1
|
Rehman MU, Zuo Y, Tu N, Guo J, Liu Z, Cao S, Long S. Diverse pharmacological activities of β-carbolines: Substitution patterns, SARs and mechanisms of action. Eur J Med Chem 2025; 287:117350. [PMID: 39933403 DOI: 10.1016/j.ejmech.2025.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
β-Carbolines, a class of indole-containing heterocyclic alkaloids, are widely distributed in nature and possess diverse bioactivities, making them promising drug candidates against a wide range of diseases. The remarkable medicinal potential of β-carbolines has spurred the pharmaceutical research community to study their derivatives extensively. This review updates the development of β-carboline derivatives in recent years (2015-2024), particularly with a focus on their anticancer, antiparasitic, antimicrobial, antiviral, and neuroprotective properties, based on the modification approaches such as substitution on indole N (ring B), pyridine or its reduced forms (ring C), and dimerization of β-carbolines. Moreover, the mechanisms of action and structure-activity relationships of these β-carboline derivatives are highlighted to offer valuable insights on the design and development of new β-carbolines with better pharmacological activities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Yujie Zuo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ni Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
2
|
Chen L, Zou J, Jiang B, Li P, Li Y, Zhao L, Guo F. Curcumaones A-N, sesquiterpenes from the secondary rhizomes of Curcuma wenyujin. PHYTOCHEMISTRY 2025; 232:114353. [PMID: 39672220 DOI: 10.1016/j.phytochem.2024.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Fourteen undescribed sesquiterpenes, named curcumaones A-N (1-14), as well as forty-four (15-58) known ones, were isolated from the secondary rhizomes of Curcuma wenyujin. The structures and absolute configurations of 1-14 were elucidated based on NMR spectroscopic analyses, high resolution electrospray ionization mass spectroscopy (HRESIMS) data and electronic circular dichroism (ECD) spectral analysis. Among these, five sesquiterpenes with the peroxide linkage (1-5) were obtained and the change of chemical shift between the α-C connecting the peroxide linkage and the oxygen atom has been discussed. In addition, all the isolated compounds were evaluated for their agonistic effect on farnesoid X receptors (FXR) situated with human embryonic kidney (HEK) 293T cells and the results showed that compounds 12 and 14 exhibited a significant agonistic effect dose-dependently at 20, 50 and 100 μM, while 8, 32, 17 and 34 possessed moderate to weak agonistic effects.
Collapse
Affiliation(s)
- Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Juan Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Bingying Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Peiran Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China
| | - Liang Zhao
- Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China.
| |
Collapse
|
3
|
Cao JF, Zhang X, Xia Q, Hang K, Men J, Tian J, Liao D, Xia Z, Li K. Insights into curcumin's anticancer activity in pancreatic ductal adenocarcinoma: Experimental and computational evidence targeting HRAS, CCND1, EGFR and AKT1. Bioorg Chem 2025; 157:108264. [PMID: 39954354 DOI: 10.1016/j.bioorg.2025.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Curcumin, as a natural polyphenolic compound, possesses antitumor, antioxidant properties and anti-inflammatory. Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor, and there is a lack of molecular mechanisms and therapeutic options regarding relevant therapeutic agents. Therefore, we investigated the mechanism of curcumin inhibiting pancreatic cancer growth by modulating proliferation of cells and cellular metabolism. METHODS Bioinformatics analysis was involved in analyzing the intersecting targets of curcumin and pancreatic ductal adenocarcinoma. The effect of curcumin on proliferation of PANC-1 cells was tested by CCK-8, and total RNA from PANC-1 was also analysed by transcriptome sequencing. Molecular docking was involved in verifying binding stability of curcumin to protein targets. Molecular dynamics simulated and evaluated binding free energy, hydrogen bonds and root mean square fluctuation of the complex. RESULTS PPI, GO and KEGG were involved in screening and analysing key interacting protein targets. 40 μg/mL curcumin significantly inhibited the growth and proliferation of PANC-1. Transcriptome sequencing results showed gene expression of Cyclin D1 (CCND1), AKT serine/threonine kinase 1 (AKT1), HRas proto-oncogene (HRAS), epidermal growth factor receptor (EGFR) was significantly down-regulated by curcumin treatment. Result of molecular dynamics and molecular docking inhibited the free binding energies of CCND1/Curcumin, HRAS/Curcumin, AKT1/Curcumin and EGFR/Curcumin were -21.13 ± 3.41 kcal/mol, -21.84 ± 4.38 kcal/mol, -20.61 ± 1.82 kcal/mol and -27.37 ± 1.94 kcal/mol, respectively. CONCLUSION We found curcumin may not only regulate cell cycle progression in PDAC and apoptosis by down-regulating HRAS, thereby inhibiting CCND1 and its downstream signaling pathways, but also inhibit energy metabolism reprogramming, Ras-RAF-MEK-ERK and other downstream signalling pathways by down-regulating EGFR and AKT1, thereby affecting tumor cell metastasis, survival and proliferation.
Collapse
Affiliation(s)
- Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Xiao Zhang
- Chengdu Medical College, Chengdu 610500 Sichuan, China
| | - Qingjie Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kuan Hang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Jie Men
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Jin Tian
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Dunshui Liao
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Zengliang Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China; Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
4
|
Bahrami LS, Rahnama I, Chambari M, Norouzy A, Karav S, Arabi SM, Sahebkar A. The Effects of Curcuminoids Supplementation on Serum Adipokines: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Phytother Res 2025. [PMID: 40109154 DOI: 10.1002/ptr.8471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/08/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
This umbrella review of randomized clinical trials aims to provide a unique and detailed understanding of curcumin's effects on adipokines, adding a novel perspective to the existing body of research. We carried out a thorough search of international databases up to April 2024, including MEDLINE, SciVerse Scopus, and Clarivate Analytics Web of Science. A random-effects model was utilized to evaluate the impact of curcuminoid on adipokines. The umbrella review incorporated meta-analyses that examined the effects of curcuminoid supplementation on adipokines, presenting associated effect sizes (ES) and confidence intervals (CI). We applied the GRADE and AMSTAR (A Tool for Assessing the Risk of Bias in Systematic Reviews system) to assess the certainty of the evidence and the quality of the systematic reviews. Our analysis of one meta-analysis, including 14 RCTs plus 1 RCT not included in meta-analyses, revealed significant and impactful findings. We found a substantial increase in serum adiponectin levels with curcuminoid supplementation, indicating a positive effect (SMD: 0.9; 95% CI, 0.4 to 1.3, p < 0.001; I2 = 92.2%). However, we did not observe a significant impact on serum leptin. The GRADE assessment supports the effect of curcuminoids on adiponectin with moderate evidence, while the impact on leptin was supported by low evidence. Curcuminoid supplementation significantly increases serum adiponectin levels with moderate-quality evidence and has no significant impact on serum leptin. This provides evidence as to the safety and effectiveness of curcuminoids in enhancing adiponectin without adverse effects, reassuring the audience about their potential in adipokine research.
Collapse
Affiliation(s)
- Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Iman Rahnama
- Binaloud Institute of Higher Education, Mashhad, Iran
| | - Mahla Chambari
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Abdolreza Norouzy
- Department of Clinical Nutrition, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Rana JN, Mumtaz S. Prunin: An Emerging Anticancer Flavonoid. Int J Mol Sci 2025; 26:2678. [PMID: 40141319 PMCID: PMC11942023 DOI: 10.3390/ijms26062678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Despite the substantial advances in cancer therapies, developing safe and effective treatment methodologies is critical. Natural (plant-derived compounds), such as flavonoids, might be crucial in developing a safe treatment methodology without toxicity toward healthy tissues. Prunin is a flavonoid with the potential to be used in biomedical applications. Prunin has yet to undergo thorough scientific research, and its precise molecular mechanisms of action remain largely unexplored. This review summarizes the therapeutic potential of prunin for the first time, focusing on its underlying mechanisms as an anticancer compound. Prunin has gained significant attention due to its antioxidant, anti-inflammatory, and anticancer effects. This review aims to unlock how prunin functions at the molecular level to exert its anticancer effects, primarily modulating key cellular pathways. Furthermore, we have discussed the prunin's potential as an adjunctive therapy with conventional treatments, highlighting its ability to strengthen treatment responses while decreasing drug resistance. Moreover, the discussion probes into innovative delivery methods, particularly nanoformulations, that might address prunin's bioavailability, solubility, and stability limitations and optimize its therapeutic application. By providing a comprehensive analysis of prunin's properties, this review aims to stimulate further exploration of using prunin as an anticancer agent, thereby progressing the development of targeted, selective, safe, and effective therapeutic methods.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sohail Mumtaz
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
Routabi P, Mehrabi M, Adibi H, Mehrabi M, Khodarahmi R. Design and Evaluation of Curcumin-Derived Aldopentose Compounds: Unlocking their Antidiabetic Potential through Integrative In Vitro, In Vivo, and In Silico Studies on Carbohydrate-Degrading Enzymes. J Nutr Biochem 2025:109897. [PMID: 40086674 DOI: 10.1016/j.jnutbio.2025.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Natural polyphenol compounds such as curcumin can inhibit carbohydrate-hydrolyzing enzymes, which may offer an alternative to expensive and potentially side-effect-inducing α-glucosidase inhibitors like acarbose. Hence, this study carried out the synthesis of curcumin aldopentose derivatives, examining their capacity to inhibit the α-glucosidase and α-amylase enzymes with the aim to alleviate hyperglycemia. Initially, the aldopentose derivatives from curcumin were synthesized and confirmed by spectroscopic methods such as MS, 13CNMR, 1HNMR, and FTIR. Afterward, we investigated the inhibitory effects of all derivatives on the α-amylase and α-glucosidase enzymes spectroscopically and determined their inhibition mechanism. We assessed the antioxidant activity and the stability of the synthetic derivatives in the simulated intestinal environment. Finally, we measured the postprandial blood glucose level after administering saturated starch in vivo. The modified compounds showed improved inhibitory effects compared to curcumin alone, with compound C3 demonstrating particularly strong enzyme inhibition. However, when compared with acarbose, a known commercial antidiabetic drug, the synthetic compounds showed lower inhibitory activity against both enzymes, resulting in fewer side effects related to undigested polysaccharides in the gut. Molecular docking studies show introducing a pentose moiety to the curcumin backbone enhanced docking affinities toward both enzymes and subsequently altered the associated IC50 and Ki values. Overall, compound C3 has the potential to be an inhibitor of carbohydrate-degrading enzymes and can effectively reduce glucose absorption in vivo. Given its antioxidant capabilities and reasonable stability, the compound in question shows promises as a potent derivative for the development of new anti-hyperglycemic drugs in future research endeavours.
