1
|
Leonti M, Cabras S, Castellanos Nueda ME, Casu L. Food drugs as drivers of therapeutic knowledge and the role of chemosensory qualities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118012. [PMID: 38447614 DOI: 10.1016/j.jep.2024.118012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemosensory qualities of botanical drugs are important cues for anticipating physiologic consequences. Whether a botanical drug is used for both, food and medicine, or only as medicine depends on taste preferences, nutritional content, cultural background, and the individual and overall epidemiological context. MATERIAL AND METHODS We subjected 540 botanical drugs described in De Materia Medica having at least one oral medical application to a tasting panel. The 540 drugs were grouped into those only used for medicine (388) and those also used for food (152). The associations with chemosensory qualities and therapeutic indications were compared across the two groups. We considered 22 experimentally assessed chemosensory qualities and 39 categories of therapeutic use groups. We wanted to know, 1): which chemosensory qualities increase the probability of an orally applied botanical drug to be also used for food ? 2): which chemosensory qualities augment the probability of an orally applied botanical drug to be only used for medicine? and 3): whether there are differences in therapeutic indications between orally applied botanical drugs also used for food (food drugs) and botanical drugs applied exclusively for medicinal purposes (non-food drugs) and, if yes, how the differences can be explained. RESULTS Chemosensory qualities augmenting the probability of an orally applied botanical drug to be also used for food were sweet, starchy, salty, burning/hot, fruity, nutty, and cooling. Therapeutics used for diarrhoea, as libido modulators, purgatives, laxatives, for expelling parasites, breast and lactation and increasing diuresis, were preferentially sourced from food drugs while drugs used for liver and jaundice, vaginal discharge and humoral management showed significant negative associations with food dugs in ancient Greek-Roman materia medica. CONCLUSION Therapeutics used for ailments of body organs involved in the digestion of food and the excretion of waste products showed a tendency to be sourced from food drugs. Arguably, the daily consumption of food offered the possibility for observing post-prandial physiologic and pharmacologic effects which led to a high therapeutic versatility of food drugs and the possibility to understand benefits of taste and flavour qualities. The difference in chemosensory qualities between food drugs and non-food drugs is demarcating the organoleptic requirements of food rather than that of medicine.
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, (CA), Italy.
| | - Stefano Cabras
- Department of Statistics, Carlos III University of Madrid, C/Madrid, 126, 28903, Getafe, (MA), Spain
| | | | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, (CA), Italy
| |
Collapse
|
2
|
Olas B. An Overview of the Versatility of the Parts of the Globe Artichoke ( Cynara scolymus L.), Its By-Products and Dietary Supplements. Nutrients 2024; 16:599. [PMID: 38474726 DOI: 10.3390/nu16050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is used in plant-based dietary supplements and herbal infusions. Its edible parts, consisting of the head or capitula, flower, and leaves, have shown various biological activities, including anti-cancer, hepatoprotective and antimicrobial potential. The leaves are mainly used in infusions and extracts for their health-promoting properties, although all their edible parts may also be consumed as fresh, frozen, or canned foods. However, its primary health-promoting activity is associated with its antioxidant potential, which has been linked to its chemical composition, particularly its phenolic compounds (representing 96 mg of gallic acid equivalent per 100 g of raw plant material) and dietary fiber. The main phenolic compounds in the heads and leaves are caffeic acid derivatives, while the flavonoids luteolin and apigenin (both present as glucosides and rutinosides) have also been identified. In addition, heat-treated artichokes (i.e., boiled, steamed or fried), their extracts, and waste from artichoke processing also have antioxidant activity. The present paper reviews the current literature concerning the biological properties of different parts of C. scolymus, its by-products and dietary supplements, as well as their chemical content and toxicity. The literature was obtained by a search of PubMed/Medline, Google Scholar, Web of Knowledge, ScienceDirect, and Scopus, with extra papers being identified by manually reviewing the references.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Kosmalski M, Frankowski R, Deska K, Różycka-Kosmalska M, Pietras T. Exploring the Impact of Nutrition on Non-Alcoholic Fatty Liver Disease Management: Unveiling the Roles of Various Foods, Food Components, and Compounds. Nutrients 2023; 15:2838. [PMID: 37447164 DOI: 10.3390/nu15132838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
There is a need to introduce standardized treatment options for non-alcoholic fatty liver disease (NAFLD) due to its global prevalence and the complications of this disease. Many studies have revealed that food-derived substances may be beneficial in dealing with this disease. Therefore, this review aims to evaluate the recently published studies on the food-derived treatment options for NAFLD. A comprehensive search of the PubMed database using keywords such as "NAFLD", "nutrition", "food", "derived", "therapy", and "guidelines" yielded 219 relevant papers for our analysis, published from 2004 to 2023. The results show the significant benefits of food-derived treatment in NAFLD therapy, including improvements in liver histology, hepatic fat amounts, anthropometric measures, lipid profile, and other metabolic measures. The availability of the substances discussed makes them a significant adjuvant in the treatment of this disease. The usefulness of Viusid as additional therapy to diet and physical activity should be emphasized due to improvements in liver histology; however, many other substances lead to a decrease in liver fat amounts including, e.g., berberine or omega-3 fatty acids. In addition, the synbiotic Protexin seems to be useful in terms of NAFLD treatment, especially because it is effective in both obese and lean subjects. Based on the latest research results, we suggest revising the therapeutic recommendations for patients suffering from NAFLD.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kacper Deska
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
4
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ahmed SF, Abd Al Haleem EN, El-Tantawy WH. Evaluation of the anti-atherogenic potential of Egyptian artichoke leaf extract in hypercholesterolemic rats. Arch Physiol Biochem 2022; 128:163-174. [PMID: 31566004 DOI: 10.1080/13813455.2019.1669662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The current research seeks to assess the anti-atherogenic activity of Egyptian artichoke leaf extract in hypercholesterolemic rats. MATERIALS AND METHODS Male albino rats were categorized into five groups; control group, high cholesterol diet treated group (HCD), HCD + low dose of artichoke, HCD + high dose of artichoke and HCD + Atorvastatin. RESULTS Both doses of artichoke extract significantly decreased the concentration of serum cholesterol, triglycerides, and LDL-C in HCD rats as compared to that of their matching controls, p < .05. The treatment with artichoke led to the inhibition of the liver hydroxymethylglutaryl-CoA (HMG-CoA) reductase. Besides, the extract was proven to be cardioprotective effective by increasing antioxidant activity. The effect of the highest dose of artichoke was more apparent than the effect of the lowest one. The biochemical data was reinforced by the histopathological studies. DISCUSSION AND CONCLUSION Artichoke may act as a natural source for the elimination of cardiovascular ailments.
Collapse
Affiliation(s)
| | - Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
6
|
Zojaji SA, Mozaffari HM, Ghaderi P, Zojaji F, Hadjzadeh MAR, Seyfimoqadam M, Ghorbani A. Efficacy of an herbal compound in decreasing steatosis and transaminase activities in non-alcoholic fatty liver disease: A randomized clinical trial. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Ahmad Ghorbani
- Mashhad University of Medical Sciences, Iran; Mashhad University of Medical Sciences, Iran
| |
Collapse
|
7
|
Standardized artichoke extract: physiological effects, possibilities of use in medical practice. Fam Med 2021. [DOI: 10.30841/2307-5112.4.2021.249412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Krepkova LV, Babenko AN, Saybel' OL, Lupanova IA, Kuzina OS, Job KM, Sherwin CM, Enioutina EY. Valuable Hepatoprotective Plants - How Can We Optimize Waste Free Uses of Such Highly Versatile Resources? Front Pharmacol 2021; 12:738504. [PMID: 34867345 PMCID: PMC8637540 DOI: 10.3389/fphar.2021.738504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Humans used plants for thousand of years as food, drugs, or fuel to keep homes warm. People commonly used fruits and roots, and other parts of the plant were often wasted. This review aims to discuss the potential of rational stem-to-stern use of three highly versatile and valuable plants with hepatoprotective properties. Milk thistle (Silybum marianum L. Gaertn.), artichoke (Cynara cardunculus), and chicory (Cichorium intybus L.) have well-characterized hepatoprotective properties. These plants have been chosen since liver diseases are significant diseases of concern worldwide, and all parts of plants can be potentially utilized. Artichoke and chicory are commonly used as food or dietary supplements and less often as phytodrugs. Various dietary supplements and phytodrugs prepared from milk thistle (MT) fruits/seeds are well-known to consumers as remedies supporting liver functions. However, using these plants as functional food, farm animal feed, is not well-described in the literature. We also discuss bioactive constituents present in various parts of these plants, their pharmacological properties. Distinct parts of MT, artichoke, and chicory can be used to prepare remedies and food for humans and animals. Unused plant parts are potentially wasted. To achieve waste-free use of these and many other plants, the scientific community needs to analyze the complex use of plants and propose strategies for waste-free technologies. The government must stimulate companies to utilize by-products. Another problem associated with plant use as a food or source of phytodrug is the overharvesting of wild plants. Consequently, there is a need to use more active cultivation techniques for plants.
