1
|
Murase S, Sakitani N, Maekawa T, Yoshino D, Takano K, Konno A, Hirai H, Saito T, Tanaka S, Shinohara K, Kishi T, Yoshikawa Y, Sakai T, Ayaori M, Inanami H, Tomiyasu K, Takashima A, Ogata T, Tsuchimochi H, Sato S, Saito S, Yoshino K, Matsuura Y, Funamoto K, Ochi H, Shinohara M, Nagao M, Sawada Y. Interstitial-fluid shear stresses induced by vertically oscillating head motion lower blood pressure in hypertensive rats and humans. Nat Biomed Eng 2023; 7:1350-1373. [PMID: 37414976 PMCID: PMC10651490 DOI: 10.1038/s41551-023-01061-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/27/2023] [Indexed: 07/08/2023]
Abstract
The mechanisms by which physical exercise benefits brain functions are not fully understood. Here, we show that vertically oscillating head motions mimicking mechanical accelerations experienced during fast walking, light jogging or treadmill running at a moderate velocity reduce the blood pressure of rats and human adults with hypertension. In hypertensive rats, shear stresses of less than 1 Pa resulting from interstitial-fluid flow induced by such passive head motions reduced the expression of the angiotensin II type-1 receptor in astrocytes in the rostral ventrolateral medulla, and the resulting antihypertensive effects were abrogated by hydrogel introduction that inhibited interstitial-fluid movement in the medulla. Our findings suggest that oscillatory mechanical interventions could be used to elicit antihypertensive effects.
Collapse
Affiliation(s)
- Shuhei Murase
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoyoshi Sakitani
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takahiro Maekawa
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Daisuke Yoshino
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Kouji Takano
- Department of Rehabilitation for Brain Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Kishi
- Department of Cardiology, Graduate School of Medicine, International University of Health and Welfare, Okawa, Japan
| | - Yuki Yoshikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takamasa Sakai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Hirohiko Inanami
- Inanami Spine & Joint Hospital/Iwai Orthopaedic Medical Hospital, Iwai Medical Foundation, Tokyo, Japan
| | - Koji Tomiyasu
- Center of Sports Science and Health Promotion, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Atsushi Takashima
- Department of Assistive Technology, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Toru Ogata
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shinya Sato
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohzoh Yoshino
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yuiko Matsuura
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | | | - Hiroki Ochi
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Motoshi Nagao
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Yasuhiro Sawada
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan.
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.
| |
Collapse
|
2
|
Dyatlova AS, Novikova NS, Yushkov BG, Korneva EA, Chereshnev VA. The Blood-Brain Barrier in Neuroimmune Interactions and Pathological Processes. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:590-599. [PMID: 36340326 PMCID: PMC9628516 DOI: 10.1134/s1019331622050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 07/01/2022] [Indexed: 06/16/2023]
Abstract
The blood-brain barrier (BBB) is a kind of filter, highly selective in relation to various types of substances. The BBB supports the immune status of the brain and is an important regulator of neuroimmune interactions. Some of the molecular and cellular features of the BBB, as well as the five main pathways of neuroimmune communication mediated by the BBB, are analyzed in this article. The functions of the BBB in neuroimmune interactions in various diseases are discussed: multiple sclerosis and Alzheimer's and Parkinson's diseases. The latest data on BBB dysfunction in COVID-19 coronavirus infection caused by the SARS-CoV-2 virus are considered.
Collapse
Affiliation(s)
- A. S. Dyatlova
- Institute of Experimental Medicine (IEM), St. Petersburg, Russia
| | - N. S. Novikova
- Institute of Experimental Medicine (IEM), St. Petersburg, Russia
| | - B. G. Yushkov
- Institute of Immunology and Physiology (IIP), Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - E. A. Korneva
- Institute of Experimental Medicine (IEM), St. Petersburg, Russia
| | - V. A. Chereshnev
- Institute of Immunology and Physiology (IIP), Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
3
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
4
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Subfornical organ interleukin 1 receptor: A novel regulator of spontaneous and conditioned fear associated behaviors in mice. Brain Behav Immun 2022; 101:304-317. [PMID: 35032573 PMCID: PMC9836229 DOI: 10.1016/j.bbi.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired threat responding and fear regulation is a hallmark of psychiatric conditions such as post-traumatic stress disorder (PTSD) and Panic Disorder (PD). Most studies have focused on external psychogenic threats to study fear, however, accumulating evidence suggests a primary role of homeostatic perturbations and interoception in regulating emotional behaviors. Heightened reactivity to interoceptive threat carbon dioxide (CO2) inhalation associates with increased risk for developing PD and PTSD, however, contributory mechanisms and molecular targets are not well understood. Previous studies from our group suggested a potential role of interleukin 1 receptor (IL-1R1) signaling within BBB-devoid sensory circumventricular organ, the subfornical organ (SFO) in CO2-evoked fear. However, the necessity of SFO-IL-1R1 in regulating CO2-associated spontaneous fear as well as, long-term fear potentiation relevant to PD/PTSD has not been investigated. The current study tested male mice with SFO-targeted microinfusion of the IL-1R1 antagonist (IL-1RA) or vehicle in a recently developed CO2-startle-fear conditioning-extinction paradigm. Consistent with our hypothesis, SFO IL-1RA treatment elicited significant attenuation of freezing and increased rearing during CO2 inhalation suggesting SFO-IL1R1 regulation of spontaneous fear to CO2. Intriguingly, SFO IL-1RA treatment normalized CO2-associated potentiation of conditioned fear and impaired extinction a week later suggesting modulation of long-term fear by SFO-IL-1R1 signaling. Post behavior FosB mapping revealed recruitment of prefrontal cortex-amygdala-periaqueductal gray (PAG) areas in SFO-IL-1RA mediated effects. Additionally, we localized cellular IL-1R1 expression within the SFO to blood vessel endothelial cells and observed CO2-induced alterations in IL-1β/IL-1R1 expression in peripheral mononuclear cells and SFO. Lastly, CO2-evoked microglial activation was attenuated in SFO-IL-1RA treated mice. These observations suggest a peripheral monocyte-endothelial-microglia interplay in SFO-IL-1R1 modulation of CO2-associated spontaneous fear and delayed fear memory. Collectively, our data highlight a novel, "bottom-up" neuroimmune mechanism that integrates interoceptive and exteroceptive threat processing of relevance to fear-related pathologies.
Collapse
|
6
|
Xue B, Cui JL, Guo F, Beltz TG, Zhao ZG, Zhang GS, Johnson AK. Voluntary Exercise Prevents Hypertensive Response Sensitization Induced by Angiotensin II. Front Neurosci 2022; 16:848079. [PMID: 35250473 PMCID: PMC8891537 DOI: 10.3389/fnins.2022.848079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Exercise training has profound effects on the renin-angiotensin system, inflammatory cytokines and oxidative stress, all of which affect autonomic nervous system activity and regulate blood pressure (BP) in both physiological and pathophysiological states. Using the Induction-Delay-Expression paradigm, our previous studies demonstrated that various challenges (stressors) during Induction resulted in hypertensive response sensitization (HTRS) during Expression. The present study tested whether voluntary exercise would protect against subpressor angiotensin (ANG) II-induced HTRS in rats. Adult male rats were given access to either “blocked” (sedentary rats) or functional running (exercise rats) wheels for 12 weeks, and the Induction-Delay-Expression paradigm was applied for the rats during the last 4 weeks. A subpressor dose of ANG II given during Induction produced an enhanced hypertensive response to a pressor dose of ANG II given during Expression in sedentary rats in comparison to sedentary animals that received saline (vehicle control) during Induction. Voluntary exercise did not attenuate the pressor dose of ANG II-induced hypertension but prevented the expression of HTRS seen in sedentary animals. Moreover, voluntary exercise reduced body weight gain and feed efficiency, abolished the augmented BP reduction after ganglionic blockade, reversed the increased mRNA expression of pro-hypertensive components, and upregulated mRNA expression of antihypertensive components in the lamina terminalis and hypothalamic paraventricular nucleus, two key brain nuclei involved in the control of sympathetic activity and BP regulation. These results indicate that exercise training plays a beneficial role in preventing HTRS and that this is associated with shifting the balance of the brain prohypertensive and antihypertensive pathways in favor of attenuated central activity driving sympathetic outflow and reduced BP.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Baojian Xue,
| | - Jun-Ling Cui
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Guo
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Terry G. Beltz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Geng-Shen Zhang
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Geng-Shen Zhang,
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, United States
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, United States
- François M. Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
7
|
Farmer GE, Little JT, Marciante AB, Cunningham JT. AT1a-dependent GABA A inhibition in the MnPO following chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R469-R481. [PMID: 34189959 PMCID: PMC8530756 DOI: 10.1152/ajpregu.00030.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Chronic intermittent hypoxia (CIH) is associated with diurnal hypertension, increased sympathetic nerve activity (SNA), and increases in circulating angiotensin II (ANG II). In rats, CIH increases angiotensin type 1 (AT1a) receptor expression in the median preoptic nucleus (MnPO), and pharmacological blockade or viral knockdown of this receptor prevents CIH-dependent increases in diurnal blood pressure. The current study investigates the role of AT1a receptor in modulating the activity of MnPO neurons following 7 days of CIH. Male Sprague-Dawley rats received MnPO injections of an adeno-associated virus with an shRNA against the AT1a receptor or a scrambled control. Rats were then exposed to CIH for 8 h a day for 7 days. In vitro, loose patch recordings of spontaneous action potential activity were made from labeled MnPO neurons in response to brief focal application of ANG II or the GABAA receptor agonist muscimol. In addition, MnPO K-Cl cotransporter isoform 2 (KCC2) protein expression was assessed using Western blot. CIH impaired the duration but not the magnitude of ANG II-mediated excitation in the MnPO. Both CIH and AT1a knockdown also impaired GABAA-mediated inhibition, and CIH with AT1a knockdown produced GABAA-mediated excitation. Recordings using the ratiometric Cl- indicator ClopHensorN showed CIH was associated with Cl- efflux in MnPO neurons that was associated with decreased KCC2 phosphorylation. The combination of CIH and AT1a knockdown attenuated reduced KCC2 phosphorylation seen with CIH alone. The current study shows that CIH, through the activity of AT1a receptors, can impair GABAA-mediated inhibition in the MnPO and contribute to sustained hypertension.