Collapse
Affiliation(s)
- Pedram Routabi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Maryam Mehrabi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai 71800, Nilai, Negeri Sembilan, Malaysia
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Zhang C, Hu S, Yin C, Wang G, Liu P. STAT3 orchestrates immune dynamics in hepatocellular carcinoma: A pivotal nexus in tumor progression. Crit Rev Oncol Hematol 2025; 207:104620. [PMID: 39818308 DOI: 10.1016/j.critrevonc.2025.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms. Dysregulated STAT3 signaling, activated by various stimuli, including cytokines and growth factors, promotes an immunosuppressive milieu within HCC tumors, fostering tumor survival and proliferation while hindering immune surveillance. Non-coding RNAs and other molecules regulate this process, modulating STAT3 activity and influencing immune cell function. Moreover, therapeutic interventions targeting the STAT3 pathway, alongside advancements in radiotherapy, cancer vaccines, and diabetes-related drugs, offer promising strategies in HCC management. Integrating natural compounds with immunotherapy emerges as a novel approach, leveraging their ability to enhance antitumor immunity and counter immune evasion strategies. Understanding the multifaceted role of STAT3 and its interactions within the immune landscape of HCC is paramount for devising effective therapeutic interventions and improving patient outcomes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songbai Hu
- Department of Cancer Center, Yuexi County Hospital, Anqing, Anhui Province 246600, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.
| |
Collapse
|
8
|
Pradhan B, Ki JS. Seaweed-derived laminarin and alginate as potential chemotherapeutical agents: An updated comprehensive review considering cancer treatment. Int J Biol Macromol 2025; 293:136593. [PMID: 39426775 DOI: 10.1016/j.ijbiomac.2024.136593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Seaweed-derived bioactive substances such as polysaccharides have proven to be effective chemotherapeutic and chemopreventive agents. Laminarin and alginate antioxidant properties aid in the prevention of cancer through dynamic modulation of critical intracellular signaling pathways via apoptosis which produce low cytotoxicity and potential chemotherapeutic effects. Understanding the effects of laminarin and alginate on human cancer cells and their molecular roles in cell death pathways can help to develop a novel chemoprevention strategy. This review emphasizes the importance of apoptosis-modulating laminarin and alginate in a range of malignancies as well as their extraction, molecular structure, and weight. In addition, future nano-formulation enhancements for greater clinical efficacy are discussed. Laminarin and alginate are perfect ingredients because of their distinct physicochemical and biological characteristics and their use-based delivery systems in cancer. The effectiveness of laminarin and alginate against cancer and more preclinical and clinical trials will open up as new chemotherapeutic natural drugs which lead to established as potential cancer drugs.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea; Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
9
|
Sabini JH, Timotius KH. Hepatoprotective and Fat-Accumulation-Reductive Effects of Curcumin on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Curr Issues Mol Biol 2025; 47:159. [PMID: 40136412 PMCID: PMC11940900 DOI: 10.3390/cimb47030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Fat accumulation is the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD). Given the intimidating nature of its treatment, curcumin (CUR) emerges as a potential therapeutic agent due to its proven effectiveness in managing MASLD. This review aimed to evaluate previous reports on the hepatoprotective and fat-accumulation-reductive effects of CUR administration in preventing or treating MASLD. CUR administration can modulate serum liver enzymes and lipid profiles. The fat accumulation of MASLD is the primary cause of oxidative stress and inflammation. By reducing fat accumulation, CUR may attenuate the inflammation and oxidative stress in MASLD. In addition, CUR has been proven to restore the dysfunctional cellular energy metabolism capacity and attenuate fibrogenesis (antifibrotic agent). Their hepatoprotective effects are associated with fat accumulation in MASLD. Lipid metabolism (lipogenesis, lipolysis, and lipophagy) is correlated with their hepatoprotective effects. CUR has prophylactic and therapeutic effects, particularly in early-stage MASLD, primarily when it is used as a fat reducer. It can be considered an excellent natural therapeutic drug for MASLD because it protects the liver and attenuates fat accumulation, especially in the early stage of MASLD development.
Collapse
Affiliation(s)
| | - Kris Herawan Timotius
- Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia;
| |
Collapse
|
10
|
Wang Y, Liu J, El-Kott AF, AlSheri AS, Ghamry HI. Curcumin-mediated synthesis of silver nanoparticles immobilized on chitosan-modified kaolin: Investigation of its catalytic activity, antioxidant and anti-lung cancer effects. Int J Biol Macromol 2025; 307:141540. [PMID: 40020824 DOI: 10.1016/j.ijbiomac.2025.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
In this research, Curcumin, a naturally occurring pigment, was utilized to synthesize silver nanoparticles (AgNPs), serving as a reducing agent, and stabilizer, through an environmentally friendly, cost-effective, and straightforward method. This process occurred on the surface of kaolin; a mineral clay modified with chitosan. The study revealed that the phenolic hydroxyl and carbonyl functional groups of Curcuma played a significant role in reducing silver ions to form AgNPs with a characteristic ginger hue. Additionally, the presence of kaolin minerals promoted the in-situ nucleation of AgNPs on both the surface and within the interlayers of the modified kaolin. This approach successfully inhibited aggregation and ensured a uniform distribution of AgNPs, with particle sizes ranging from 20 to 30 nm across the kaolin surface. The resulting Kaolin@CS-Cur/AgNPs nanocomposite was thoroughly characterized using various analytical techniques, including TEM, SEM, FT-IR, EDX-elemental mapping, ICP-OES, and XRD. The composite demonstrated promising catalytic activity in the solvent-free preparation of 1-substituted-1H-tetrazoles via a three-component coupling reaction (MCR) involving NaN3, amines, and triethyl orthoformate. Catalyst performance was further validated by conducting eight catalyst recycling cycles, drain tests, and hot filtration experiments. DPPH assay indicates the power antioxidant efficacy of Kaolin@CS-Cur/AgNPs nanocomposite. After undergoing 3-4 passages, the lung cancer cells as well as the normal cell were meticulously prepared in regards to their morphology and quantity through in vitro experiments. After separating the flask surface cells through trypsin-EDTA, we evaluated and enumerated the cell viability, and subsequently cultured 3 × 103 cells in 96 wells with or without NPs. IC50 of Kaolin@CS-Cur/AgNPs nanocomposite was 110, 96, and 38 on HLC-1, LC-2/ad and PC-14 lung cancer cells.
Collapse
Affiliation(s)
- Yudong Wang
- Thoracic Surgery Department, Shengjing Hospital of China Medical University, Liaoning 110004, China
| | - Jun Liu
- Thoracic Surgery Department, Shengjing Hospital of China Medical University, Liaoning 110004, China.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Heba I Ghamry
- Department of Biology, Nutrition and Food Science, College of Science, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| |
Collapse
|
11
|
Zhu Z, Zuo S, Zhu Z, Wang C, Du Y, Chen F. THSWD upregulates the LTF/AMPK/mTOR/Becn1 axis and promotes lysosomal autophagy in hepatocellular carcinoma cells by regulating gut flora and metabolic reprogramming. Int Immunopharmacol 2025; 148:114091. [PMID: 39826450 DOI: 10.1016/j.intimp.2025.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
THSWD has the effect of reducing inflammation, improving microcirculation, and regulating immune status in patients with hepatocellular carcinoma. Regardless of its clear therapeutic effect, the underlying mechanism of action against hepatocellular carcinoma is not clear. To identify critical gut microbiota and its associated metabolites related to THSWD inhibition against hepatocellular carcinoma progression, we assessed the microbe-dependent anti-hepatocellular carcinoma effects of THSWD through 16 s rRNA gene sequencing, fecal microbial transplantation and antibiotic treatment. Metabolic analyses, transcriptomic analyses, and molecular experiments were performed to explore how THSWD modulates the gut microbiota against hepatocellular carcinoma progression. As confirmed by in vivo and in vitro assays, THSWD reduced tumour growth rate and promoted apoptosis in hepatocellular carcinoma cells in hepatocellular carcinoma model mice, and liver and kidney indexes were detected and confirmed the safety of THSWD. Transcriptomic analysis revealed that the targets of THSWD were significantly enriched in multiple lysosomal autophagy signalling pathways, suggesting that lysosomal autophagy is probably associated with THSWD's therapeutic effect. Based on the integrated data analysis, THSWD delays hepatocellular carcinoma progression by increasing the intestinal microbiota Duncaniella and augmenting the metabolite glabrol, and the joint analysis of metabolic and genomic data suggests that this metabolite is associated with lysosomal autophagy, and cellular experiments confirmed that the The differential metabolite glabrol induces apoptosis in hepatocellular carcinoma cells by triggering the lysosomal autophagy-mediated apoptosis signalling pathway. Supplementation with glabrol metabolites up regulates the LTF/AMPK/mTOR/Beclin1 axis and promotes hepatocellular carcinoma cells with lysosomal autophagy and induced apoptosis in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Shiqi Zuo
- Department of Pathology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Chen Wang
- Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yangfeng Du
- Changde Hospital, Xiangya School of Medicine, Central South University, 415000 Changde, China.
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
12
|
Khayatan D, Razavi SM, Arab ZN, Nasoori H, Fouladi A, Pasha AVK, Butler AE, Karav S, Momtaz S, Abdolghaffari AH, Sahebkar A. Targeting mTOR with curcumin: therapeutic implications for complex diseases. Inflammopharmacology 2025:10.1007/s10787-025-01643-y. [PMID: 39955697 DOI: 10.1007/s10787-025-01643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/16/2024] [Indexed: 02/17/2025]
Abstract
The mammalian target of rapamycin (mTOR) is a crucial enzyme in regulating multiple signaling pathways in the body, including autophagy, proliferation and apoptosis. Disruption of these mTOR signaling pathways can lead to an array of abnormalities and trigger disease processes, examples being neurodegenerative conditions, cancer, obesity and diabetes. Under conditions of oxidative stress, mTOR can regulate apoptosis and autophagy, with tissue repair being favored under such circumstances. Moreover, the correlation between mTOR and other signaling pathways could play a pivotal role in the pathophysiology of numerous disorders. mTOR has a tight connection with NF-κB, Akt, PI3K, MAPK, GSK-3β, Nrf2/HO-1, JAK/STAT, CREB/BDNF, and ERK1/2 pathways, which together could play significant roles in the regulation of inflammation, apoptosis, cell survival, and oxidative stress in different body organs. Research suggests that inhibiting mTOR could be beneficial in treating metabolic, neurological and cardiovascular conditions, as well as potentially extending life expectancy. Therefore, identifying new chemicals and agents that can modulate the mTOR signaling pathway holds promise for treating and preventing these disorders. Curcumin is one such agent that has demonstrated regulatory effects on the mTOR pathway, making it an exciting alternative for reducing complications associated with complex diseases by targeting mTOR. This review aims to examine the potential of curcumin in modulating the mTOR signaling pathway and its therapeutic implications.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hadis Nasoori
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aytak Vahdat Khajeh Pasha
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Li Y, Ding S, Wang Y. Targeting the cholinergic anti-inflammatory pathway: an innovative strategy for treating diseases. Mol Biol Rep 2025; 52:199. [PMID: 39903351 DOI: 10.1007/s11033-025-10288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is comprised of the vagus nerve, acetylcholine, nicotinic acetylcholine receptors, the spleen, and the splenic nerve. It represents a sophisticated neuroimmune axis that critically regulates the crosstalk between the nervous system and the immune response via the vagus nerve. Here, we provided a nuanced exploration of the CAP's role in curbing inflammatory processes and its broad therapeutic potential across a spectrum of diseases. We meticulously dissect the intricate mechanisms by which the CAP modulates key signaling cascades, including the NF-κB, JAK2/STAT3, MAPK/ERK, PI3K/AKT, COX2/PGE2, and NRF2/HO-1 pathways, which are quintessential in the pathogenesis of various conditions. Additionally, we also summarized the CAP's profound implications in the management of inflammatory diseases, neurodegenerative disorders, metabolic syndromes, and oncological malignancies, elucidating its capacity to mitigate disease severity and progression through sophisticated immune modulation. The modulation of the CAP is suggested as a novel strategy that could potentially transform treatment approaches for a variety of conditions. However, the precise cellular and molecular underpinnings of the CAP's effects, as well as its translatability to clinical settings, remain subjects of ongoing investigation. The review calls for further research to demystify the mechanisms of the CAP and to harness its therapeutic potential fully, with the aim of developing innovative and efficacious treatment modalities that exploit the pathway's unique attributes.
