CB, Pereira JFB, Floriano JF, Herculano RD, Mustafa A. Is the carotenoid production from Phaffia rhodozyma yeast genuinely sustainable? a comprehensive analysis of biocompatibility, environmental assessment, and techno-economic constraints. BIORESOURCE TECHNOLOGY 2024; 397:130456. [PMID: 38369081 DOI: 10.1016/j.biortech.2024.130456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Microorganisms, such as yeasts, filamentous fungi, bacteria, and microalgae, have gained significant attention due to their potential in producing commercially valuable natural carotenoids. In recent years, Phaffia rhodozyma yeasts have emerged as intriguing non-conventional sources of carotenoids, particularly astaxanthin and β-carotene. However, the shift from academic exploration to effective industrial implementation has been challenging to achieve. This study aims to bridge this gap by assessing various scenarios for carotenoid production and recovery. It explores the use of ionic liquids (ILs) and bio-based solvents (ethanol) to ensure safe extraction. The evaluation includes a comprehensive analysis involving Life Cycle Assessment (LCA), biocompatibility assessment, and Techno-Economic Analysis (TEA) of two integrated technologies that utilize choline-based ILs and ethanol (EtOH) for astaxanthin (+β-carotene) recovery from P. rhodozyma cells. This work evaluates the potential sustainability of integrating these alternative solvents within a yeast-based bioeconomy.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Ana C R V Dias
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valeria C Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - M Shaaban Sadek
- Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt
| | - Mushtaq Ahmad
- Biofuel lab, Department of Plant sciences, Quaid-i-Azam University, Islamabad, Pakistan; College of life science, Neijiang Normal University, Neijiang 641000, Sichuan, China
| | - Cleverton R de Andrade
- Faculty of Dentistry, Department of Physiology and Pathology, Sao Paulo State University "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Felipe F Haddad
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Cauê B Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Jorge F B Pereira
- University of Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Juliana Ferreira Floriano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Rondinelli D Herculano
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Ahmad Mustafa
- Faculty of Engineering, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
33
|
Renaud D, Höller A, Michel M. Potential Drug-Nutrient Interactions of 45 Vitamins, Minerals, Trace Elements, and Associated Dietary Compounds with Acetylsalicylic Acid and Warfarin-A Review of the Literature. Nutrients 2024; 16:950. [PMID: 38612984 PMCID: PMC11013948 DOI: 10.3390/nu16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In cardiology, acetylsalicylic acid (ASA) and warfarin are among the most commonly used prophylactic therapies against thromboembolic events. Drug-drug interactions are generally well-known. Less known are the drug-nutrient interactions (DNIs), impeding drug absorption and altering micronutritional status. ASA and warfarin might influence the micronutritional status of patients through different mechanisms such as binding or modification of binding properties of ligands, absorption, transport, cellular use or concentration, or excretion. Our article reviews the drug-nutrient interactions that alter micronutritional status. Some of these mechanisms could be investigated with the aim to potentiate the drug effects. DNIs are seen occasionally in ASA and warfarin and could be managed through simple strategies such as risk stratification of DNIs on an individual patient basis; micronutritional status assessment as part of the medical history; extensive use of the drug-interaction probability scale to reference little-known interactions, and application of a personal, predictive, and preventive medical model using omics.
Collapse
Affiliation(s)
- David Renaud
- DIU MAPS, Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- DIU MAPS, Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Alexander Höller
- Department of Nutrition and Dietetics, University Hospital Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Chang JJ, Wang YC, Yang SH, Wu JY, Chang MW, Wang HMD. Pioneering Astaxanthin-Tumor Cell Membrane Nanoparticles for Innovative Targeted Drug Delivery on Melanoma. Int J Nanomedicine 2024; 19:2395-2407. [PMID: 38469059 PMCID: PMC10926870 DOI: 10.2147/ijn.s439476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Background Recently, the use of the tumor or its secretions as drug carriers has gradually become popular, with the advantages of high biocompatibility and enhanced drug delivery to specific cells. Melanoma is the most malignant tumor of all skin cancers; it is the most metastatic and, therefore, the most difficult to treat. The main purpose of this study is to develop nanovesicles with tumor cell membrane secretion properties to encapsulate target substances to enhance the therapeutic effect of cancer. Methods Astaxanthin was selected as an anticancer drug due to our previous research finding that astaxanthin has extremely high antioxidant, anti-ultraviolet damage, and anti-tumor properties. The manufacturing method of the astaxanthin nanovesicle carrier is to mix melanoma cells and astaxanthin in an appropriate ratio and then remove the genetic material and inflammatory factors of cancer cells by extrusion. Results In terms of results, after the co-culture of astaxanthin nanovesicles and melanoma cancer cells, it was confirmed that the ability of astaxanthin nanovesicles to inhibit the growth and metastasis of melanoma cancer cells was significantly better than the same amount of astaxanthin alone, and it had no effect on normal Human cells are also effective. There was no apparent harm on normal cells, indicating the ability of the vesicles to be selectively transported. Conclusion Our findings illustrated the potential of astaxanthin nanovesicles as an anticancer drug.