Collapse
Affiliation(s)
- George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Alexandria B Marciante
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|
8
|
Buijs RM, Soto Tinoco EC, Hurtado Alvarado G, Escobar C. The circadian system: From clocks to physiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:233-247. [PMID: 34225965 DOI: 10.1016/b978-0-12-819975-6.00013-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The circadian system, composed of the central autonomous clock, the suprachiasmatic nucleus (SCN), and systems of the body that follow the signals of the SCN, continuously change the homeostatic set points of the body over the day-night cycle. Changes in the body's physiological state that do not agree with the time of the day feedback to the hypothalamus, and provide input to the SCN to adjust the condition, thus reaching another set point required by the changed conditions. This allows the adjustment of the set points to another level when environmental conditions change, which is thought to promote adaptation and survival. In fasting, the body temperature drops to a lower level only at the beginning of the sleep phase. Stressful conditions raise blood pressure relatively more during the active period than during the rest phase. Extensive, mostly reciprocal SCN interactions, with hypothalamic networks, induce these physiological adjustments by hormonal and autonomic control of the body's organs. More importantly, in addition to SCN's hormonal and autonomic influences, SCN induced behavior, such as rhythmic food intake, induces the oscillation of many genes in all tissues, including the so-called clock genes, which have an essential role as a transcriptional driving force for numerous cellular processes. Consequently, the light-dark cycle, the rhythm of the SCN, and the resulting rhythm in behavior need to be perfectly synchronized, especially where it involves synchronizing food intake with the activity phase. If these rhythms are not synchronous for extended periods of times, such as during shift work, light exposure at night, or frequent night eating, disease may develop. As such, our circadian system is a perfect illustration of how hypothalamic-driven processes depend on and interact with each other and need to be in seamless synchrony with the body's physiology.
Collapse
Affiliation(s)
- Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| | - Eva C Soto Tinoco
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Gabriela Hurtado Alvarado
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carolina Escobar
- Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
9
|
Kaya M, Ahishali B. Basic physiology of the blood-brain barrier in health and disease: a brief overview. Tissue Barriers 2021; 9:1840913. [PMID: 33190576 PMCID: PMC7849738 DOI: 10.1080/21688370.2020.1840913] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB), a dynamic interface between blood and brain constituted mainly by endothelial cells of brain microvessels, robustly restricts the entry of potentially harmful blood-sourced substances and cells into the brain, however, many therapeutically active agents concurrently cannot gain access into the brain at effective doses in the presence of an intact barrier. On the other hand, breakdown of BBB integrity may involve in the pathogenesis of various neurodegenerative diseases. Besides, certain diseases/disorders such as Alzheimer's disease, hypertension, and epilepsy are associated with varying degrees of BBB disruption. In this review, we aim to highlight the current knowledge on the cellular and molecular composition of the BBB with special emphasis on the major transport pathways across the barrier type endothelial cells. We further provide a discussion on the innovative brain drug delivery strategies in which the obstacle formed by BBB interferes with effective pharmacological treatment of neurodegenerative diseases/disorders.
Collapse
Affiliation(s)
- Mehmet Kaya
- Koç University School of Medicine Department of Physiology, Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Bulent Ahishali
- Koç University School of Medicine Department of Histology and Embryology, Koç University Research Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
10
|
Iovino M, Messana T, De Pergola G, Iovino E, Guastamacchia E, Licchelli B, Vanacore A, Giagulli VA, Triggiani V. Brain Angiotensinergic Regulation of the Immune System: Implications for Cardiovascular and Neuroendocrine Responses. Endocr Metab Immune Disord Drug Targets 2020; 20:15-24. [PMID: 31237219 DOI: 10.2174/1871530319666190617160934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The Renin-Angiotensin-Aldosterone System (RAAS) plays a major role in the regulation of cardiovascular functions, water and electrolytic balance, and hormonal responses. We perform a review of the literature, aiming at providing the current concepts regarding the angiotensin interaction with the immune system in the brain and the related implications for cardiovascular and neuroendocrine responses. METHODS Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS Angiotensin II (ANG II), beside stimulating aldosterone, vasopressin and CRH-ACTH release, sodium and water retention, thirst, and sympathetic nerve activity, exerts its effects on the immune system via the Angiotensin Type 1 Receptor (AT 1R) that is located in the brain, pituitary, adrenal gland, and kidney. Several actions are triggered by the binding of circulating ANG II to AT 1R into the circumventricular organs that lack the Blood-Brain-Barrier (BBB). Furthermore, the BBB becomes permeable during chronic hypertension thereby ANG II may also access brain nuclei controlling cardiovascular functions. Subfornical organ, organum vasculosum lamina terminalis, area postrema, paraventricular nucleus, septal nuclei, amygdala, nucleus of the solitary tract and retroventral lateral medulla oblongata are the brain structures that mediate the actions of ANG II since they are provided with a high concentration of AT 1R. ANG II induces also T-lymphocyte activation and vascular infiltration of leukocytes and, moreover, oxidative stress stimulating inflammatory responses via inhibition of endothelial progenitor cells and stimulation of inflammatory and microglial cells facilitating the development of hypertension. CONCLUSION Besides the well-known mechanisms by which RAAS activation can lead to the development of hypertension, the interactions between ANG II and the immune system at the brain level can play a significant role.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emanuela Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Brunella Licchelli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Aldo Vanacore
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vito A Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
11
|
Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020; 9:antiox9101018. [PMID: 33092099 PMCID: PMC7589608 DOI: 10.3390/antiox9101018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.
Collapse
Affiliation(s)
- Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Shahjalal Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Abu B. Siddik
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Vijay K. Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA;
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
- Correspondence: ; Tel.: +1-806-834-1713
| |
Collapse
|
12
|
Western diet-induced obesity disrupts the diurnal rhythmicity of hippocampal core clock gene expression in a mouse model. Brain Behav Immun 2020; 88:815-825. [PMID: 32454134 DOI: 10.1016/j.bbi.2020.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Western diet (WD) feeding disrupts core clock gene expression in peripheral tissues and contributes to WD-induced metabolic disease. The hippocampus, the mammalian center for memory, is also sensitive to WD feeding, but whether the WD disrupts its core clock is unknown. To this end, male mice were maintained on a WD for 16 weeks and diurnal metabolism, gene expression and memory were assessed. WD-induced obesity disrupted the diurnal rhythms of whole-body metabolism, markers of inflammation and hepatic gene expression, but did not disrupt diurnal expression of hypothalamic Bmal1, Npas2 and Per2. However, all measured core clock genes were disrupted in the hippocampus after WD feeding and the expression pattern of genes implicated in Alzheimer's disease and synaptic function were altered. Finally, WD feeding disrupted hippocampal memory in a task- and time-dependent fashion. Our results implicate WD-induced alterations in the rhythmicity of hippocampal gene expression in the etiology of diet-induced memory deficits.
Collapse
|
13
|
Xue B, Zhang Y, Johnson AK. Interactions of the Brain Renin-Angiotensin-System (RAS) and Inflammation in the Sensitization of Hypertension. Front Neurosci 2020; 14:650. [PMID: 32760236 PMCID: PMC7373760 DOI: 10.3389/fnins.2020.00650] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mounting evidence indicates that the renin-angiotensin (RAS) and immune systems interact with one another in the central nervous system (CNS) and that they are importantly involved in the pathogenesis of hypertension. Components comprising the classic RAS were first identified in the periphery, and subsequently, similar factors were found to be generated de novo in many different organs including the brain. There is humoral-neural coupling between the systemic and brain RASs, which is important for controlling sympathetic tone and the release of endocrine factors that collectively determine blood pressure (BP). Similar to the interactions between the systemic and brain RASs is the communication between the peripheral and brain immune systems. Systemic inflammation activates the brain’s immune response. Importantly, the RAS and inflammatory factors act synergistically in brain regions involved in the regulation of BP. This review presents evidence of how such interactions between the brain RAS and central immune mechanisms contribute to the pathogenesis of hypertension. Emphasis focuses on the role of these interactions to induce neuroplastic changes in a central neural network resulting in hypertensive response sensitization (HTRS). Neuroplasticity and HTRS can be induced by challenges (stressors) presented earlier in life such as a low-dose of angiotensin II or high fat diet (HFD) feeding in adults. Similarly, the offspring of mothers with gestational hypertension or of mothers ingesting a HFD during pregnancy are reprogrammed and manifest HTRS when exposed to new stressors as adults. Consideration of the actions and interactions of the brain RAS and inflammatory mediators in the context of the induction and expression of HTRS will provide insights into the etiology of high BP that may lead to new strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Yuping Zhang
- Department of Pathophysiology, Hebei North University, Zhangjiakou, China
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States.,Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, United States.,Health and Human Physiology, The University of Iowa, Iowa City, IA, United States.,The François M. Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Wang XF, Li JD, Huo YL, Zhang YP, Fang ZQ, Wang HP, Peng W, Johnson AK, Xue B. Blockade of angiotensin-converting enzyme or tumor necrosis factor-α reverses maternal high-fat diet-induced sensitization of angiotensin II hypertension in male rat offspring. Am J Physiol Regul Integr Comp Physiol 2019; 318:R351-R359. [PMID: 31746626 DOI: 10.1152/ajpregu.00200.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular diseases in adult offspring. Our previous study demonstrated that maternal HFD enhances pressor responses to ANG II or a proinflammatory cytokine (PIC), which is associated with increased expression of brain renin-angiotensin system (RAS) components and PICs in adult offspring. The present study further investigated whether inhibition of angiotensin-converting enzyme (ACE) or tumor necrosis factor-α (TNF-α) blocks sensitization of ANG II hypertension in offspring of HFD dams. All offspring were bred from dams with normal fat diet (NFD) or HFD starting two weeks before mating and maintained until weaning of the offspring. Then the weaned offspring were treated with an ACE inhibitor (captopril) or a TNF-α inhibitor (pentoxifylline) in the drinking water through the end of testing with a slow-pressor dose of ANG II. RT-PCR analyses of the lamina terminalis and paraventricular nucleus revealed upregulation of mRNA expression of several RAS components and PICs in male offspring of HFD dams when compared with age-matched offspring of NFD dams. The enhanced gene expression was attenuated by blockade of either RAS or PICs. Likewise, ANG II administration produced an augmented pressor response in offspring of HFD dams. This was abolished by either ACE or TNF-α inhibitor. Taken together, this study provides mechanistic evidence and a therapeutic strategy that systemic inhibition of the RAS and PICs can block maternal HFD-induced sensitization of ANG II hypertension, which is associated with attenuation of brain RAS and PIC expression in offspring.