Collapse
Affiliation(s)
- Lubov V Krepkova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Aleksandra N Babenko
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga L Saybel'
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Irina A Lupanova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga S Kuzina
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Kathleen M Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Catherine M Sherwin
- Department of Pediatrics, Boonshoft School of Medicine, Dayton Children's Hospital, Wright State University, Dayton, OH, United States
| | - Elena Y Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
9
|
Lazebnik LB, Golovanova EV, Volel BA, Korochanskaya NV, Lyalyukova EA, Mokshina MV, Mekhtiev SN, Mekhtieva OA, Metsaeva ZV, Petelin DS, Simanenkov VI, Sitkin SI, Cheremushkin SV, Chernogorova MV, Khavkin АI. Functional gastrointestinal disorders. Overlap syndrome Clinical guidelines of the Russian Scientific Medical Society of Internal Medicine and Gastroenterological Scientific Society of Russia. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:5-117. [DOI: 10.31146/1682-8658-ecg-192-8-5-117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Affiliation(s)
- L. B. Lazebnik
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - E. V. Golovanova
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - B. A. Volel
- I. M. Sechenov First Moscow Medical State University
| | - N. V. Korochanskaya
- Federal State Budgetary Educational Institution of Higher Education “Kuban State Medical University” Health Ministry of Russian Federation; State Budgetary Institution of Health Care “Region Clinic Hospital Nr 2” Health Ministry of Krasnodar Region
| | - E. A. Lyalyukova
- FSBEI VO “Omsk State Medical University” of the Ministry of Health
| | - M. V. Mokshina
- Institute of therapy a. instrumental diagnostics of FSBEI VO “Pacifi c State Medical Unuversity”
| | | | | | - Z. V. Metsaeva
- Republican clinical hospital of Health Care Ministry of Northen Ossetia- Alania Republic
| | - D. S. Petelin
- I. M. Sechenov First Moscow Medical State University
| | - V. I. Simanenkov
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. I. Sitkin
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. V. Cheremushkin
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - M. V. Chernogorova
- Moscow regional research and clinical Institute of M. F. Vladimirsky; GBUZ MO “Podolsk City Clinical Hospital No. 3”
| | - А. I. Khavkin
- FSBAI HPE “N. I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation
| |
Collapse
|
10
|
Shahinfar H, Bazshahi E, Amini MR, Payandeh N, Pourreza S, Noruzi Z, Shab-Bidar S. Effects of artichoke leaf extract supplementation or artichoke juice consumption on lipid profile: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2021; 35:6607-6623. [PMID: 34569671 DOI: 10.1002/ptr.7247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022]
Abstract
Accumulating evidence regarding the effect of artichoke on lipid profile is equivocal. We updated a previous meta-analysis on the effect of artichoke extract supplementation on lipid profile and performed dose-response analysis. We searched PubMed, Scopus, Web of Science, and Cochrane Library from inception to June 2021 using relevant keywords. Papers from identified articles were collected. Two researchers rated the certainty in the estimates using the GRADE approach. Combining 15 effect sizes from 14 studies based on the random-effects analysis, we found that artichoke significantly reduced TG (weighed mean difference [WMD]: -17.01 mg/dl, 95% CI: -23.88, -10.13, p = .011), TC (WMD: -17.01 mg/dl, 95% CI: -23.88, -10.13, p < .001), and LDL-C (WMD: -17.48 mg/dl, 95%CI: -25.44, -9.53, p < .001). No significant effect of artichoke on HDL-C level was detected (WMD: 0.78 mg/dl, 95%CI: -0.93, 2.49, p = .371). Combining the two effect sizes revealed that artichoke juice supplementation significantly reduced TG (WMD: -3.34 mg/dl, 95%CI: -5.51, -1.17, p = .003), TC (WMD: -18.04 mg/dl, 95%CI: -20.30, -15.78, p < .001), LDL-C (WMD: -1.75 mg/dl, 95%CI: -3.02, -0.48, p = .007), and HDL-C levels (WMD: -4.21 mg/dl, 95%CI: -5.49, -2.93, p < .001). In conclusion, we found that artichoke supplementation may favor CVD prevention by acting in improving the lipid profile.
Collapse
Affiliation(s)
- Hossein Shahinfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bazshahi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Amini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Payandeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Noruzi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Metabolic and Anti-Inflammatory Protective Properties of Human Enriched Serum Following Artichoke Leaf Extract Absorption: Results from an Innovative Ex Vivo Clinical Trial. Nutrients 2021; 13:nu13082653. [PMID: 34444810 PMCID: PMC8398945 DOI: 10.3390/nu13082653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
The aging of our population is accompanied by an increased prevalence of chronic diseases. Among those, liver, joint and adipose tissue-related pathologies have a major socio-economic impact. They share common origins as they result from a dysregulation of the inflammatory and metabolic status. Plant-derived nutrients and especially polyphenols, exert a large range of beneficial effects in the prevention of chronic diseases but require clinically validated approaches for optimized care management. In this study, we designed an innovative clinical approach considering the metabolites produced by the digestive tract following the ingestion of an artichoke leaf extract. Human serum, enriched with metabolites deriving from the extract, was collected and incubated with human hepatocytes, human primary chondrocytes and adipocytes to determine the biological activity of the extract. Changes in cellular behavior demonstrated that the artichoke leaf extract protects hepatocytes from lipotoxic stress, prevents adipocytes differentiation and hyperplasia, and exerts chondroprotective properties in an inflammatory context. These data validate the beneficial health properties of an artichoke leaf extract at the clinical level and provide both insights and further evidence that plant-derived nutrients and especially polyphenols from artichoke may represent a relevant alternative for nutritional strategies addressing chronic disease issues.