Collapse
Affiliation(s)
- Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40447, Taiwan
| | - Yi-Chen Wang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 802, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 807, Taiwan
| | - Shu-Hui Yang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ju-Yu Wu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Belfast, BT15 1AB, Northern Ireland, UK
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 404, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
35
|
Mohamed NM, Abdelhamid AM, Aref M, Abdelhafeez M, Faris Alotabi H, Mohammed Abdelrahman DS, Elwany NE. Role of cytokines and Th17/Tregs imbalance in the pathogenesis of otitis media with effusion. Modulation of Notch1/Hes1/mTORC1/S6k1 signalling pathway underlies the protective effect of astaxanthin. Int Immunopharmacol 2024; 128:111521. [PMID: 38246005 DOI: 10.1016/j.intimp.2024.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Otitis media with effusion (OME) is a recurrent middle ear inflammatory condition. It may be complicated by acquired hearing loss and speech impairment especially in children. Accordingly, the current study aimed to assess the role of cytokines and the imbalance of Th17/Tregs in the pathogenesis of OME. Additionally, the protective effect of astaxanthin and its mechanisms related to Notch1/ Hes1/mTORC1/S6K1 signalling were investigated. METHODS Forty-eight children were grouped as follow: G1: control healthy group G2: acute otitis media (AOM) group, G3: OME group. In the lipopolysaccharide (LPS) induced OME rat model, 15 rats were randomised into: G1: normal control group, G2: LPS group, and G3: astaxanthin treated group. RESULTS Biochemical analysis of the children's peripheral blood samples showed that IL1β, IL-2, IL-4, IL-6, IL-17, and IL-23 were significantly elevated, while TGF-β was significantly decreased in AOM and OME patients (group 2 and 3). In the LPS- induced OME rat model, astaxanthin treatment resulted in suppression of IL-17, IL-6, TNF-α, Muc5A, TFF3, NICD, Hes1, mTORC1, and S6K1 in rat middle ear mucosa. Furthermore, astaxanthin significantly downregulated RORγ while upregulating FoxP3 and restored the balance between Th17/Tregs. Moreover, astaxanthin improved the histopathological picture of the inflamed middle ear mucosa. CONCLUSIONS Proinflammatory cytokines as well as Th17/Tregs imbalance play a crucial role in the pathogenesis of AOM and OME. Additionally, astaxanthin alleviated LPS- induced OME in rats through suppression of Notch1/ Hes1/mTORC1/S6K1 pathway, and regulation of Th17/Tregs.
Collapse
Affiliation(s)
- Noura Mostafa Mohamed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia.
| | | | - Mohamed Aref
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Marwa Abdelhafeez
- Department of Otorhinolaryngology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Hadil Faris Alotabi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, 11671 Riyadh, Saudi Arabia.
| | - Doaa Sayed Mohammed Abdelrahman
- Department of Clinical Science, College of Medicine, Princess Nourah bint Abdulrahman University, 11671 Riyadh, Saudi Arabia.