Collapse
Affiliation(s)
- Xue-Fang Wang
- Life Science Research Center, Hebei North University, Zhangjiakou City, China
| | - Jian-Dong Li
- Life Science Research Center, Hebei North University, Zhangjiakou City, China
| | - Yan-Li Huo
- Life Science Research Center, Hebei North University, Zhangjiakou City, China
| | - Yu-Ping Zhang
- Life Science Research Center, Hebei North University, Zhangjiakou City, China
| | - Zhi-Qin Fang
- First Affiliated Hospital, Hebei North University, Zhangjiakou City, China
| | - Hai-Ping Wang
- Life Science Research Center, Hebei North University, Zhangjiakou City, China
| | - Wei Peng
- Life Science Research Center, Hebei North University, Zhangjiakou City, China
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
Yeo SH, Kyle V, Blouet C, Jones S, Colledge WH. Mapping neuronal inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS One 2019; 14:e0213927. [PMID: 30917148 PMCID: PMC6436706 DOI: 10.1371/journal.pone.0213927] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
The normal function of the mammalian reproductive axis is strongly influenced by physiological, metabolic and environmental factors. Kisspeptin neuropeptides, encoded by the Kiss1 gene, are potent regulators of the mammalian reproductive axis by stimulating gonadodropin releasing hormone secretion from the hypothalamus. To understand how the reproductive axis is modulated by higher order neuronal inputs we have mapped the afferent circuits into arcuate (ARC) Kiss1 neurons. We used a transgenic mouse that expresses the CRE recombinase in Kiss1 neurons for conditional viral tracing with genetically modified viruses. CRE-mediated activation of these viruses in Kiss1 neurons allows the virus to move transynaptically to label neurons with primary or secondary afferent inputs into the Kiss1 neurons. Several regions of the brain showed synaptic connectivity to arcuate Kiss1 neurons including proopiomelanocortin neurons in the ARC itself, kisspeptin neurons in the anteroventral periventricular nucleus, vasopressin neurons in the supraoptic and suprachiasmatic nuclei, thyrotropin releasing neurons in the paraventricular nucleus and unidentified neurons in other regions including the subfornical organ, amygdala, interpeduncular nucleus, ventral premammilary nucleus, basal nucleus of stria terminalis and the visual, somatosensory and piriform regions of the cortex. These data provide an insight into how the activity of Kiss1 neurons may be regulated by metabolic signals and provide a detailed neuroanatomical map for future functional studies.
Collapse
Affiliation(s)
- Shel-Hwa Yeo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Kyle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Susan Jones
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - William Henry Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Izumisawa Y, Tanaka-Yamamoto K, Ciriello J, Kitamura N, Shibuya I. The cytosolic Ca2+ concentration in acutely dissociated subfornical organ (SFO) neurons of rats: Spontaneous Ca2+ oscillations and Ca2+ oscillations induced by picomolar concentrations of angiotensin II. Brain Res 2019; 1704:137-149. [DOI: 10.1016/j.brainres.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
17
|
Rossi NF, Zenner Z, Rishi AK, Levi E, Maliszewska-Scislo M. AT 1 receptors in the subfornical organ modulate arterial pressure and the baroreflex in two-kidney, one-clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2019; 316:R172-R185. [PMID: 30624974 DOI: 10.1152/ajpregu.00289.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The subfornical organ (SFO), a forebrain circumventricular organ that lies outside the blood-brain barrier, has been implicated in arterial pressure and baroreflex responses to angiotensin II (ANG II). We tested whether pharmacological inhibition or selective silencing of SFO ANG II type 1 receptors (AT1R) of two-kidney, one-clip rats with elevated plasma ANG II decreases resting arterial pressure and renal sympathetic nerve activity (RSNA) and/or modulates arterial baroreflex responses of heart rate (HR) and RSNA. Male Sprague-Dawley rats underwent renal artery clipping [2-kidney, 1-clip (2K,1C)] or sham clipping (sham). After 6 wk, conscious rats instrumented with vascular catheters, renal nerve electrodes, and a cannula directed to the SFO were studied. In another set of experiments, rats were instrumented with hemodynamic and nerve radio transmitters and injected with scrambled RNA or silencing RNA targeted against AT1R. Mean arterial pressure (MAP) was significantly higher in 2K,1C rats. Acute SFO injection with the AT1R inhibitor losartan did not change MAP in sham or 2K,1C rats. Baroreflex curves of HR and RSNA were shifted rightward in 2K,1C rats. Losartan exerted no effect. SFO AT1R knockdown did not influence MAP in sham rats but decreased MAP in 2K,1C rats, despite no change in plasma ANG II or resting RSNA. AT1R knockdown prevented the reduction in maximum gain and slope of baroreflex responses of HR and RSNA; the reduced RSNA response to baroreceptor unloading was partially restored in 2K,1C rats. These findings show that AT1R activation within the SFO contributes to hypertension and baroreflex dysfunction in 2K,1C rats and highlight the temporal requirement for reversal of these effects.
Collapse
Affiliation(s)
- Noreen F Rossi
- Departments of Internal Medicine and Physiology, Wayne State University School of Medicine , Detroit, Michigan.,John D. Dingell Veterans Administration Medical Center , Detroit, Michigan
| | - Zachary Zenner
- Departments of Internal Medicine and Physiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Arun K Rishi
- Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan.,John D. Dingell Veterans Administration Medical Center , Detroit, Michigan
| | - Edi Levi
- Department of Pathology, Wayne State University School of Medicine , Detroit, Michigan.,John D. Dingell Veterans Administration Medical Center , Detroit, Michigan
| | - Maria Maliszewska-Scislo
- Departments of Internal Medicine and Physiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
18
|
Zhang Z, Zhang Y, Wang Y, Ding S, Wang C, Gao L, Johnson A, Xue B. Genetic knockdown of brain-derived neurotrophic factor in the nervous system attenuates angiotensin II-induced hypertension in mice. J Renin Angiotensin Aldosterone Syst 2019; 20:1470320319834406. [PMID: 30894041 PMCID: PMC6429654 DOI: 10.1177/1470320319834406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION: Brain-derived neurotropic factor (BDNF) is expressed throughout the central nervous system and peripheral organs involved in the regulation of blood pressure, but the systemic effects of BDNF in the control of blood pressure are not well elucidated. MATERIALS AND METHODS: We utilized loxP flanked BDNF male mice to cross with nestin-Cre female mice to generate nerve system BDNF knockdown mice, nestin-BDNF (+/-), or injected Cre adenovirus into the subfornical organ to create subfornical organ BDNF knockdown mice. Histochemistry was used to verify injection location. Radiotelemetry was employed to determine baseline blood pressure and pressor response to angiotensin II (1000 ng/kg/min). Real-time polymerase chain reaction was used to measure the expression of renin-angiotensin system components in the laminal terminalis and peripheral organs. RESULTS: Nestin-BDNF (+/-) mice had lower renin-angiotensin system expression in the laminal terminalis and peripheral organs including the gonadal fat pad, and a lower basal blood pressure. They exhibited an attenuated hypertensive response and a weak or similar modification of renin-angiotensin system component expression to angiotensin II infusion. Subfornical organ BDNF knockdown was sufficient for the attenuation of angiotensin II-induced hypertension. CONCLUSION: Central BDNF, especially subfornical organ BDNF is involved in the maintenance of basal blood pressure and in augmentation of hypertensive response to angiotensin II through systemic regulation of the expression of renin-angiotensin system molecules.
