1
|
Hu X, Chang H, Guo Y, Yu L, Li J, Zhang B, Zhao H, Xu J, Pan G, Zhang K, Lü M, Cui H. Mori Folium ethanol extracts induce ferroptosis and suppress gastric cancer progression by inhibiting the AKT/GSK3β/NRF2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156789. [PMID: 40344847 DOI: 10.1016/j.phymed.2025.156789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Mori Folium, the leaf of Morus alba L., is a traditional Chinese medicine (TCM) known for its diverse pharmacological activities, including anti-inflammatory and immunomodulatory effects. While the Morus alba itself has been reported to contain various bioactive compounds with anticancer properties, the anticancer activity of Mori Folium and its underlying mechanisms remain insufficiently understood. PURPOSE This study aimed to investigate the effects of Mori Folium ethanol extracts (MFEE) on gastric cancer (GC) and to elucidate its underlying mechanisms. METHODS To investigate the anti-GC properties of MFEE, CCK-8, colony formation, EdU, flow cytometry, and soft agar, scratch, and transwell assays were employed. Western blot was employed to analyze the expression of ferroptotic proteins, while ferroptotic cellular events were also assessed, including iron accumulation, GSH levels, reactive oxygen species (ROS) production, mitochondrial changes, and lipid peroxidation. The chemical profile of MFEE was characterized using a UPLC-ESI-MS/MS system. Additionally, network pharmacology analysis was performed to investigate the potential anti-GC mechanisms of MFEE. Finally, the in vivo anti-cancer effects of MFEE were evaluated using a subcutaneous mouse model, with hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining to assess histopathological and molecular changes. RESULTS This study demonstrated that MFEE suppresses GC cell proliferation, blocks the G1-S cell cycle transition, and inhibits migration and invasion by promoting Fe²⁺ accumulation, increasing MDA levels and ROS, depleting GSH, and downregulating the expression of xCT and GPX4, thereby inducing ferroptosis. Chemical analysis identified 1596 phytochemicals, including 35 bioactive compounds. The induction of ferroptosis by MFEE was associated with the inhibition of the PI3K/AKT signaling pathway, modulating the AKT/GSK3β/NRF2 axis. Activation of AKT by SC79 was found to mitigate MF-induced ferroptosis. Notably, MFEE enhanced the chemosensitivity of GC cells to cisplatin, potentially through ferroptosis induction. CONCLUSION This study revealed that MFEE induces ferroptosis in GC cells by modulating the PI3K/AKT signaling pathway, enhancing chemosensitivity to cisplatin, and providing a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Hongbo Chang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yan Guo
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Lang Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jing Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Bili Zhang
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingyang Xu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Guangzhao Pan
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| | - Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
2
|
Street ME, Casadei F, Di Bari ER, Ferraboschi F, Montani AG, Shulhai AM, Esposito S. The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity-Part 1: Metabolic Changes. Nutrients 2025; 17:1630. [PMID: 40431370 PMCID: PMC12113821 DOI: 10.3390/nu17101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Childhood obesity is a growing global health issue. Its rising prevalence is linked to genetic, environmental, and lifestyle factors. Obesity in children could lead to different comorbidities and complications with an increased risk of metabolic disorders, such as insulin resistance, dyslipidemia, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). First-line treatment involves dietary modifications and lifestyle changes; however, adherence is often poor and remains a significant challenge. Pharmacotherapy, while a potential option, has limitations in availability and can cause side effects, leading to growing interest in alternative treatments, such as nutraceutical compounds. Derived from natural sources, these compounds have different anti-inflammatory, antiallergic, antioxidant, antibacterial, antifungal, neuroprotective, antiaging, antitumor, insulin-sensitizing, glucose, and lipid-lowering effects. This review describes commonly used nutraceutical compounds, such as omega-3 fatty acids, vitamin D, polyphenols (such as resveratrol and curcumin), berberine, white mulberry leaves and others, and pre- and probiotics in the management of obesity, evaluating the evidence on their mechanisms of action and efficacy in metabolic comorbidities. The evidence suggests that the integration of nutraceuticals into the diet may positively influence body mass index, glucose metabolism, lipid profiles, and gut microbiota composition and reduce inflammation in obese individuals. These effects may provide future practical guidance for clinical practice, contribute to metabolic health improvement, and potentially prevent obesity-related complications. In this first part, we discuss the effects of nutraceutical compounds on insulin sensitivity and insulin resistance, T2DM, dyslipidemia, and MASLD in addition to diet and lifestyle interventions.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
- Unit of Paediatrics, P. Barilla Children’s Hospital, University Hospital of Parma, 43126 Parma, Italy
| | - Federica Casadei
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Erika Rita Di Bari
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Francesca Ferraboschi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Anna Giuseppina Montani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
- Unit of Paediatrics, P. Barilla Children’s Hospital, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
3
|
Wu E, Zhu Y, Wei Q, Lu H, Zou Y, Liu F, Li Q. Inhibition Mechanism of Mulberry Prenylated Flavonoids Sanggenone D/Kuwanon G Against α-Glucosidase and the Regulation of Glucose via GLUT4 Pathway. Nutrients 2025; 17:1539. [PMID: 40362846 PMCID: PMC12073159 DOI: 10.3390/nu17091539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Inhibition of α-glucosidase activity is recognized as an effective strategy for managing type 2 diabetes. METHODS The inhibitory mechanisms of two kinds of mulberry flavonoids, namely sanggenone D and kuwanon G, on α-glucosidase were investigated and the hypoglycemic pathways were explored in the current study. RESULTS The outcomes indicate that sanggenone D (IC50: 4.51 × 10-5 mol/L) and kuwanon G (IC50: 3.83 × 10-5 mol/L) inhibited α-glucosidase activity by non-competition/anti-competition mixed inhibition and competitive inhibition, respectively. Moreover, the secondary structure of α-glucosidase was altered by static quenching and exhibited a decrease in α-helix and β-antiparallel content, and an increase in β-sheet content. Furthermore, the interaction forces between sanggenone D/kuwanon G and α-glucosidase were hydrophobic interactions and hydrogen bonds, as evidenced by molecular docking. The binding affinity, stability, and binding energy aligned with the results of IC50. Notably, the cyclization in sanggenone D structure resulted in a decrease in the number of phenolic hydroxyl groups and thus a reduction in the formation of hydrogen bonds, which ultimately diminished the binding affinity of sanggenone D to α-glucosidase. In addition, Western blot analysis further indicated that sanggenone D and kuwanon G regulated glucose metabolism by activating the GLUT4 pathway. CONCLUSIONS The results provided useful reference for the application of sanggenone D and kuwanon G in hypoglycemic functional components.
Collapse
Affiliation(s)
- Erwen Wu
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; (E.W.); (Y.Z.); (Y.Z.); (F.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Yanqing Zhu
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; (E.W.); (Y.Z.); (Y.Z.); (F.L.)
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Huijie Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yuxiao Zou
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; (E.W.); (Y.Z.); (Y.Z.); (F.L.)
| | - Fan Liu
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; (E.W.); (Y.Z.); (Y.Z.); (F.L.)
| | - Qian Li
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; (E.W.); (Y.Z.); (Y.Z.); (F.L.)
| |
Collapse
|
4
|
Li R, Pan Y, Jing N, Wang T, Shi Y, Hao L, Zhu J, Lu J. Flavonoids from mulberry leaves exhibit sleep-improving effects via regulating GABA and 5-HT receptors. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118734. [PMID: 39374877 DOI: 10.1016/j.jep.2024.118734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry leaf (Folium Mori) is a dried leaf of the dicotyledonous mulberry tree and is a homologous food and medicine. Treating insomnia with it is a common practice in traditional Chinese medicine. But still, its potential sleep-improving mechanism remains to be elucidated. AIM OF REVIEW Potential bioactive components and mechanisms of the sleep-improving effect of purified flavone from mulberry leaves (MLF) were explored through in vivo experiments, network pharmacology analysis, and molecular experimental validation. MATERIALS AND METHODS The mice model was established by pentobarbital sodium induction to evaluate the sleep-improving effect of MLF. The MLF's chemical composition was identified through a liquid chromatograph quadrupole time-of-flight mass spectrometer (Q-TOF LC/MS) to elucidate its sleep-improving active ingredient. At last, the underlying mechanism of MLF's sleep-improving effect was elucidated through neurotransmitter detection (ELISA), network pharmacology analysis, and molecular experimental validation (quantitative real-time PCR and western blotting). RESULTS MLF could dramatically reduce sleep latency by 35%, prolong sleep duration by 123%, and increase the sleep rate of mice through increasing γ-aminobutyric acid (GABA) and serotonin (5-HT) release in serum, hypothalamus, and hippocampus. Q-TOF LC/MS identified 17 flavonoid components in MLF. Network pharmacological analysis suggested that the key sleep-improving active ingredients in MLF might be quercetin, kaempferol, morin, and delphinidin. The key path for MLF to improve sleep might be the tryptophan metabolism and neuroactive ligand-receptor interaction, and the key targets might be gamma-aminobutyric acid type A receptor subunit alpha2 Gene (GABRA2) and serotonin 1A (5-HT1A) receptors. CONCLUSIONS MLF has shown significant sleep-improving effects in mice and may take effect through regulating the GABA and 5-HT receptors.
Collapse
Affiliation(s)
- Rui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Yongkang Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Nannan Jing
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| |
Collapse
|
5
|
Chang B, Hwang Y, Kim I, Park H, Kim Y, Kim S. Moracin M promotes hair regeneration through activation of the WNT/β-catenin pathway and angiogenesis. Arch Dermatol Res 2025; 317:304. [PMID: 39853610 DOI: 10.1007/s00403-024-03656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025]
Abstract
Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration. In our study, Moracin M significantly increased cell proliferation in human dermal papilla cells (hDPCs) during both the anagen and catagen phases and promoted cell migration in human umbilical vein endothelial cells (HUVECs) without cytotoxicity at concentrations up to 50 µM. Mechanistic analysis revealed that moracin M enhanced Wnt3a, GSK-3β phosphorylation and increased non-phospho β-catenin levels, activating Wnt signaling and upregulating transcription factors LEF, TCF, and AXIN2. This resulted in elevated levels of growth factors VEGF, FGF2, KGF, HGF and MYC in hDPCs, effects comparable to those of minoxidil. Additionally, moracin M significantly increased protein and mRNA levels of VEGF, FGF2, and KGF in hDPCs under IFN-γ-induced inflammatory conditions. Moracin M treatments also resulted in notable wound width reductions in a dose-dependent manner. Further investigation showed that moracin M stimulated MMP-2 and MMP-9 expression. These findings indicate that moracin M significantly enhances hair growth through the promotion of cell proliferation and angiogenesis, particularly via the activation of the Wnt signaling pathway in dermal papilla cells, presenting it as a promising therapeutic alternative to current treatments.