| | - Nisreen E Elwany
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|
36
|
Ishimoto T, Yamashita R, Matsumoto R, Matsumoto S, Matsuo Y, Nakao S, Masuo Y, Suzuki M, Kato Y. TrkB phosphorylation in serum extracellular vesicles correlates with cognitive function enhanced by ergothioneine in humans. NPJ Sci Food 2024; 8:11. [PMID: 38321007 PMCID: PMC10847428 DOI: 10.1038/s41538-024-00250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Oral administration of the food-derived antioxidant amino acid ergothioneine (ERGO) results in its efficient distribution in the brain and enhances cognitive function. However, effect of ERGO deficiency on cognitive impairment and the underlying mechanisms remain unknown. We revealed that cognitive function and hippocampal neurogenesis were lower in mice fed an ERGO-free diet than in those fed the control diet. Furthermore, ERGO supplementation to achieve the control diet ERGO levels reversed these effects and restored ERGO concentrations in the plasma and hippocampus. The ERGO-induced recovery of cognitive function and hippocampal neurogenesis was blocked by inhibiting the neurotrophic factor receptor tropomyosin receptor kinase B (TrkB), with a concomitant reduction in hippocampal phosphorylated TrkB, suggesting the involvement of TrkB in these events in mice. Phosphorylated TrkB was also detected in extracellular vesicles (EVs) derived from serum of volunteers who had been orally administered placebo or ERGO-containing tablets. Importantly, the ratio of serum EV-derived phosphorylated TrkB was significantly higher in the ERGO-treated group than in the placebo-treated group and was positively correlated with both serum ERGO concentrations and several cognitive domain scores from Cognitrax. Altogether, TrkB phosphorylation is involved in ERGO-induced cognitive enhancement in mice, and TrkB phosphorylation levels in serum EVs may quantitatively represent ERGO-induced cognitive enhancement in humans.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Reiya Yamashita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ruri Matsumoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Satoshi Matsumoto
- L·S Corporation Co. Ltd., 3-10-1 Ningyocho-Nihonbashi, Chuo-ku, Tokyo, 103-0013, Japan
| | - Yusuke Matsuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shunsuke Nakao
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Makoto Suzuki
- L·S Corporation Co. Ltd., 3-10-1 Ningyocho-Nihonbashi, Chuo-ku, Tokyo, 103-0013, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
37
|
Elbahnaswy S, Elshopakey GE. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:97-126. [PMID: 36607534 DOI: 10.1007/s10695-022-01167-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Astaxanthin is the main natural C40 carotenoid used worldwide in the aquaculture industry. It normally occurs in red yeast Phaffia rhodozyma and green alga Haematococcus pluvialis and a variety of aquatic sea creatures, such as trout, salmon, and shrimp. Numerous biological functions reported its antioxidant and anti-inflammatory activities since astaxanthin possesses the highest oxygen radical absorbance capacity (ORAC) and is considered to be over 500 more times effective than vitamin E and other carotenoids such as lutein and lycopene. Thus, synthetic and natural sources of astaxanthin have a commanding influence on industry trends, causing a wave in the world nutraceutical market of the encapsulated product. In vitro and in vivo studies have associated astaxanthin's unique molecular features with various health benefits, including immunomodulatory, photoprotective, and antioxidant properties, providing its chemotherapeutic potential for improving stress tolerance, disease resistance, growth performance, survival, and improved egg quality in farmed fish and crustaceans without exhibiting any cytotoxic effects. Moreover, the most evident effect is the pigmentation merit, where astaxanthin is supplemented in formulated diets to ameliorate the variegation of aquatic species and eventually product quality. Hence, carotenoid astaxanthin could be used as a curative supplement for farmed fish, since it is regarded as an ecologically friendly functional feed additive in the aquaculture industry. In this review, the currently available scientific literature regarding the most significant benefits of astaxanthin is discussed, with a particular focus on potential mechanisms of action responsible for its biological activities.
Collapse
Affiliation(s)
- Samia Elbahnaswy
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
38
|
Osawa Y, Kuwahara D, Honda M. Enhanced Z-Isomerization of Astaxanthin in Paracoccus carotinifaciens via Microwave Drying. J Oleo Sci 2024; 73:163-168. [PMID: 38311406 DOI: 10.5650/jos.ess23093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
The effects of microwave drying conditions of a Paracoccus carotinifaciens culture solution on astaxanthin Z-isomerization and degradation were investigated. The microwave drying significantly increase the ratio of astaxanthin Z-isomers, and the higher the microwave power and the longer the drying time, the higher the total Z-isomer ratio of astaxanthin, but such conditions also accelerated astaxanthin degradation. We found that the addition of powdered oils enhanced the Z-isomerization reaction. For example, when the P. carotinifaciens culture solution was dried at 1000 W power for 5 min without and with powdered rapeseed oil, total Z-isomer ratios of astaxanthin in resulting dried powder were 14.9 and 47.4%, respectively. Furthermore, the storage test of the dried P. carotinifaciens powder showed that astaxanthin Z- isomers were stable at 4℃ in a low-oxygen atmosphere. As astaxanthin Z-isomers have greater bioavailability and potentially exhibit superior biological activities than the all-E-isomer, the dried P. carotinifaciens powder obtained by the method of this study is expected to be used as a value-added astaxanthin source.