Collapse
Affiliation(s)
- Yifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufan Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
14
|
Gang R, Okello D, Ban Y, Kang Y. A systematic review of Aspilia africana (Pers.) C.D. adams traditional medicinal uses, phytoconstituents, bioactivities, and toxicities. Pharmacol Res 2025; 212:107590. [PMID: 39778640 DOI: 10.1016/j.phrs.2025.107590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Aspilia africana (Pers.) C. D. Adams, popularly referred to as wild sunflower, has been used for generations across several African communities to treat various diseases, including malaria, wounds, osteoporosis, diabetes mellitus, gastric ulcers, measles, tuberculosis, stomach ache, rheumatic pains, and gonorrhea. This study aimed to systematically and critically compile data on the traditional medicinal uses, phytochemistry, bioactivities, botanical descriptions, and toxicities of A. africana. Relevant research findings were retrieved and organized from various databases, including PubMed and ScienceDirect, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. To date, 149 phytochemicals have been identified from various A. africana parts and they primarily belong to the classes of terpenoids, lipids, hydrocarbons, phenolics, and esters. The extracts and bioactive phytochemicals of A. africana have revealed several pharmacological properties, including antimalarial, anticancer, wound healing, anti-inflammatory, antidiabetic, and antimicrobial activities. However, the major components responsible for these bioactivities and their mechanisms of action in some diseases have not yet been clearly identified. Additionally, toxicity and clinical trial data for A. africana are limited with most toxicological assessments being acute in nature. Therefore, further research on the mechanisms of action of the pure bioactive phytochemicals and toxicity of A. africana are necessary to better understand its efficacy and safety. Taken together, this study provides comprehensive information on the traditional medicinal uses, phytochemistry, bioactivities, and toxicity of A. africana, and a reference for future studies, relevant to the development of therapeutic products.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, Korea National University of Science and Technology (UST), Daejeon 34113, South Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea; National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Denis Okello
- Department of Biological Sciences, Kabale University, PO Box 317, Kabale, Uganda
| | - Yeongjun Ban
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Youngmin Kang
- Korean Convergence Medical Science Major, Korea National University of Science and Technology (UST), Daejeon 34113, South Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea.
| |
Collapse
|
15
|
Zhou J, Kang Y, Gao Y, Ye XY, Zhang H, Xie T. β-Elemene inhibits epithelial-mesenchymal transformation in non-small cell lung cancer by targeting ALDH3B2/RPSA axis. Biochem Pharmacol 2025; 232:116709. [PMID: 39662605 DOI: 10.1016/j.bcp.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
The pharmacological mechanism of β-elemene in non-small cell lung cancer (NSCLC) remains poorly understood. In this study, we identified aldehyde dehydrogenase 3B2 (ALDH3B2) as a pivotal target for β-elemene's anti-tumor effects in NSCLC by bioinformatic analysis. The overexpression of ALDH3B2 is specifically associated with the malignancy of NSCLC and the poor prognosis in patients with lung adenocarcinoma. Furthermore, we observed a positive correlation between ALDH3B2 levels and the sensitivity of cells to β-elemene. Additionally, we confirmed that β-elemene suppresses ALDH3B2 expression in PC-9 and NCI-H1373 cell lines. Notably, ALDH3B2 overexpression in NCI-H1373 cells resulted in enhanced migration, invasion, and a prominent epithelial-mesenchymal transition (EMT), which could be attenuated by β-elemene via inhibition of ALDH3B2 expression. Subsequent investigations demonstrated that ALDH3B2 overexpression upregulated ribosomal protein SA (RPSA) expression. β-elemene counteracted the upregulation of RPSA by suppressing ALDH3B2. Furthermore, knocking down of ALDH3B2 and β-elemene treatment significantly reduced the activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling pathways via suppression of RPSA. In summary, our research uncovers that in NSCLC, ALDH3B2 functions as an oncogenic protein, promoting tumor progression. Meanwhile, β-elemene inhibits EMT of NSCLC by inhibition of ALDH3B2/RPSA axis and subsequently downregulating AKT and ERK signaling pathways. Our study highlights the significant role of ALDH3B2 in the progression of NSCLC, signifying it as a potential pharmacodynamic biomarker for β-elemene. These findings enrich the understanding of anti-tumor pharmacological mechanism of β-elemene, and provides new theoretical and experimental foundations for its potential application in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jiawei Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yanhua Kang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan Gao
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
16
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Chen Q, Di X, Zhai Y, Zhao Q, Song X. Influence of oil phases on the digestibility and curcumin delivery properties of Pickering emulsions. Food Chem X 2025; 26:102270. [PMID: 40027116 PMCID: PMC11870223 DOI: 10.1016/j.fochx.2025.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Starch-based Pickering emulsions with four types of oil phases (coconut, corn, olive, and sunflower oils) were fabricated to compare their delivery properties for curcumin. The release rates of free fatty acids and the bioavailability of curcumin were investigated using an oral-gastric-intestinal in vitro digestion model. The results revealed that the emulsions prepared with corn oil exhibited the highest zero-shear viscosity (η 0 ) and infinite-shear viscosity (η ∞ ) values, indicating its superior physical stability. After 108 h of ultraviolet light irradiation at 254 nm, the emulsion with corn oil showed the highest loading rate of curcumin. In the simulated small intestinal digestion, FFA release rates for emulsions with different oil phases were: coconut (30.74 %) > sunflower (15.06 %) > corn (12.67 %) > olive (12.38 %) oils. The curcumin bioavailability was: sunflower (78.01 %) > coconut (64.56 %) > corn (54.58 %) > olive (52.51 %) oils. The curcumin bioavailability increased significantly with the increase of starch concentrations.
Collapse
Affiliation(s)
- Qing Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xin Di
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuge Zhai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiaoyan Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
18
|
Chen L, Han D, Gu C, Huang W. Biological Effects of Calceolarioside A as a Natural Compound: Anti-Ovarian Cancer, Anti-Tyrosinase, and Anti-HMG-CoA Reductase Potentials with Molecular Docking and Dynamics Simulation Studies. Mol Biotechnol 2025:10.1007/s12033-025-01369-w. [PMID: 39820851 DOI: 10.1007/s12033-025-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/05/2025] [Indexed: 01/19/2025]
Abstract
One kind of hydroxycinnamic acid is calceolarioside A. Plantago coronopus, Cassinopsis madagascariensis, and other organisms for whom data are available are known to have this naturally occurring compound. IC50 values of Calceolarioside A for ovarian cell lines (NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, UWB1.289) were 24.42, 13.50, 9.31, 14.90, 20.07, and 16.18 µM, respectively. IC50 values were 19.83 and 73.48 µM for tyrosinase and HMG-CoA reductase enzymes. The chemical activities of Calceolarioside A against HMG-CoA reductase and tyrosinase were assessed by conducting the molecular docking study, MM/GBSA calculation, and molecular dynamics (MD) simulation. The anticancer activities of this compound were evaluated against some ovarian cancer cells, such as NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, and UWB1.289 cell lines. The chemical activities of Calceolarioside A against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor-Like 1, M2 muscarinic receptor, and estrogen receptors) were investigated using computational methods. The results exhibited the interplay among atoms. The compound formed robust associations with both the enzymes and receptors. Calceolarioside A can hinder the functioning of these enzymes and the proliferation of malignant cells.
Collapse
Affiliation(s)
- Liqin Chen
- Department of Gynecology and Obstetrics Nantong, Haimen People's Hospital, Nantong, 226100, Jiangsu, China
| | - Dan Han
- Department of Physical Examination Center, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - ChunYan Gu
- Department of Gynecology and Obstetrics Nantong, Haimen People's Hospital, Nantong, 226100, Jiangsu, China
| | - Wei Huang
- Department of Gynecologic and Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, Hubei, China.
| |
Collapse
|
19
|
Hakami KH, Khan AR, Ali M. Mathematical modeling and QSPR analysis of hepatitis treatment drugs through connection indices an innovative approach. Heliyon 2025; 11:e41234. [PMID: 39801947 PMCID: PMC11721259 DOI: 10.1016/j.heliyon.2024.e41234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Chemical structures may be defined based on their topology, which allows for the organization of molecules and the representation of new structures with specific properties. We use topological indices, which are precise numerical measurements independent of structure, to measure the bonding arrangement of a chemical network. An essential objective of studying topological indices is to collect and alter chemical structure data to develop a mathematical relationship between structures and physico-chemical properties, bio-activities, and associated experimental factors. Topological indices establish the correlation between molecular characteristics, such as physical, chemical, thermodynamic, and biological activity, and their corresponding chemical structures in Quantitative Structure-Property Relationships (QSPR) and Quantitative Structure-Activity Relationships (QSAR). Hepatitis, in its advanced stages, can lead to the development of mental illnesses. Effective management of symptoms frequently entails regular use of medicine and therapy for a prolonged period. Assurance of the safety and efficacy of drug design is of utmost importance. Various parameters, including solubility, metabolic stability, toxicity, permeability, and transporter effects, depending on the physical and chemical properties of the treatment, impact the efficacy of biopharmacological design. Increasingly, computational approaches have become indispensable in the discipline of pharmaceutical discoveries and development. The major objective of this work is to examine the chemical appropriateness of connection indices in evaluating six physico-chemical properties of the 14 medicines used for the treatment of hepatitis. This work conducts QSPR analysis to obtain the most accurate approximations for the physico-chemical attributes of pharmacological agents employed in the treatment of hepatitis.