Collapse
Affiliation(s)
- BoYoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea
| | - Yuri Hwang
- ForBioKorea Co., Ltd., 917, 14, Gasan digital 2-ro, Geumcheon-gu, Seoul, 08592, South Korea
- Department of Biological Sciences, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - In Kim
- Cellonix, 84, Gukgasikpum-ro, Wanggung-myeon, Iksan-si, Jeonbuk-do, Republic of Korea
| | - Hyungmin Park
- Cellonix, 84, Gukgasikpum-ro, Wanggung-myeon, Iksan-si, Jeonbuk-do, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - SungYeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.
| |
Collapse
|
6
|
Aghdam MA, Pagán A, García-Estañ J, Atucha NM. Evaluation of the Effects of Mulberry Leaf Extracts Morus alba L. on Cardiovascular, Renal, and Platelet Function in Experimental Arterial Hypertension. Nutrients 2024; 17:49. [PMID: 39796483 PMCID: PMC11722676 DOI: 10.3390/nu17010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
INTRODUCTION Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of Morus alba L. (white mulberry) extracts in an experimental HTN model characterized by nitric oxide (NO) deficiency. METHODS Male Sprague-Dawley rats were divided into four groups: a control group, hypertensive rats treated with an NO synthesis inhibitor (L-NAME) in drinking water for six weeks, L-NAME rats treated with Morus alba L. extract, and L-NAME rats treated simultaneously with captopril. After six weeks of treatment, we measured blood pressure, endothelial vascular function in the aorta, and platelet aggregation function. RESULTS Morus alba L. extract partially prevented the development of arterial hypertension due to NO deficiency, although it did not completely normalize blood pressure as captopril did. The extract reduced the excessive vasoconstrictor response to phenylephrine in aortic rings and improved vasodilation in response to acetylcholine, with both effects dependent on increased NO production. Morus alba L. extract also reduced the increased platelet aggregation in response to ADP and collagen in hypertensive animals, although it did not fully normalize this function. CONCLUSIONS Morus alba L. extract demonstrates antihypertensive effects, improves vascular reactivity, and reduces platelet aggregation in a model of arterial hypertension. These effects are primarily related to an increase in nitric oxide activity.
Collapse
Affiliation(s)
| | | | - Joaquín García-Estañ
- Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain (A.P.); (N.M.A.)
| | | |
Collapse
|
7
|
Kong X, Zhou X, Li R, Kang Q, Hao L, Zhu J, Lu J. Sleep-improving effect and the potential mechanism of Morus alba L. on mice. Fitoterapia 2024; 179:106205. [PMID: 39255910 DOI: 10.1016/j.fitote.2024.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
As insufficient sleep has become a widespread concern in modern society, potential sleep-improving effect of mulberry (Morus alba L.) leaf ethanol extract (MLE) and the related mechanism were investigated in the present study. According to the results, MLE could significantly shorten sleep latency by 33 %, extend sleep duration by 56 % and increase sleep ratio of mice through increasing 5-HT and GABA release in serum, hypothalamus and hippocampus. Metabonomic analysis showed that phenylalanine metabolism, arginine and proline metabolism might be the potential pathways of MLE to improve sleep. Network pharmacological and LC-MS analysis suggested that the key sleep-improving active ingredients in MLE might be luteolin, kaempferol, naringenin, morin, stigmasterol and β-sitosterol. Further molecular docking and qRT-PCR results demonstrated that the key targets for MLE to improve sleep might be MAOA, GABRA1 and GABRA2. In conclusion, MLE showed outstanding sleep-improving effect and great potential for the application as novel sleep-improving functional food.
Collapse
Affiliation(s)
- Xiaoran Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaolu Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Rui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
8
|
Xie J, Lin H, Jin F, Luo Y, Yang P, Song J, Yao W, Lin W, Yuan D, Zuo A, Sun J, Wang M. Jia Wei Qingxin Lotus Seed Drink ameliorates epithelial mesenchymal transition injury in diabetic kidney disease via inhibition of JMJD1C/SP1/ZEB1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156142. [PMID: 39541663 DOI: 10.1016/j.phymed.2024.156142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most common microvascular complications in patients with diabetes mellitus. In this condition, renal tubular epithelial mesenchymal transition (EMT) is an important factor accelerating the progression of DKD and a major cause of renal fibrosis and end-stage renal disease. However, the therapeutic effect is unsatisfactory because of the lack of effective drugs. Jia Wei Qingxin Lotus Seed Drink (QISD) is a traditional Chinese medicine compound formula that has shown to be effective in the clinical treatment of DKD. However, the potential of QISD in DKD-EMT treatment has yet to be fully explored. PURPOSE This study aimed to investigate the role of QISD in ameliorating DKD-EMT injury and its mechanism. METHODS The active ingredients of QISD were identified via ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS). A DKD mouse model was constructed by high-fat diet feeding and intraperitoneal injection of STZ (60 mg/kg), and QISD (14.46, 28.92, and 57.84 g/kg/day) was administered by gavage for 12 consecutive weeks. Dapagliflozin (1 mg/kg/d) was used as a positive control. Renal pathological damage was observed by HE, PAS, and Masson staining. The expression levels of EMT-related proteins and pathway proteins were detected via immunohistochemistry, RT-qPCR, and western blot. In in vitro experiments, EMT injury was induced in human kidney tubular epithelial cells (HK-2) by using lipopolysaccharide (LPS). A combination of CCK8 assay, wound healing assay, small-molecule inhibitor intervention, and overexpression lentiviral transfection was used to investigate the effects of QISD on cell migration ability, adhesion ability, fibrotic factor formation, and mesenchymal properties. RESULTS Animal experiments showed that QISD improved blood glucose, body weight, symptoms of excessive drinking and eating, and renal pathological injury in mice, reduced extracellular matrix deposition, delayed renal EMT injury, and inhibited the activation of the histone demethylase JMJD1C. UHPLC-MS/MS and molecular docking indicated that baicalin, wogonoside, oroxylin A-7-O-β-D-glucuronide, and glulisine A found in QISD could bind to JMJD1C. The ameliorating effect of QISD on DKD-EMT injury might be related to JMJD1C. The improvement of DKD-EMT injury by QISD was accompanied by the reduction of SP1 and ZEB1 expression. The SP1 overexpression not only reversed the therapeutic effect of JIB-04, an inhibitor of JMJD1C, on DKD-EMT but also exacerbated the expression of ZEB1 and downstream EMT-related factors. Thus, QISD might affect the expression of the epithelial marker E-cadherin by inhibiting the JMJD1C/SP1/ZEB1 signaling pathway, consequently preventing the transformation of epithelial cells to mesenchymal cells and ameliorating DKD-EMT injury. CONCLUSION This study was the first to demonstrate that QISD might ameliorate DKD-EMT injury by inhibiting the JMJD1C/SP1/ZEB1 signaling pathway. These findings provide strong pharmacologic evidence for the clinical use of QISD in the treatment of DKD.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fuhua Jin
- Qingdao City Central Hospital, Qingdao, Shandong, 266042, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Peiyuan Yang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wenming Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Daijiao Yuan
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
He Y, Qin XX, Liu MW, Sun W. Morin, a matrix metalloproteinase 9 inhibitor, attenuates endothelial-to-mesenchymal transition in atherosclerosis by downregulating Notch-1 signaling. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:683-695. [PMID: 39572351 DOI: 10.1016/j.joim.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/14/2024] [Indexed: 12/22/2024]
Abstract
OBJECTIVE Atherosclerotic cardiovascular disease poses a significant health challenge globally. Recent findings highlight the pivotal role of the endothelial-to-mesenchymal transition (EndMT) in atherosclerosis. Morin is a bioflavonoid mainly extracted from white mulberry, a traditional Chinese herbal medicine with anti-inflammatory and antioxidant properties. This study examines whether morin can alleviate atherosclerosis by suppressing EndMT and seeks to elucidate the underlying mechanism. METHODS We induced an in vitro EndMT model in human umbilical vein endothelial cells (HUVECs) by stimulating the cells with transforming growth factor-β1 (TGF-β1) (10 ng/mL) for 48 h. The in vivo experiments were performed in an atherosclerosis model using apolipoprotein E (ApoE)-/- mice fed with a high-fat diet (HFD). Mice in the intervention group were given morin (50 mg/kg) orally for 4 weeks. Molecular docking and microscale thermophoresis were assayed to understand the interactions between morin and matrix metalloproteinase-9 (MMP-9). RESULTS Morin inhibited the expression of EndMT markers in a dose-dependent manner in TGF-β1-treated HUVECs. Administering 50 μmol/L morin suppressed the upregulation of MMP-9 and Notch-1 signaling in TGF-β1-induced EndMT. Moreover, the overexpression of MMP-9 activated Notch-1 signaling, thereby reversing morin's inhibitory effect on EndMT. In the HFD-induced atherosclerotic ApoE-/- mice, morin notably reduced aortic intimal hyperplasia and plaque formation by suppressing EndMT. Furthermore, morin demonstrated a strong binding affinity for MMP-9. CONCLUSION Morin acts as an MMP-9 inhibitor to disrupt EndMT in atherosclerosis by limiting the activation of Notch-1 signaling. This study underscores morin's potential utility in the development of anti-atherosclerotic medication. Please cite this article as: He Y, Qin XX, Liu MW, Sun W. Morin, a matrix metalloproteinase 9 inhibitor, attenuates endothelial-to-mesenchymal transition in atherosclerosis by downregulating Notch-1 Signaling. J Integr Med. 2024; 22(6): 684-696.
Collapse
Affiliation(s)
- Yuan He
- Department of Cardiology, Jiangsu Provincial People's Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Xuan Qin
- Department of Neurology, Jiangsu Provincial People's Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ming-Wei Liu
- Department of Cardiology, Jiangsu Provincial People's Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Wei Sun
- Department of Cardiology, Jiangsu Provincial People's Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
10
|
Niu MY, Dong GT, Li Y, Luo Q, Cao L, Wang XM, Wang QW, Wang YT, Zhang Z, Zhong XW, Dai WB, Li LY. Fanlian Huazhuo Formula alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway. World J Gastroenterol 2024; 30:3584-3608. [PMID: 39193572 PMCID: PMC11346146 DOI: 10.3748/wjg.v30.i30.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/08/2024] Open
Abstract
BACKGROUND Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.