Collapse
Affiliation(s)
- Zhongming Zhang
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Yijing Zhang
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Yan Wang
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Shengchen Ding
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Chenhui Wang
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Li Gao
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Alan Johnson
- 2 Department of Psychological and Brain Sciences, University of Iowa, USA
| | - Baojian Xue
- 2 Department of Psychological and Brain Sciences, University of Iowa, USA
| |
Collapse
|
19
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
20
|
Paes-Leme B, Dos-Santos RC, Mecawi AS, Ferguson AV. Interaction between angiotensin II and glucose sensing at the subfornical organ. J Neuroendocrinol 2018; 30:e12654. [PMID: 30365188 DOI: 10.1111/jne.12654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/14/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
The subfornical organ (SFO) lacks the normal blood-brain barrier and senses the concentrations of many different circulating signals, including glucose and angiotensin II (ANG II). ANG II has recently been implicated in the control of food intake and body weight gain. The present study assessed whether single SFO neurones sense changes in glucose and ANG II, and also whether changes in glucose concentration alter the responsiveness of these neurones to ANG II. SFO neurones dissociated from male Sprague-Dawley rats (100-175 g) were used. We first examined whether glucose concentration modulates AT1 receptor expression. Similar AT1a mRNA expression levels were found at glucose concentrations of 1, 5 and 10 mmol L-1 in dissociated SFO neurones. Glucose responsiveness of SFO neurones was assessed using perforated current-clamp recordings and switching between 5 and 10 mmol L-1 glucose artificial cerebrospinal fluid to classify single neurones as nonresponsive (nGS), glucose-excited (GE) or glucose-inhibited (GI). In total, 26.7% of the SFO neurones were GI (n = 24 of 90), 21.1% were GE (n = 19 of 90) and 52.2% were nGS (n = 47 of 90). Once classified, the effects of 10 nmol L-1 ANG II on the excitability of these neurones were tested, with 52% of GE (n = 10 of 19), 71% of GI (n = 17 of 24) and 43% of nGS (n = 20 of 47) neurones being ANG II sensitive. Finally, we tested whether acute changes in glucose concentration modified the response to ANG II and showed that some neurones (4/17) only respond to ANG II at 10 mmol L-1 glucose. Our data demonstrate that the same SFO neurone can sense glucose and ANG II and that acute changes in glucose concentration may change ANG II responsiveness.
Collapse
Affiliation(s)
- Bruno Paes-Leme
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - André S Mecawi
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Alastair V Ferguson
- Centre for Neurosciences Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
21
|
Srinivasa S, Aulinas A, O'Malley T, Maehler P, Adler GK, Grinspoon SK, Lawson EA. Oxytocin response to controlled dietary sodium and angiotensin II among healthy individuals. Am J Physiol Endocrinol Metab 2018; 315:E671-E675. [PMID: 29944390 PMCID: PMC6230706 DOI: 10.1152/ajpendo.00190.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxytocin, while classically known for its role in parturition, lactation, and social behavior, also has been implicated in the control of sodium homeostasis in animal models. To improve our understanding of oxytocin physiology in humans, we measured basal oxytocin levels under low- and liberal-dietary-sodium conditions and following a peripheral angiotensin II (ANG II) infusion. Ten healthy individuals underwent a 6-day standardized low-sodium diet and a 6-day liberal-sodium diet. Each diet was followed by a graded ANG II infusion for 30-min sequential intervals at doses of 0.3, 1.0, and 3.0 ng·kg-1·min-1. Fasting serum oxytocin was assessed before and after ANG II infusion. Basal oxytocin levels (1,498.5 ± 94.7 vs. 1,663.3 ± 213.9 pg/ml, P = 0.51) did not differ after the low- and liberal-sodium diets. Following the ANG II infusion, ANG II levels and mean arterial pressure significantly increased as expected. In contrast, the ANG II infusion significantly lowered oxytocin levels from 1,498.5 ± 94.7 vs. 1,151.7 ± 118.1 pg/ml ( P < 0.001) on the low-sodium diet and from 1,663.3 ± 213.9 vs. 1,095.2 ± 87.4 pg/ml ( P = 0.03) on the liberal-sodium diet. The percent change in oxytocin following the ANG II infusion did not differ by sodium diet (-25 ± 5% vs. -28 ± 7% low- vs. liberal-sodium conditions, P > 0.99). Dietary sodium intake did not affect circulating oxytocin levels among healthy individuals. Systemic oxytocin levels were significantly suppressed following a peripheral ANG II infusion independent of dietary sodium conditions.
Collapse
Affiliation(s)
- Suman Srinivasa
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Anna Aulinas
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Timothy O'Malley
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Patrick Maehler
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Steven K Grinspoon
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
22
|
Zhang YP, Huo YL, Fang ZQ, Wang XF, Li JD, Wang HP, Peng W, Johnson AK, Xue B. Maternal high-fat diet acts on the brain to induce baroreflex dysfunction and sensitization of angiotensin II-induced hypertension in adult offspring. Am J Physiol Heart Circ Physiol 2018; 314:H1061-H1069. [PMID: 29373045 PMCID: PMC6008148 DOI: 10.1152/ajpheart.00698.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular disease in adult offspring. The present study tested the hypothesis that maternal HFD modulates the brain renin-angiotensin system (RAS), oxidative stress, and proinflammatory cytokines that alter angiotensin II (ANG II) and TNF-α actions and sensitize the ANG II-elicited hypertensive response in adult offspring. All offspring were cross fostered by dams on the same or opposite diet to yield the following four groups: offspring from normal-fat control diet-fed dams suckled by control diet-fed dams (OCC group) or by HFD-fed dams (OCH group) and offspring from HFD-fed dams fed a HFD suckled by control diet-fed dams (OHC group) or by HFD-fed dams (OHH group). RT-PCR analyses of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAS components, NADPH oxidase, and proinflammatory cytokines in 10-wk-old male offspring of dams fed a HFD during either pregnancy, lactation, or both (OHC, OCH, and OHH groups). These offspring also showed decreased cardiac baroreflex sensitivity and increased pressor responses to intracerebroventricular microinjection of either ANG II or TNF-α. Furthermore, chronic systemic infusion of ANG II resulted in enhanced upregulation of mRNA expression of RAS components, NADPH oxidase, and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented hypertensive response in the OHC, OCH, and OHH groups compared with the OCC group. The results suggest that maternal HFD blunts cardiac baroreflex function and enhances pressor responses to ANG II or proinflammatory cytokines through upregulation of the brain RAS, oxidative stress, and inflammation. NEW & NOTEWORTHY The results of our study indicate that a maternal high-fat diet during either pregnancy or lactation is sufficient for perinatal programming of sensitization for hypertension, which is associated with hyperreactivity of central cardiovascular nuclei that, in all likelihood, involves elevated expression of the renin-angiotensin system, NADPH oxidase, and proinflammatory cytokines. The present study demonstrates, for the first time, the central mechanism underlying maternal high-fat diet sensitization of the hypertensive response in adult offspring.
Collapse
Affiliation(s)
| | | | - Zhi-Qin Fang
- First Affiliated Hospital, Hebei North University, Zhangjiakou City, Hebei , China
| | | | | | | | | | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| |
Collapse
|
23
|
Erickson MA, Banks WA. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev 2018; 70:278-314. [PMID: 29496890 PMCID: PMC5833009 DOI: 10.1124/pr.117.014647] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood-brain barrier (BBB), blood-cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William A Banks
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Abstract
Water intake is one of the most basic physiological responses and is essential to sustain life. The perception of thirst has a critical role in controlling body fluid homeostasis and if neglected or dysregulated can lead to life-threatening pathologies. Clear evidence suggests that the perception of thirst occurs in higher-order centres, such as the anterior cingulate cortex (ACC) and insular cortex (IC), which receive information from midline thalamic relay nuclei. Multiple brain regions, notably circumventricular organs such as the organum vasculosum lamina terminalis (OVLT) and subfornical organ (SFO), monitor changes in blood osmolality, solute load and hormone circulation and are thought to orchestrate appropriate responses to maintain extracellular fluid near ideal set points by engaging the medial thalamic-ACC/IC network. Thirst has long been thought of as a negative homeostatic feedback response to increases in blood solute concentration or decreases in blood volume. However, emerging evidence suggests a clear role for thirst as a feedforward adaptive anticipatory response that precedes physiological challenges. These anticipatory responses are promoted by rises in core body temperature, food intake (prandial) and signals from the circadian clock. Feedforward signals are also important mediators of satiety, inhibiting thirst well before the physiological state is restored by fluid ingestion. In this Review, we discuss the importance of thirst for body fluid balance and outline our current understanding of the neural mechanisms that underlie the various types of homeostatic and anticipatory thirst.
Collapse
Affiliation(s)
- Claire Gizowski
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre and Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G1A4, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre and Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G1A4, Canada
| |
Collapse
|
25
|
Takagi S, Furube E, Nakano Y, Morita M, Miyata S. Microglia are continuously activated in the circumventricular organs of mouse brain. J Neuroimmunol 2017; 331:74-86. [PMID: 29107327 DOI: 10.1016/j.jneuroim.2017.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Microglia are the primary resident immune cells of the brain parenchyma and transform into the amoeboid form in the "activated state" under pathological conditions from the ramified form in the "resting state" under physiologically healthy conditions. In the present study, we found that microglia in the circumventricular organs (CVOs) of adult mice displayed the amoeboid form with fewer branched cellular processes even under normal conditions; however, those in other brain regions showed the ramified form, which is characterized by well-branched and dendritic cellular processes. Moreover, microglia in the CVOs showed the strong protein expression of the M1 markers CD16/32 and CD86 and M2 markers CD206 and Ym1 without any pathological stimulation. Thus, the present results indicate that microglia in the CVOs of adult mice are morphologically and functionally activated under normal conditions, possibly due to the specialized features of the CVOs, namely, the entry of blood-derived molecules into parenchyma through fenestrated capillaries and the presence of neural stem cells.