Collapse
Affiliation(s)
| | | | - Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
39
|
Osawa Y, Kuwahara D, Hayashi Y, Honda M. Effects of Astaxanthin Preparation Form on the Efficiency of Egg Yolk Pigmentation in Laying Hens. J Oleo Sci 2024; 73:25-34. [PMID: 38171728 DOI: 10.5650/jos.ess23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
This study investigated the effects of the preparation form of astaxanthin on egg yolk pigmentation and egg quality in laying hens. The following four astaxanthin sources were prepared in this study: (1) dried cell powder of Paracoccus carotinifaciens (Panaferd-AX), (2) fine cell powder of P. carotinifaciens (Panaferd-P), (3) astaxanthin oil suspension, and (4) water-soluble astaxanthin powder. These astaxanthin preparations were added to the basal diet at a final concentration of 2 mg/kg and fed to White Leghorn laying hens for 14 days. Although the administration of these astaxanthin preparations did not largely affect egg quality (i.e., egg weight, yolk weight, albumen height, and Haugh unit), feeding significantly improved astaxanthin concentration and yolk color fan score. When water-soluble astaxanthin powder was fed, the yolk astaxanthin concentration and color fan score were most improved, followed by Panaferd-P. These results indicated that astaxanthin pulverization and water solubilization significantly improved its bioavailability in laying hens. Furthermore, although diets rich in (all-E)-astaxanthin were fed to the hens, approximately 30% of astaxanthin was present as the Z-isomers in the egg yolk. These findings may contribute to improving not only the egg quality but the nutritional value of hen eggs.
Collapse
Affiliation(s)
| | | | | | - Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
40
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
41
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
42
|
Zhang Y, Takahama K, Osawa Y, Kuwahara D, Yamada R, Oyama KI, Honda M. Characteristics of LED light-induced geometrical isomerization and degradation of astaxanthin and improvement of the color value and crystallinity of astaxanthin utilizing the photoisomerization. Food Res Int 2023; 174:113553. [PMID: 37986432 DOI: 10.1016/j.foodres.2023.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
The effects of light-emitting diode (LED) irradiation characterized by different emission wavelengths on the E/Z-isomerization and degradation of astaxanthin were investigated. LED irradiation slightly promoted Z-isomerization of astaxanthin, whereas the all-E-isomerization was highly efficiently promoted at specific wavelengths, especially at 365 nm. Astaxanthin isomers did not degrade significantly when dissolved in ethanol and subjected to LED irradiation conditions for 300 min. However, significant degradation was achieved when ethyl acetate was used for dissolution, and the samples were irradiated at the wavelength of 405 nm. The addition of α-tocopherol suppressed the photodegradation of astaxanthin. LED irradiation significantly affected the physical properties of astaxanthin Z-isomers. Irradiation with 365, 405, and 470 nm LEDs enhanced the color value (redness) and crystallinity of the Z-isomers via an all-E-isomerization reaction. These findings can contribute to the development of technologies that can arbitrarily control the E/Z-isomer ratio and physical properties of astaxanthin.