Collapse
Affiliation(s)
- Khalil Hadi Hakami
- Department of Mathematics, Faculty of Science, Jazan University, P.O. Box 2097, Jazan 45142, Kingdom of Saudi Arabia
| | - Abdul Rauf Khan
- Department of Mathematics, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Muhammad Ali
- Department of Mathematics, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
20
|
Liu CY, Li Z, Cheng FE, Nan Y, Li WQ. Radix Codonopsis: a review of anticancer pharmacological activities. Front Pharmacol 2025; 15:1498707. [PMID: 39840099 PMCID: PMC11747557 DOI: 10.3389/fphar.2024.1498707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Radix Codonopsis (Dangshen), derived from the dried root of plants in the Campanulaceae family, is a widely used Chinese herbal medicine. It is renowned for its pharmacological effects, including tonifying the middle qi, invigorating the spleen, benefiting the lungs, enhancing immunity, and nourishing the blood. Codonopsis extract is frequently incorporated into health products such as tablets and capsules, making it accessible for daily health maintenance. Additionally, it is commonly used in dietary applications like soups, teas, and porridges to nourish qi, enrich blood, and promote overall vitality. In recent years, increasing attention has been given to the anti-cancer potential of Radix Codonopsis. Studies have identified key active components such as luteolin, stigmasterol, polyacetylenes, lobetyolin, and glycitein, which exhibit anti-tumor properties through mechanisms like inhibiting cancer cell growth and proliferation, suppressing epithelial-mesenchymal transition (EMT), and inducing apoptosis. This review highlights the research progress on Radix Codonopsis, including its active constituents, anti-cancer mechanisms, and its role in the convergence of medicine and food in modern life. By doing so, it aims to provide valuable insights and references for future scientific studies and clinical applications of Radix Codonopsis.
Collapse
Affiliation(s)
- Cai-Yue Liu
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Zheng Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Fan-E. Cheng
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Yi Nan
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Wei-Qiang Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
21
|
Lekmine S, Benslama O, Ola MS, Touzout N, Moussa H, Tahraoui H, Hafsa H, Zhang J, Amrane A. Preliminary Data on Silybum marianum Metabolites: Comprehensive Characterization, Antioxidant, Antidiabetic, Antimicrobial Activities, LC-MS/MS Profiling, and Predicted ADMET Analysis. Metabolites 2025; 15:13. [PMID: 39852356 PMCID: PMC11768079 DOI: 10.3390/metabo15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Silybum marianum extract, obtained via microwave-enhanced extraction, was evaluated for its antioxidant, antidiabetic, and antimicrobial activities to explore its therapeutic potential. METHODS The extraction was performed using microwave-enhanced techniques, and LC-MS/MS was employed to profile the metabolites in the extract. Total phenolic and flavonoid contents were quantified using spectrophotometric methods. Antioxidant activity was assessed using DPPH, ABTS, CUPRAC, Phenanthroline, and FRAP assays. Enzyme inhibition assays were conducted to evaluate antidiabetic activity against α-glucosidase and α-amylase. Antimicrobial activity was determined using the disc diffusion method, and in silico ADMET and drug-likeness analyses were performed for key metabolites. RESULTS The extract contained 251.2 ± 1.2 mg GAE/g of total phenolics and 125.1 ± 1.6 mg QE/g of total flavonoids, with 33 metabolites identified, including phenolic acids, tannins, flavonoids, and flavolignans. Strong antioxidant activity was observed, with IC50 values of 19.2 ± 2.3 μg/mL (DPPH), 7.2 ± 1.7 μg/mL (ABTS), 22.2 ± 1.2 μg/mL (CUPRAC), 35.2 ± 1.8 μg/mL (Phenanthroline), and 24.1 ± 1.2 μg/mL (FRAP). Antidiabetic effects were significant, with IC50 values of 18.1 ± 1.7 μg/mL (α-glucosidase) and 26.5 ± 1.3 μg/mL (α-amylase). Antimicrobial activity demonstrated inhibition zones of 8.9 ± 1.1 mm (Bacillus subtilis), 12.6 ± 1.6 mm (Escherichia coli), 8.2 ± 1.2 mm (Fusarium oxysporum), and 9.2 ± 1.1 mm (Aspergillus niger). In silico analyses showed high absorption, favorable metabolism and excretion, and minimal toxicity, with no hERG channel inhibition or hepatotoxicity. CONCLUSIONS The comprehensive results highlight the significant antioxidant, antidiabetic, and antimicrobial activities of S. marianum extract, suggesting its potential for therapeutic and preventive applications.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nabil Touzout
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria (H.T.)
| | - Hamza Moussa
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria (H.T.)
- Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif-1, Sétif 19000, Algeria
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| | - Haroun Hafsa
- Laboratory of Reaction Engineering, USTHB, BP 32, Algiers 16111, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| |
Collapse
|
22
|
Patil PH, Desai MP, Anand VSK, Ray R, Shenoy GG, Dengale SJ, Bhat K, Channabasavaiah JP. A Molecular Dynamic Simulation, Structural Analysis, and Ex Vivo Insights into the P-glycoprotein Mediated Interactions of Dietary Polyphenols with Cyclin-dependent Kinase Inhibitors: A Potential Strategy to Counteract Drug Efflux. Curr Med Chem 2025; 32:788-805. [PMID: 39279123 DOI: 10.2174/0109298673319832240829164046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION P-glycoprotein, an ATP-dependent efflux transporter, plays a crucial role in eliminating cellular toxins and affects the intracellular concentration and bioavailability of CDK 4/6 inhibitors. Moreover, dietary flavonoids are natural bio-enhancers that can effectively inhibit the efflux function of these transporters. Therefore, this study aimed to assess the impact of dietary polyphenols on the inhibition of P-glycoprotein and the subsequent efflux of CDK inhibitors palbociclib and ribociclib. METHODS A molecular docking approach was implemented to evaluate the binding interaction characteristics of CDK4/6 inhibitors in the presence of dietary polyphenols at the ATP binding site. Furthermore, the stability of the complexes was evaluated in two conformations of P-glycoprotein, followed by an ex vivo everted gut sac experiment. RESULTS The findings demonstrated that the binding of curcumin and quercetin with high affinity (-51.63 and -47.16 Kcal/mol) to ATP binding sites of P-glycoprotein-palbociclib and ribociclib inward conformation complexes resulted in good stability of complex and minimal fluctuation throughout the course of the simulation. It was evident from the everted gut sac ex vivo study that the presence of 100 μM of curcumin resulted in an increase of 1.77 and 4.20-fold in the intestinal transit of palbociclib and ribociclib, respectively. CONCLUSION The study emphasizes the significance of curcumin and quercetin as inhibitors of P-glycoprotein, demonstrating their potential to decrease the efflux of palbociclib and ribociclib, consequently contributing to their bioavailability enhancement.
Collapse
Affiliation(s)
- Prajakta Harish Patil
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mrunal Pradeep Desai
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vullendula Sai Krishna Anand
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajdeep Ray
- Research and Development, Maven Scientific Laboratories Private Ltd, Hyderabad, 500046, Telangana, India
| | - G Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Swapnil Jayant Dengale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jagadish Puralae Channabasavaiah
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
23
|
Zhang X, Guo X, Yin W, Wang R, Tian Y, Sun H, Xu S, Shuang S, Huang X, Chen G, Che Z. Synthesis, anti-oomycete and anti-fungal activities of novel paeonol ester derivatives containing a schiff base. Nat Prod Res 2024:1-10. [PMID: 39727242 DOI: 10.1080/14786419.2024.2426205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024]
Abstract
To discover biorational natural product-based pesticides, a series of paeonol ester derivatives containing a Schiff base (6a-j, 7i,j, 8i,j, and 9i,j) were prepared, and their structures were well characterised by 1H NMR and HRMS. Furthermore, bioactivities of these compounds as anti-oomycete and anti-fungal agents against two serious agricultural diseases, Phytophthora capsici and Fusarium graminearum we assessed. Amongst evaluated compounds, 1) Compounds 6a and 6e displayed good anti-oomycete against P. capsici, with EC50 values of 116.50 and 88.86 mg/L, respectively. 2) Compounds 6e and 7i exhibited prominent anti-fungal against F. graminearum, with EC50 values of 66.73 and 29.33 mg/L, respectively. 3) This study suggested that the introduction of nitro at the C5 position of paeonol could improve its bioactivity against P. capsici and F. graminearum. The results of this study pave the way for further design and development of paeonol derivatives as plant anti-oomycetes and anti-fungal agents in crop protection.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xiaolong Guo
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Wanying Yin
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ruiguang Wang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yuee Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Huilu Sun
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Shaobin Xu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Shaoyan Shuang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
24
|
Li J, Fu Y, Zhang H, Ma H. Molecular and pathological landscape of the AT-rich interaction domain 1A (ARID1A) mutation in hepatocellular carcinoma. Pathol Res Pract 2024; 266:155763. [PMID: 39706068 DOI: 10.1016/j.prp.2024.155763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with complex etiological factors and a diverse genetic landscape. Among the critical genetic mutations in HCC, the AT-rich interaction domain 1 A (ARID1A) gene, a key component of the SWI/SNF chromatin remodeling complex, stands out due to its significant role in both tumor suppression and oncogenesis. This review comprehensively examines the molecular and pathological impacts of ARID1A mutations in HCC. ARID1A mutations, which occur in approximately 7.9 % of HCC cases, predominantly involve truncating mutations leading to loss of function. These mutations are associated with various aggressive cancer features, including larger tumor size, higher rates of metastasis, and poor prognosis. The dual role of ARID1A in HCC is context-dependent, acting as a tumor suppressor by regulating cell cycle control, DNA damage repair, and gene expression, while also displaying oncogenic properties in specific contexts by promoting early tumorigenesis through oxidative stress pathways. Understanding the molecular mechanisms of ARID1A, including its interactions with key cellular pathways such as PI3K/AKT/mTOR, β-catenin, and PD-L1, provides insights into its complex role in HCC pathogenesis. Furthermore, ARID1A's impact on cancer stem cell maintenance, metabolic reprogramming, and immune evasion underscores its potential as a therapeutic target. This review highlights the need for context-specific therapeutic strategies targeting ARID1A, which could lead to more effective treatments for HCC, addressing both its tumor-suppressive and oncogenic activities.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China.