Collapse
Affiliation(s)
- Shohei Takagi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yousuke Nakano
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
26
|
Horwath JA, Hurr C, Butler SD, Guruju M, Cassell MD, Mark AL, Davisson RL, Young CN. Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight 2017; 2:90170. [PMID: 28422749 PMCID: PMC5396512 DOI: 10.1172/jci.insight.90170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by an excess accumulation of hepatic triglycerides, is a growing health epidemic. While ER stress in the liver has been implicated in the development of NAFLD, the role of brain ER stress - which is emerging as a key contributor to a number of chronic diseases including obesity - in NAFLD remains unclear. These studies reveal that chemical induction of ER stress in the brain caused hepatomegaly and hepatic steatosis in mice. Conversely, pharmacological reductions in brain ER stress in diet-induced obese mice rescued NAFLD independent of body weight, food intake, and adiposity. Evaluation of brain regions involved revealed robust activation of ER stress biomarkers and ER ultrastructural abnormalities in the circumventricular subfornical organ (SFO), a nucleus situated outside of the blood-brain-barrier, in response to high-fat diet. Targeted reductions in SFO-ER stress in obese mice via SFO-specific supplementation of the ER chaperone 78-kDa glucose-regulated protein ameliorated hepatomegaly and hepatic steatosis without altering body weight, food intake, adiposity, or obesity-induced hypertension. Overall, these findings indicate a novel role for brain ER stress, notably within the SFO, in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Julie A. Horwath
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Chansol Hurr
- Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Scott D. Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mallikarjun Guruju
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | | | - Allyn L. Mark
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
- Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robin L. Davisson
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Colin N. Young
- Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
27
|
Clarifying the Ghrelin System's Ability to Regulate Feeding Behaviours Despite Enigmatic Spatial Separation of the GHSR and Its Endogenous Ligand. Int J Mol Sci 2017; 18:ijms18040859. [PMID: 28422060 PMCID: PMC5412441 DOI: 10.3390/ijms18040859] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
Ghrelin is a hormone predominantly produced in and secreted from the stomach. Ghrelin is involved in many physiological processes including feeding, the stress response, and in modulating learning, memory and motivational processes. Ghrelin does this by binding to its receptor, the growth hormone secretagogue receptor (GHSR), a receptor found in relatively high concentrations in hypothalamic and mesolimbic brain regions. While the feeding and metabolic effects of ghrelin can be explained by the effects of this hormone on regions of the brain that have a more permeable blood brain barrier (BBB), ghrelin produced within the periphery demonstrates a limited ability to reach extrahypothalamic regions where GHSRs are expressed. Therefore, one of the most pressing unanswered questions plaguing ghrelin research is how GHSRs, distributed in brain regions protected by the BBB, are activated despite ghrelin’s predominant peripheral production and poor ability to transverse the BBB. This manuscript will describe how peripheral ghrelin activates central GHSRs to encourage feeding, and how central ghrelin synthesis and ghrelin independent activation of GHSRs may also contribute to the modulation of feeding behaviours.
Collapse
|
28
|
Abstract
In animals, nervous systems regulate the ingestion of food and water in a manner that reflects internal metabolic need. While the coordination of these two ingestive behaviors is essential for homeostasis, it has been unclear how internal signals of hunger and thirst interact to effectively coordinate food and water ingestion. In the last year, work in insects and mammals has begun to elucidate some of these interactions. As reviewed here, these studies have identified novel molecular and neural mechanisms that coordinate the regulation of food and water ingestion behaviors. These mechanisms include peptide signals that modulate neural circuits for both thirst and hunger, neurons that regulate both food and water ingestion, and neurons that integrate sensory information about both food and water in the external world. These studies argue that a deeper understanding of hunger and thirst will require closer examination of how these two biological drives interact.
Collapse
Affiliation(s)
- Nicholas Jourjine
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
29
|
Weisz F, Piccinin S, Mango D, Ngomba RT, Mercuri NB, Nicoletti F, Nisticò R. The role of adiponectin receptors in the regulation of synaptic transmission in the hippocampus. Synapse 2017; 71. [PMID: 28187508 DOI: 10.1002/syn.21964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
In the last two decades adiponectin, member of the adipokines family, gained attention because of its unique antidiabetic effects. However, the presence in the brain of adiponectin receptors and adiponectin itself raised interest because of the possible association with neuropsychiatric diseases. Indeed, clinical studies found altered concentration of adiponectin both in plasma and cerebrospinal fluid in several pathologies including depression, multiple sclerosis, Alzheimer's disease and stroke. Moreover, recent preclinical studies also suggest its involvement in different physiological functions. Despite this evidence very few studies attempted to elucidate the functional role of adiponectin at the synapse. To address this question, here we investigated the effect of Adiporon, an agonist of both adiponectin receptors on synaptic transmission and LTP at Schaffer-collateral CA1 pathway. Surprisingly, increasing concentration of Adiporon correlated with lower CA1-LTP levels and paired-pulse ratio, whereas basal transmission was always preserved. Collectively, our data show that the adiponectin system, beyond its involvement in metabolic diseases, plays also a critical role in synaptic activity thereby representing a putative target for the treatment of synaptic pathologies.
Collapse
Affiliation(s)
- Filippo Weisz
- Department of Pharmacology of Synaptic Plasticity Lab, Fondazione EBRI-Rita Levi Montalcini, Rome, Italy.,Department of Physiology and Pharmacology Erspamer, University of Rome "La Sapienza", Rome, Italy
| | - Sonia Piccinin
- Department of Pharmacology of Synaptic Plasticity Lab, Fondazione EBRI-Rita Levi Montalcini, Rome, Italy.,Department of Physiology and Pharmacology Erspamer, University of Rome "La Sapienza", Rome, Italy
| | - Dalila Mango
- Department of Pharmacology of Synaptic Plasticity Lab, Fondazione EBRI-Rita Levi Montalcini, Rome, Italy.,Department of Physiology and Pharmacology Erspamer, University of Rome "La Sapienza", Rome, Italy
| | | | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Erspamer, University of Rome "La Sapienza", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Robert Nisticò
- Department of Pharmacology of Synaptic Plasticity Lab, Fondazione EBRI-Rita Levi Montalcini, Rome, Italy.,University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
30
|
Smith R, Thayer JF, Khalsa SS, Lane RD. The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev 2017; 75:274-296. [PMID: 28188890 DOI: 10.1016/j.neubiorev.2017.02.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023]
Abstract
The neurovisceral integration (NVI) model was originally proposed to account for observed relationships between peripheral physiology, cognitive performance, and emotional/physical health. This model has also garnered a considerable amount of empirical support, largely from studies examining cardiac vagal control. However, recent advances in functional neuroanatomy, and in computational neuroscience, have yet to be incorporated into the NVI model. Here we present an updated/expanded version of the NVI model that incorporates these advances. Based on a review of studies of structural/functional anatomy, we first describe an eight-level hierarchy of nervous system structures, and the contribution that each level plausibly makes to vagal control. Second, we review recent work on a class of computational models of brain function known as "predictive coding" models. We illustrate how the computational dynamics of these models, when implemented within our proposed vagal control hierarchy, can increase understanding of the relationship between vagal control and both cognitive performance and emotional/physical health. We conclude by discussing novel implications of this updated NVI model for future research.
Collapse
Affiliation(s)
- Ryan Smith
- Department of Psychiatry, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724-5002, United States.
| | - Julian F Thayer
- Department of Psychology, Ohio State University, Columbus, OH, United States
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, United States; University of Tulsa, Oxley College of Health Sciences, Tulsa, OK, United States
| | - Richard D Lane
- Department of Psychiatry, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724-5002, United States
| |
Collapse
|
31
|
Paiva L, Sabatier N, Leng G, Ludwig M. Effect of Melanotan-II on Brain Fos Immunoreactivity and Oxytocin Neuronal Activity and Secretion in Rats. J Neuroendocrinol 2017; 29. [PMID: 28009464 DOI: 10.1111/jne.12454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Melanocortins stimulate the central oxytocin systems that are involved in regulating social behaviours. Alterations in central oxytocin have been linked to neurological disorders such as autism, and melanocortins have been proposed for therapeutic treatment. In the present study, we investigated how systemic administration of melanotan-II (MT-II), a melanocortin agonist, affects oxytocin neuronal activity and secretion in rats. The results obtained show that i.v., but not intranasal, administration of MT-II markedly induced Fos expression in magnocellular neurones of the supraoptic (SON) and paraventricular nuclei (PVN) of the hypothalamus, and this response was attenuated by prior i.c.v. administration of the melanocortin antagonist, SHU-9119. Electrophysiological recordings from identified magnocellular neurones of the SON showed that i.v. administration of MT-II increased the firing rate in oxytocin neurones but did not trigger somatodendritic oxytocin release within the SON as measured by microdialysis. Our data suggest that, after i.v., but not intranasal, administration of MT-II, the activity of magnocellular neurones of the SON is increased. Because previous studies showed that SON oxytocin neurones are inhibited in response to direct application of melanocortin agonists, the actions of i.v. MT-II are likely to be mediated at least partly indirectly, possibly by activation of inputs from the caudal brainstem, where MT-II also increased Fos expression.