Collapse
|
12
|
Rejeb IB, Dhen N, Gargouri M, Boulila A. Chemical Composition, Antioxidant Potential and Enzymes Inhibitory Properties of Globe Artichoke By-Products. Chem Biodivers 2020; 17:e2000073. [PMID: 32628807 DOI: 10.1002/cbdv.202000073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In this study, chemical composition and in vitro biological activities of artichoke by-products (leaves, floral stems and bracts) issued from two Tunisian varieties were evaluated. Analysis was performed by means of high-performance liquid chromatography with diode array detection coupled to electrospray ionization mass spectrometric (LC/DAD/ESI-MS). Total phenolic (TPC) and flavonoid (TFC) contents as well as the antioxidant activity conducted by three complementary methods, DPPH, ABTS and FRAP tests, were performed for each sample. Enzyme inhibitory effects against acetylcholinesterase, butyrylcholinesterase and α-amylase were also studied. Results showed that TPC and TFC varied according to variety as well as the plant part. Bracts presented the highest TPC values (10-15 mg GAE/g DW), while leaves were distinguished by the highest TFC values (52-58 mg EQ/g DW). In vitro assays showed that Violet d'Hyères bracts and Blanc d'Oran leaves present the most antioxidant activities (30.040 and 20.428 mgET/gDW, respectively, by the DPPH method). Leaves demonstrated the highest acetylcholinesterase and butyrylcholinesterase inhibitory effects. Moreover, all organs displayed a noticeable inhibition towards α-amylase. LC/DAD/MS analysis revealed that artichoke by-products are a potential source of biopharmaceuticals such as luteolin derivatives from leaves and mono/dicaffeoylquinic acids in the other parts. This research demonstrates that globe artichoke by-products, unexploited in our country, are a promising source of natural health promoting compounds with potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ines Ben Rejeb
- Laboratory of Microbial Ecology and Technology, Biocatalysis and Industrial Enzymes Group, Carthage University, National Institute of Applied Sciences and Technology (INSAT), BP 676, 1080, Tunis, Cedex, Tunisia
| | - Nahla Dhen
- Laboratory of Microbial Ecology and Technology, Biocatalysis and Industrial Enzymes Group, Carthage University, National Institute of Applied Sciences and Technology (INSAT), BP 676, 1080, Tunis, Cedex, Tunisia
| | - Mohamed Gargouri
- Laboratory of Microbial Ecology and Technology, Biocatalysis and Industrial Enzymes Group, Carthage University, National Institute of Applied Sciences and Technology (INSAT), BP 676, 1080, Tunis, Cedex, Tunisia
| | - Abdennacer Boulila
- Laboratory of Natural Substances, National Institute of Research and Physico-Chemical Analyses, Biotechpole of Sidi Thabet, Ariana, 2020, Tunisia
| |
Collapse
|
13
|
Cardiovascular Protection of Nephropathic Male Patients by Oral Food Supplements. Cardiovasc Ther 2020; 2020:1807941. [PMID: 32670409 PMCID: PMC7334761 DOI: 10.1155/2020/1807941] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022] Open
Abstract
Nephropathic patients show elevated cardiovascular morbidity and mortality compared to the general population. In order to delve deeper into the understanding of this phenomenon, it is necessary to recognize risk factors that are distinctive to the uremic state, such as oxidative stress and chronic low-grade inflammation. Moreover, gender differences have been reported in nephrology, as it has been observed that chronic kidney disease has higher prevalence in males than in females. The use of an oral food supplement (OFS) containing natural active compounds from Capsicum annuum L., Garcinia cambogia, Centella asiatica L., artichoke, and Aesculus hippocastanum L. which are virtually devoid from side effects, but rich in antioxidant and antiradical properties, could represent a valid therapeutic adjunct in the clinical management of nephropathic patients. Moreover, quantitative analysis performed in vitro on such compounds showed that they expressed good total antioxidant (7.28 gallic acid equivalents) and antiradical activity (above 80%). In this study, 23 male nephropathic patients and 10 age and body composition parameter matched healthy males (control group) were enrolled and took 3 cps/day of OFS for 5 weeks. At the end of the study, the nephropathic patient group showed a statistically significant reduction in the following laboratory parameters: total cholesterol (TC) (p = 0.044), atherogenic index TC/high-density lipoprotein cholesterol (p = 0.010), inflammatory parameters (C-reactive protein, p = 0.048, and erythrocyte sedimentation rate, p = 0.019), systolic (p = 0.044), and diastolic arterial blood pressure (p = 0.003). Regarding body composition, there was an increase in total body water % (p = 0.035) with redistribution of extracellular water % (p = 0.030) and intracellular water % (p = 0.049). In the control group, there was a reduction in fat mass % (p = 0.017) and extracellular water % (p = 0.047). Therefore, this OFS may represent a valid adjunct therapy to counteract comorbidities related to uremia.
Collapse
|
14
|
Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103937] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
15
|
Oppedisano F, Muscoli C, Musolino V, Carresi C, Macrì R, Giancotta C, Bosco F, Maiuolo J, Scarano F, Paone S, Nucera S, Zito MC, Scicchitano M, Ruga S, Ragusa M, Palma E, Tavernese A, Mollace R, Bombardelli E, Mollace V. The Protective Effect of Cynara Cardunculus Extract in Diet-Induced NAFLD: Involvement of OCTN1 and OCTN2 Transporter Subfamily. Nutrients 2020; 12:E1435. [PMID: 32429274 PMCID: PMC7284543 DOI: 10.3390/nu12051435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia and insulin-resistance are often associated with Non-Alcoholic Fatty Liver Disease (NAFLD) thereby representing a true issue worldwide due to increased risk of developing cardiovascular and systemic disorders. Although clear evidence suggests that circulating fatty acids contribute to pathophysiological mechanisms underlying NAFLD and hyperlipidemia, further studies are required to better identify potential beneficial approaches for counteracting such a disease. Recently, several artichoke extracts have been used for both reducing hyperlipidemia, insulin-resistance and NAFLD, though the mechanism is unclear. Here we used a wild type of Cynara Cardunculus extract (CyC), rich in sesquiterpens and antioxidant active ingredients, in rats fed a High Fat Diet (HFD) compared to a Normal Fat Diet (NFD). In particular, in rats fed HFD for four consecutive weeks, we found a significant increase of serum cholesterol, triglyceride and serum glucose. This effect was accompanied by increased body weight and by histopathological features of liver steatosis. The alterations of metabolic parameters found in HFDs were antagonised dose-dependently by daily oral supplementation of rats with CyC 10 and 20 mg/kg over four weeks, an effect associated to significant improvement of liver steatosis. The effect of CyC (20 mg/kg) was also associated to enhanced expression of both OCTN1 and OCTN2 carnitine-linked transporters. Thus, present data suggest a contribution of carnitine system in the protective effect of CyC in diet-induced hyperlipidemia, insulin-resistance and NAFLD.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
- San Raffaele IRCCS, 00199 Rome, Italy
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Caterina Giancotta
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Sara Paone
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Monica Ragusa
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Annamaria Tavernese
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Ezio Bombardelli
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
- San Raffaele IRCCS, 00199 Rome, Italy
| |
Collapse
|
16
|
Sümer E, Senturk GE, Demirel ÖU, Yesilada E. Comparative biochemical and histopathological evaluations proved that receptacle is the most effective part of Cynara scolymus against liver and kidney damages. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112458. [PMID: 31809787 DOI: 10.1016/j.jep.2019.112458] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liver and kidney are among the most important organs in the body, where metabolic and elimination functions take place. During this process, liver and kidneys may suffer damage due to ingestion or formation of toxic metabolites leading to organ loss and even death. Artichoke (Cynara scolymus L.) leaf has long been recognized as a popular herbal remedy in traditional medicines with beneficial effects on liver. AIM OF THE STUDY In phytotherapy leaves are the part used to support the liver functions and for treatment of damage induced by various toxins, while fleshy receptacle is cooked as meal to support liver homeostasis. However, effects of other plant parts on liver such as stems, bracts have not much attracted the attention of scientific community so far. In this study we investigated comparatively the hepatoprotective and nephroprotective effects of different plant parts of artichoke, i.e. receptacles, outer bracts, inner bracts, and stems with that of leaves upon paracetamol-induction in rats. MATERIALS AND METHODS Aqueous ethanol (80%) extracts obtained from the different parts of artichoke were administered for five consecutive days after paracetamol induction to rats. At the end of experimental period blood samples from the experimental animals were taken for biochemical tests, while livers and kidneys were removed for further histopathological evaluation. RESULTS The histopathological examinations of liver and kidney tissues revealed that the receptacle and stem extracts of the artichoke were the most effective parts by improving the experimentally induced pathology in both liver and kidney. Biochemical tests also supported the histopathological data; receptacle, stem and bract extracts reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, but not alkaline phosphatase (ALP), creatinine and blood urea nitrogen (BUN) levels. CONCLUSIONS Histopathological and biochemical studies have shown that receptacle and stem extracts of artichoke were found to exert higher protective activity on liver and kidney damage induced by paracetamol comparing to its bract and leaf extracts, the latest is officially recognized as herbal remedy.