Collapse
Affiliation(s)
- Meng-Yuan Niu
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Geng-Ting Dong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi Li
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Liu Cao
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Min Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qi-Wen Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi-Ting Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Zhe Zhang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Wen Zhong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Wei-Bo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Le-Yu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| |
Collapse
|
11
|
Shan Z, Zhang H, He C, An Y, Huang Y, Fu W, Wang M, Du Y, Xie J, Yang Y, Zhao B. High-Protein Mulberry Leaves Improve Glucose and Lipid Metabolism via Activation of the PI3K/Akt/PPARα/CPT-1 Pathway. Int J Mol Sci 2024; 25:8726. [PMID: 39201413 PMCID: PMC11354309 DOI: 10.3390/ijms25168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
High-Protein Mulberry is a novel strain of mulberry. High-Protein Mulberry leaves (HPM) were the subject of this study, which aimed to investigate its efficacy and underlying mechanisms in modulating glucose and lipid metabolism. A six-week intervention using db/db mice was carried out to assess the effects of HPM on serum lipid levels, liver function, and insulin (INS) levels. qRT-PCR and Western Blotting were employed to measure key RNA and protein expressions in the PI3K/Akt and PPARα/CPT-1 pathways. UHPLC-MS and the Kjeldahl method were utilized to analyze the component content and total protein. Additionally, network pharmacology was employed to predict regulatory mechanism differences between HPM and Traditional Mulberry leaves. The results of the study revealed significant improvements in fasting blood glucose, glucose tolerance, and insulin resistance in mice treated with HPM. HPM notably reduced serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and INS, while increasing high-density lipoprotein cholesterol (HDL-C) levels. The treatment also effectively mitigated liver fatty lesions, inflammatory infiltration, and islet atrophy. HPM activation of the PI3K/Akt/PPARα/CPT-1 pathway suggested its pivotal role in the regulation of glucose and lipid metabolism. With its rich composition and pharmacodynamic material basis, HPM displayed a greater number of targets associated with glucose and lipid metabolism pathways, underscoring the need for further research into its potential therapeutic applications.
Collapse
Affiliation(s)
- Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanxin Fu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
12
|
He XQ, Zou HD, Liu Y, Chen XJ, Atanasov AG, Wang XL, Xia Y, Ng SB, Matin M, Wu DT, Liu HY, Gan RY. Discovery of Curcuminoids as Pancreatic Lipase Inhibitors from Medicine-and-Food Homology Plants. Nutrients 2024; 16:2566. [PMID: 39125445 PMCID: PMC11314295 DOI: 10.3390/nu16152566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Researchers are increasingly interested in discovering new pancreatic lipase inhibitors as anti-obesity ingredients. Medicine-and-food homology plants contain a diverse set of natural bioactive compounds with promising development potential. This study screened and identified potent pancreatic lipase inhibitors from 20 commonly consumed medicine-and-food homology plants using affinity ultrafiltration combined with spectroscopy and docking simulations. The results showed that turmeric exhibited the highest pancreatic lipase-inhibitory activity, and curcumin, demethoxycurcumin, and bisdemethoxycurcumin were discovered to be potent pancreatic lipase inhibitors within the turmeric extract, with IC50 values of 0.52 ± 0.04, 1.12 ± 0.05, and 3.30 ± 0.08 mg/mL, respectively. In addition, the enzymatic kinetics analyses demonstrated that the inhibition type of the three curcuminoids was the reversible competitive model, and curcumin exhibited a higher binding affinity and greater impact on the secondary structure of pancreatic lipase than found with demethoxycurcumin or bisdemethoxycurcumin, as observed through fluorescence spectroscopy and circular dichroism. Furthermore, docking simulations supported the above experimental findings, and revealed that the three curcuminoids might interact with amino acid residues in the binding pocket of pancreatic lipase through non-covalent actions, such as hydrogen bonding and π-π stacking, thereby inhibiting the pancreatic lipase. Collectively, these findings suggest that the bioactive compounds of turmeric, in particular curcumin, can be promising dietary pancreatic lipase inhibitors for the prevention and management of obesity.
Collapse
Affiliation(s)
- Xiao-Qin He
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (H.-D.Z.); (Y.L.); (Y.X.)
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hai-Dan Zou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (H.-D.Z.); (Y.L.); (Y.X.)
| | - Yi Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (H.-D.Z.); (Y.L.); (Y.X.)
| | - Xue-Jiao Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.-J.C.); (X.-L.W.)
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology, The Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Xiao-Li Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.-J.C.); (X.-L.W.)
| | - Yu Xia
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (H.-D.Z.); (Y.L.); (Y.X.)
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore;
| | - Maima Matin
- Institute of Genetics and Animal Biotechnology, The Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Hong-Yan Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (H.-D.Z.); (Y.L.); (Y.X.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore;
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Yang X, Liu Z, Zhang Y, Zhao S, Yan S, Zhu L, Zhou Q, Chen L. Effects of Fermentation with Eurotium cristatum on Sensory Properties and Flavor Compounds of Mulberry Leaf Tea. Foods 2024; 13:2347. [PMID: 39123539 PMCID: PMC11311662 DOI: 10.3390/foods13152347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Mulberry leaf tea (MT) is a popular Chinese food with nutrition and medicinal functions. Solid-state fermentation with Eurotium cristatum of MT (FMT) can improve their quality. Differences in chromaticity, taste properties, and flavor characteristics were analyzed to evaluate the improvements of the sensory quality of FMT. After fermentation, the color of the tea infusion changed. The E-tongue evaluation results showed a significant decrease in unpleasant taste properties such as sourness, bitterness, astringency, and aftertaste-bitterness, while umami and saltiness taste properties were enhanced post-fermentation. Aroma-active compounds in MT and FMT were identified and characterized. A total of 25 key aroma-active compounds were screened in MT, and 2-pentylfuran showed the highest relative odor activity value (ROAV). A total of 26 key aroma-active compounds were identified in FMT, and the newly formed compound 1-octen-3-one showed the highest ROAV, which contributed to FMT's unique mushroom, herbal, and earthy flavor attributes. 1-octen-3-one, (E)-2-nonenal, trimethyl-pyrazine, 2-pentylfuran, and heptanal were screened as the potential markers that contributed to flavor differences between MT and FMT. E. cristatum fermentation significantly altered the sensory properties and flavor compounds of MT. This study provides valuable insights into the sensory qualities of MT and FMT, offering a theoretical basis for the development of FMT products.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| | - Zijun Liu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (S.Y.)
| | - Yanhao Zhang
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| | - Shuangzhi Zhao
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| | - Shigan Yan
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (S.Y.)
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (S.Y.)
| | - Qingxin Zhou
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| | - Leilei Chen
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| |
Collapse
|
14
|
Gao J, Jiang Z, Adams E, Van Schepdael A. A fast and efficient method for screening and evaluation of hypoglycemic ingredients of Traditional Chinese Medicine acting on PTP1B by capillary electrophoresis. J Pharm Biomed Anal 2024; 244:116125. [PMID: 38554553 DOI: 10.1016/j.jpba.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
As a pivotal enzyme that regulates dephosphorylation in cell activities and participates in the insulin signaling pathway, protein tyrosine phosphatase 1B (PTP1B) is considered to be an important target for the therapy of diabetes. In this work, a rapid and efficient inhibitor screening method of PTP1B was established based on capillary electrophoresis (CE), and used for screening and evaluating the inhibition effect of Traditional Chinese Medicine on PTP1B. Response Surface Methodology was used for optimizing the conditions of analysis. After method validation, the enzyme kinetic study and inhibition test were performed. As a result, the IC50 of PTP1B inhibitors Ⅳ and ⅩⅧ were consistent with reported values measured by a conventional method. It was found that the extracts of Astragalus membranaceus (Fisch) Bunge and Morus alba L. showed prominent inhibition on the activity of PTP1B, which were stronger than the positive controls. Meanwhile, on top of the excellent advantages of CE, the whole analysis time is less than 2 min. Thus, the results demonstrated that a fast and efficient screening method was successfully developed. This method could be a powerful tool for screening inhibitors from complex systems. It can also provide an effective basis for lead compound development in drug discovery.
Collapse
Affiliation(s)
- Juan Gao
- KU Leuven, University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven 3000, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Erwin Adams
- KU Leuven, University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven 3000, Belgium
| | - Ann Van Schepdael
- KU Leuven, University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven 3000, Belgium.
| |
Collapse
|
15
|
Zhu A, Luo N, Sun L, Zhou X, Chen S, Huang Z, Mao X, Li K. Mulberry and Hippophae-based solid beverage attenuate hyperlipidemia and hepatic steatosis via adipose tissue-liver axis. Food Sci Nutr 2024; 12:5052-5064. [PMID: 39055214 PMCID: PMC11266884 DOI: 10.1002/fsn3.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 07/27/2024] Open
Abstract
Dyslipidemia and hepatic steatosis are the characteristics of the initial stage of nonalcohol fatty liver disease (NAFLD), which can be reversed by lifestyle intervention, including dietary supplementation. However, such commercial dietary supplements with solid scientific evidence and in particular clear mechanistic elucidation are scarce. Here, the health benefits of MHP, a commercial mulberry and Hippophae-based solid beverage, were evaluated in NAFLD rat model and the underlying molecular mechanisms were investigated. Histopathologic examination of liver and white adipose tissue found that MHP supplementation reduced hepatic lipid accumulation and adipocyte hypertrophy. Serum biochemical results confirmed that MHP effectively ameliorated dyslipidemia and decreased circulation-free fatty acid level. RNA-Seq-based transcriptomic analysis showed that MHP-regulated genes are involved in the inhibition of lipolysis of adipose tissue and thus may contribute to the reduction of hepatic ectopic lipid deposition. Furthermore, MHP upregulated ACSL1-CPT1a-CPT2 pathway, a canonical pathway that regulated mitochondrial fatty acid metabolism, and promoted liver and adipose tissue fatty acid β-oxidation. These results suggest that adipose tissue-liver crosstalk may play a key role in maintaining glucose and lipid metabolic hemostasis. In addition, MHP can also ameliorate chronic inflammation through regulating the secretion of adipokines. Our study demonstrates that MHP is able to improve dyslipidemia and hepatic steatosis through crosstalk between adipose tissue and liver and also presents transcriptomic evidence to support the underlying mechanisms of action, providing solid evidence for its health claims.