Collapse
Affiliation(s)
- L Paiva
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - N Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - M Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Cancelliere NM, Ferguson AV. Subfornical organ neurons integrate cardiovascular and metabolic signals. Am J Physiol Regul Integr Comp Physiol 2016; 312:R253-R262. [PMID: 28003212 DOI: 10.1152/ajpregu.00423.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the plethora of circulating signals continuously sensed by the SFO, studies investigating how these signals are integrated are lacking. In this study, we use patch-clamp techniques to investigate how the traditionally classified "cardiovascular" hormone ANG II, "metabolic" hormone CCK and "metabolic" signal glucose interact and are integrated in the SFO. Sequential bath application of CCK (10 nM) and ANG (10 nM) onto dissociated SFO neurons revealed that 63% of responsive SFO neurons depolarized to both CCK and ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypoglycemic, normoglycemic, or hyperglycemic conditions and comparing the proportions of responses to ANG (n = 55) or CCK (n = 83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG (χ2, P < 0.05), and a smaller proportion of depolarizing responses along with a larger proportion of hyperpolarizing responses to CCK (χ2, P < 0.01). Our data demonstrate that SFO neurons excited by CCK are also excited by ANG and that glucose environment affects the responsiveness of neurons to both of these hormones, highlighting the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals. These findings have important implications for this structure's role in the control of various autonomic functions during hyperglycemia.
Collapse
Affiliation(s)
| | - Alastair V Ferguson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Richard D. The 17th international symposium in obesity; targeting the gut to treat obesity and its metabolic comorbidities. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2016. [DOI: 10.1038/ijosup.2016.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Vollmer LL, Ghosal S, McGuire JL, Ahlbrand RL, Li KY, Santin JM, Ratliff-Rang CA, Patrone LGA, Rush J, Lewkowich IP, Herman JP, Putnam RW, Sah R. Microglial Acid Sensing Regulates Carbon Dioxide-Evoked Fear. Biol Psychiatry 2016; 80:541-51. [PMID: 27422366 PMCID: PMC5014599 DOI: 10.1016/j.biopsych.2016.04.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Carbon dioxide (CO2) inhalation, a biological challenge and pathologic marker in panic disorder, evokes intense fear and panic attacks in susceptible individuals. The molecular identity and anatomic location of CO2-sensing systems that translate CO2-evoked fear remain unclear. We investigated contributions of microglial acid sensor T cell death-associated gene-8 (TDAG8) and microglial proinflammatory responses in CO2-evoked behavioral and physiological responses. METHODS CO2-evoked freezing, autonomic, and respiratory responses were assessed in TDAG8-deficient ((-/-)) and wild-type ((+/+)) mice. Involvement of TDAG8-dependent microglial activation and proinflammatory cytokine interleukin (IL)-1β with CO2-evoked responses was investigated using microglial blocker, minocycline, and IL-1β antagonist IL-1RA. CO2-chemosensitive firing responses using single-cell patch clamping were measured in TDAG8(-/-) and TDAG8(+/+) mice to gain functional insights. RESULTS TDAG8 expression was localized in microglia enriched within the sensory circumventricular organs. TDAG8(-/-) mice displayed attenuated CO2-evoked freezing and sympathetic responses. TDAG8 deficiency was associated with reduced microglial activation and proinflammatory cytokine IL-1β within the subfornical organ. Central infusion of microglial activation blocker minocycline and IL-1β antagonist IL-1RA attenuated CO2-evoked freezing. Finally, CO2-evoked neuronal firing in patch-clamped subfornical organ neurons was dependent on acid sensor TDAG8 and IL-1β. CONCLUSIONS Our data identify TDAG8-dependent microglial acid sensing as a unique chemosensor for detecting and translating hypercapnia to fear-associated behavioral and physiological responses, providing a novel mechanism for homeostatic threat detection of relevance to psychiatric conditions such as panic disorder.
Collapse
Affiliation(s)
- Lauren Larke Vollmer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati; Neuroscience Graduate Program, University of Cincinnati, Cincinnati
| | - Sriparna Ghosal
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati; Neuroscience Graduate Program, University of Cincinnati, Cincinnati
| | - Jennifer L McGuire
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati
| | - Rebecca L Ahlbrand
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati
| | - Ke-Yong Li
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton
| | - Joseph M Santin
- Department of Biological Sciences, Wright State University, Dayton
| | | | - Luis G A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University, FCAV, Jaboticabal, São Paulo, Brazil
| | - Jennifer Rush
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati
| | - Ian P Lewkowich
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati; Neuroscience Graduate Program, University of Cincinnati, Cincinnati
| | - Robert W Putnam
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton
| | - Renu Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati; Neuroscience Graduate Program, University of Cincinnati, Cincinnati; Veterans Affairs (VA) Medical Center, Cincinnati, Ohio.
| |
Collapse
|
35
|
Bilateral Renal Denervation Ameliorates Isoproterenol-Induced Heart Failure through Downregulation of the Brain Renin-Angiotensin System and Inflammation in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3562634. [PMID: 27746855 PMCID: PMC5056308 DOI: 10.1155/2016/3562634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) is characterized by cardiac dysfunction along with autonomic unbalance that is associated with increased renin-angiotensin system (RAS) activity and elevated levels of proinflammatory cytokines (PICs). Renal denervation (RD) has been shown to improve cardiac function in HF, but the protective mechanisms remain unclear. The present study tested the hypothesis that RD ameliorates isoproterenol- (ISO-) induced HF through regulation of brain RAS and PICs. Chronic ISO infusion resulted in remarked decrease in blood pressure (BP) and increase in heart rate and cardiac dysfunction, which was accompanied by increased BP variability and decreased baroreflex sensitivity and HR variability. Most of these adverse effects of ISO on cardiac and autonomic function were reversed by RD. Furthermore, ISO upregulated mRNA and protein expressions of several components of the RAS and PICs in the lamina terminalis and hypothalamic paraventricular nucleus, two forebrain nuclei involved in cardiovascular regulations. RD significantly inhibited the upregulation of these genes. Either intracerebroventricular AT1-R antagonist, irbesartan, or TNF-α inhibitor, etanercept, mimicked the beneficial actions of RD in the ISO-induced HF. The results suggest that the RD restores autonomic balance and ameliorates ISO-induced HF and that the downregulated RAS and PICs in the brain contribute to these beneficial effects of RD.
Collapse
|
36
|
Abstract
Hypertension affects over 25 % of the population with the incidence continuing to rise, due in part to the growing obesity epidemic. Chronic elevations in sympathetic nerve activity (SNA) are a hallmark of the disease and contribute to elevations in blood pressure through influences on the vasculature, kidney, and heart (i.e., neurogenic hypertension). In this regard, a number of central nervous system mechanisms and neural pathways have emerged as crucial in chronically elevating SNA. However, it is important to consider that "sympathetic signatures" are present, with differential increases in SNA to regional organs that are dependent upon the disease progression. Here, we discuss recent findings on the central nervous system mechanisms and autonomic regulatory networks involved in neurogenic hypertension, in both non-obesity- and obesity-associated hypertension, with an emphasis on angiotensin-II, salt, oxidative and endoplasmic reticulum stress, inflammation, and the adipokine leptin.
Collapse
|
37
|
Xue B, Yu Y, Zhang Z, Guo F, Beltz TG, Thunhorst RL, Felder RB, Johnson AK. Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation. Hypertension 2016; 67:970-6. [PMID: 27021010 DOI: 10.1161/hypertensionaha.115.06736] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022]
Abstract
Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high-fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin II administration that is mediated at least, in part, by increased activity of brain renin-angiotensin system and proinflammatory cytokines. This study tested whether leptin mediates this HFD-induced sensitization of angiotensin II-elicited hypertension by interacting with brain renin-angiotensin system and proinflammatory cytokine mechanisms. Rats fed an HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels, and mRNA expression of leptin and its receptors in the lamina terminalis and hypothalamic paraventricular nucleus. Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of angiotensin II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the angiotensin II type 1 receptor antagonist irbesartan, the tumor necrosis factor-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus. The leptin antagonist and the inhibitors of angiotensin II type 1 receptor, tumor necrosis factor-α synthesis, and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of angiotensin II-elicited hypertension is mediated by leptin through upregulation of central renin-angiotensin system and proinflammatory cytokines.
Collapse
Affiliation(s)
- Baojian Xue
- From the Departments of Psychological and Brain Sciences (B.X., F.G., T.G.B., R.L.T., A.K.J.), Pharmacology (A.K.J.), and Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City; and Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China (Z.Z.).
| | - Yang Yu
- From the Departments of Psychological and Brain Sciences (B.X., F.G., T.G.B., R.L.T., A.K.J.), Pharmacology (A.K.J.), and Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City; and Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China (Z.Z.)
| | - Zhongming Zhang
- From the Departments of Psychological and Brain Sciences (B.X., F.G., T.G.B., R.L.T., A.K.J.), Pharmacology (A.K.J.), and Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City; and Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China (Z.Z.)
| | - Fang Guo
- From the Departments of Psychological and Brain Sciences (B.X., F.G., T.G.B., R.L.T., A.K.J.), Pharmacology (A.K.J.), and Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City; and Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China (Z.Z.)
| | - Terry G Beltz
- From the Departments of Psychological and Brain Sciences (B.X., F.G., T.G.B., R.L.T., A.K.J.), Pharmacology (A.K.J.), and Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City; and Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China (Z.Z.)
| | - Robert L Thunhorst
- From the Departments of Psychological and Brain Sciences (B.X., F.G., T.G.B., R.L.T., A.K.J.), Pharmacology (A.K.J.), and Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City; and Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China (Z.Z.)
| | - Robert B Felder
- From the Departments of Psychological and Brain Sciences (B.X., F.G., T.G.B., R.L.T., A.K.J.), Pharmacology (A.K.J.), and Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City; and Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China (Z.Z.)
| | - Alan Kim Johnson
- From the Departments of Psychological and Brain Sciences (B.X., F.G., T.G.B., R.L.T., A.K.J.), Pharmacology (A.K.J.), and Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City; and Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China (Z.Z.).
| |
Collapse
|
38
|
Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol Rev 2016; 67:564-600. [PMID: 26071095 DOI: 10.1124/pr.115.010629] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Steve Chen
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Thomas A Lutz
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - David G Parkes
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Jonathan D Roth
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| |
Collapse
|
39
|
Claflin KE, Grobe JL. Control of energy balance by the brain renin-angiotensin system. Curr Hypertens Rep 2016; 17:38. [PMID: 25833461 DOI: 10.1007/s11906-015-0549-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The renin-angiotensin system (RAS) exists as a circulating hormone system but it is also used by various tissues of the body, including the brain, as a paracrine signaling mechanism. The local brain version of the RAS is mechanistically involved in fluid balance and blood pressure control, and there is growing appreciation for a role of the brain RAS in the control of energy balance. Here, we review major evidence for the control of energy balance by the brain RAS; outline the current understanding of the RAS components, targets, and mechanisms involved; and highlight some major questions that currently face the field.