Collapse
Affiliation(s)
- Engin Sümer
- Yeditepe University, Graduate School of Health Sciences, Department of Phytotherapy, Ataşehir, İstanbul, Turkey.
| | - Gözde Erkanli Senturk
- Istanbul University, Cerrahpasa Medical Faculty, Department of Histology and Embryology, Cerrahpaşa, İstanbul, Turkey.
| | - Özlem Unay Demirel
- Bahçeşehir University, School of Medicine, Department of Biochemistry, Kadıköy, İstanbul, Turkey.
| | - Erdem Yesilada
- Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy and Phytotherapy, Ataşehir, 34755, İstanbul, Turkey.
| |
Collapse
|
17
|
Ardalani H, Jandaghi P, Meraji A, Hassanpour Moghadam M. The Effect of Cynara scolymus on Blood Pressure and BMI in Hypertensive Patients: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Complement Med Res 2019; 27:40-46. [DOI: 10.1159/000502280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
Abstract
Background: Recent studies have suggested that artichoke (Cynara scolymus L.) may reduce certain biochemical blood factors but the efficacy of this plant on blood pressure (BP) has not yet been investigated. In this study, we determined the clinical efficacy of C. scolymuson BP and body mass index (BMI) in hypertensive patients as an adjunctive to captopril for the first time. Methods: The total phenolic content and gas chromatography-mass spectrometry metabolite profiling in leaves of C. scolymus have been evaluated. A clinical trial was subsequently carried out on 40 patients to determine the effect of C. scolymus on BP and BMI in hypertensive patients. The treatment group received capsules containing C. scolymus(500 mg twice daily) and the placebo group received starch powder for 8 weeks. Systolic blood pressure (SBP), diastolic blood pressure, and BMI were determined before and after the study. Results: A significant improvement of the BMI was seen in the C. scolymus group compared with the placebo group (p = 0.04). Conclusions: Our findings demonstrated that the consumption of C. scolymus powder as a rich source of phenolic and antioxidant compounds could potentially improve BMI and SBP in hypertensive patients. Therefore, more trials are needed to confirm or reject the antihypertensive impact of artichoke.
Collapse
|
18
|
Rezazadeh K, Asghari-Jafarabadi M, Ebrahimi-Mameghani M. The interaction of FTO-rs9939609 polymorphism with artichoke leaf extract effects on cardiometabolic risk factors in hypertriglyceridemia: A randomized clinical trial. ADVANCES IN INTEGRATIVE MEDICINE 2019. [DOI: 10.1016/j.aimed.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019; 9:E301. [PMID: 31349600 PMCID: PMC6722928 DOI: 10.3390/biom9080301] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease which is a major cause of coronary heart disease and stroke in humans. It is characterized by intimal plaques and cholesterol accumulation in arterial walls. The side effects of currently prescribed synthetic drugs and their high cost in the treatment of atherosclerosis has prompted the use of alternative herbal medicines, dietary supplements, and antioxidants associated with fewer adverse effects for the treatment of atherosclerosis. This article aims to present the activity mechanisms of antioxidants on atherosclerosis along with a review of the most prevalent medicinal plants employed against this multifactorial disease. The wide-ranging information in this review article was obtained from scientific databases including PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Natural and synthetic antioxidants have a crucial role in the prevention and treatment of atherosclerosis through different mechanisms. These include: The inhibition of low density lipoprotein (LDL) oxidation, the reduction of reactive oxygen species (ROS) generation, the inhibition of cytokine secretion, the prevention of atherosclerotic plaque formation and platelet aggregation, the preclusion of mononuclear cell infiltration, the improvement of endothelial dysfunction and vasodilation, the augmentation of nitric oxide (NO) bioavailability, the modulation of the expression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells, and the suppression of foam cell formation.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran.
| |
Collapse
|
20
|
Natural Killer Response and Lipo-Metabolic Profile in Adults with Low HDL-Cholesterol and Mild Hypercholesterolemia: Beneficial Effects of Artichoke Leaf Extract Supplementation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2069701. [PMID: 30723511 PMCID: PMC6339758 DOI: 10.1155/2019/2069701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/28/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022]
Abstract
The aim of the present study is to evaluate the effects of 60-day artichoke leaf extract (ALE) supplementation (250mg, twice daily) on cytokines levels, natural killer cell (NK) response, and lipo-metabolic profile (HDL, LDL, and total-cholesterol, triglycerides (TG), ApoB, ApoA, lipid accumulation product (LAP), glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR)) in twenty adults (9/11 males/females, age=49.10 ± 13.74 years, and BMI=33.12 ± 5.14 kg/m2) with low HDL-C and mild hypercholesterolemia. Hierarchical generalized linear model, adjusted for sex, BMI, and age, has been used to evaluate pre-post treatment changes. A significant increase for HDL-C (β=0.14, p=0.0008) and MCP-1 (β=144.77, p=0.004) and a significant decrease for ApoB/ApoA (β=-0.07, p=0.03), total-C/HDL-C ratio (β=-0.58, p<0.001), and NK response at stimulus low (β=0.43, p=0.04), medium (β=0.40, p<0.001), and high (β=0.42, p=0.001) have been found. These results support the benefits of ALE supplementation on metabolic profile.
Collapse
|
21
|
|
22
|
Goorani S, Zhaleh M, Hajialiani M, Moradi R, Koohi MK, Rashidi K, Zangeneh MM, Zangeneh A. Hepatoprotective potential of aqueous extract of Allium eriophyllum Boiss in high-fat diet-induced fatty liver diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2853-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Zangeneh MM, Salmani S, Zangeneh A, Khedri R, Zarei MS. Histopathological and biochemical effects of aqueous extract of Tragopogon graminifolius on the liver tissues of Wistar rats fed with high-fat diet. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2828-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Santos HO, Bueno AA, Mota JF. The effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol Res 2018; 137:170-178. [PMID: 30308247 DOI: 10.1016/j.phrs.2018.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease is a highly prevalent issue worldwide, and one of its main manifestations, dyslipidaemia, needs more attention. Cooked artichoke (Cynara scolymus) hearts or artichoke leaf extract (ALE) are believed to be helpful in the treatment of dyslipidaemia. In this narrative review, we provide a brief overview of the potential impact of artichoke consumption on lipid profile. We appraised the Cochrane, MEDLINE and Web of Science databases, and included articles published between 2000 and June 2018 on intervention in humans only. The main potential of ALE administration observed on lipid profile relates to decreased serum LDL, total cholesterol and triglyceride concentrations, although no strong evidence for increasing HDL appears to exist. Evidence suggests that decreases of 8-49 mg/dL for LDL concentration, 12-55 mg/dL for total cholesterol, and 11-51 mg/dL for triglycerides, can be attributed to 2 to 3 g/d of ALE, in which its components luteolin and chlorogenic acid may play a key role. On the other hand, the effects of cooked artichoke hearts can be attributed mainly to its soluble fibres, particularly inulin. Despite the convincing evidence on its health benefits, additional long-term clinical trials are pivotal to fully elucidate the potential effects of ALE administration on positive cardiovascular outcomes.
Collapse
Affiliation(s)
- Heitor Oliveira Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| | - Allain Amador Bueno
- Department of Biological Sciences, University of Worcester, Henwick Grove, Worcester WR2 6AJ, United Kingdom.
| | - João Felipe Mota
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, Goiania, GO, Brazil.