Collapse
Affiliation(s)
- An‐Qi Zhu
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Nin Luo
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Ling‐Yue Sun
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiao‐Ting Zhou
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shi‐Sheng Chen
- Perfect Life & Health InstituteZhongshanGuangdongChina
- Perfect (Guangdong) Co., Ltd.ZhongshanChina
| | - Zebo Huang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xin‐Liang Mao
- Perfect Life & Health InstituteZhongshanGuangdongChina
- Perfect (Guangdong) Co., Ltd.ZhongshanChina
| | - Kun‐Ping Li
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
16
|
Li R, Wang J, Liu J, Li M, Lu J, Zhou J, Zhang M, Ferri N, Chen H. Mulberry leaf and its effects against obesity: A systematic review of phytochemistry, molecular mechanisms and applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155528. [PMID: 38555774 DOI: 10.1016/j.phymed.2024.155528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Obesity and hyperlipidemia can induce a variety of diseases, and have become major health problems worldwide. How to effectively prevent and control obesity has become one of the hot-spots of contemporary research. Mulberry leaf is the dried leaf of Morus alba L., which is approved by the Ministry of Health as a "homology of medicine and food", rich in diverse active constituents and with a variety of health effects including anti-obesity and anti-hyperlipidemia activities. PURPOSE The review attempts to summarize and provide the molecular basis, mechanism, safety and products for further exploration and application of mulberry leaf on the treatment on the control of weight gain and obesity. METHODS This review is conducted by using ScienceDirect, PubMed, CNKI and Web of Science databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS Based on the research progress of domestic and foreign scholars, the effective phytochemicals, molecular mechanisms and product applications of mulberry leaf in the prevention and treatment of obesity and related metabolic diseases were summarized. CONCLUSION Mulberry leaf has excellent medicinal and health care value in obesity treatment. However, its pharmacodynamic substance basis and molecular mechanisms need to be further studied.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, Padua 535131, Italy
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
17
|
Choi D, Im HB, Choi SJ, Han D. Safety classification of herbal medicine use among hypertensive patients: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1321523. [PMID: 38881876 PMCID: PMC11176523 DOI: 10.3389/fphar.2024.1321523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/27/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of herbal medicines (HMs) for the treatment of hypertension (HTN) is increasing globally, but research on the potential adverse effects and safety of HMs in HTN patients is limited. Therefore, this systematic review and meta-analysis aim to determine the global prevalence of HM usage among HTN patients and assess the safety of identified herbs based on current scientific evidence. Methods The PubMed/MEDLINE, EMBASE (Ovid), and Cumulated Index to Nursing and Allied Health Literature (CINAHL) databases were searched for cross-sectional studies on the use of HM among HTN patients. Our review includes studies published in English up to the year 2023. After extracting and appraising the data from the studies, a meta-analysis was conducted using the Stata version 16.0 to estimate the pooled prevalence of HM use in patients with HTN (PROSPERO: CRD42023405537). The safety classification of the identified HM was done based on the existing scientific literature. Results This study analyzed 37 cross-sectional studies from 21 countries and found that 37.8% of HTN patients used HM to manage their health. The prevalence of HM use varied significantly based on publication year and geographical region. Among the 71 identified herbs, Allium sativum L., Hibiscus sabdariffa L., and Olea europaea L. were the most commonly used. However, four herbs were identified as contraindicated, 50 herbs required caution, and only 11 herbs were considered safe for use. Conclusion The study highlights the potential risks of toxicities and adverse effects associated with HM use in the treatment of HTN. Ensuring patient safety involves using safe HMs in appropriate doses and avoiding contraindicated HMs. Future research should focus on identifying commonly used herbs, especially in resource-limited countries with poor HTN management, and additional clinical research is required to assess the toxicity and safety of commonly used HMs.
Collapse
Affiliation(s)
- Dain Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Hyea Bin Im
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Soo Jeung Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Dongwoon Han
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Chang B, Bae J, Lee DS, Kim S. Hair growth-promoting effects of Enz_MoriL on human dermal papilla cells through modulation of the Wnt/β-Catenin and JAK-STAT signaling pathways. Arch Dermatol Res 2024; 316:290. [PMID: 38809465 DOI: 10.1007/s00403-024-02977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active β-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3β and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/β-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.
Collapse
Affiliation(s)
- BoYoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - JinHye Bae
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - SungYeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
19
|
Lee JH, Kim HW, Kim SA, Ju WT, Kim SR, Kim HB, Cha IS, Kim SW, Park JW, Kang SK. Modulatory Effects of the Kuwanon-Rich Fraction from Mulberry Root Bark on the Renin-Angiotensin System. Foods 2024; 13:1547. [PMID: 38790847 PMCID: PMC11121332 DOI: 10.3390/foods13101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we investigated the anti-hypertensive properties of mulberry products by modulating the renin-angiotensin system (RAS). Comparative analysis showed that the ethyl acetate fractions, particularly from the Cheongil and Daeshim cultivars, contained the highest levels of polyphenols and flavonoids, with concentrations reaching 110 mg gallic acid equivalent (GE)/g and 471 mg catechin equivalent (CE)/g of extract, respectively. The ethyl acetate fraction showed superior angiotensin-converting enzyme (ACE) inhibitory activity, mainly because of the presence of the prenylated flavonoids kuwanon G and H. UPLC/Q-TOF-MS analysis identified kuwanon G and H as the primary active components, which significantly contributed to the pharmacological efficacy of the extract. In vivo testing of mice fed a high-salt diet showed that the ethyl acetate fraction substantially reduced the heart weight and lowered the serum renin and angiotensinogen levels by 34% and 25%, respectively, highlighting its potential to modulate the RAS. These results suggested that the ethyl acetate fraction of mulberry root bark is a promising candidate for the development of natural ACE inhibitors. This finding has significant implications for the management of hypertension through RAS regulation and the promotion of cardiovascular health in the functional food industry.
Collapse
Affiliation(s)
- Ji-Hae Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Heon-Woong Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - So-Ah Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Wan-Taek Ju
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Seong-Ryul Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Hyun-Bok Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Ik-Seob Cha
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Jong-Woo Park
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Sang-Kuk Kang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| |
Collapse
|
20
|
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int J Mol Sci 2024; 25:5333. [PMID: 38791372 PMCID: PMC11121110 DOI: 10.3390/ijms25105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.A.); (Y.T.); (J.W.); (J.Z.); (X.W.); (D.S.)
| |
Collapse
|
21
|
Fauzi A, Kifli N, Noor MHM, Hamzah H, Azlan A. Bioactivity, phytochemistry studies and subacute in vivo toxicity of ethanolic leaf extract of white mulberry (Morus alba linn.) in female mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117914. [PMID: 38360381 DOI: 10.1016/j.jep.2024.117914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional uses of Morus alba L. leaf extracts (MLE) have been reported for treating hyperglycaemia and diabetes. Phytochemical compounds in the leaves demonstrated the ability to enhance insulin sensitivity and β-cell secretory function, suggesting their potential value in reducing blood glucose and treating diabetes. However, the phytochemical constituents and safety of the herbal medicines need to be verified in each experimental field from different growing areas. Studies on the phytochemistry and toxicity of Morus alba leaves in Southeast Asia, especially in Brunei, have never been investigated. AIM OF THE STUDY This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice. MATERIALS AND METHODS The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study. RESULTS Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 μg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p < 0.05) increase in liver enzyme activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The histopathological score showed mild hepatocellular necrosis in administering 250, 500, and 1000 mg/kg of MLE. The parameters of renal injury were within normal limits, with the increase in eosinophilic cytoplasm observed in the histological scoring at 1000 mg/kg of MLE. CONCLUSIONS Morus alba leaf extract showed abundant polyphenols. In a study on subacute toxicity, MLE caused mild hepatotoxicity in mice. The toxic effect of the extract may be due to kaempferol and chlorogenic acid compounds. The 125 mg/kg MLE dose was safe with no adverse effects.
Collapse
Affiliation(s)
- Ahmad Fauzi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Brawijaya, Malang, East Java, 65141, Indonesia.
| | - Nurolaini Kifli
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, BE, 1410, Brunei.
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia.
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia.
| | - Azrina Azlan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Wei B, Zheng W, Peng Z, Xiao M, Huang T, Xie M, Xiong T. Probiotic-fermented tomato with hepatic lipid metabolism modulation effects: analysis of physicochemical properties, bioactivities, and potential bioactive compounds. Food Funct 2024; 15:4874-4886. [PMID: 38590277 DOI: 10.1039/d3fo05535c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Lactiplantibacillus plantarum NCUH001046 (LP)-fermented tomatoes exhibited the potential to alleviate obesity in our previous study. This subsequent study further delves deeper into the effects of LP fermentation on the physicochemical properties, bioactivities, and hepatic lipid metabolism modulation of tomatoes, as well as the analysis of potential bioactive compounds exerting obesity-alleviating effects. Results showed that after LP fermentation, viable bacterial counts peaked at 9.11 log CFU mL-1 and sugar decreased, while organic acids, umami amino acids, total phenols, and total flavonoids increased. LP fermentation also improved the inhibition capacities of three digestive enzyme activities and Enterobacter cloacae growth, as well as antioxidant activities. Western blot results indicated that fermented tomatoes, especially live probiotic-fermented tomatoes (LFT), showed improved effects compared to unfermented tomatoes in reducing hepatic lipid accumulation by activating the AMPK signal pathway. UHPLC-Q-TOF/MS-based untargeted metabolomics analysis showed that chlorogenic acid, capsiate, tiliroside, irisflorentin, and homoeriodictyol levels increased after fermentation. Subsequent cell culture assays demonstrated that irisflorentin and homoeriodictyol reduced lipid accumulation via enhancing AMPK expression in oleic acid-induced hyperlipidemic HepG2 cells. Furthermore, Spearman's correlation analysis indicated that the five phenols were positively associated with hepatic AMPK pathway activation. Consequently, it could be inferred that the five phenols may be potential bioactive compounds in LFT to alleviate obesity and lipid metabolism disorders. In summary, these findings underscored the transformative potential of LP fermentation in enhancing the bioactive profile of tomatoes and augmenting its capacity to alleviate obesity and lipid metabolism disorders. This study furnished theoretical underpinnings for the functional investigation of probiotic-fermented plant-based foods.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
23
|
Chang YC, Yu MH, Huang HP, Chen DH, Yang MY, Wang CJ. Mulberry leaf extract inhibits obesity and protects against diethylnitrosamine-induced hepatocellular carcinoma in rats. J Tradit Complement Med 2024; 14:266-275. [PMID: 38707917 PMCID: PMC11068992 DOI: 10.1016/j.jtcme.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 05/07/2024] Open
Abstract
Mulberry leaf has been recognized as a traditional Chinese medicinal plant, which was distributed throughout the Asia. The aqueous extract of mulberry leaf extract (MLE) has various biologically active components such as polyphenols and flavonoids. However, the inhibitory effect of MLE in hepatocarcinogenesis is poorly understood. In this study, we determined the role of MLE supplementation in preventing hepatocarcinogenesis in a carcinogen-initiated high-fat diet (HFD)-promoted Sprague-Dawley (SD) rat model. The rats were fed an HFD to induce obesity and spontaneous hepatomas by administering 0.01% diethylnitrosamine (DEN) in their drinking water for 12 weeks (HD group), and also to fed MLE through oral ingestion at daily doses of 0.5%, 1%, or 2%. At the end of the 12-week experimental period, the liver tumors were analyzed to identify markers of oxidative stress and antioxidant enzyme activities, and their serum was analyzed to determine their nutritional status and liver function. Histopathological analysis revealed that MLE supplementation significantly suppressed the severity and incidence of hepatic tumors. Furthermore, compared with the HFD + DEN groups, the expression of protein kinase C (PKC)-α and Rac family small GTPase 1 (Rac1) was lower in the MLE groups. These findings suggest that MLE prevents obesity-enhanced, carcinogen-induced hepatocellular carcinoma development, potentially through the protein kinase C (PKC)α/Rac1 signaling pathway. MLE might be an effective chemoprevention modality for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yun-Ching Chang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Hui-Pei Huang
- Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Dong-Hui Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| |
Collapse
|
24
|
Hou J, Ji X, Chu X, Wang B, Sun K, Wei H, Zhang Y, Song Z, Wen F. Mulberry Leaf Dietary Supplementation Can Improve the Lipo-Nutritional Quality of Pork and Regulate Gut Microbiota in Pigs: A Comprehensive Multi-Omics Analysis. Animals (Basel) 2024; 14:1233. [PMID: 38672381 PMCID: PMC11047539 DOI: 10.3390/ani14081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Mulberry leaves, a common traditional Chinese medicine, represent a potential nutritional strategy to improve the fat profile, also known as the lipo-nutrition, of pork. However, the effects of mulberry leaves on pork lipo-nutrition and the microorganisms and metabolites in the porcine gut remain unclear. In this study, multi-omics analysis was employed in a Yuxi black pig animal model to explore the possible regulatory mechanism of mulberry leaves on pork quality. Sixty Yuxi black pigs were divided into two groups: the control group (n = 15) was fed a standard diet, and the experimental group (n = 45) was fed a diet supplemented with 8% mulberry leaves. Experiments were performed in three replicates (n = 15 per replicate); the two diets were ensured to be nutritionally balanced, and the feeding period was 120 days. The results showed that pigs receiving the diet supplemented with mulberry leaves had significantly reduced backfat thickness (p < 0.05) and increased intramuscular fat (IMF) content (p < 0.05) compared with pigs receiving the standard diet. Lipidomics analysis showed that mulberry leaves improved the lipid profile composition and increased the proportion of triglycerides (TGs). Interestingly, the IMF content was positively correlated with acyl C18:2 and negatively correlated with C18:1 of differential TGs. In addition, the cecal microbiological analysis showed that mulberry leaves could increase the abundance of bacteria such as UCG-005, Muribaculaceae_norank, Prevotellaceae_NK3B31_group, and Limosilactobacillus. Simultaneously, the relative levels of L-tyrosine-ethyl ester, oleic acid methyl ester, 21-deoxycortisol, N-acetyldihydrosphingosine, and mulberrin were increased. Furthermore, we found that mulberry leaf supplementation significantly increased the mRNA expression of lipoprotein lipase, fatty acid-binding protein 4, and peroxisome proliferators-activated receptor γ in muscle (p < 0.01). Mulberry leaf supplementation significantly increased the mRNA expression of diacylglycerol acyltransferase 1 (p < 0.05) while significantly decreasing the expression of acetyl CoA carboxylase in backfat (p < 0.05). Furthermore, mulberry leaf supplementation significantly upregulated the mRNA expression of hormone-sensitive triglyceride lipase and peroxisome proliferator-activated receptor α (p < 0.05) in backfat. In addition, mulberry leaf supplementation led to increased serum leptin and adiponectin (p < 0.01). Collectively, this omic profile is consistent with an increased ratio of IMF to backfat in the pig model.