| | - Yuxia Fu
- Department of Ultrasound, Dianjiang People's Hospital of Chongqing, Chongqing, China
| | - Hongchuan Zhang
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China
| | - Hong Ma
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
25
|
Wadhwa K, Kapoor N, Kaur H, Abu-Seer EA, Tariq M, Siddiqui S, Yadav VK, Niazi P, Kumar P, Alghamdi S. A Comprehensive Review of the Diversity of Fungal Secondary Metabolites and Their Emerging Applications in Healthcare and Environment. MYCOBIOLOGY 2024; 52:335-387. [PMID: 39845176 PMCID: PMC11749308 DOI: 10.1080/12298093.2024.2416736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 01/24/2025]
Abstract
Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents. Nowadays, these fungal-derived SMs are widely used in food and beverages, for fermentation, preservatives, protein sources, and in dairy industries. In healthcare, it is being used as an antimicrobial, anticancer, anti-inflammatory, and immunosuppressive drug. The usage of modern tools of biotechnology can achieve an increase in demand for these SMs and large-scale production. The present review comprehensively analyses the diversity of fungal SMs along with their emerging applications in healthcare, agriculture, environmental sustainability, and nutraceuticals. Here, the authors have reviewed the recent advancements in genetic engineering, metabolic pathway manipulation, and synthetic biology to improve the production and yield of these SMs. Advancement in fermentation techniques, bioprocessing, and co-cultivation approaches for large-scale production of SMs. Investigators further highlighted the importance of omics technologies in understanding the regulation and biosynthesis of SMs, which offers an understanding of novel applications in drug discovery and sustainable agriculture. Finally, the authors have addressed the potential for genetic manipulation and biotechnological innovations for further exploitation of fungal SMs for commercial and environmental benefits.
Collapse
Affiliation(s)
- Khushbu Wadhwa
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Neha Kapoor
- Department of Chemistry, Hindu College, University of Delhi, Delhi, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Eman A. Abu-Seer
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohd. Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
26
|
Li Y, Li M, Mao J, Guo Q, Zhu W, Fu R, Wan X, Dong W, Li L, Mao C, Ji D, Zhang K, Lu T. The processing mechanism of vinegar-processed Curcumae Rhizome enhances anti hepatic fibrotic effects through regulation of PI3K/Akt/mTOR signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156098. [PMID: 39395324 DOI: 10.1016/j.phymed.2024.156098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Hepatic fibrosis, a chronic pathological condition resulting from various forms of persistent liver injury, in the later stage, it can evolve into cirrhosis and even liver cancer. Curcumae Rhizoma (CR), traditionally recognized for its properties in line qi break blood, eliminate accumulation and relieve pain. According to traditional Chinese medicine (TCM) principles, vinegar-processing enhances CR's ability to enter the liver meridian and act on the blood level, potentially augmenting its therapeutic effects on hepatic diseases. Therefore, vinegar-processed Curcumae Rhizoma (VCR) is frequently employed in treating liver fibrosis and related hepatic conditions. However, the underlying mechanisms of vinegar processing in enhancing its therapeutic efficacy remain unclear. METHODS The anti-liver fibrosis effects of CR and VCR were verified at individual and cellular levels. Subsequently, HPLC-Q-TOFMS and pharmacokinetic analysis were utilized to elucidate the potential bioactive substances underlying the enhanced anti-fibrotic efficacy of VCR. Building upon these findings, network pharmacology and metabolomics were integrated to screen for key effect components and regulatory pathways. Finally, the mechanisms of action were further analyzed and validated at the tissue and cellular levels through Western blotting (WB) and molecular docking studies. RESULTS Both CR and VCR exhibited therapeutic effects against hepatic fibrosis, with VCR demonstrating enhanced efficacy after vinegar processing. 6 sesquiterpenes including furanodiene and curdione, showed significant alterations in plasma exposure and hepatic distribution post-processing. VCR significantly improved pathological liver conditions, lipid accumulation, and fibrosis severity. Additionally, VCR markedly reduced the expression of α-SMA in the liver and attenuated the elevations in liver function markers such as ALT and AST. Combined network pharmacology, metabolomics, and hepatic tissue WB analysis revealed that the reduced phosphorylation of the PI3K/Akt/mTOR pathway is a critical mechanism in VCR's anti-fibrotic effects. Experiments on LX-2 cells demonstrated that four sesquiterpenes, including furanodiene and curdione, effectively inhibited the proliferation of activated hepatic stellate cells (HSCs). Furanodiene, in particular, promoted apoptosis in activated HSCs by reducing phosphorylation levels of the PI3K/Akt/mTOR pathway proteins, increasing BAX expression, and activating downstream caspase-3 to achieve the effect of anti-liver fibrosis. CONCLUSION Vinegar-processing significantly increases the plasma exposure and hepatic distribution of components such as furanodiene in VCR, enhancing anti-fibrotic efficacy by downregulating the phosphorylation levels of the PI3K/Akt/mTOR pathway and promoting HSC apoptosis. This study provides a comprehensive explanation of the vinegar-processing mechanism and its role in enhancing the anti-fibrotic effects of VCR, offering insights for its clinical application in liver fibrosis treatment and reference for the mechanistic study of other vinegar-processed herbal medicines.
Collapse
Affiliation(s)
- Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mingxuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Mao
- College of Medical, Nanjing University of Chinese Medicine, Nanjing, 210023, China; The First Clinical School of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiang Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenhong Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rao Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Wan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenhao Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kewei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
27
|
Alghamdi WA, Alterary SS, Alarifi A, Ramu R, Khan MS, Afzal M. Exploring the interaction of curcumin with β-cyclodextrin and its binding with DNA: A combined spectroscopic and molecular docking study. Int J Biol Macromol 2024; 282:137238. [PMID: 39500426 DOI: 10.1016/j.ijbiomac.2024.137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
At present, a major effort in biophysical studies has been paid towards exploring the interactions and release of therapeutic payloads to the specific site leaving behind healthy cells unaffected and hence, lower the drug-induced toxicity. For the purpose, interaction of β-bound CUR with calf thymus DNA (ctDNA) has been examined intensely using a series of biophysical methods like absorption, steady state fluorescence emission, and circular dichroism together with molecular docking study. The experimental analysis divulge that CUR interacts with both β-CD (although with different molar ratio) and DNA. However, the binding affinity of CUR with the target (DNA) is higher than it does with the β-CD. When β-CD-carried (10 mM) CUR (μM) (inclusion complex) comes near DNA (15-372 μM), CUR gets out from β-CD's void and approaches to binds with the DNA. The relocation of the probe occurred due to competitive binding of the CUR between β-CD and the DNA. The present investigation may provide a simple yet probable route for the transfer of encapsulated therapeutic payload of β-CD to the most relevant biomolecular target DNA.
Collapse
Affiliation(s)
- Waad A Alghamdi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seham S Alterary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramith Ramu
- Department of Biotechnology & Bioinformatics School of Life Science, JSS Academy of Higher Education & Research (Deemed to be University) Sri Shivarathreeshwara Nagara, Mysuru, Karnataka 570015, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
28
|
Lu J, Wang H, Chen X, Zhang K, Zhao X, Xiao Y, Yang F, Han M, Yuan W, Guo Y, Zhang Y. Exploration of potential antidiabetic and antioxidant components from the branches of Mitragyna diversifolia and possible mechanism. Biomed Pharmacother 2024; 180:117450. [PMID: 39312881 DOI: 10.1016/j.biopha.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, sixteen compounds were isolated from the branches of Mitragyna diversifolia, including twelve triterpenes (1-12), a phenolic compound (13), and three flavonoids (14-16). Among them, compounds 1-7, and 10-16 were reported for the first time from this plant. Compounds 7, 14, and 15 exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 18.48 ± 2.74, 12.14 ± 1.58 and 35.77 ± 4.52 µM, respectively. Furthermore, the inhibitory kinetics of α-glucosidase revealed that all fractions, active compounds 7, 14, and 15 belong to the mix inhibition type. In molecular docking, the analysis showed that compounds 13, 14, 15, and 16 possessed superior binding capacities with α-glucosidase (-8.3, -9.6, -9.9, and -9.2 kcal/mol, respectively). The results of the glucose uptake experiment indicated that only compound 14 showed a significant promotion effect on the glucose uptake rate of 3T3-L1 adipocytes (P < 0.05). Meanwhile, compounds 13, 14, 15, and 16 possessed potent antioxidant abilities with DPPH, ABTS, and FRAP. In DNA and protein oxidative damage assays, compound 15 had a stronger effect than the positive control Vc. The network-based pharmacological analysis platform was used to predict the diabetes-related target proteins of active compounds 7, 13, 14, 15, and 16, and two candidate targets (ALB and PPARG) related to their therapeutic effects on diabetes were identified.
Collapse
Affiliation(s)
- Jing Lu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlei Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelin Chen
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Kun Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yunxue Xiao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Fengxian Yang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Mei Han
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenyi Yuan
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Guo
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yumei Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
30
|
Nie Z, Xiao C, Wang Y, Li R, Zhao F. Heat shock proteins (HSPs) in non-alcoholic fatty liver disease (NAFLD): from molecular mechanisms to therapeutic avenues. Biomark Res 2024; 12:120. [PMID: 39396024 PMCID: PMC11470698 DOI: 10.1186/s40364-024-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver conditions characterized by fat accumulation without excessive alcohol consumption, represents a significant global health burden. The intricate molecular landscape underlying NAFLD pathogenesis involves lipid handling, inflammation, oxidative stress, and mitochondrial dysfunction, with endoplasmic reticulum (ER) stress emerging as a key contributor. ER stress triggers the unfolded protein response (UPR), impacting hepatic steatosis in NAFLD and contributing to inflammation, fibrosis, and progression to NASH and eventually hepatocellular carcinoma (HCC). Heat shock proteins (HSPs), including small HSPs such as HSP20 and HSP27, HSP60, HSP70, GRP78, and HSP90, are integral to cellular stress responses. They aid in protein folding, prevent aggregation, and facilitate degradation, thus mitigating cellular damage under stress conditions. In NAFLD, aberrant HSP expression and function contribute to disease pathogenesis. Understanding the specific roles of HSP subtypes in NAFLD offers insights into potential therapeutic interventions. This review discusses the involvement of HSPs in NAFLD pathophysiology and highlights their therapeutic potential. By elucidating the molecular mechanisms underlying HSP-mediated protection in NAFLD, this article aims to pave the way for the development of targeted therapies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Zhenwang Nie
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congshu Xiao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yingzi Wang
- International Medical Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Rongkuan Li
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
31
|
Yu Y, Wang Q, Huang X, Li Z. GA receptor targeted chitosan oligosaccharide polymer nanoparticles improve non-alcoholic fatty liver disease by inhibiting ferroptosis. Int J Biol Macromol 2024; 278:134779. [PMID: 39151850 DOI: 10.1016/j.ijbiomac.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Excessive iron in the liver may exacerbate Non-alcoholic fatty liver disease (NAFLD) by increasing the risk of liver cell expansion, inflammation and fibrosis. Ferroptosis in liver cells may lead the progression of simple fatty liver degeneration to steatohepatitis (NASH). More and more studies shew that ferroptosis played a crucial role in the pathological process of NAFLD. Based on the mechanism of ferroptosis, this study first synthesized a liver targeted 18-β-Glycyrrhetinic-acid-chitosan oligosaccharide -N-acetylcysteine polymer (GCNp), and further curcumin (Cur) was used as model drug to prepare Cur loaded nanodelivery system (GCNp-Cur NPs). The particle size of GCNp-Cur NPs was 132.5 ± 9.8 nm, PDI was 0.148 ± 0.026 and the potential was 23.8 mV. GCNp-Cur NPs can regulate the GPX4/GSH pathway, inhibit lipid peroxidation, restore cellular oxidative environment, reduce free Fe2+, improve cellular lipid metabolism and iron metabolism, thereby NPs inhibited liver cell ferroptosis through multiple pathways. Additionally, GCNp-Cur NPs could also alleviate liver tissue lipid accumulation and oxidative damage, delaying disease progression, and providing a new method and theoretical basis for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yao Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 450001, China.