| |
Collapse
|
25
|
Ebrahimi-Mameghani M, Asghari-Jafarabadi M, Rezazadeh K. TCF7L2-rs7903146 polymorphism modulates the effect of artichoke leaf extract supplementation on insulin resistance in metabolic syndrome: a randomized, double-blind, placebo-controlled trial. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:329-334. [DOI: 10.1016/j.joim.2018.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/06/2018] [Indexed: 01/13/2023]
|
26
|
Rezazadeh K, Aliashrafi S, Asghari-Jafarabadi M, Ebrahimi-Mameghani M. Antioxidant response to artichoke leaf extract supplementation in metabolic syndrome: A double-blind placebo-controlled randomized clinical trial. Clin Nutr 2018; 37:790-796. [DOI: 10.1016/j.clnu.2017.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/11/2017] [Accepted: 03/18/2017] [Indexed: 02/06/2023]
|
27
|
Bjørklund G, Dadar M, Martins N, Chirumbolo S, Goh BH, Smetanina K, Lysiuk R. Brief Challenges on Medicinal Plants: An Eye-Opening Look at Ageing-Related Disorders. Basic Clin Pharmacol Toxicol 2018; 122:539-558. [DOI: 10.1111/bcpt.12972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine; Mo i Rana Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute; Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| | - Natália Martins
- Mountain Research Centre (CIMO), ESA; Polytechnic Institute of Bragança, Campus de Santa Apolónia; Bragança Portugal
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences; University of Verona; Verona Italy
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Novel Bacteria and Drug Discovery Research Group (NBDD); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Center of Health Outcomes Research and Therapeutic Safety; School of Pharmaceutical Sciences; University of Phayao; Phayao Thailand
- Asian Centre for Evidence Synthesis in Population; Implementation and Clinical Outcomes; Health and Well-Being Cluster; Global Asia in the 21st Century Platform; Monash University Malaysia; Bandar Sunway Malaysia
| | - Kateryna Smetanina
- Department of Management and Economy of Pharmacy; Postgraduate Faculty; Drug Technology and Pharmacoeconomics; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| |
Collapse
|
28
|
Fingerprinting Cynara scolymus L. (Artichoke) by Means of a Green Statistically Developed HPLC-PAD Method. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1159-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
The effect of artichoke leaf extract supplementation on lipid and CETP response in metabolic syndrome with respect to Taq 1B CETP polymorphism: A randomized placebo-controlled clinical trial. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Inhibition of Cyclic Adenosine Monophosphate-Specific Phosphodiesterase by Various Food Plant-Derived Phytotherapeutic Agents. MEDICINES 2017; 4:medicines4040080. [PMID: 29113064 PMCID: PMC5750604 DOI: 10.3390/medicines4040080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Background: Phosphodiesterases (PDEs) play a major role in the regulation of cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-mediated pathways. Their inhibitors exhibit anti-inflammatory, vasodilatory and antithrombotic effects. Therefore, consumption of foods with PDE-inhibiting potential may possess beneficial influence on the risk of cardiovascular diseases. Methods: Four plant extracts (Arbutus unedo, Camellia sinensis, Cynara scolymus, Zingiber officinale) with promising ingredient profiles and physiological effects were tested for their ability to inhibit cAMP-specific PDE in vitro in a radioactive assay. Results: Strawberry tree fruit (Arbutus unedo) and tea (Camellia sinensis) extracts did not inhibit PDE markedly. Alternatively, artichoke (Cynara scolymus) extract had a significant inhibitory influence on PDE activity (IC50 = 0.9 ± 0.1 mg/mL) as well as its flavone luteolin (IC50 = 41 ± 10 μM) and 3,4-dicaffeoylquinic acid (IC50 > 1.0 mM). Additionally, the ginger (Zingiber officinale) extract and one of its constituents, [6]-gingerol, significantly inhibited PDE (IC50 = 1.7 ± 0.2 mg/mL and IC50 > 1.7 mM, respectively). Crude fractionation of ginger extract showed that substances responsible for PDE inhibition were in the lipoid fraction (IC50 = 455 ± 19 μg/mL). Conclusions: A PDE-inhibitory effect was shown for artichoke and ginger extract. Whether PDE inhibition in vivo can be achieved through ingestion of artichoke or ginger extracts leading to physiological effects concerning cardiovascular health should be addressed in future research.
Collapse
|
31
|
Alkushi AG. Biological Effect of Cynara cardunculus on Kidney Status of Hypercholesterolemic Rats. Pharmacogn Mag 2017; 13:S430-S436. [PMID: 29142395 PMCID: PMC5669078 DOI: 10.4103/pm.pm_14_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Indexed: 01/15/2023] Open
Abstract
Context: Cynara cardunculus or artichoke thistle belongs to the sunflower family and has a variety of cultivable forms. Historically, it was cultivated as a vegetable, but more recently, it is being used in cheese and biofuel preparation. Artichoke leaf extracts are also known for its medicinal purposes, particularly in reducing the elevated cholesterol levels in blood. Hypercholesterolemia (HC) is also associated with other complications such as impaired renal function and diabetes mellitus. A remedy without major side effects for HC and its associated complications is highly desirable. Aims: We explored the effect of artichoke on the kidneys of hypercholesterolemic adult male Sprague–Dawley albino rats. Subjects and Methods: Oral administration of 200 mg/kg and 400 mg/kg body weight (b.wt.) of C. cardunculus leaf extract (CCL) and C. cardunculus pulp extract (CCP) was made to male Sprague–Dawley albino hypercholesterolemic rats and investigated the levels of glucose, creatinine, uric acid, and urea in their blood. Results: We observed that both CCL and CCP significantly reduced the creatinine and uric acid levels in the blood in a dose-dependent manner (P < 0.05). Both CCL and CCP significantly reduced the blood glucose levels (P < 0.05). Further, the histopathological investigation of the kidney sections showed that CCL treatment resolved HC-associated kidney damage. Conclusion: CCL not only has cholesterol-reducing capacity but also reduces the blood glucose levels and repairs the impaired kidney functions and damages. These findings are significant particularly because HC results in further complications such as diabetes and kidney damage, both of which can be treated effectively with artichoke. SUMMARY C. cardunculus leaf extract (CCL) not only has cholesterol-reducing capacity but also reduces the blood glucose levels and repairs the impaired kidney functions and damages. This study evaluated the nephroprotective role of CCL and CCP in hypercholesterolemic rats and observed that both CCL and CCP significantly reduced the creatinine and uric acid levels in hypercholesterolemic rats in a dose-dependent manner.
Abbreviations used: HC: Hypercholesterolemia, WHO: World Health Organization, BAS: Bile acid sequestrant, PCSK9: Proprotein convertase subtilisin kexin type 9, ALE: Artichoke leaf extract, CCL: Cynara cardunculus leaf extract, CCP: Cynara cardunculus pulp extract, BWG%: Body weight gain%, FER: Food-efficiency ratio.
Collapse
Affiliation(s)
- Abdullah Glil Alkushi
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
32
|
Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, Fras Z, Katsiki N, Langlois M, Latkovskis G, Panagiotakos DB, Paragh G, Mikhailidis DP, Mitchenko O, Paulweber B, Pella D, Pitsavos C, Reiner Ž, Ray KK, Rizzo M, Sahebkar A, Serban MC, Sperling LS, Toth PP, Vinereanu D, Vrablík M, Wong ND, Banach M. Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Nutr Rev 2017; 75:731-767. [PMID: 28938795 DOI: 10.1093/nutrit/nux047] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In recent years, there has been growing interest in the possible use of nutraceuticals to improve and optimize dyslipidemia control and therapy. Based on the data from available studies, nutraceuticals might help patients obtain theraputic lipid goals and reduce cardiovascular residual risk. Some nutraceuticals have essential lipid-lowering properties confirmed in studies; some might also have possible positive effects on nonlipid cardiovascular risk factors and have been shown to improve early markers of vascular health such as endothelial function and pulse wave velocity. However, the clinical evidence supporting the use of a single lipid-lowering nutraceutical or a combination of them is largely variable and, for many of the nutraceuticals, the evidence is very limited and, therefore, often debatable. The purpose of this position paper is to provide consensus-based recommendations for the optimal use of lipid-lowering nutraceuticals to manage dyslipidemia in patients who are still not on statin therapy, patients who are on statin or combination therapy but have not achieved lipid goals, and patients with statin intolerance. This statement is intended for physicians and other healthcare professionals engaged in the diagnosis and management of patients with lipid disorders, especially in the primary care setting.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; and Italian Society of Nutraceuticals
| | - Alessandro Colletti
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; and Italian Society of Nutraceuticals
| | - Gani Bajraktari
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo; Medical Faculty, University of Prishtina, Prishtina, Kosovo; and Kosovo Society of Cardiology
| | - Olivier Descamps
- Department of Internal Medicine, Centres Hospitaliers Jolimont, Haine Saint-Paul, Belgium; and Belgian Atherosclerosis Society
| | - Dragan M Djuric
- Institute of Medical Physiology "Richard Burian," Faculty of Medicine, University of Belgrade, Belgrade, Serbia; and Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Marat Ezhov