Collapse
Affiliation(s)
- Junjie Hou
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Xiang Ji
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Xiaoran Chu
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Binjie Wang
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Kangle Sun
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Haibo Wei
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Yu Zhang
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Zhen Song
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Fengyun Wen
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
25
|
Phan HVT, Nguyen DV, Le TKD, Nguyen TAM, Dong PSN, Tran TN, Dao NVT, Nguyen HC, Luu HT, Chavasiri W, Hoang LTTT, Nguyen VK. Morusacerane: A new gammacerane triterpenoid from the trunk of Morus Alba linn. with α-glucosidase inhibitory activity. Nat Prod Res 2024:1-10. [PMID: 38600840 DOI: 10.1080/14786419.2024.2340043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
This phytochemistry investigation on the trunk of Morus alba L. resulted in the isolation of three triterpenoids, including a new gammacerane triterpenoid - morusacerane (1); along with two known compounds of betulinic acid (2) and ursolic acid (3). The structure elucidation was thoroughly conducted based on 1D, 2D-NMR and HRESIMS spectra, followed by a comparison with existing literatures. The evaluation on α-glucosidase inhibitory exhibited the great potential of the application of these isolated compounds in diabetes treatments. The results show that morusacerane (1), betulinic acid (2), and ursolic acid (3) demonstrate the strong inhibitory with the IC50 values of 106.1, 11.12, and 7.20 μM, respectively. All of these compounds interacted well with the allosteric site enzyme α-glucosidase MAL32 through H-bonds and hydrophobic interaction.
Collapse
Affiliation(s)
- Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Duy Vu Nguyen
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Thi-Kim-Dung Le
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thi-Anh-Minh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Phan-Si-Nguyen Dong
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Thanh-Nha Tran
- Department of Environmental Engineering, Thu Dau Mot University, Binh Duong, Vietnam
| | - Ngoc-Van-Trang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Hieu Cuong Nguyen
- Southern Institute of Ecology, Institute of Applied Materials Science and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Hong Truong Luu
- Southern Institute of Ecology, Institute of Applied Materials Science and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Le-Thuy-Thuy-Trang Hoang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
26
|
Zhang X, Geng A, Cao D, Dugarjaviin M. Identification of mulberry leaf flavonoids and evaluating their protective effects on H 2O 2-induced oxidative damage in equine skeletal muscle satellite cells. Front Mol Biosci 2024; 11:1353387. [PMID: 38650596 PMCID: PMC11033687 DOI: 10.3389/fmolb.2024.1353387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction: Horses are susceptible to oxidative stress during strenuous endurance exercise, leading to muscle fatigue and damage. Mulberry leaf flavonoids (MLFs) possess significant antioxidant properties. However, the antioxidant efficacy of MLFs can be influenced by the extraction process, and their impact on H2O2-induced oxidative stress in equine skeletal muscle satellite cells (ESMCs) remains unexplored. Methods: Our study employed three extraction methods to obtain MLFs: ultrasound-assisted extraction (CEP), purification with AB-8 macroporous resin (RP), and n-butanol extraction (NB-EP). We assessed the protective effects of these MLFs on H2O2-induced oxidative stress in ESMCs and analyzed the MLF components using metabolomics. Results: The results revealed that pre-treatment with MLFs dose-dependently protected ESMCs against H2O2-induced oxidative stress. The most effective concentrations were 0.8 mg/mL of CEP, 0.6 mg/mL of RP, and 0.6 mg/mL of NB-EP, significantly enhancing EMSC viability (p < 0.05). These optimized MLF concentrations promoted the GSH-Px, SOD and T-AOC activities (p < 0.05), while reducing MDA production (p < 0.05) in H2O2-induced ESMCs. Furthermore, these MLFs enhanced the gene expression, including Nrf2 and its downstream regulatory genes (TrxR1, GPX1, GPX3, SOD1, and SOD2) (p < 0.05). In terms of mitochondrial function, ESMCs pre-treated with MLFs exhibited higher basal respiration, spare respiratory capacity, maximal respiration, ATP-linked respiration compared to H2O2-induced ESMCs (p < 0.05). Additionally, MLFs enhanced cellular basal glycolysis, glycolytic reserve, and maximal glycolytic capacity (p < 0.05). Metabolomics analysis results revealed significant differences in mulberrin, kaempferol 3-O-glucoside [X-Mal], neohesperidin, dihydrokaempferol, and isobavachalcone among the three extraction processes (p < 0.05). Discussion: Our study revealed that MLFs enhance antioxidant enzyme activity, alleviate oxidative damage in ESMCs through the activation of the Nrf2 pathway, and improve mitochondrial respiration and cell energy metabolism. Additionally, we identified five potential antioxidant flavonoid compounds, suggesting their potential incorporation into the equine diet as a strategy to alleviate exercise-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Manglai Dugarjaviin
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
27
|
Du Y, Zhang R, Zheng XX, Zhao YL, Chen YL, Ji S, Guo MZ, Tang DQ. Mulberry (Morus alba L.) leaf water extract attenuates type 2 diabetes mellitus by regulating gut microbiota dysbiosis, lipopolysaccharide elevation and endocannabinoid system disorder. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117681. [PMID: 38163557 DOI: 10.1016/j.jep.2023.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry (Morus alba L.) leaf is a well-known herbal medicine and has been used to treat diabetes in China for thousands of years. Our previous studies have proven mulberry leaf water extract (MLWE) could improve type 2 diabetes mellitus (T2D). However, it is still unclear whether MLWE could mitigate T2D by regulating gut microbiota dysbiosis and thereof improve intestinal permeability and metabolic dysfunction through modulation of lipopolysaccharide (LPS) and endocannabinoid system (eCBs). AIM OF STUDY This study aims to explore the potential mechanism of MLWE on the regulation of metabolic function disorder of T2D mice from the aspects of gut microbiota, LPS and eCBs. MATERIALS AND METHODS Gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. LPS, N-arachidonoylethanolamine (AEA) and 2-ararchidonylglycerol (2-AG) contents in blood were determined by kits or liquid phase chromatography coupled with triple quadrupole tandem mass spectrometry, respectively. The receptors, enzymes or tight junction protein related to eCBs or gut barrier were detected by RT-PCR or Western blot, respectively. RESULTS MLWE reduced the serum levels of AEA, 2-AG and LPS, decreased the expressions of N-acylphophatidylethanolamine phospholipase D, diacylglycerol lipase-α and cyclooxygenase 2, and increased the expressions of fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), alpha/beta hydrolases domain 6/12 in the liver and ileum and occludin, monoacylglycerol lipase and cannabinoid receptor 1 in the ileum of T2D mice. Furthermore, MLWE could change the abundances of the genera including Acetatifactor, Anaerovorax, Bilophila, Colidextribacter, Dubosiella, Gastranaerophilales, Lachnospiraceae_NK4A136_group, Oscillibacter and Rikenella related to LPS, AEA and/or 2-AG. Moreover, obvious improvement of MLWE treatment on serum AEA level, ileum occludin expression, and liver FAAH and NAAA expression could be observed in germ-free-mimic T2D mice. CONCLUSION MLWE could ameliorate intestinal permeability, inflammation, and glucose and lipid metabolism imbalance of T2D by regulating gut microbiota, LPS and eCBs.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Medical Affairs, Xuzhou RenCi Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiao-Xiao Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Yu-Lang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China.
| |
Collapse
|
28
|
Jaiswal V, Lee MJ, Chun JL, Park M, Lee HJ. 1-Deoxynojirimycin containing Morus alba leaf-based food modulates the gut microbiome and expression of genes related to obesity. BMC Vet Res 2024; 20:133. [PMID: 38570815 PMCID: PMC10988916 DOI: 10.1186/s12917-024-03961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.