| |
Collapse
|
32
|
Huang ZP, Qiu H. Emodin repairs interstitial cells of Cajal damaged by cholelithiasis in the gallbladder. Front Pharmacol 2024; 15:1424400. [PMID: 39359250 PMCID: PMC11445038 DOI: 10.3389/fphar.2024.1424400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Background Hypercholesterolemia induces cholelithiasis and dysfunction of gallbladder motility. Interstitial cells of Cajal (ICCs) contribute to gallbladder motility. Emodin modulates the contractility of the gallbladder muscle; however, the underlying mechanism is unknown. Aim This study aimed to explore the effects of emodin on gallbladder ICCs with cholelithiasis in a guinea pig model. Methods Animals were randomly divided into a healthy control group and three study groups. All study groups received a high-cholesterol diet (HCD) for 8 weeks. Subsequently, they were randomly assigned to either the HCD group or one of the emodin treatment groups lasting 4 or 8 weeks. Total cholesterol (TC) and triglycerides (TG) were measured to determine changes in serum lipid levels. Immunohistochemistry was performed to detect the morphology and number of ICCs. TUNEL assays were performed to detect ICC apoptosis. Transmission electron microscopy was employed to observe ICC structure. Western blotting and real-time polymerase chain reaction were used to detect changes in stem cell factor (SCF)/c-kit pathway expression. Results Serum TC and TG were higher in all study groups. In cases of cholelithiasis, the SCF/c-kit pathway was downregulated, the number of gallbladder ICCs decreased, apoptosis increased, and the ICC network structure was damaged. After emodin treatment, the SCF/c-kit pathway was upregulated, the number of gallbladder ICCs increased, apoptosis decreased, and the ICC network structure recovered. Conclusion Cholelithiasis downregulates the SCF/c-kit pathway and damages gallbladder ICCs. Emodin upregulates the SCF/c-kit pathway and increases gallbladder ICCs, contributing to recovery from gallbladder motility disorders.\.
Collapse
Affiliation(s)
- Zhen-Peng Huang
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning, China
| | - Hu Qiu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Erfanian SS, Ansari H, Javanmard SH, Amini Z, Hajigholami A. The hepatorenal protective effects of silymarin in cancer patients receiving chemotherapy: a randomized, placebo-controlled trial. BMC Complement Med Ther 2024; 24:329. [PMID: 39232773 PMCID: PMC11375936 DOI: 10.1186/s12906-024-04627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common diseases globally that may have side effects on liver and renal function. Pharmacological treatments to reduce adverse liver and renal effects are still limited. It has been proposed that silymarin may possess hepatoprotective and anti-inflammatory properties. The present trial aims to assess the hepatorenal protective efficacy of silymarin supplementation in cancer patients receiving chemotherapy in an outpatient setting. METHOD This is a randomized, placebo-controlled clinical trial that recruited female breast cancer patients. Participants were randomly assigned to one placebo group and two intervention groups. The control group received 140 mg of placebo daily, while the two intervention groups received 140 mg silymarin daily. Follow-up assessments were conducted at baseline, 3 weeks, and 6 weeks. At the beginning of the study, the patients were subjected to a computed tomography (CT) scan, and the liver and renal parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, Blood urea nitrogen (BUN) and Creatinine (Cr) were examined through laboratory tests. RESULTS Despite two deaths and three dropouts, 100 patients completed the study. Silymarin showed significant effects on liver enzymes in the levels of ALP and bilirubin (P < 0.05), with no significant impact on renal function in the levels of Blood urea nitrogen (BUN) and Creatinine (Cr) (P > 0.05). The medication was well-tolerated, with minimal reported side effects (P > 0.05). DISCUSSION The study suggests that silymarin may have hepato-renal protective potential in breast cancer patients and improve patient tolerance to chemotherapy. The data presented on the efficacy and safety of silymarin may provide stronger foundation for further trials and for a possible use in clinical practice. TRIAL REGISTRATION INFORMATION Registration Number: IRCT20201123049474N2, First Trial Registration: 16/08/2021, Access: https://www.irct.behdasht.gov.ir/trial/57641.
Collapse
Affiliation(s)
- Safoora Sadat Erfanian
- Internal Medicine Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hourieh Ansari
- Department of Community and Family Medicine, School of Medicine, Isfahan University of Medical Sciences, P.O.BOX: 8177773095, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Amini
- Department of Community and Family Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hajigholami
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
34
|
Jia X, Li J, Jiang Z. Association between thyroid disorders and extra-thyroidal cancers, a review. Clin Transl Oncol 2024; 26:2075-2083. [PMID: 38491294 DOI: 10.1007/s12094-024-03434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Thyroid hormone has been shown to have both tumor-promoting and tumor-suppressing actions, which has led to significant debate over its involvement in the development of cancer. Proliferation, apoptosis, invasiveness, and angiogenesis are all aspects of cancer that are affected by the thyroid hormones T3 and T4, according to research conducted in animal models and in vitro experiments. The effects of thyroid hormones on cancer cells are mediated by many non-genomic mechanisms, one of which involves the activation of the plasma membrane receptor integrin αvβ3. Typically, abnormal amounts of thyroid hormones are linked to a higher occurrence of cancer. Both benign and malignant thyroid disorders were found to be associated with an increased risk of extra-thyroidal malignancies, specifically colon, breast, prostate, melanoma, and lung cancers. The purpose of this review was to shed light on this link to define which types of cancer are sensitive to thyroid hormones and, as a result, are anticipated to respond favorably to treatment of the thyroid hormone axis.
Collapse
Affiliation(s)
- Xin Jia
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China
| | - Jingru Li
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China.
| | - Zongliang Jiang
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China
| |
Collapse
|
35
|
Suresh N, Mauramo M, Waltimo T, Sorsa T, Anil S. The Effectiveness of Curcumin Nanoparticle-Coated Titanium Surfaces in Osteogenesis: A Systematic Review. J Funct Biomater 2024; 15:247. [PMID: 39330223 PMCID: PMC11432901 DOI: 10.3390/jfb15090247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
(1) Background: This systematic review critically appraises and synthesizes evidence from in vitro studies investigating the effects of curcumin nanoparticles on titanium surface modification, focusing on cell adhesion, proliferation, osteogenic differentiation, and mineralization. (2) Methods: A comprehensive electronic search was conducted in PubMed, Cochrane Central Register of Controlled Trials, and Google Scholar databases, yielding six in vitro studies that met the inclusion criteria. The search strategy and study selection process followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A qualitative methodological assessment was performed using the SciRAP (Science in Risk Assessment and Policy) method, which evaluated the reporting and methodological quality of the included studies. (3) Results: All six studies consistently demonstrated that curcumin-coated titanium surfaces inhibited osteoclastogenesis and promoted osteogenic activity, evidenced by enhanced cell adhesion, proliferation, osteogenic differentiation, and mineralization. The mean reporting quality score was 91.8 (SD = 5.7), and the mean methodological quality score was 85.8 (SD = 10.50), as assessed by the SciRAP method. Half of the studies used hydroxyapatite-coated titanium as a control, while the other half used uncoated titanium, introducing potential variability in baseline comparisons. (4) Conclusions: This systematic review provides compelling in vitro evidence supporting the osteogenic potential of curcumin nanoparticle-coated titanium surfaces. The findings suggest that this surface modification strategy may enhance titanium implants' biocompatibility and osteogenic properties, potentially improving dental and orthopedic implant outcomes. However, the review highlights significant heterogeneity in experimental designs and a concentration of studies from a single research group. Further research, particularly in vivo studies and clinical trials from diverse research teams, is essential to validate these findings and comprehensively understand the translational potential of this promising surface modification approach.
Collapse
Affiliation(s)
- Nandita Suresh
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki University, 00014 Helsinki, Finland
- Pushpagiri Institute of Medical Sciences and Research Centre, Medicity, Perumthuruthy, Tiruvalla 689101, Kerala, India
| | - Matti Mauramo
- Department of Pathology, Helsinki University Hospital, Helsinki University, 00290 Helsinki, Finland
| | - Tuomas Waltimo
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki University, 00014 Helsinki, Finland
- Faculty of Medicine, University of Basel, 4003 Basel, Switzerland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki University, 00014 Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Huddinge, 171 77 Stockholm, Sweden
| | - Sukumaran Anil
- Oral Health Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- College of Dental Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
36
|
Afreen A, Hameed H, Tariq M, Sharif MS, Ahmed R, Waheed A, Kousar MB, Akram Z. Shining insights: Deciphering the biogenic synthesis of Ajuga bracteosa-mediated gold nanoparticles with advanced microscopy techniques. Microsc Res Tech 2024; 87:1984-1996. [PMID: 38619301 DOI: 10.1002/jemt.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
In this study, gold nanoparticles (AuNPs) were bioreduced from Ajuga bracteosa, a medicinal herb known for its therapeutic properties against various diseases. Different fractions of the plant extract were used, including the methanolic fraction (ABMF), the n-hexane fraction (ABHF), the chloroform fraction (ABCF), and the aqueous extract for AuNPs synthesis. The characterization of AuNPs was performed using UV-Vis spectrophotometry, FT-IR, XRD, EDX, and TEM. UV-Vis spectroscopy confirmed the formation of AuNPs, with peaks observed at 555 nm. FT-IR analysis indicated strong capping of phytochemicals on the surface of AuNPs, which was supported by higher total phenolic contents (TPC) and total flavonoid contents (TFC) in AuNPs. XRD results showed high crystallinity and a smaller size distribution of AuNPs. TEM analysis revealed the spherical shape of AuNPs, with an average size of 29 ± 10 nm. The biologically synthesized AuNPs exhibited superior antibacterial, antioxidant, and cytotoxic activities compared to the plant extract fractions. The presence of active biomolecules in A. bracteosa, such as neoclerodan flavonol glycosides, diterpenoids, phytoecdysone, and iridoid glycosides, contributed to the enhanced biological activities of AuNPs. Overall, this research highlights the potential of A. bracteosa-derived AuNPs for various biomedical applications due to their remarkable therapeutic properties and effective capping by phytochemicals. RESEARCH HIGHLIGHTS: This research underscores the growing significance of herbal medicine in contemporary healthcare by exploring the therapeutic potential of Ajuga bracteosa and gold nanoparticles (AuNPs). The study highlights the notable efficacy of A. bracteosa leaf extracts and AuNPs in treating bacterial infections, demonstrating their bactericidal effects on a range of strains. The anti-inflammatory properties of plant extracts and nanoparticles are evidenced through paw edema method suggesting their applicability in managing inflammatory conditions. These findings position A. bracteosa and AuNPs as potential candidates for alternative and effective approaches to modern medication.