- Russian Cardiology Research and Production Centre, Moscow, Russia; and Russian National Atherosclerosis Society
| | - Zlatko Fras
- Preventive Cardiology Unit, Department of Vascular Medicine, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; Chair for Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and Slovenian Society of Cardiology
| | - Niki Katsiki
- Second Department of Propaedeutic Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michel Langlois
- Department of Laboratory Medicine, AZ Sint-Jan Hospital, Bruges, Belgium; and Belgian Atherosclerosis Society
| | - Gustavs Latkovskis
- Faculty of Medicine and Institute of Cardiology and Regenerative Medicine, University of Latvia, Riga, Latvia; and Baltic Atherosclerosis Society
| | - Demosthenes B Panagiotakos
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gyorgy Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; and Hungarian Atherosclerosis Society
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London, London, UK
| | - Olena Mitchenko
- Dyslipidaemia Department, Institute of Cardiology AMS of Ukraine, Kiev, Ukraine; and Ukrainian Atherosclerosis Society
| | - Bernhard Paulweber
- 1st Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria; and Austrian Atherosclerosis Society
| | - Daniel Pella
- 1st Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Košice, Slovakia; and Slovak Association of Atherosclerosis
| | - Christos Pitsavos
- Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece; and Hellenic Atherosclerosis Society
| | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine University of Zagreb, Department of Internal Medicine, Zagreb, Croatia; and Croatian Atherosclerosis Society
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College, London, UK
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; and Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria-Corina Serban
- Center for Interdisciplinary Research, and Department of Functional Sciences, University of Medicine and Pharmacy "Victor Babes," Timisoara, Romania
| | - Laurence S Sperling
- Division of Cardiology, Emory University, Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, USA
| | - Peter P Toth
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, Maryland, USA; and Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA
| | - Dragos Vinereanu
- University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania; Department of Cardiology, University and Emergency Hospital, Bucharest, Romania; and Romanian Society of Cardiology
| | - Michal Vrablík
- Third Department of Internal Medicine, First Medical Faculty, Charles University, Prague, Czech Republic; and Czech Atherosclerosis Society
| | - Nathan D Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, California, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Lipid and Blood Pressure Meta-Analysis Collaboration Group; and Polish Lipid Association
| |
Collapse
|
33
|
Sahebkar A, Pirro M, Banach M, Mikhailidis DP, Atkin SL, Cicero AFG. Lipid-lowering activity of artichoke extracts: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2017; 58:2549-2556. [DOI: 10.1080/10408398.2017.1332572] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | | | - Arrigo F. G. Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni 15, Bologna, Italy
| |
Collapse
|
34
|
Cicero AF, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, Fras Z, Katsiki N, Langlois M, Latkovskis G, Panagiotakos DB, Paragh G, Mikhailidis DP, Mitchenko O, Paulweber B, Pella D, Pitsavos C, Reiner Ž, Ray KK, Rizzo M, Sahebkar A, Serban MC, Sperling LS, Toth PP, Vinereanu D, Vrablík M, Wong ND, Banach M. Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch Med Sci 2017; 13:965-1005. [PMID: 28883839 PMCID: PMC5575230 DOI: 10.5114/aoms.2017.69326] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 02/05/2023] Open
Affiliation(s)
- Arrigo F.G. Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; Italian Society of Nutraceuticals (SINut)
| | - Alessandro Colletti
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; Italian Society of Nutraceuticals (SINut)
| | - Gani Bajraktari
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo; Medical Faculty, University of Prishtina, Prishtina, Kosovo; Kosovo Society of Caridology
| | - Olivier Descamps
- Institute of Medical Physiology “Richard Burian“, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Dragan M. Djuric
- Institute of Medical Physiology “Richard Burian“, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Marat Ezhov
- Russian Cardiology Research and Production Centre, Moscow, Russia; Russian National Atherosclerosis Society
| | - Zlatko Fras
- Preventive Cardiology Unit, Department of Vascular Medicine, Division of Internal Medicine, University Medical Centre Ljubljana, Slovenia; Chair for Internal Medicine, Faculty of Medicine, University of Ljubljana, Slovenia; Slovenian Society of Cardiology
| | - Niki Katsiki
- Second Department of Propaedeutic Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michel Langlois
- Department of Laboratory Medicine, AZ Sint-Jan Hospital, Bruges, Belgium; Belgian Atheroclerosis Society
| | - Gustavs Latkovskis
- Faculty of Medicine and Institute of Cardiology and Regenerative Medicine, University of Latvia, Riga, Latvia; Baltic Atherosclerosis Society
| | - Demosthenes B. Panagiotakos
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gyorgy Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Atherosclerosis Society
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Olena Mitchenko
- 13Dyslipidaemia Department, Institute of Cardiology AMS of Ukraine, Ukraine; Ukrainian Atherosclerosis Society
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria; Austrian Atheroclerosis Society (AAS)
| | - Daniel Pella
- 1 Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Košice, Slovakia; Slovak Association of Atherosclerosis
| | - Christos Pitsavos
- Cardiology Clinic, School of Medicine, University of Athens, Greece; Hellenic Atherosclerosis Society
| | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine University of Zagreb, Department of Internal Medicine, Zagreb, Croatia; Croatian Atherosclerosis Society
| | - Kausik K. Ray
- Department of Primary Care and Public Health, Imperial College, London, UK
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria-Corina Serban
- Center for Interdisciplinary Research, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania; Department of Functional Sciences, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| | - Laurence S. Sperling
- Division of Cardiology, Emory University, Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, USA
| | - Peter P. Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA
| | - Dragos Vinereanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania; Department of Cardiology, University and Emergency Hospital, Bucharest, Romania; Romanian Society of Cardiology
| | - Michal Vrablík
- Third Department of Internal Medicine, First Medical Faculty, Charles University, Prague, Czech Republic; Czech Atherosclerosis Society
| | - Nathan D. Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group; Polish Lipid Association (PoLA)
| |
Collapse
|
35
|
Pasqualone A, Punzi R, Trani A, Summo C, Paradiso VM, Caponio F, Gambacorta G. Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13486] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonella Pasqualone
- Food Science and Technology Unit; Department of Soil, Plant, and Food Science (Di.S.S.P.A.); University of Bari ‘Aldo Moro’; Via Amendola, 165/A 70126 Bari Italy
| | - Rossana Punzi
- Food Science and Technology Unit; Department of Soil, Plant, and Food Science (Di.S.S.P.A.); University of Bari ‘Aldo Moro’; Via Amendola, 165/A 70126 Bari Italy
| | - Antonio Trani
- Food Science and Technology Unit; Department of Soil, Plant, and Food Science (Di.S.S.P.A.); University of Bari ‘Aldo Moro’; Via Amendola, 165/A 70126 Bari Italy
| | - Carmine Summo
- Food Science and Technology Unit; Department of Soil, Plant, and Food Science (Di.S.S.P.A.); University of Bari ‘Aldo Moro’; Via Amendola, 165/A 70126 Bari Italy
| | - Vito Michele Paradiso
- Food Science and Technology Unit; Department of Soil, Plant, and Food Science (Di.S.S.P.A.); University of Bari ‘Aldo Moro’; Via Amendola, 165/A 70126 Bari Italy
| | - Francesco Caponio
- Food Science and Technology Unit; Department of Soil, Plant, and Food Science (Di.S.S.P.A.); University of Bari ‘Aldo Moro’; Via Amendola, 165/A 70126 Bari Italy
| | - Giuseppe Gambacorta
- Food Science and Technology Unit; Department of Soil, Plant, and Food Science (Di.S.S.P.A.); University of Bari ‘Aldo Moro’; Via Amendola, 165/A 70126 Bari Italy
| |
Collapse
|
36
|
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv Nutr 2017; 8:423-435. [PMID: 28507008 PMCID: PMC5421117 DOI: 10.3945/an.116.012948] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Flavones are a class of flavonoids that are a subject of increasing interest because of their biological activities in vitro and in vivo. This article reviews the major sources of flavones and their concentrations in food and beverages, which vary widely between studies. It also covers the roles of flavones in plants, the influence of growing conditions on their concentrations, and their stability during food processing. The absorption and metabolism of flavones are also reviewed, in particular the intestinal absorption of both O- and C-glycosides. Pharmacokinetic studies in both animals and humans are described, comparing differences between species and the effects of glycosylation on bioavailability. Biological activity in animal models and human dietary intervention studies is also reviewed. A better understanding of flavone sources and bioavailability is needed to understand mechanisms of action and nutritional intervention.