Collapse
Affiliation(s)
- Yelin Zhang
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Department of Materials Process Engineering, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Kentaro Takahama
- Technical Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Yukiko Osawa
- Biotechnology R&D Group, ENEOS Corporation, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa 231-0815, Japan
| | - Daichi Kuwahara
- Biotechnology R&D Group, ENEOS Corporation, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa 231-0815, Japan
| | - Rio Yamada
- Chemical Instrumentation Facility, Research Center for Materials Science, Nagoya University, Furo-cho, Nagoya, Aichi 464-8602, Japan
| | - Kin-Ichi Oyama
- Chemical Instrumentation Facility, Research Center for Materials Science, Nagoya University, Furo-cho, Nagoya, Aichi 464-8602, Japan
| | - Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan.
| |
Collapse
|
43
|
Chauhan AS, Chen CW, Yadav H, Parameswaran B, Singhania RR, Dong CD, Patel AK. Assessment of thraustochytrids potential for carotenoids, terpenoids and polyunsaturated fatty acids biorefinery. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2955-2967. [PMID: 37786601 PMCID: PMC10542083 DOI: 10.1007/s13197-023-05740-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 10/04/2023]
Abstract
Heterotrophic fast-growing thraustochytrids have been identified as promising candidates for the bioconversion of organic sources into industrially important valuable products. Marine thraustochytrids exhibit remarkable potential for high-value polyunsaturated fatty acids (PUFAs) production however their potential is recently discovered for high-value carotenoids and terpenoids which also have a role as a dietary supplement and health promotion. Primarily, omega-3 and 6 PUFAs (DHA, EPA, and ARA) from thraustochytrids are emerging sources of nutrient supplements for vegetarians replacing animal sources and active pharmaceutical ingredients due to excellent bioactivities. Additionally, thraustochytrids produce reasonable amounts of squalene (terpenoid) and carotenoids which are also high-value products with great market potential. Hence, these can be coextracted as a byproduct with PUFAs under the biorefinery concept. There is still quite a few printed information on bioprocess conditions for decent (co)-production of squalene and carotenoid from selective protists such as lutein, astaxanthin, canthaxanthin, and lycopene. The current review seeks to provide a concise overview of the coproduction and application of PUFAs, carotenoids, and terpenoids from oleaginous thraustochytrids and their application to human health.
Collapse
Affiliation(s)
- Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Hema Yadav
- Plant Quarantine Division, National Bureau of Plant Genetic Resources, ICAR-NBPGR, Pusa, New Delhi 110012 India
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala 695 019 India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| |
Collapse
|
44
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
45
|
Kawahara A. Treatment of Dry Eye Disease (DED) in Asia: Strategies for Short Tear Film Breakup Time-Type DED. Pharmaceutics 2023; 15:2591. [PMID: 38004570 PMCID: PMC10674215 DOI: 10.3390/pharmaceutics15112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder in which tear fluid homeostasis is lost, resulting in increased tear film osmolarity and ocular surface irritation. In Asia, the short tear film breakup time-type DED, which has become a global problem in recent years, is common. While the mainstay of DED treatment in the West is the suppression of inflammation, the first goal of treatment is the stabilization of the tear film in Asia. To date, artificial tears and steroid eye drops have been the main treatment for DED. However, artificial tears require frequent administration of eye drops and thus pose adherence problems, while steroids have problems with side-effects (cataracts, increased intraocular pressure). This review evaluates the new generation therapies in Asia based on what is known about them and demonstrates that they are more effective for DED than traditional therapies such as artificial tears and steroids. Based on considerations, it is proposed that the optimal treatment for the short tear film breakup time-type DED is the initial application of mucin-secretion-enhancing eye drops (long-acting diquafosol) and oral supplements; and if additional treatment is needed, cyclosporine eye drops and the adjunctive therapies presented in this review are added.
Collapse
Affiliation(s)
- Atsushi Kawahara
- Yoshida Eye Hospital, 2-31-8, Hondori, Hakodate 041-0851, Hokkaido, Japan
| |
Collapse
|
46
|
Lin Y, Lin C, Cao Y, Chen Y. Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions. Biomed Pharmacother 2023; 167:115594. [PMID: 37776641 DOI: 10.1016/j.biopha.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Natural antioxidants have recently emerged as a highly exciting and significant topic in anti-aging research. Diverse organism models present a viable protocol for future research. Notably, many breakthroughs on natural antioxidants have been achieved in the nematode Caenorhabditis elegans, an animal model frequently utilized for the study of aging research and anti-aging drugs in vivo. Due to the conservation of signaling pathways on oxidative stress resistance, lifespan regulation, and aging disease between C. elegans and multiple high-level organisms (humans), as well as the low and controllable cost of time and labor, it gradually develops into a trustworthy in vivo model for high-throughput screening and validation of natural antioxidants with anti-aging actions. First, information and models on free radicals and aging are presented in this review. We also describe indexes, detection methods, and molecular mechanisms for studying the in vivo antioxidant and anti-aging effects of natural antioxidants using C. elegans. It includes lifespan, physiological aging processes, oxidative stress levels, antioxidant enzyme activation, and anti-aging pathways. Furthermore, oxidative stress and healthspan improvement induced by natural antioxidants in humans and C. elegans are compared, to understand the potential and limitations of the screening model in preclinical studies. Finally, we emphasize that C. elegans is a useful model for exploring more natural antioxidant resources and uncovering the mechanisms underlying aging-related risk factors and diseases.