Collapse
Affiliation(s)
- Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Mi-Jin Lee
- Department of Companion Animal Industry, College of Health Sciences, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, Rural Development Administration, National Institute of Animal Science, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
29
|
Dao TNP, Onikanni SA, Fadaka AO, Sibuyi NRS, Le MH, Chang HH. Phytotherapeutic potential of compounds identified from fractionated extracts of Morus alba L., as an inhibitor of interleukin-6 in the treatment of rheumatoid arthritis: computational approach. J Biomol Struct Dyn 2024:1-14. [PMID: 38525928 DOI: 10.1080/07391102.2024.2330713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
The presence of HLA-DRB1 alleles that encode critical points associated with environmental interactions is associated with increased risk of rheumatoid arthritis caused by anti-citrullinated protein antibodies. Therefore, interleukin-6 (IL-6), a multifunctional cytokine that controls both local and systemic acute inflammatory responses through its ability to induce a phase response, plays a serious role. Its overexpression leads to pathological challenges such as rheumatoid arthritis and menopausal osteoporosis. However, targeting the IL-6 receptor and its region could be the major step in controlling the overexpression of this cytokine for therapeutic importance. Therefore, our research explored the computational insight needed to investigate the anti-RFA potential of phytochemicals from fractionated extracts of Morus alba L. against receptors, which have been implicated as druggable targets for the treatment of rheumatoid arthritis. In this study, fifty-nine (59) previously isolated and characterized phytochemicals from M. alba L. were identified from the literature and retrieved from the PubChem database. In silico screening was used to assess the mode of action of these phytochemicals from M. alba L. against receptors that may serve as therapeutic targets for rheumatoid arthritis. Molecular docking studies, toxicity prediction, drug visualization and molecular dynamics simulation (MD) of the ligands together with the receptor-identified target were carried out using the Schrodinger Molecular Drug Discovery Suite. The findings indicated that a selected group of ligands displayed significant binding strength to specific amino acid residues, revealing an important link between the building blocks of proteins (amino acids) and ligands at the inhibitor binding site through traditional chemical interactions, such as interactions between hydrophobic and hydrogen bonds. The binding affinities of the receptors were carefully checked via comparison with those of the approved ligands, and the results suggested structural and functional changes in the lead compounds. Therefore, the bioactive component from M. alba L. could be a lead foot interleukin-6 (IL-6) inhibitor and could be a promising lead compound for the treatment of rheumatoid arthritis and related challenges.
Collapse
Affiliation(s)
- Tran Nhat Phong Dao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan (ROC)
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Sunday Amos Onikanni
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taiwan (ROC)
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti, Nigeria
| | | | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, University of the Western Cape, Bellville, South Africa
| | - Minh Hoang Le
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan (ROC)
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan (ROC)
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan (ROC)
| |
Collapse
|
30
|
Tian LL, Bi YX, Wang C, Zhu K, Xu DF, Zhang H. Bioassay-guided discovery and identification of new potent α-glucosidase inhibitors from Morus alba L. and the interaction mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117645. [PMID: 38147942 DOI: 10.1016/j.jep.2023.117645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. (mulberry) is a well-known medicinal species that has been used by herbalist doctors for the treatment of diabetes for a long history, and modern ethnopharmacological studies have demonstrated the ameliorating effects of different mulberry extracts toward diabetes-related symptoms and identified a number of α-glucosidase inhibitors as hypoglycemic ingredients. AIM OF THE STUDY The present study aims to explore new potent α-glucosidase inhibitors from the root bark of M. alba (known as Sang-Bai-Pi in traditional medicine) based on an in vivo antidiabetic evaluation of its extract fractions and further characterize the preliminary mechanism of the new active constituents. MATERIALS AND METHODS α-Glucosidase inhibitory assay and diabetic mice model were used to locate and evaluate the active fractions from the extract. Diverse separation techniques (e.g. Sephadex LH-20 column chromatograph (CC) and HPLC) and spectroscopic methods (e.g. MS, NMR and ECD) were employed to isolate and structurally characterize the obtained constituents, respectively. Fluorescence quenching, kinetics and molecular docking experiments were conducted to investigate the enzyme inhibitory mechanism of the active compounds. RESULTS The 80% ethanol eluate from the macroporous resin CC exerted good antidiabetic effects in the tested mice. Fifty-two flavonoids including 22 new ones were then separated and identified, and most of them showed strong inhibition against α-glucosidase with their structure-activity relationship being also discussed. The four new most active ingredients were further characterized to be mixed type of α-glucosidase inhibitors, and their binding modes with the enzyme were also explored. CONCLUSIONS Our current work has demonstrated that the root bark of M. alba is an extremely rich source of flavonoids as potent α-glucosidase inhibitors and potential antidiabetic agents, which makes it a promising candidate species to develop new natural remedies for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Lin-Lin Tian
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yan-Xue Bi
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chao Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - De-Feng Xu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
31
|
Danso B, Ackah M, Jin X, Ayittey DM, Amoako FK, Zhao W. Genome-Wide Analysis of the Xyloglucan Endotransglucosylase/Hydrolase ( XTH) Gene Family: Expression Pattern during Magnesium Stress Treatment in the Mulberry Plant ( Morus alba L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:902. [PMID: 38592929 PMCID: PMC10975095 DOI: 10.3390/plants13060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential candidate genes associated with Mg homeostasis via transcriptome analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been identified and thoroughly investigated in various plant species. However, there is no research pertaining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH (MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs were categorized into five distinct groups by their phylogenetic relationships. The gene structure possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness, and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled an evolutionary relationship between the XTH genes in M. alba and those in three other species: A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this research enhances our understanding of the characteristics of MaXTH gene family members and lays the foundation for future functional genomic study in M. alba.
Collapse
Affiliation(s)
- Blessing Danso
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Derek M. Ayittey
- School of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201308, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
32
|
Zhou XT, Zhu AQ, Li XM, Sun LY, Yan JG, Luo N, Chen SS, Huang Z, Mao XL, Li KP. Mulberry and Hippophae-based solid beverage promotes weight loss in rats by antagonizing white adipose tissue PPARγ and FGFR1 signaling. Front Endocrinol (Lausanne) 2024; 15:1344262. [PMID: 38559696 PMCID: PMC10978776 DOI: 10.3389/fendo.2024.1344262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.
Collapse
Affiliation(s)
- Xiao-Ting Zhou
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - An-Qi Zhu
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Min Li
- Research & Development Division, Perfect Life & Health Institute, Zhongshan, China
- Research & Development Division, Perfect (Guangdong) Co., Ltd., Zhongshan, China
| | - Ling-Yue Sun
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Gang Yan
- Research & Development Division, Perfect Life & Health Institute, Zhongshan, China
- Research & Development Division, Perfect (Guangdong) Co., Ltd., Zhongshan, China
| | - Nin Luo
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shi-Sheng Chen
- Research & Development Division, Perfect Life & Health Institute, Zhongshan, China
- Research & Development Division, Perfect (Guangdong) Co., Ltd., Zhongshan, China
| | - Zebo Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Liang Mao
- Research & Development Division, Perfect Life & Health Institute, Zhongshan, China
- Research & Development Division, Perfect (Guangdong) Co., Ltd., Zhongshan, China
| | - Kun-Ping Li
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
33
|
Zhao T, Chen Q, Chen Z, He T, Zhang L, Huang Q, Liu W, Zeng X, Zhang Y. Anti-obesity effects of mulberry leaf extracts on female high-fat diet-induced obesity: Modulation of white adipose tissue, gut microbiota, and metabolic markers. Food Res Int 2024; 177:113875. [PMID: 38225139 DOI: 10.1016/j.foodres.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Mulberry leaves (MLs) are reported to have beneficial effects in modulating obesity in male models. However, the impact of different types of mulberry leaf extracts (MLEs) on female models, specifically their influence on adipocytes, gut microbiota, and related metabolic markers, remains poorly understood. In this study, we observed a strong correlation between the total phenolic content (TPC), antioxidant and adipocyte modulation effects of water extracted MLEs. HB-W (water-extracted baiyuwang) and HY-W (water-extracted Yueshen) demonstrated remarkable inhibition effects on adipocytes in 3 T3-L1 adipocytes model. Moreover, MLEs effectively reduced the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and total cholesterol (T-CHO) in adipocytes in vitro. In vivo experiments conducted on female mice with high fat diet (HFD)-induced obesity revealed the anti-obesity effects of HB-W and HY-W, leading to a significant decrease in weight gain rates and notable influence on the ratios of adipose tissue, particularly white adipose tissue (WAT). Gene expression analysis demonstrated the up-regulation of WAT-related genes (Pla2g2a and Plac8) by HB-W, while HY-W supplementation showed beneficial effects on the regulation of blood sugar-related genes. Furthermore, both HB-W and HY-W exhibited modulatory effects on obesity-related gut microbiota (Firmicutes-to-Bacteroidetes ratio) and short chain fatty acid (SCFA) contents. Importantly, they also mitigated abnormalities in liver function and uncoupling protein 1 (UPC1) expression. Overall, our findings underscore the anti-obesity effects of MLEs in female rats with high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States.
| | - Qirong Chen
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Zhang Chen
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Taoping He
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Lijun Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Weifeng Liu
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Xi Zeng
- Guangzhou Institute for Food Control, Guangzhou, Guangdong 511400, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China.
| |
Collapse
|
34
|
Chen R, Zhou X, Deng Q, Yang M, Li S, Zhang Q, Sun Y, Chen H. Extraction, structural characterization and biological activities of polysaccharides from mulberry leaves: A review. Int J Biol Macromol 2024; 257:128669. [PMID: 38092124 DOI: 10.1016/j.ijbiomac.2023.128669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
In recent years, plant polysaccharides have garnered attention for their impressive biological activity. Mulberry leaves have a long history of medicinal and edible use in China, polysaccharide is one of the main active components of mulberry leaves, mainly consist of xylose, arabinose, fructose, galactose, glucose and mannose, etc. The extraction methods of mulberry leaves polysaccharides (MLPs) mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, enzyme-assisted extraction, and co-extraction. The separation and purification of MLPs involve core steps such as decolorization, protein removal, and chromatographic separation. In terms of pharmacological effects, MLPs exhibit excellent activity in reducing blood glucose, anti-oxidation, immune regulation, anti-tumor, antibacterial, anti-coagulation, and regulation of gut microbiota. Currently, there is a considerable amount of research on MLPs, however, there is a lack of systematic summarization. This review summarizes the research progress on the extraction, structural characterization, and pharmacological activities of MLPs, and points out existing shortcomings and suggests reference solutions, aiming to provide a basis for further research and development of MLPs.