Collapse
Affiliation(s)
- Kristin E Claflin
- Department of Pharmacology, Center for Hypertension Research, Obesity Research & Education Initiative, François M. Abboud Cardiovascular Research Center, and Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, 51 Newton Rd., 2-307 BSB, Iowa City, IA, 52242, USA
| | | |
Collapse
|
40
|
Xue B, Thunhorst RL, Yu Y, Guo F, Beltz TG, Felder RB, Johnson AK. Central Renin-Angiotensin System Activation and Inflammation Induced by High-Fat Diet Sensitize Angiotensin II-Elicited Hypertension. Hypertension 2015; 67:163-70. [PMID: 26573717 DOI: 10.1161/hypertensionaha.115.06263] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023]
Abstract
Obesity has been shown to promote renin-angiotensin system activity and inflammation in the brain and to be accompanied by increased sympathetic activity and blood pressure. Our previous studies demonstrated that administration of a subpressor dose of angiotensin (Ang) II sensitizes subsequent Ang II-elicited hypertension. The present study tested whether high-fat diet (HFD) feeding also sensitizes the Ang II-elicited hypertensive response and whether HFD-induced sensitization is mediated by an increase in renin-angiotensin system activity and inflammatory mechanisms in the brain. HFD did not increase baseline blood pressure, but enhanced the hypertensive response to Ang II compared with a normal-fat diet. The sensitization produced by the HFD was abolished by concomitant central infusions of either a tumor necrosis factor-α synthesis inhibitor, pentoxifylline, an Ang II type 1 receptor blocker, irbesartan, or an inhibitor of microglial activation, minocycline. Furthermore, central pretreatment with tumor necrosis factor-α mimicked the sensitizing action of a central subpressor dose of Ang II, whereas central pentoxifylline or minocycline abolished this Ang II-induced sensitization. Real-time quantitative reverse transcription-polymerase chain reaction analysis of lamina terminalis tissue indicated that HFD feeding, central tumor necrosis factor-α, or a central subpressor dose of Ang II upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines, whereas inhibition of Ang II type 1 receptor and of inflammation reversed these changes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by upregulation of the brain renin-angiotensin system and of central proinflammatory cytokines.
Collapse
Affiliation(s)
- Baojian Xue
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City.
| | - Robert L Thunhorst
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Yang Yu
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Fang Guo
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Terry G Beltz
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Robert B Felder
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Alan Kim Johnson
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| |
Collapse
|
41
|
Hindmarch CCT, Ferguson AV. Physiological roles for the subfornical organ: a dynamic transcriptome shaped by autonomic state. J Physiol 2015; 594:1581-9. [PMID: 26227400 DOI: 10.1113/jp270726] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/26/2015] [Indexed: 12/15/2022] Open
Abstract
The subfornical organ (SFO) is a circumventricular organ recognized for its ability to sense and integrate hydromineral and hormonal circulating fluid balance signals, information which is transmitted to central autonomic nuclei to which SFO neurons project. While the role of SFO was once synonymous with physiological responses to osmotic, volumetric and cardiovascular challenge, recent data suggest that SFO neurons also sense and integrate information from circulating signals of metabolic status. Using microarrays, we have confirmed the expression of receptors already described in the SFO, and identified many novel transcripts expressed in this circumventricular organ including receptors for many of the critical circulating energy balance signals such as adiponectin, apelin, endocannabinoids, leptin, insulin and peptide YY. This transcriptome analysis also identified SFO transcripts, the expressions of which are significantly changed by either 72 h dehydration, or 48 h starvation, compared to fed and euhydrated controls. Expression and potential roles for many of these targets are yet to be confirmed and elucidated. Subsequent validation of data for adiponectin and leptin receptors confirmed that receptors for both are expressed in the SFO, that discrete populations of neurons in this tissue are functionally responsive to these adipokines, and that such responsiveness is regulated by physiological state. Thus, transcriptomic analysis offers great promise for understanding the integrative complexity of these physiological systems, especially with development of technologies allowing description of the entire transcriptome of single, carefully phenotyped, SFO neurons. These data will ultimately elucidate mechanisms through which these uniquely positioned neurons respond to and integrate complex circulating signals.
Collapse
Affiliation(s)
- Charles Colin Thomas Hindmarch
- School of Clinical Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.,Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada, K7L 3N6
| |
Collapse
|
42
|
The neural basis of one's own conscious and unconscious emotional states. Neurosci Biobehav Rev 2015; 57:1-29. [DOI: 10.1016/j.neubiorev.2015.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/01/2015] [Accepted: 08/01/2015] [Indexed: 01/10/2023]
|
43
|
Coldren KM, Brown R, Hasser EM, Heesch CM. Relaxin increases sympathetic nerve activity and activates spinally projecting neurons in the paraventricular nucleus of nonpregnant, but not pregnant, rats. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1553-68. [PMID: 26400184 DOI: 10.1152/ajpregu.00186.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022]
Abstract
Pregnancy is characterized by increased blood volume and baseline sympathetic nerve activity (SNA), vasodilation, and tachycardia. Relaxin (RLX), an ovarian hormone elevated in pregnancy, activates forebrain sites involved in control of blood volume and SNA through ANG II-dependent mechanisms and contributes to adaptations during pregnancy. In anesthetized, arterial baroreceptor-denervated nonpregnant (NP) rats, RLX microinjected into the subfornical organ (SFO; 0.77 pmol in 50 nl) produced sustained increases in lumbar SNA (8 ± 3%) and mean arterial pressure (MAP; 26 ± 4 mmHg). Low-dose intracarotid artery infusion of RLX (155 pmol·ml(-1)·h(-1); 1.5 h) had minor transient effects on AP and activated neurons [increased Fos-immunoreactivity (IR)] in the SFO and in spinally projecting (19 ± 2%) and arginine-vasopressin (AVP)-IR (21 ± 5%) cells in the paraventricular nucleus of the hypothalamus of NP, but not pregnant (P), rats. However, mRNA for RLX and ANG II type 1a receptors in the SFO was preserved in pregnancy. RLX receptor-IR is present in the region of the SFO in NP and P rats and is localized in astrocytes, the major source of angiotensinogen in the SFO. These data provide an anatomical substrate for a role of RLX in the resetting of AVP secretion and increased baseline SNA in pregnancy. Since RLX and ANG II receptor expression was preserved in the SFO of P rats, we speculate that the lack of response to exogenous RLX may be due to maximal activation by elevated endogenous levels of RLX in near-term pregnancy.
Collapse
Affiliation(s)
- K Max Coldren
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Randall Brown
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri; and
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Cheryl M Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
44
|
Abstract
Obesity ensues from an imbalance between energy intake and expenditure that results from gene-environment interactions, which favour a positive energy balance. A society that promotes unhealthy food and encourages sedentary lifestyle (that is, an obesogenic environment) has become a major contributory factor in excess fat deposition in individuals predisposed to obesity. Energy homeostasis relies upon control of energy intake as well as expenditure, which is in part determined by the themogenesis of brown adipose tissue and mediated by the sympathetic nervous system. Several areas of the brain that constitute cognitive and autonomic brain systems, which in turn form networks involved in the control of appetite and thermogenesis, also contribute to energy homeostasis. These networks include the dopamine mesolimbic circuit, as well as the opioid, endocannabinoid and melanocortin systems. The activity of these networks is modulated by peripheral factors such as hormones derived from adipose tissue and the gut, which access the brain via the circulation and neuronal signalling pathways to inform the central nervous system about energy balance and nutritional status. In this Review, I focus on the determinants of energy homeostasis that have emerged as prominent factors relevant to obesity.
Collapse
Affiliation(s)
- Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada
| |
Collapse
|
45
|
Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes. Cell Tissue Res 2015; 362:163-76. [PMID: 25959293 DOI: 10.1007/s00441-015-2179-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022]
Abstract
Extracellular purines (ATP, ADP, AMP and adenosine) are important signaling molecules in the CNS. Levels of extracellular purines are regulated by enzymes located at the cell surface referred to as ectonucleotidases. Time-dependent changes in their expression could profoundly influence the availability of extracellular purines and thereby purinergic signaling. Using radioactive in situ hybridization, we analyzed the mRNA distribution of the enzymes NTPDase1, -2 and -3 and ecto-5'-nucleotidase in the prosencephalon of two mouse strains: melatonin-proficient C3H and melatonin-deficient C57Bl. The mRNAs of these enzymes were localized to specific brain regions, such as hippocampus, striatum, medial habenula and ventromedial hypothalamus. NTPDase3 expression was more widely distributed than previously thought. All ectonucleotidases investigated revealed a prominent time-dependent expression pattern. In C3H, the mRNA expression of all four enzymes gradually increased during the day and peaked during the night. In contrast, in C57Bl, ecto-5'-nucleotidase expression peaked at the beginning of the day and gradually decreased to trough levels at night. Recording of locomotor activity revealed higher daytime activity of C57Bl than of C3H. Our results indicate that the expression of ectonucleotidases varies according to time and genotype and suggest that melatonin exerts modulatory effects associated with different regulations of purinergic signaling in the brain. These findings provide an important basis for further examination of the complexity of the purinergic system in the brain.