Collapse
Affiliation(s)
- Yugui Lin
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, Southern Medical University, Zhongshan 528400, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China; State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
47
|
Zhou LY, Wu ZM, Chen XQ, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. Astaxanthin promotes locomotor function recovery and attenuates tissue damage in rats following spinal cord injury: a systematic review and trial sequential analysis. Front Neurosci 2023; 17:1255755. [PMID: 37881327 PMCID: PMC10595034 DOI: 10.3389/fnins.2023.1255755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition with few therapeutic options. Astaxanthin (AST), a natural nutritional supplement with powerful antioxidant activities, is finding its new application in the field of SCI. Here, we performed a systematic review to assess the neurological roles of AST in rats following SCI, and assessed the potential for clinical translation. Searches were conducted on PubMed, Embase, Cochrane Library, the Web of Science, China National Knowledge Infrastructure, WanFang data, Vip Journal Integration Platform, and SinoMed databases. Animal studies that evaluated the neurobiological roles of AST in a rat model of SCI were included. A total of 10 articles were included; most of them had moderate-to-high methodological quality, while the overall quality of evidence was not high. Generally, the meta-analyses revealed that rats treated with AST exhibited an increased Basso, Beattie, and Bresnahan (BBB) score compared with the controls, and the weighted mean differences (WMDs) between those two groups showed a gradual upward trend from days 7 (six studies, n = 88, WMD = 2.85, 95% CI = 1.83 to 3.87, p < 0.00001) to days 28 (five studies, n = 76, WMD = 6.42, 95% CI = 4.29 to 8.55, p < 0.00001) after treatment. AST treatment was associated with improved outcomes in spared white matter area, motor neuron survival, and SOD and MDA levels. Subgroup analyses indicated there were differences in the improvement of BBB scores between distinct injury types. The trial sequential analysis then firmly proved that AST could facilitate the locomotor recovery of rats following SCI. In addition, this review suggested that AST could modulate oxidative stress, neuroinflammation, neuron loss, and autophagy via multiple signaling pathways for treating SCI. Collectively, with a protective effect, good safety, and a systematic action mechanism, AST is a promising candidate for future clinical trials of SCI. Nonetheless, in light of the limitations of the included studies, larger and high-quality studies are needed for verification.
Collapse
Affiliation(s)
- Long-yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bin-bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
48
|
Liang H, Chen H, Liu X, Wang Z, Li P, Lu S. Heterologous Production in the Synechocystis Chassis Suggests the Biosynthetic Pathway of Astaxanthin in Cyanobacteria. Antioxidants (Basel) 2023; 12:1826. [PMID: 37891905 PMCID: PMC10604110 DOI: 10.3390/antiox12101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Astaxanthin is a carotenoid species with the highest antioxidant capability. Its natural resource is very rare. The biosynthesis of astaxanthin from β-carotene includes a hydroxylation step and a ketolation step, for which the corresponding enzymes have been characterized in a few species. However, the sequence of these two reactions is unclear, and may vary with different organisms. In this study, we aimed to elucidate this sequence in Synechocystis, which is an ideal cyanobacterial synthetic biology chassis. We first silenced the endogenous carotene oxygenase gene SyneCrtO to avoid its possible interference in the carotenoid metabolic network. We then introduced the β-carotene ketolase gene from Haematococcus pluvialis (HpBKT) and the CrtZ-type carotene β-hydroxylase gene from Pantoea agglomerans (PaCrtZ) to this δCrtO strain. Our pigment analysis demonstrated that both the endogenous CrtR-type carotene hydroxylase SyneCrtR and HpBKT have the preference to use β-carotene as their substrate for hydroxylation and ketolation reactions to produce zeaxanthin and canthaxanthin, respectively. However, the endogenous SyneCrtR is not able to further catalyze the 3,3'-hydroxylation of canthaxanthin to generate astaxanthin. From our results, a higher accumulation of canthaxanthin and a much lower level of astaxanthin, as confirmed using liquid chromatography-tandem mass spectrometry analysis, were detected in our transgenic BKT+/CrtZ+/δCrtO cells. Therefore, we proposed that the bottleneck for the heterologous production of astaxanthin in Synechocystis might exist at the hydroxylation step, which requires a comprehensive screening or genetic engineering for the corresponding carotene hydroxylase to enable the industrial production of astaxanthin.