Collapse
Affiliation(s)
- Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Maohui Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
35
|
Zhang K, Hu X, Su J, Li D, Thakur A, Gujar V, Cui H. Gastrointestinal Cancer Therapeutics via Triggering Unfolded Protein Response and Endoplasmic Reticulum Stress by 2-Arylbenzofuran. Int J Mol Sci 2024; 25:999. [PMID: 38256073 PMCID: PMC10816499 DOI: 10.3390/ijms25020999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Gastrointestinal cancers are a major global health challenge, with high mortality rates. This study investigated the anti-cancer activities of 30 monomers extracted from Morus alba L. (mulberry) against gastrointestinal cancers. Toxicological assessments revealed that most of the compounds, particularly immunotoxicity, exhibit some level of toxicity, but it is generally not life-threatening under normal conditions. Among these components, Sanggenol L, Sanggenon C, Kuwanon H, 3'-Geranyl-3-prenyl-5,7,2',4'-tetrahydroxyflavone, Morusinol, Mulberrin, Moracin P, Kuwanon E, and Kuwanon A demonstrate significant anti-cancer properties against various gastrointestinal cancers, including colon, pancreatic, and gastric cancers. The anti-cancer mechanism of these chemical components was explored in gastric cancer cells, revealing that they inhibit cell cycle and DNA replication-related gene expression, leading to the effective suppression of tumor cell growth. Additionally, they induced unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, potentially resulting in DNA damage, autophagy, and cell death. Moracin P, an active monomer characterized as a 2-arylbenzofuran, was found to induce ER stress and promote apoptosis in gastric cancer cells, confirming its potential to inhibit tumor cell growth in vitro and in vivo. These findings highlight the therapeutic potential of Morus alba L. monomers in gastrointestinal cancers, especially focusing on Moracin P as a potent inducer of ER stress and apoptosis.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Okhlahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Hwangbo H, Kim MY, Ji SY, Kim DH, Park BS, Jeong SU, Yoon JH, Kim TH, Kim GY, Choi YH. A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo. J Microbiol Biotechnol 2023; 33:1635-1647. [PMID: 37674382 PMCID: PMC10772550 DOI: 10.4014/jmb.2306.06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Beom Su Park
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Seong Un Jeong
- Hamsoa Pharmaceutical Co., Ltd., Iksan 54524, Republic of Korea
| | - Jae Hyun Yoon
- Hamsoa Pharmaceutical Co., Ltd., Iksan 54524, Republic of Korea
| | - Tae Hee Kim
- Hamsoa Pharmaceutical Co., Ltd., Iksan 54524, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
37
|
Yang Y, Chen M, Zhang W, Zhu H, Li H, Niu X, Zhou Z, Hou X, Zhu J. Metabolome combined with transcriptome profiling reveals the dynamic changes in flavonoids in red and green leaves of Populus × euramericana 'Zhonghuahongye'. FRONTIERS IN PLANT SCIENCE 2023; 14:1274700. [PMID: 38179486 PMCID: PMC10764563 DOI: 10.3389/fpls.2023.1274700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Flavonoids are secondary metabolites that have economic value and are essential for health. Poplar is a model perennial woody tree that is often used to study the regulatory mechanisms of flavonoid synthesis. We used a poplar bud mutant, the red leaf poplar variety 2025 (Populus × euramericana 'Zhonghuahongye'), and green leaves as study materials and selected three stages of leaf color changes for evaluation. Phenotypic and biochemical analyses showed that the total flavonoid, polyphenol, and anthocyanin contents of red leaves were higher than those of green leaves in the first stage, and the young and tender leaves of the red leaf variety had higher antioxidant activity. The analyses of widely targeted metabolites identified a total of 273 flavonoid metabolites (114 flavones, 41 flavonols, 34 flavonoids, 25 flavanones, 21 anthocyanins, 18 polyphenols, 15 isoflavones, and 5 proanthocyanidins). The greatest difference among the metabolites was found in the first stage. Most flavonoids accumulated in red leaves, and eight anthocyanin compounds contributed to red leaf coloration. A comprehensive metabolomic analysis based on RNA-seq showed that most genes in the flavonoid and anthocyanin biosynthetic pathways were differentially expressed in the two types of leaves. The flavonoid synthesis genes CHS (chalcone synthase gene), FLS (flavonol synthase gene), ANS (anthocyanidin synthase gene), and proanthocyanidin synthesis gene LAR (leucoanthocyanidin reductase gene) might play key roles in the differences in flavonoid metabolism. A correlation analysis of core metabolites and genes revealed several candidate regulators of flavonoid and anthocyanin biosynthesis, including five MYB (MYB domain), three bHLH (basic helix-loop-helix), and HY5 (elongated hypocotyl 5) transcription factors. This study provides a reference for the identification and utilization of flavonoid bioactive components in red-leaf poplar and improves the understanding of the differences in metabolism and gene expression between red and green leaves at different developmental stages.
Collapse
Affiliation(s)
- Yun Yang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, Henan, China
| | - Mengjiao Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Wan Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haiyang Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hui Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Xinjiang Niu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Zongshun Zhou
- China Experimental Centre of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, Jiangxi, China
| | - Xiaoya Hou
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Chen F, Huang J, Zhao N, Jin F, Fan Q, Du E, Wei J. Dietary Morus alba L. leaf supplementation improves hepatic lipid accumulation of laying hens via downregulating CircACACA. Poult Sci 2023; 102:103042. [PMID: 37716232 PMCID: PMC10511811 DOI: 10.1016/j.psj.2023.103042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023] Open
Abstract
Fatty liver hemorrhagic syndrome (FLHS) is the most common metabolic disease in laying hens. Morus alba L. (mulberry) leaf has the effect of regulating lipid metabolism. We evaluated the effects of dietary 3% mulberry leaf (MUL) supplementation in production performance, egg quality, and liver lipid deposition in laying hens. Differentially expressed genes and circRNAs in the liver were identified using whole-transcriptome sequencing. We also evaluated the effects of the MUL extract using an in vitro model of primary hepatocytes induced by free fatty acids and explored the role of key circRNAs in this process. Dietary supplementation with 3% MUL alleviated liver steatosis in laying hens, as shown by decreased fatty liver color score, relative liver weight (P < 0.01), and triglyceride levels (P < 0.05), and showed a tendency to reduce the mortality rate of laying hens (P = 0.09). In addition, mulberry leaf supplementation significantly reduced cholesterol content in egg yolk (P < 0.01). Dietary mulberry leaf supplementation downregulated the expression of genes involved in fatty acid and cholesterol biosynthesis, and upregulated the expression of fatty acid oxidation-related genes in the liver. CircACACA, which is derived from exons 2 and 3 of the acetyl-CoA carboxylase alpha (ACACA) pre-mRNA, was significantly reduced in the MUL group (P < 0.01). Upregulation of circACACA expression reversed the lipid-lowering effect of mulberry leaf extract by upregulating sterol regulatory element-binding proteins 1 c (SREBP-1c) and fatty acid synthase (FASN) (P < 0.05). Overall, mulberry leaf is an effective therapeutic strategy for FLHS in hens and can improve liver lipid metabolism by downregulating circACACA.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Wuhan 430064, China
| | - Jing Huang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Feng Jin
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Qiwen Fan
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China.
| |
Collapse
|
39
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [PMID: 37797345 DOI: 10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oat (Avena sativa L.), an annual herbaceous plant belonging to the Gramineae family, is widely grown in various regions including EU, Canada, America, Australia, etc. Due to the nutritional and pharmacological values, oats have been developed into various functional food including fermented beverage, noodle, cookie, etc. Meanwhile, numerous studies have demonstrated that oats may effectively improve metabolic syndrome, such as dyslipidemia, hyperglycemia, atherosclerosis, hypertension, and obesity. However, the systematic pharmacological mechanisms of oats on metabolic syndrome have not been fully revealed. Therefore, in order to fully explore the benefits of oat in food industry and clinic, this review aims to provide up-to-date information on oat and its constituents, focusing on the effects on metabolic syndrome.
Collapse
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People's Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
40
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [DOI: https:/doi.org/10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People’s Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
41
|
Hung TW, Yang MY, Yu MH, Tsai IN, Tsai YC, Chan KC, Wang CJ. Mulberry leaf extract and neochlorogenic acid ameliorate glucolipotoxicity-induced diabetic nephropathy in high-fat diet-fed db/db mice. Food Funct 2023; 14:8975-8986. [PMID: 37732507 DOI: 10.1039/d3fo02640j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Diabetic nephropathy, a major diabetes complication, is often exacerbated by glucolipotoxicity. The potential benefits of mulberry leaf extract (MLE) and its primary component, neochlorogenic acid (nCGA), in combating this condition have not been extensively explored. High-fat diet-fed db/db mice were employed as a model for glucolipotoxicity-induced diabetic nephropathy. The mice were treated with MLE or nCGA, and their body weight, insulin sensitivity, blood lipid profiles, and kidney function were assessed. In addition, modulation of the JAK-STAT, pAKT, Ras, and NF-κB signaling pathways by MLE and nCGA was evaluated. MLE and nCGA did not significantly decrease blood glucose level but effectively mitigated the adverse effects of a high-fat diet on blood lipid profile and kidney function. Improvements in body weight, insulin sensitivity, and kidney structure, along with a reduction in fibrosis, were observed. Both MLE and nCGA regulated lipid metabolism abnormalities, significantly inhibited the accumulation of glycosylated substances in glomeruli, and modulated crucial signaling pathways involved in diabetic nephropathy. Although they do not directly affect blood glucose level, MLE and nCGA show significant potential in managing glucolipotoxicity-induced diabetic nephropathy by targeting lipid metabolism and key molecular pathways. The present findings suggest MLE and nCGA may be promising therapeutic agents for diabetic nephropathy, and further exploration in human patients is warranted.
Collapse
Affiliation(s)
- Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medicine, Division of Nephrology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - I-Ning Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yung-Che Tsai
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Kuei-Chuan Chan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| |
Collapse
|
42
|
Liu T, Li Y, Wang L, Zhang X, Zhang Y, Gai X, Chen L, Liu L, Yang L, Wang B. Network pharmacology-based exploration identified the antiviral efficacy of Quercetin isolated from mulberry leaves against enterovirus 71 via the NF-κB signaling pathway. Front Pharmacol 2023; 14:1260288. [PMID: 37795035 PMCID: PMC10546324 DOI: 10.3389/fphar.2023.1260288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Mulberry leaf (ML) is known for its antibacterial and anti-inflammatory properties, historically documented in "Shen Nong's Materia Medica". This study aimed to investigate the effects of ML on enterovirus 71 (EV71) using network pharmacology, molecular docking, and in vitro experiments. Methods: We successfully pinpointed shared targets between mulberry leaves (ML) and the EV71 virus by leveraging online databases. Our investigation delved into the interaction among these identified targets, leading to the identification of pivotal components within ML that possess potent anti-EV71 properties. The ability of these components to bind to the targets was verified by molecular docking. Moreover, bioinformatics predictions were used to identify the signaling pathways involved. Finally, the mechanism behind its anti-EV71 action was confirmed through in vitro experiments. Results: Our investigation uncovered 25 active components in ML that targeted 231 specific genes. Of these genes, 29 correlated with the targets of EV71. Quercetin, a major ingredient in ML, was associated with 25 of these genes. According to the molecular docking results, Quercetin has a high binding affinity to the targets of ML and EV71. According to the KEGG pathway analysis, the antiviral effect of Quercetin against EV71 was found to be closely related to the NF-κB signaling pathway. The results of immunofluorescence and Western blotting showed that Quercetin significantly reduced the expression levels of VP1, TNF-α, and IL-1β in EV71-infected human rhabdomyosarcoma cells. The phosphorylation level of NF-κB p65 was reduced, and the activation of NF-κB signaling pathway was suppressed by Quercetin. Furthermore, our results showed that Quercetin downregulated the expression of JNK, ERK, and p38 and their phosphorylation levels due to EV71 infection. Conclusion: With these findings in mind, we can conclude that inhibiting the NF-κB signaling pathway is a critical mechanism through which Quercetin exerts its anti-EV71 effectiveness.