Collapse
Affiliation(s)
- Gregory L Hostetler
- Department of Food Science and Technology, The Ohio State University, Columbus, OH
| | | | | |
Collapse
|
37
|
Yousefi E, Zareiy S, Zavoshy R, Noroozi M, Jahanihashemi H, Ardalani H. Fenugreek: A therapeutic complement for patients with borderline hyperlipidemia: A randomised, double-blind, placebo-controlled, clinical trial. ADVANCES IN INTEGRATIVE MEDICINE 2017. [DOI: 10.1016/j.aimed.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Posadzki P, AlBedah AM, Khalil MM, AlQaed MS. Complementary and alternative medicine for lowering blood lipid levels: A systematic review of systematic reviews. Complement Ther Med 2016; 29:141-151. [DOI: 10.1016/j.ctim.2016.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/16/2016] [Accepted: 09/19/2016] [Indexed: 11/26/2022] Open
|
39
|
Rondanelli M, Giacosa A, Morazzoni P, Guido D, Grassi M, Morandi G, Bologna C, Riva A, Allegrini P, Perna S. MediterrAsian Diet Products That Could Raise HDL-Cholesterol: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2025687. [PMID: 27882320 PMCID: PMC5108844 DOI: 10.1155/2016/2025687] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/16/2016] [Indexed: 01/10/2023]
Abstract
Background. High HDL-cholesterol (HDL-C) values are negatively correlated with cardiovascular diseases. This review analyses the effect of the supplementation with various Mediterranean diet products (artichoke, bergamot, and olive oil) and Asian diet products (red yeast rice) on the HDL-C value in dyslipidemic subjects. Methods. A systematic review has been done involving all the English written studies published from the 1st of January 1958 to the 31st of March 2016. Results. The results of this systematic review indicate that the dietary supplementation with red yeast rice, bergamot, artichoke, and virgin olive oil has promising effects on the increase of HDL-C serum levels. The artichoke leaf extract and virgin olive oil appear to be particularly interesting, while bergamot extract needs further research and the effect of red yeast rice seems to be limited to patients with previous myocardial infarction. Conclusions. Various MediterrAsian diet products or natural extracts may represent a potential intervention treatment to raise HDL-C in dyslipidemic subjects.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy
| | - Attilio Giacosa
- Department of Gastroenterology, Policlinico di Monza, 20900 Milan, Italy
| | - Paolo Morazzoni
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | - Davide Guido
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Sciences, Section of Biostatistics, Neurophysiology and Psychiatry, University of Pavia, Pavia, Italy
| | - Gabriella Morandi
- Department of Brain and Behavioral Sciences, Section of Biostatistics, Neurophysiology and Psychiatry, University of Pavia, Pavia, Italy
| | - Chiara Bologna
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy
| | - Antonella Riva
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | - Pietro Allegrini
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | - Simone Perna
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy
| |
Collapse
|
40
|
Sandru D, Niculescu V, Lengyel E, Tița O. Identification and Quantification of Total Polyphenols in Plants with Bioactive Potentially. ACTA ACUST UNITED AC 2016. [DOI: 10.18052/www.scipress.com/ijppe.4.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This meaning of this specific work is to identify and quantify the polyphenolic compounds that exist in plants with bioactive potentially. The study was monitorising 16 different plants: bilberry (Vaccinium myrtillus), artichoke (Cynara scolymus), chicory (Cichorium intybus), dumb (Teucrium chamaedrys), fennel (Foeniculum vulgare), thorn (Xanthium spinosum), juniper (Juniperus communis), mint (Mentha), cranberry (Vaccinium vitis-idaea), hawthorn (Crataegus monogyna), wormwood (Artemisia absinthium), willow herb (Epilobium), lemon balm (Melissa officinalis), St. John's wort (Hypericum perforatum), oregano (Origanum vulgare), centaury (Centaurium erythraea). The total polyphenolic compound was determined onspectrophotometricmethod,Folin-Ciocalteu. The polyphenols have a very wide range value starting on low amounts on centaury (Centaurium erythraea) 271.613 mg/L and reaching highest values of 5975.616 mg/L in wormwood (Artemisia absinthium). The results can be use in the design of digestive drinks in the food industry due to higher concentration of total polyphenols in the studied plants.
Collapse
Affiliation(s)
| | - Violeta Niculescu
- National R&D Institute for Cryogenic and Isotopic Technologies - ICSI Rm
| | | | | |
Collapse
|
41
|
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016; 21:807. [PMID: 27338339 PMCID: PMC4928700 DOI: 10.3390/molecules21060807] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic;
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|
42
|
Hajizadeh-Sharafabad F, Alizadeh M, Mohammadzadeh MHS, Alizadeh-Salteh S, Kheirouri S. Effect of Gundelia tournefortii L. extract on lipid profile and TAC in patients with coronary artery disease: A double-blind randomized placebo controlled clinical trial. J Herb Med 2016. [DOI: 10.1016/j.hermed.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Wider B, Pittler MH, Thompson‐Coon J, Ernst E. WITHDRAWN: Artichoke leaf extract for treating hypercholesterolaemia. Cochrane Database Syst Rev 2016; 2016:CD003335. [PMID: 27195440 PMCID: PMC10683843 DOI: 10.1002/14651858.cd003335.pub4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Withdrawal: The editors of Cochrane Heart consider this title as low priority for the current portfolio of the Heart Group and therefore this title is not open to a new author team. The editorial group responsible for this previously published document have withdrawn it from publication.
Collapse
Affiliation(s)
- Barbara Wider
- University of Exeter Medical SchoolInstitute of Health ResearchSouth CloistersSt Luke's CampusExeterUKEX1 2LU
| | - Max H Pittler
- Hospital for Cancer ResearchMillionenweg 24Plau am SeeGermany
| | - Joanna Thompson‐Coon
- University of Exeter Medical SchoolNIHR PenCLAHRC, Institute of Health ResearchVeysey BuildingSalmon Pool LaneExeterExeterUKEX4 2SG
| | - Edzard Ernst
- Peninsula Medical School, University of ExeterComplementary Medicine DepartmentExeterUK
| | | |
Collapse
|
44
|
Pagano I, Piccinelli AL, Celano R, Campone L, Gazzerro P, De Falco E, Rastrelli L. Chemical profile and cellular antioxidant activity of artichoke by-products. Food Funct 2016; 7:4841-4850. [DOI: 10.1039/c6fo01443g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Artichoke byproducts, particularly bracts, are a promising and cheap source of inulin and caffeoylquinic acids for the production of food additives and nutraceuticals.
Collapse
Affiliation(s)
- Imma Pagano
- Department of Pharmacy
- University of Salerno
- 84084 Fisciano
- Italy
- PhD Program in Drug Discovery and Development
| | | | - Rita Celano
- Department of Pharmacy
- University of Salerno
- 84084 Fisciano
- Italy
| | - Luca Campone
- Department of Pharmacy
- University of Salerno
- 84084 Fisciano
- Italy
| | | | - Enrica De Falco
- Department of Pharmacy
- University of Salerno
- 84084 Fisciano
- Italy
| | - Luca Rastrelli
- Department of Pharmacy
- University of Salerno
- 84084 Fisciano
- Italy
| |
Collapse
|
45
|
Kuczmannová A, Gál P, Varinská L, Treml J, Kováč I, Novotný M, Vasilenko T, Dall'Acqua S, Nagy M, Mučaji P. Agrimonia eupatoria L. and Cynara cardunculus L. Water Infusions: Phenolic Profile and Comparison of Antioxidant Activities. Molecules 2015; 20:20538-50. [PMID: 26593896 PMCID: PMC6332114 DOI: 10.3390/molecules201119715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 11/23/2022] Open
Abstract
Reactive oxygen species (ROS) are highly considered in the ethiopathogenesis of different pathological conditions because they may cause significant damage to cells and tissues. In this paper, we focused on potential antioxidant properties of two medical plants such as the Agrimonia eupatoria L. and Cynara cardunculus L. Both plants have previously been studied for their pharmacological activities, especially as hepatoprotective and hypoglycemic activities. It has been suggested, that their effects are related to the antioxidant properties of polyphenols, which are dominant compounds of the plants’ extracts. In the present study HPLC-MS analysis of water infusion was performed allowing the identification of several phenolic constituents. Furthermore, antioxidant effects of the two extracts were compared showing higher effects for agrimony extract compared to artichoke. Thus, agrimony was selected for the in vivo study using the skin flap viability model. In conclusion, our results provide evidence that the A. eupatoria extract may be a valuable source of polyphenols to be studied for the future development of supplements useful in the prevention of diseases linked to oxidative stress.