Collapse
Affiliation(s)
- Hanyu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Hongjuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinya Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zihan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Pengfu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
49
|
Mo XH, Sun YM, Bi YX, Zhao Y, Yu GH, Tan LL, Yang S. Characterization of C 30 carotenoid and identification of its biosynthetic gene cluster in Methylobacterium extorquens AM1. Synth Syst Biotechnol 2023; 8:527-535. [PMID: 37637201 PMCID: PMC10448405 DOI: 10.1016/j.synbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Methylobacterium species, the representative bacteria distributed in phyllosphere region of plants, often synthesize carotenoids to resist harmful UV radiations. Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C30 backbone. However, its exact structure remains unknown. In the present study, the carotenoid produced by M. extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-β-glucopyranosyl]-4,4'-diapolycopenedioc acid (1), a glycosylated C30 carotenoid. Furthermore, the genes related to the C30 carotenoid synthesis were investigated. Squalene, the precursor of the C30 carotenoid, is synthesized by the co-occurrence of META1p1815, META1p1816 and META1p1817. Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1. By using gene deletion and gene complementation experiments, the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4'-diapolycopene-4,4'-dioic acid to carotenoid 1. In conclusion, the structure and biosynthetic genes of carotenoid 1 produced by M. extorquens AM1 were firstly characterized in this work, which shed lights on engineering M. extorquens AM1 for producing carotenoid 1 in high yield.
Collapse
Affiliation(s)
- Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yu-Man Sun
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yu-Xing Bi
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yan Zhao
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gui-Hong Yu
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Ling-ling Tan
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
50
|
Kaçar S, Semerci Sevimli T, Şahintürk V. SPC212 human mesothelioma cells underwent apoptosis, oxidative stress, and morphological deformation following Astaxanthin treatment. J Biochem Mol Toxicol 2023; 37:e23415. [PMID: 37345684 DOI: 10.1002/jbt.23415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/21/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Astaxanthin (ASX) is one of the keto-carotenoids, which is biologically more active than other counterparts. Besides its variety of beneficial effects, it was reported to exert anticancer effects. Despite its utilization against different cancer types, the effect of ASX on mesothelioma has yet to be well-studied. In this study, our goal is to ascertain how ASX will affect SPC212 human mesothelioma cells. First, the effective doses of ASX against SPC212 cells were investigated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Thereafter, with flow cytometry analysis, Annexin-V and caspase 3/7 assay were implemented for the evaluation of apoptotic cell death and an oxidative stress test was carried out to determine how the free radicals changed. Ultimately, the cells' morphology was examined under a light microscope. The effective doses of ASX were found as 50, 100, and 200 µM. In the Annexin V assay, the total apoptosis increased to around 12%, 30%, and 45% with increasing doses of ASX. In the caspase 3/7 assay, the total apoptosis was around 25% and 38% at 100 and 200 µM. In oxidative stress analysis, reactive oxygen species-positive cells rose from 4.54 at the lowest dose to 86.95 at the highest dose. In morphological analysis, cellular shrinkage, decrease in cell density, swelling and vacuolations in some cells, membrane blebbing, and apoptotic bodies are observed in ASX-treated cells. To conclude, the current study provided insights into the efficacy and effects of ASX against SPC212 mesothelioma cells regarding morphology, proliferation, and cell death for future studies.
Collapse
Affiliation(s)
- Sedat Kaçar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, USA
- Department of Histology and Embryology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Tuğba Semerci Sevimli
- Department of Cellular Therapy and Stem Cell Production, Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Varol Şahintürk
- Department of Histology and Embryology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|