Collapse
Affiliation(s)
- Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Muhammad Shakeeb Sharif
- Department of Clinical and Translational Oncology, Scuola Superiore Meridionale Via Mezzocannone, Naples, Italy
| | - Rashid Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Abdul Waheed
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Momina Bint Kousar
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Zeeshan Akram
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| |
Collapse
|
37
|
Alzahrani AK, Khan A, Singla N, Hai A, Alzahrani AR, Kamal M, Asdaq SMB, Alsalman AJ, Hawaj MAA, Al Odaini LH, Dzinamarira T, Imran M. From diagnosis to therapy: The critical role of lncRNAs in hepatoblastoma. Pathol Res Pract 2024; 260:155412. [PMID: 38889493 DOI: 10.1016/j.prp.2024.155412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
According to findings, long non-coding RNAs (lncRNAs) serves an integral part in growth and development of a variety of human malignancies, including Hepatoblastoma (HB). HB is a rare kind of carcinoma of the liver that mostly affects kids and babies under the age of three. Its manifestations include digestive swelling, abdominal discomfort, and losing weight. This thorough investigation digs into the many roles that lncRNAs serve in HB, giving views into their varied activities as well as possible therapeutic consequences. The function of lncRNAs in HB cell proliferation, apoptosis, migratory and penetrating capacities, epithelial-mesenchymal transition, and therapy tolerance is discussed. Various lncRNA regulatory roles are investigated in depth, yielding information on their effect on essential cell processes such as angiogenesis, apoptosis, immunity, and growth. Circulating lncRNAs are currently acknowledged as potential indications for the initial stages of identification of cancer, with the ability to diagnose as well as forecast. In addition to their diagnostic utility, lncRNAs provide curative opportunities as locations and actors, contributing to the expanding landscape of cancer research. Several HB-linked lncRNAs have been demonstrated to exhibit abnormal expression and are involved in tumor-like characteristics via DNA, RNA, or protein binding or encoding short peptides. As a result, a better knowledge of lncRNA instability might bring fresh perspectives into HB etiology as well as innovative strategies for HB early diagnosis and therapy. We describe the abnormalities of lncRNA expression in HB and their tumor-suppressive or carcinogenic activities during HB carcinogenesis in this study. Furthermore, we explore lncRNAs' diagnostic and therapeutic possibilities in HB.
Collapse
Affiliation(s)
- A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Abdul Hai
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | - Maitham Abdullah Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Lulu Homeed Al Odaini
- Department of Ambulatory Care Pharmacy, King Fahad Medical City, Riyadh 12242, Saudi Arabia
| | - Tafadzwa Dzinamarira
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
38
|
Yuhao W, Shenghua C, Jueying C, Shate X, Rongrong S, Xiangfeng S. Targeting ferroptosis regulators in lung cancer: Exploring natural products. Heliyon 2024; 10:e33934. [PMID: 39104501 PMCID: PMC11298827 DOI: 10.1016/j.heliyon.2024.e33934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Lung cancer remains a formidable global health challenge, necessitating innovative therapeutic strategies for improved efficacy. This review explores the untapped potential of natural products and Traditional Chinese Medicine (TCM) in lung cancer therapy, focusing on targeting ferroptosis regulators. Natural compounds, such as curcumin and resveratrol, exhibit diverse anti-cancer mechanisms, complemented by TCM's holistic approach rooted in a 3500-year history. Emphasizing the induction of cell death, particularly ferroptosis, the review highlights its significance in overcoming challenges like resistance to conventional therapies. Key ferroptosis regulators are explored in the context of natural products and TCM. The impact of these treatments on crucial pathways, such as antioxidant mechanisms (GPX4, SLC7A11, and NRF2), iron metabolism regulators, and lipid and mitochondria pathways, is examined. The findings provide a comprehensive overview of how natural products and TCM modulate ferroptosis in lung cancer, offering valuable insights for the development of innovative, side-effect-reduced therapeutic strategies. This work holds promise for transforming the landscape of lung cancer treatment by integrating the rich resources of nature into conventional therapeutic paradigms.
Collapse
Affiliation(s)
- Wang Yuhao
- Graduated College, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Cheng Shenghua
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Chen Jueying
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| | - Xiang Shate
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Song Rongrong
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Shen Xiangfeng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| |
Collapse
|
39
|
Khan IU, Aqsa A, Jamil Y, Khan N, Iqbal A, Ali S, Hamayun M, Alrefaei AF, Faraj TK, Lee B, Ahmad A. Anti-Oxidative and Anti-Apoptotic Oligosaccharides from Pichia pastoris-Fermented Cress Polysaccharides Ameliorate Chromium-Induced Liver Toxicity. Pharmaceuticals (Basel) 2024; 17:958. [PMID: 39065806 PMCID: PMC11280323 DOI: 10.3390/ph17070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated fermentation of water-soluble polysaccharides isolated from Lepidium sativum (cress) seed mucilage, on chromium(VI)-induced oxidative stress and apoptosis in mice. Gel permeation chromatography (GPC), using Bio-Gel P-10 column, of the oligosaccharides product of fermentation revealed that P. pastoris effectively fermented polysaccharides as no long chain polysaccharides were observed. At 200 µg/mL, fractions DF73, DF53, DF72, and DF62 exhibited DPPH radical scavenging activity of 92.22 ± 2.69%, 90.35 ± 0.43%, 88.83 ± 3.36%, and 88.83 ± 3.36%, respectively. The antioxidant potential of the fermentation product was further confirmed through in vitro H2O2 radical scavenging assay. Among the screened samples, the highest H2O2 radical scavenging activity was displayed by DF73, which stabilized the free radicals by 88.83 ± 0.38%, followed by DF53 (86.48 ± 0.83%), DF62 (85.21 ± 6.66%), DF72 (79.9 4± 1.21%), and EPP (77.76 ± 0.53%). The oligosaccharide treatment significantly alleviated chromium-induced liver damage, as evident from the increase in weight gain, improved liver functions, and reduced histopathological alterations in the albino mice. A distinctly increased level of lipid peroxide (LPO) free radicals along with the endogenous hepatic enzymes were evident in chromium induced hepatotoxicity in mice. However, oligosaccharides treatment mitigated these effects by reducing the LPO production and increasing ALT, ALP, and AST levels, probably due to relieving the oxidative stress. DNA fragmentation assays illustrated that Cr(VI) exposure induced massive apoptosis in liver by damaging the DNA which was then remediated by oligosaccharides supplementation. Histopathological observations confirmed that the oligosaccharide treatment reverses the architectural changes in liver induced by chromium. These results suggest that oligosaccharides obtained from cress seed mucilage polysaccharides through P. pastoris fermentation ameliorate the oxidative stress and apoptosis and act as hepatoprotective agent against chromium-induced liver injury.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Aqsa Aqsa
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Naveed Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | | | - Turki Kh. Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh 145111, Saudi Arabia;
| | - Bokyung Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| |
Collapse
|
40
|
Li Q, Hao Z, Xu H, Wang X. Investigation on the lipid-lowering effect and mechanism by combining turmeric with hawthorn in C57BL/6 obese mice. J Food Sci 2024; 89:4493-4504. [PMID: 38804852 DOI: 10.1111/1750-3841.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Study on the hypolipidemic effect of turmeric combined with hawthorn on C57BL/6 obese mice and its possible mechanism. C57 mice were fed with 60% high-fat diet for 8 weeks to establish an obesity model, and 4 mice were slaughtered to verify whether the modeling was successful. The successful mice were divided into model group (HFD), positive group (high fat feed group [HFD] + simvastatin group [SIM]), turmeric group (HFD + TUR), hawthorn group (HFD + HAW), and para-medicine group (HFD + para-drug group [DOU]) for 4 weeks by gavage intervention. Different intervention groups had certain lipid-lowering effects, and the para-medicine group showed significant differences (p < 0.05, p < 0.01, p < 0.001) in reducing serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, glutamic acid transaminase (ALT), glutamic acid transaminase (AST), and increasing high-density lipoprotein cholesterol. In the para-medicine group, the protein expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, platelet-reactive protein receptor 36, and CCAAT/enhancer binding protein α were significantly downregulated, and the protein expression of carnitine palmitoyl transferase1 and peroxisome proliferator-activated receptor α protein expression (p < 0.01, p < 0.001), thus suggesting that turmeric and hawthorn are superior to turmeric and hawthorn alone in enhancing lipid metabolism-related mechanisms. Combined effects of turmeric and hawthorn improve lipid metabolism in mice, protect the liver, and improve the protein expression of liver-related genes. This study can lay the theoretical basis for the future association of medicinal food products and the development of related weight loss products.
Collapse
Affiliation(s)
- Qiang Li
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Huajian Xu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Xueyan Wang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
41
|
Luo Y, Bai XY, Zhang L, Hu QQ, Zhang N, Cheng JZ, Hou MZ, Liu XL. Ferroptosis in Cancer Therapy: Mechanisms, Small Molecule Inducers, and Novel Approaches. Drug Des Devel Ther 2024; 18:2485-2529. [PMID: 38919962 PMCID: PMC11198730 DOI: 10.2147/dddt.s472178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis, a unique form of programmed cell death, is initiated by an excess of iron accumulation and lipid peroxidation-induced damage. There is a growing body of evidence indicating that ferroptosis plays a critical role in the advancement of tumors. The increased metabolic activity and higher iron levels in tumor cells make them particularly vulnerable to ferroptosis. As a result, the targeted induction of ferroptosis is becoming an increasingly promising approach for cancer treatment. This review offers an overview of the regulatory mechanisms of ferroptosis, delves into the mechanism of action of traditional small molecule ferroptosis inducers and their effects on various tumors. In addition, the latest progress in inducing ferroptosis using new means such as proteolysis-targeting chimeras (PROTACs), photodynamic therapy (PDT), sonodynamic therapy (SDT) and nanomaterials is summarized. Finally, this review discusses the challenges and opportunities in the development of ferroptosis-inducing agents, focusing on discovering new targets, improving selectivity, and reducing toxic and side effects.