Collapse
Affiliation(s)
- Anika Kuczmannová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia.
| | - Peter Gál
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia.
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia.
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., Ondavská 8, 040 11 Košice, Slovakia.
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U nemocnice 2, 128 00 Prague, Czech Republic.
| | - Lenka Varinská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia.
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., Ondavská 8, 040 11 Košice, Slovakia.
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, 612 42 Brno, Czech Republic.
| | - Ivan Kováč
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., Ondavská 8, 040 11 Košice, Slovakia.
- 2nd Department of Surgery, Pavol Jozef Šafárik University and Louise Pasteur University Hospital, 041 90 Košice, Slovakia.
| | - Martin Novotný
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., Ondavská 8, 040 11 Košice, Slovakia.
- Department of Infectology and Travel Medicine, Pavol Jozef Šafárik University and Louise Pasteur University Hospital, 041 90 Košice, Slovakia.
| | - Tomáš Vasilenko
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., Ondavská 8, 040 11 Košice, Slovakia.
- Department of Surgery, Pavol Jozef Šafárik University and Košice-Šaca Hospital, 040 15 Košice-Šaca, Slovakia.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 351 31 Padova, Italy.
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia.
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia.
| |
Collapse
|
46
|
Pozzo L, Pucci L, Buonamici G, Giorgetti L, Maltinti M, Longo V. Effect of white wheat bread and white wheat bread added with bioactive compounds on hypercholesterolemic and steatotic mice fed a high-fat diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2454-2461. [PMID: 25348650 DOI: 10.1002/jsfa.6972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/21/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND The effects of white wheat bread and white wheat bread added with a bioactive compound mixture (Cyclanthera pedata, Glycine max, Monascus-fermented red mold rice, Cynara scolymus and Medicago sativa) were examined on hypercholesterolemic and steatotic mice, divided into four groups: control diet (CTR), high-fat diet (HFD), high-fat diet with white wheat bread added with 1.5 g kg(-1) of mixture (HFD+AB) and high-fat diet with white wheat bread (HFD+B). RESULTS Total serum cholesterol in the HFD+AB and HFD+B groups and hepatic triglycerides in the HFD+AB group decreased compared with the HFD group. Liver histology confirmed lower lipid drop accumulation in the HFD+AB group than in the HFD and HFD+B groups. HFD+AB caused a 7.0-fold increase and a 3.5-fold reduction in CYP7A1 and SREBP-1c gene expression respectively compared with the HFD group. Moreover, the HFD+B group showed a 2.2-, 8.4- and 1.5-fold increase in HMG CoA reductase, CYP7A1 and LDLr gene expression respectively compared with the HFD group. CONCLUSION Both the white wheat bread and the added white wheat bread induced cholesterol reduction by increasing CYP7A1. Moreover, the added white wheat bread improved steatosis by decreasing SREBP-1c gene expression.
Collapse
Affiliation(s)
- Luisa Pozzo
- Istituto di Biotecnologia e Biotecnologia Agraria (IBBA), CNR, I-56124 Pisa, Italy
| | - Laura Pucci
- Istituto di Biotecnologia e Biotecnologia Agraria (IBBA), CNR, I-56124 Pisa, Italy
| | | | - Lucia Giorgetti
- Istituto di Biotecnologia e Biotecnologia Agraria (IBBA), CNR, I-56124 Pisa, Italy
| | | | - Vincenzo Longo
- Istituto di Biotecnologia e Biotecnologia Agraria (IBBA), CNR, I-56124 Pisa, Italy
| |
Collapse
|
47
|
Hussain S, Pezzei C, Güzel Y, Rainer M, Huck CW, Bonn GK. Zirconium silicate assisted removal of residual proteins after organic solvent deproteinization of human plasma, enhancing the stability of the LC-ESI-MS response for the bioanalysis of small molecules. Anal Chim Acta 2014; 852:284-92. [PMID: 25441909 DOI: 10.1016/j.aca.2014.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022]
Abstract
An efficient blood plasma clean-up method was developed, where methanol protein precipitation was applied, followed by zirconium silicate assisted exclusion of residual proteins. A strong binding of zirconium (IV) silicate to the proteins enabled the elimination of remaining proteins after solvent deproteinization through a rapid solid-phase extraction (SPE) procedure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF MS) was used for monitoring the proteins during clean-up practice applied to human plasma samples. The proteins were quantified by colorimetric detection using the bicinchoninic acid (BCA) assay. The presented analytical strategy resulted in the depletion of >99.6% proteins from human plasma samples. Furthermore, high-performance liquid chromatography hyphenated to diode-array and electrospray ionization mass spectrometric detection (HPLC-DAD/ESI MS) was applied for qualitative and quantitative analysis of the caffeoylquinic acids (CQAs) and their metabolites in human plasma. The procedure demonstrated high recoveries for the standard compounds spiked at different concentrations. Cynarin and chlorogenic acid were recovered in the range of 81-86% and 78-83%, respectively. Caffeic acid was extracted in the excess of 89-92%, while ferulic acid and dihydroxyhydrocinnamic acid showed a recovery of 87-91% and 92-95%, respectively. The method was partially validated in accordance with FDA-Industry Guidelines for Bioanalytical Method Validation (2001). The presented scheme improves the clean-up efficacy of the methanol deproteinization, significantly reduces the matrix effects and provides a great analytical tool for the isolation of small molecules from human plasma.
Collapse
Affiliation(s)
- Shah Hussain
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria
| | - Cornelia Pezzei
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yüksel Güzel
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; ADSI-Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Günther K Bonn
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; ADSI-Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck, Austria
| |
Collapse
|
48
|
Eljounaidi K, Cankar K, Comino C, Moglia A, Hehn A, Bourgaud F, Bouwmeester H, Menin B, Lanteri S, Beekwilder J. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:59-68. [PMID: 24767116 DOI: 10.1016/j.plantsci.2014.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 05/03/2023]
Abstract
Cynara cardunculus (Asteraceae) is a cross pollinated perennial crop which includes the two cultivated taxa globe artichoke and cultivated cardoon. The leaves of these plants contain high concentrations of sesquiterpene lactones (STLs) among which cynaropicrin is the most represented, and has recently attracted attention because of its therapeutic potential as anti-tumor and anti-photoaging agent. Costunolide is considered the common precursor of the STLs and three enzymes are involved in its biosynthetic pathway: i.e. the germacrene A synthase (GAS), the germacrene A oxidase (GAO) and the costunolide synthase (COS). Here we report on the isolation of two P450 genes, (i.e. CYP71AV9 and CYP71BL5), in a set of ∼19,000 C. cardunculus unigenes, and their functional characterization in yeast and in planta. The metabolite analyses revealed that the co-expression of CYP71AV9 together with GAS resulted in the biosynthesis of germacra-1(10),4,11(13)-trien-12-oic acid in yeast. The co-expression of CYP71BL5 and CYP71AV9 with GAS led to biosynthesis of the free costunolide in yeast and costunolide conjugates in Nicotiana benthamiana, demonstrating their involvement in STL biosynthesis as GAO and COS enzymes. The substrate specificity of CYP71AV9 was investigated by testing its ability to convert amorpha-4,11-diene, (+)-germacrene D and cascarilladiene to their oxidized products when co-expressed in yeast with the corresponding terpene synthases.
Collapse
Affiliation(s)
- Kaouthar Eljounaidi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Katarina Cankar
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands; Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700AR Wageningen, The Netherlands
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Alain Hehn
- Université de Lorraine, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France; INRA, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France
| | - Frédéric Bourgaud
- Université de Lorraine, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France; INRA, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700AR Wageningen, The Netherlands
| | - Barbara Menin
- PTP/Rice Genomics Unit, Via Einstein, 26900 Lodi, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Jules Beekwilder
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
49
|
Alarcón-Flores MI, Romero-González R, Martínez Vidal JL, Garrido Frenich A. Determination of Phenolic Compounds in Artichoke, Garlic and Spinach by Ultra-High-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9852-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells. Molecules 2014; 19:3654-68. [PMID: 24662080 PMCID: PMC6271736 DOI: 10.3390/molecules19033654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Artichoke (Cynara scolymus L.) is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.
Collapse
|