Collapse
|
46
|
Young CN, Morgan DA, Butler SD, Rahmouni K, Gurley SB, Coffman TM, Mark AL, Davisson RL. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis. Mol Metab 2015; 4:337-43. [PMID: 25830096 PMCID: PMC4354922 DOI: 10.1016/j.molmet.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/15/2022] Open
Abstract
Objective Elevations in brain angiotensin-II cause increased energy expenditure and a lean phenotype. Interestingly, the metabolic effects of increased brain angiotensin-II mimic the actions of leptin, suggesting an interaction between the two systems. Here we demonstrate that angiotensin-type 1a receptors (AT1aR) in the subfornical organ (SFO), a forebrain structure emerging as an integrative metabolic center, play a key role in the body weight-reducing effects of leptin via brown adipose tissue (BAT) thermogenesis. Methods Cre/LoxP technology coupled with targeted viral delivery to the SFO in a mouse line bearing a conditional allele of the Agtr1a gene was utilized to determine the interaction between leptin and SFO AT1aR in metabolic regulation. Results Selective deletion of AT1aR in the SFO attenuated leptin-induced weight loss independent of changes in food intake or locomotor activity. This was associated with diminished leptin-induced increases in core body temperature, blunted upregulation of BAT thermogenic markers, and abolishment of leptin-mediated sympathetic activation to BAT. Conclusions These data identify a novel interaction between angiotensin-II and leptin in the control of BAT thermogenesis and body weight, and highlight a previously unrecognized role for the forebrain SFO in metabolic regulation.
Collapse
Affiliation(s)
- Colin N. Young
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Donald A. Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Scott D. Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Susan B. Gurley
- Division of Nephrology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Thomas M. Coffman
- Division of Nephrology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Allyn L. Mark
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Robin L. Davisson
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
- Corresponding author. T9-014C Veterinary Research Tower, Cornell University, Ithaca, NY, 14853-6401, USA. Tel.: +1 607 253 3537; fax: +1 607 253 3378.
| |
Collapse
|
47
|
Xue B, Zhang Z, Beltz TG, Guo F, Hay M, Johnson AK. Genetic knockdown of estrogen receptor-alpha in the subfornical organ augments ANG II-induced hypertension in female mice. Am J Physiol Regul Integr Comp Physiol 2014; 308:R507-16. [PMID: 25552661 DOI: 10.1152/ajpregu.00406.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study tested the hypotheses that 1) ERα in the brain plays a key role in the estrogen-protective effects against ANG II-induced hypertension, and 2) that the subfornical organ (SFO) is a key site where ERα mediates these protective actions. In this study, a "floxed" ERα transgenic mouse line (ERα(flox)) was used to create models in which ERα was knocked down in the brain or just in the SFO. Female mice with ERα ablated in the nervous system (Nestin-ERα(-) mice) showed greater increases in blood pressure (BP) in response to ANG II. Furthermore, females with ERα knockdown specifically in the SFO [SFO adenovirus-Cre (Ad-Cre) injected ERα(flox) mice] also showed an enhanced pressor response to ANG II. Immunohistochemical (IHC), RT-PCR, and Western blot analyses revealed a marked reduction in the expression of ERα in nervous tissues and, in particular, in the SFO. These changes were not present in peripheral tissues in Nestin-ERα(-) mice or Ad-Cre-injected ERα(flox) mice. mRNA expression of components of the renin-angiotensin system in the lamina terminalis were upregulated in Nestin-ERα(-) mice. Moreover, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction of BP in Nestin-ERα(-) mice or SFO Ad-Cre-injected mice, suggesting that knockdown of ERα in the nervous system or the SFO alone augments central ANG II-induced increase in sympathetic tone. The results indicate that interfering with the action of estrogen on SFO ERα is sufficient to abolish the protective effects of estrogen against ANG II-induced hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China
| | - Terry G Beltz
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Fang Guo
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Meredith Hay
- Department of Physiology, University of Arizona, Tucson, Arizona; Evelyn F. McKnight Brain Institute, Tucson, Arizona; and
| | - Alan Kim Johnson
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and Department of Pharmacology, University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
48
|
Hurley SW, Johnson AK. The role of the lateral hypothalamus and orexin in ingestive behavior: a model for the translation of past experience and sensed deficits into motivated behaviors. Front Syst Neurosci 2014; 8:216. [PMID: 25431553 PMCID: PMC4230038 DOI: 10.3389/fnsys.2014.00216] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/13/2014] [Indexed: 01/23/2023] Open
Abstract
The hypothalamus has been recognized for its involvement in both maintaining homeostasis and mediating motivated behaviors. The present article discusses a region of the hypothalamus known as the lateral hypothalamic area (LHA). It is proposed that brain nuclei within the LHA including the dorsal region of the lateral hypothalamus (LHAd) and perifornical area (PeF) provide a link between neural systems that regulate homeostasis and those that mediate appetitive motivated behaviors. Functional and immunohistochemical data indicate that the LHA promotes many motivated behaviors including food intake, water intake, salt intake, and sexual behavior. Anatomical tracing experiments demonstrate that the LHA is positioned to receive inputs from brain areas involved in regulating body fluid and energy homeostasis. Regions within the LHA send dense projections to the ventral tegmental area (VTA), providing a pathway for the LHA to influence dopaminergic systems generally recognized to be involved in motivated behaviors and their reinforcement. Furthermore, the LHA contains neurons that synthesize orexin/hypocretin, a neuropeptide that promotes many appetitive motivated behaviors. The LHA also receives inputs from brain areas involved in reward-related learning and orexin neuron activation can become conditioned to environmental stimuli that are associated with rewards. Therefore, it is hypothesized that the LHA integrates signaling from areas that regulate body fluid and energy balance and reward-related learning. In turn, this information is “fed into” mesolimbic circuitry to influence the performance of motivated behaviors. This hypothesis may foster experiments that will result in an improved understanding of LHA function. An improved understanding of LHA function may aid in treating disorders that are associated with an excess or impairment in the expression of ingestive behavior including obesity, anorexia, impairments in thirst, salt gluttony, and salt deficiency.
Collapse
Affiliation(s)
- Seth W Hurley
- Department of Psychology, University of Iowa Iowa City, IA, USA
| | - Alan Kim Johnson
- Department of Psychology, University of Iowa Iowa City, IA, USA ; Department of Pharmacology, University of Iowa Iowa City, IA, USA ; Department of Health and Human Physiology, University of Iowa Iowa City, IA, USA ; François M. Abboud Cardiovascular Center, University of Iowa Iowa City, IA, USA
| |
Collapse
|
49
|
Caron A, Baraboi ED, Laplante M, Richard D. DEP domain-containing mTOR-interacting protein in the rat brain: Distribution of expression and potential implication. J Comp Neurol 2014; 523:93-107. [PMID: 25159114 DOI: 10.1002/cne.23668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec Quebec G1V 4G5 Canada
| | - Elena-Dana Baraboi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec Quebec G1V 4G5 Canada
| | - Mathieu Laplante
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec Quebec G1V 4G5 Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec Quebec G1V 4G5 Canada
| |
Collapse
|
50
|
Klenke U, Taylor-Burds C, Wray S. Metabolic influences on reproduction: adiponectin attenuates GnRH neuronal activity in female mice. Endocrinology 2014; 155:1851-63. [PMID: 24564393 PMCID: PMC3990841 DOI: 10.1210/en.2013-1677] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic dysfunctions are often linked to reproductive abnormalities. Adiponectin (ADP), a peripheral hormone secreted by white adipose tissue, is important in energy homeostasis and appetite regulation. GnRH neurons are integral components of the reproductive axis, controlling synthesis, and release of gonadotropins. This report examined whether ADP can directly act on GnRH neurons. Double-label immunofluorescence on brain sections from adult female revealed that a subpopulation of GnRH neurons express ADP receptor (AdipoR)2. GnRH/AdipoR2+ cells were distributed throughout the forebrain. To determine the influence of ADP on GnRH neuronal activity and the signal transduction pathway of AdipoR2, GnRH neurons maintained in explants were assayed using whole-cell patch clamping and calcium imaging. This mouse model system circumvents the dispersed distribution of GnRH neurons within the forebrain, making analysis of large numbers of GnRH cells possible. Single-cell PCR analysis and immunocytochemistry confirmed the presence of AdipoR2 in GnRH neurons in explants. Functional analysis revealed 20% of the total GnRH population responded to ADP, exhibiting hyperpolarization or decreased calcium oscillations. Perturbation studies revealed that ADP activates AMP kinase via the protein kinase Cζ/liver kinase B1 pathway. The modulation of GnRH neuronal activity by ADP demonstrated in this report directly links energy balance to neurons controlling reproduction.
Collapse
Affiliation(s)
- Ulrike Klenke
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3703
| | | | | |
Collapse
|