Collapse
Affiliation(s)
- YiLin Luo
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xin Yue Bai
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Lei Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Qian Qian Hu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ning Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Jun Zhi Cheng
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ming Zheng Hou
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xiao Long Liu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| |
Collapse
|
42
|
Masmali I, Azeem M, Kamran Jamil M, Ahmad A, Koam ANA. Study of some graph theoretical parameters for the structures of anticancer drugs. Sci Rep 2024; 14:13301. [PMID: 38858455 PMCID: PMC11164942 DOI: 10.1038/s41598-024-64086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Eigenvalues have great importance in the field of mathematics, and their relevance extends beyond this area to include several other disciplines such as economics, chemistry, and numerous fields. According to our study, eigenvalues are utilized in chemistry to express a chemical compound's numerous physical properties as well as its energy form. It is important to get a comprehensive understanding of the interrelationship underlying mathematics and chemistry. The anti-bonding phase is correlated with positive eigenvalues, whereas the bonding level is connected with negative eigenvalues. Additionally, the non-bonded level corresponds to eigenvalues of zero. This study focuses on the analysis of various structures of anticancer drugs, specifically examining their characteristic polynomials, eigenvalues of the adjacency matrix, matching number and nullity. Consequently, the selected structures of the aforementioned anticancer drugs exhibit stability since they are composed of closed-shell molecules, characterized by a nullity value of zero.
Collapse
Affiliation(s)
- Ibtisam Masmali
- Department of Mathematics, College of Science, Jazan University, 45142, Jazan, Saudi Arabia
| | - Muhammad Azeem
- Department of Mathematics, Riphah International University, Lahore, Pakistan.
| | | | - Ali Ahmad
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| | - Ali N A Koam
- Department of Mathematics, College of Science, Jazan University, 45142, Jazan, Saudi Arabia
| |
Collapse
|
43
|
Wang H, Chen L, Zhang R, Zhang G, Liu J, Guo F. Curcuma wenyujin rhizomes extract ameliorates lipid accumulation. Fitoterapia 2024; 175:105957. [PMID: 38604260 DOI: 10.1016/j.fitote.2024.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Curcuma wenyujin (C. wenyujin) is a medicinal plant that is traditionally used to treat blood stagnation, liver fibrosis, pain, and jaundice. In this study, we examined the effect of C. wenyujin rhizome extract on hepatic lipid accumulation both in vivo and in vitro. We found that the petroleum ether fraction of C. wenyujin rhizome extract (CWP) considerably reduced the accumulation of lipids in HepG2 cells treated with oleic and palmitic acid. Ultra-high-performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry was used to analyze the main chemical constituents of CWP, and 21 sesquiterpenes were identified. In vivo experiments revealed that the administration of CWP significantly reduced the body weight and serum total cholesterol (TC) level of low-density-lipoprotein receptor knockout mice treated with a high-fat diet without affecting their food intake. CWP also significantly reduced the levels of liver TC, liver triglycerides, aspartate transaminase, and alanine transaminase. Histological examination revealed that CWP dose-dependently reduced steatosis in liver tissue, significantly downregulated the expression of lipogenesis genes, and increased the β-oxidation of fatty acids. CWP also significantly increased autophagy-related proteins. In conclusion, CWP rich in sesquiterpenes reduces the accumulation of lipids in vivo and in vitro by improving lipid metabolism and activating autophagy.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ruiyu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Guanying Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
44
|
Gul S, Alam A, Zainab, Assad M, Elhenawy AA, Islam MS, Shah SAA, Parveen Z, Shah TA, Ahmad M. Exploring the synthesis, molecular structure and biological activities of novel Bis-Schiff base derivatives: A combined theoretical and experimental approach. J Mol Struct 2024; 1306:137828. [DOI: 10.1016/j.molstruc.2024.137828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
45
|
Tie S, Tong T, Zhan G, Li X, Ouyang D, Cao J. Network pharmacology prediction and experiment validation of anti-liver cancer activity of Curcumae Rhizoma and Hedyotis diffusa Willd. Ann Med Surg (Lond) 2024; 86:3337-3348. [PMID: 38846818 PMCID: PMC11152801 DOI: 10.1097/ms9.0000000000002074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
Objective This study aims to elucidate anti-liver cancer components and potential mechanisms of Curcumae Rhizoma and Hedyotis diffusa Willd (CR-HDW). Methods Effective components and targets of CR-HDW were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Liver cancer-related genes were collected from GeneCards, Gene-Disease Association (DisGeNET), and National Center for Biotechnology Information (NCBI). Protein-protein interaction networks, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to analyze the identified genes. Molecular docking was used to simulate binding of the active components and their target proteins. Cell activity assay, western blot, and senescence-associated β-galactosidase (SA-β-gal) experiments were conducted to validate core targets identified from molecular docking. Results Ten active compounds of CR-HDW were identified including quercetin, 3-epioleanic acid and hederagenin. The primary core proteins comprised Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Protein Kinase B(AKT1), etc. The pathways for Phosphoinositide 3-kinase (PI3K)/ AKT, cellular senescence, Fork head boxO (FOXO) were revealed as important for anti-cancer activity of CR-HDW. Molecular docking demonstrated strong binding between liver cancer target proteins and major active components of CR-HDW. In-vitro experiments confirmed that hederagenin and 3-epioleolic acid inhibited HuH-7 cell growth, reduced expression of PI3K, AKT, and mechanistic target of rapamycin (mTOR) proteins. Hederagenin also induced HuH-7 senescence. Conclusions In summary, The authors' results suggest that the CR-HDW component (Hederagenin, 3-epoxy-olanolic acid) can inhibit the proliferation of HuH-7 cells by decreasing PI3K, AKT, and mTOR. Hederagenin also induced HuH-7 senescence.
Collapse
Affiliation(s)
- Songyan Tie
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tianhao Tong
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Gangxiang Zhan
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Li
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Ouyang
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
46
|
Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. DISCOVER NANO 2024; 19:85. [PMID: 38724833 PMCID: PMC11082127 DOI: 10.1186/s11671-024-04021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.
Collapse
Affiliation(s)
- Jitendra Patel
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - G Shiva Kumar
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India.
| | - Balaji Maddiboyina
- Department of Medical and Scientific Communications, Scientific Writing Services, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hitech City, Gachibowli, Hyderabad, 500081, India.
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C\O Campus EcotekneVia Monteroni, 3100, Lecce, Italy
| | - Raghvendra A Bohara
- D.Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India.
- University of Galway, Galway, Ireland.
| |
Collapse
|
47
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Bhat AA, Kukreti N, Afzal M, Goyal A, Thapa R, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Singh SK, Dua K, Gupta G. Ferroptosis and circular RNAs: new horizons in cancer therapy. EXCLI JOURNAL 2024; 23:570-599. [PMID: 38887390 PMCID: PMC11180955 DOI: 10.17179/excli2024-7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| |
Collapse
|
49
|
Kostelecka K, Bryliński Ł, Komar O, Michalczyk J, Miłosz A, Biłogras J, Woliński F, Forma A, Baj J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers (Basel) 2024; 16:1611. [PMID: 38672692 PMCID: PMC11049028 DOI: 10.3390/cancers16081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gastric cancer (GC) ranks third in terms of cancer-related deaths and is the fifth most commonly diagnosed type of cancer. Its risk factors include Helicobacter pylori infection, Epstein-Barr virus infection, the consumption of broiled and charbroiled animal meats, salt-preserved and smoke-enhanced foods, alcohol drinking, tobacco smoking, exposure to ionizing radiation, and positive family history. The limited effectiveness of conventional therapies and the widespread risk factors of GC encourage the search for new methods of treatment and prevention. In the quest for cheap and commonly available medications, numerous studies focus on herbal medicine, traditional brews, and spices. In this review, we outline the potential use of spices, including turmeric, ginger, garlic, black cumin, chili pepper, saffron, black pepper, rosemary, galangal, coriander, wasabi, cinnamon, oregano, cardamom, fenugreek, caraway, clove, dill, thyme, Piper sarmentosum, basil, as well as the compounds they contain, in the prevention and treatment of GC. We present the potential molecular mechanisms responsible for the effectivity of a given seasoning substance and their impact on GC cells. We discuss their potential effects on proliferation, apoptosis, and migration. For most of the spices discussed, we also outline the unavailability and side effects of their use.
Collapse
Affiliation(s)
- Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Łukasz Bryliński
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Olga Komar
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Justyna Michalczyk
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Agata Miłosz
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Jan Biłogras
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| |
Collapse
|
50
|
Xu M, Zhao M, Zhu M, Yuan H, Li Z, Yan P, Ma C, Zhao H, Wang S, Wan R, Wang L, Yu G. Hibiscus manihot L. flower extract induces anticancer activity through modulation of apoptosis and autophagy in A549 cells. Sci Rep 2024; 14:8102. [PMID: 38582921 PMCID: PMC10998869 DOI: 10.1038/s41598-024-58439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Lung cancer is a major public health issue and heavy burden in China and worldwide due to its high incidence and mortality without effective treatment. It's imperative to develop new treatments to overcome drug resistance. Natural products from food source, given their wide-ranging and long-term benefits, have been increasingly used in tumor prevention and treatment. This study revealed that Hibiscus manihot L. flower extract (HML) suppressed the proliferation and migration of A549 cells in a dose and time dependent manner and disrupting cell cycle progression. HML markedly enhanced the accumulation of ROS, stimulated the dissipation of mitochondrial membrane potential (MMP) and that facilitated mitophagy through the loss of mitochondrial function. In addition, HML induced apoptosis by activation of the PTEN-P53 pathway and inhibition of ATG5/7-dependent autophagy induced by PINK1-mediated mitophagy in A549 cells. Moreover, HML exert anticancer effects together with 5-FU through synergistic effect. Taken together, HML may serve as a potential tumor prevention and adjuvant treatment for its functional attributes.
Collapse
Affiliation(s)
- Minglu Xu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453-003, Henan, China
| | - Mengxia Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Miaomiao Zhu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Hongmei Yuan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Peishuo Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Chi Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Huabin Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Shenghui Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China.
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal university, 46 Jianshe Road, Xinxiang, 453007, Henan, China.
| |
Collapse
|