Collapse
Affiliation(s)
- Tianrun Liu
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Yingyu Li
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Lumeng Wang
- School of Medicine, Jiamusi University, Jiamusi, China
| | | | - Yuxuan Zhang
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Xuejie Gai
- The Affiliated First Hospital, Jiamusi University, Jiamusi, China
| | - Li Chen
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian, China
| | - Baixin Wang
- School of Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
43
|
Zhang Y, Miao R, Ma K, Zhang Y, Fang X, Wei J, Yin R, Zhao J, Tian J. Effects and Mechanistic Role of Mulberry Leaves in Treating Diabetes and its Complications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1711-1749. [PMID: 37646143 DOI: 10.1142/s0192415x23500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jingxue Zhao
- Development Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
44
|
Xiong RG, Wu SX, Cheng J, Saimaiti A, Liu Q, Shang A, Zhou DD, Huang SY, Gan RY, Li HB. Antioxidant Activities, Phenolic Compounds, and Sensory Acceptability of Kombucha-Fermented Beverages from Bamboo Leaf and Mulberry Leaf. Antioxidants (Basel) 2023; 12:1573. [PMID: 37627568 PMCID: PMC10451197 DOI: 10.3390/antiox12081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Kombucha is traditional drink made from the fermentation of a black tea infusion, and is believed to offer a variety of health benefits. Recently, exploring kombucha made from alternative substrates has become a research hotspot. In this paper, two novel kombucha beverages were produced with bamboo leaf or mulberry leaf for the first time. Moreover, the effects of fermentation with leaf residues (infusion plus residues) or without leaf residues (only infusion) on the antioxidant properties of kombucha were compared. The ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, Folin-Ciocalteu method, and high-performance liquid chromatography were utilized to measure the antioxidant capacities, total phenolic contents, as well as some compound concentrations of the kombucha. The results showed that two types of kombucha had high antioxidant capacities. Moreover, kombucha fermented with bamboo leaf residues (infusion plus residues) significantly enhanced its antioxidant capabilities (maximum increase 83.6%), total phenolic content (maximum increase 99.2%), concentrations of some compounds (luteolin-6-C-glucoside and isovitexin), and sensory acceptability, compared to that without residues (only infusion). In addition, fermentation with leaf residues had no significant effect on mulberry leaf kombucha. Overall, the bamboo leaf was more suitable for making kombucha with residues, while the mulberry leaf kombucha was suitable for fermentation with or without residues.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Qing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (Q.L.); (A.S.)
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (Q.L.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| |
Collapse
|
45
|
Pathak R, Sachan N, Kabra A, Alanazi AS, Alanazi MM, Alsaif NA, Chandra P. Isolation, characterization, development and evaluation of phytoconstituent based formulation for diabetic neuropathy. Saudi Pharm J 2023; 31:101687. [PMID: 37448840 PMCID: PMC10336832 DOI: 10.1016/j.jsps.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Background Morus alba Linn, referred to as white mulberry, is a potential traditional medicine for diabetes and neuroprotection. Aim Isolation, characterization, development and evaluation of phytoconstituent based formulation for diabetic neuropathy. Material and methods The stem Bark of M. alba was peeled and subjected to extraction. A phytoconstituent was then isolated by column chromatography and characterized using Mass spectroscopy, FTIR, and NMR. The isolated phytoconstituent was used to formulate a nanoemulsion. Nanoemulsion was also characterized for viscosity, surface tension, refractive index, pH, and particle size. Selected nanoemulsion formulations were then tested for acute oral toxicity and diabetic neuropathy, including behavioral, hematological, histopathological, and biomarker examinations. Results The spectral analysis affirmed that the isolated compound was found to be chrysin. A nanoemulsion formulation was made using the chrysin and was characterized and found to be stable during the stability testing and fulfilled all other testing parameters. Then acute oral toxicity study of the formulations was found to be safe. Formulations were found to possess significant results against diabetic neuropathy in rats. Biomarkers were analyzed for their mechanistic involvement in reducing neuropathy in rats, and it was found that the oxidative pathway was considerably restored, suggesting that chrysin causes these effects via this pathway. Conclusions Results suggests that isolated phytoconstituent (chrysin) from the bark of Morus alba derived nanoemulsion has protective and beneficial effects by diminishing the oxidative damage against alloxan-induced diabetic neuropathy in rats.
Collapse
Affiliation(s)
- Rashmi Pathak
- Department of Pharmacy, Invertis University, Bareilly-243123, Uttar Pradesh, India
| | - Neetu Sachan
- Maharana Pratap College of Pharmacy, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, 140301 Mohali, Punjab, India
| | - Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh , Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh , Saudi Arabia
| | - Phool Chandra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad-244001, Uttar Pradesh, India
| |
Collapse
|
46
|
Luo L, Fan W, Qin J, Guo S, Xiao H, Tang Z. Pharmacological and Pathological Effects of Mulberry Leaf Extract on the Treatment of Type 1 Diabetes Mellitus Mice. Curr Issues Mol Biol 2023; 45:5403-5421. [PMID: 37504259 PMCID: PMC10378407 DOI: 10.3390/cimb45070343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
This study investigated the pharmacological and pathological effects of aqueous mulberry leaf extract on type 1 diabetes mellitus mice induced with an intraperitoneal injection of streptozotocin (STZ). Diabetic mice were randomized into six groups: control (normal group), model, metformin-treated mice, and high-dose, medium-dose, and low-dose mulberry. The mulberry-treated mice were divided into high-, medium-, and low-dose groups based on the various doses of aqueous mulberry leaf extract during gavage. The efficacy of the six-week intervention was evaluated by measuring levels of fasting plasma glucose, alkaline phosphatase, alanine aminotransferase, aspartate transaminase, blood urea nitrogen, gamma-glutamyl transferase, glucose, high-density lipoprotein cholesterol, lactate dehydrogenase, and low-density lipoprotein cholesterol and recording body weight. Results revealed that mulberry leaf extract exhibited an ideal hypoglycemic effect, and the high-dose group was the most affected. Histology analysis, glycogen staining and apoptosis detection were used to study the extract's effects on the liver, kidney, and pancreatic cells of diabetic mice, enabling the assessment of its effectiveness and complications on a clinical and theoretical basis. It was shown that a certain concentration of aqueous mulberry leaf extract repaired the islet cells of type 1 diabetes mellitus mice, promoting normal insulin secretion. Herein, it was confirmed that mulberry leaf could be used to develop new hypoglycemic drugs or functional health food with broad applicability.
Collapse
Affiliation(s)
- Liru Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| | - Wei Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| | - Jingping Qin
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| | - Hang Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410128, China
| |
Collapse
|
47
|
Yang L, Zhao J, Fan S, Liao J, Chen Y, Wang Y. Effect of Frost on the Different Metabolites of Two Mulberry ( Morus nigra L. and Morus alba L.) Leaves. Molecules 2023; 28:4718. [PMID: 37375273 DOI: 10.3390/molecules28124718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Mulberry leaves are a well-known traditional Chinese medicine herb, and it has been observed since ancient times that leaves collected after frost have superior medicinal properties. Therefore, understanding the changes in critical metabolic components of mulberry leaves, specifically Morus nigra L., is essential. In this study, we conducted widely targeted metabolic profiling analyses on two types of mulberry leaves, including Morus nigra L. and Morus alba L., harvested at different times. In total, we detected over 100 compounds. After frost, 51 and 58 significantly different metabolites were identified in the leaves of Morus nigra L. and Morus alba L., respectively. Further analysis revealed a significant difference in the effect of defrosting on the accumulation of metabolites in the two mulberries. Specifically, in Morus nigra L., the content of 1-deoxynojirimycin (1-DNJ) in leaves decreased after frost, while flavonoids peaked after the second frost. In Morus alba L., the content of DNJ increased after frost, reaching its peak one day after the second frost, whereas flavonoids primarily peaked one week before frost. In addition, an analysis of the influence of picking time on metabolite accumulation in two types of mulberry leaves demonstrated that leaves collected in the morning contained higher levels of DNJ alkaloids and flavonoids. These findings provide scientific guidance for determining the optimal harvesting time for mulberry leaves.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Xinjiang Academy of Forestry, Urumqi 830052, China
- Key Laboratory of Fruit Tree Species Breeding and Cultivation in Xinjiang, Urumqi 830052, China
| | - Jiuyang Zhao
- Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Xinjiang Academy of Forestry, Urumqi 830052, China
- Key Laboratory of Fruit Tree Species Breeding and Cultivation in Xinjiang, Urumqi 830052, China
| | - Shaoli Fan
- Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Xinjiang Academy of Forestry, Urumqi 830052, China
- Key Laboratory of Fruit Tree Species Breeding and Cultivation in Xinjiang, Urumqi 830052, China
| | - Jinfa Liao
- Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Xinjiang Academy of Forestry, Urumqi 830052, China
- Key Laboratory of Fruit Tree Species Breeding and Cultivation in Xinjiang, Urumqi 830052, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
48
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
49
|
Rodríguez-Sojo MJ, Ruiz-Malagón AJ, Hidalgo-García L, Molina-Tijeras JA, Diez-Echave P, López-Escanez L, Rosati L, González-Lozano E, Cenis-Cifuentes L, García-García J, García F, Robles-Vera I, Romero M, Duarte J, Cenis JL, Lozano-Pérez AA, Gálvez J, Rodríguez-Cabezas ME, Rodríguez-Nogales A. The Prebiotic Effects of an Extract with Antioxidant Properties from Morus alba L. Contribute to Ameliorate High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2023; 12:antiox12040978. [PMID: 37107352 PMCID: PMC10136151 DOI: 10.3390/antiox12040978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a global health issue, in which modifications in gut microbiota composition have a key role. Different therapeutic strategies are being developed in combination with diet and exercise, including the use of plant extracts, such as those obtained from Morus alba L. leaves. Recent studies have revealed their anti-inflammatory and antioxidant properties. The aim of the present work was to evaluate whether the beneficial effects of M. alba L. leaf extract in high-fat diet-induced obesity in mice is correlated with its impact on gut microbiota. The extract reduced body weight gain and attenuated lipid accumulation, as well as increased glucose sensitivity. These effects were associated with an amelioration of the obesity-associated inflammatory status, most probably due to the described antioxidant properties of the extract. Moreover, M. alba L. leaf extract mitigated gut dysbiosis, which was evidenced by the restoration of the Firmicutes/Bacteroidota ratio and the decrease in plasma lipopolysaccharide (LPS) levels. Specifically, the extract administration reduced Alistipes and increased Faecalibaculum abundance, these effects being correlated with the beneficial effects exerted by the extract on the obesity-associated inflammation. In conclusion, anti-obesogenic effects of M. alba L. leaf extract may be mediated through the amelioration of gut dysbiosis.
Collapse
Affiliation(s)
- María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura López-Escanez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Lucrezia Rosati
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Elena González-Lozano
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | | | - Jorge García-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio Microbiología, Hospital Universitario Clínico San Cecilio, 18100 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER-INFECC), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - José Luis Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 Murcia, Spain
| | - Antonio Abel Lozano-Pérez
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
50
|
Yang S, Fan L, Tan P, Lei W, Liang J, Gao Z. Effects of Eurotium cristatum on chemical constituents and α-glucosidase activity of mulberry leaf tea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|