1
|
Finnell JE, Ferrario CR. Voluntary food restriction does not affect circulating corticosterone in obesity-prone or -resistant male and female rats. Physiol Behav 2025; 288:114729. [PMID: 39510225 DOI: 10.1016/j.physbeh.2024.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Food restriction in rodents can increase circulating corticosterone, which reflects activation of physiological stress responses. These responses affect a myriad of behaviors and physiological processes and can increase the risk of obesity. Most studies in this area have used experimenter-imposed restriction. However, rats will voluntarily restrict their food intake if they are returned to chow after a period of access to sugary, fatty "junk food" (JF) diet. Here we examine the effects of voluntary food restriction in obesity-prone and -resistant male and female rats on circulating corticosterone concentrations and determine whether corticosterone release in response to acute stress differs in groups with a history of JF consumption.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, University of Michigan, Ann Arbor MI 48109, USA; Pharmacology and Toxicology State University of New York at Buffalo, Buffalo NY 14203, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor MI 48109, USA; Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor MI 48109, USA.
| |
Collapse
|
2
|
Ferrario CR, Münzberg-Gruening H, Rinaman L, Betley JN, Borgland SL, Dus M, Fadool DA, Medler KF, Morton GJ, Sandoval DA, de La Serre CB, Stanley SA, Townsend KL, Watts AG, Maruvada P, Cummings D, Cooke BM. Obesity- and diet-induced plasticity in systems that control eating and energy balance. Obesity (Silver Spring) 2024; 32:1425-1440. [PMID: 39010249 PMCID: PMC11269035 DOI: 10.1002/oby.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024]
Abstract
In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.
Collapse
Grants
- P30 DK048520 NIDDK NIH HHS
- NSF1949989 National Science Foundation
- T32 DC000044 NIDCD NIH HHS
- R01 DK133464 NIDDK NIH HHS
- R01 DK089056 NIDDK NIH HHS
- R01 DK130246 NIDDK NIH HHS
- R01 DK124801 NIDDK NIH HHS
- R01 DK100685 NIDDK NIH HHS
- R01 DK124238 NIDDK NIH HHS
- R01 DK130875 NIDDK NIH HHS
- R01 DK125890 NIDDK NIH HHS
- Z99 DK999999 Intramural NIH HHS
- R01 DK124461 NIDDK NIH HHS
- K26 DK138368 NIDDK NIH HHS
- R01 DK121995 NIDDK NIH HHS
- R01 DK121531 NIDDK NIH HHS
- P30 DK089503 NIDDK NIH HHS
- P01 DK119130 NIDDK NIH HHS
- R01 DK118910 NIDDK NIH HHS
- R01 AT011683 NCCIH NIH HHS
- Reported research was supported by DK130246, DK092587, AT011683, MH059911, DK100685, DK119130, DK124801, DK133399, AG079877, DK133464, T32DC000044, F31DC016817, NSF1949989, DK089056, DK124238, DK138368, DK121995, DK125890, DK118910, DK121531, DK124461, DK130875; Canada Research Chair: 950-232211, CIHRFDN148473, CIHRPJT185886; USDA Predoctoral Fellowship; Endowment from the Robinson Family and Tallahassee Memorial Hospital; Department of Defense W81XWH-20-1-0345 and HT9425-23-1-0244; American Diabetes Association #1-17-ACE-31; W.M. Keck Foundation Award; National Science Foundation CAREER 1941822
- R01 DK133399 NIDDK NIH HHS
- HT9425-23-1-0244 Department of Defense
- R01 DK092587 NIDDK NIH HHS
- W81XWH-20-1-0345 Department of Defense
- 1941822 National Science Foundation
- R01 MH059911 NIMH NIH HHS
- F31 DC016817 NIDCD NIH HHS
- R01 AG079877 NIA NIH HHS
- P30 DK017047 NIDDK NIH HHS
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heike Münzberg-Gruening
- Laboratory of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kathryn F Medler
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute at South Lake Union, Seattle, Washington, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diana Cummings
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Bradley M Cooke
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Fetterly TL, Catalfio AM, Ferrario CR. Effects of junk-food on food-motivated behavior and nucleus accumbens glutamate plasticity; insights into the mechanism of calcium-permeable AMPA receptor recruitment. Neuropharmacology 2024; 242:109772. [PMID: 37898332 PMCID: PMC10883075 DOI: 10.1016/j.neuropharm.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
In rats, eating obesogenic diets increases calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly, these diet-induced alterations in NAc transmission are pronounced and sustained in obesity-prone (OP) male rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying this NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Together results show that diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work helps elucidate how diet interacts with obesity susceptibility to influence food-motivated behavior and extends our fundamental understanding of NAc CP-AMPAR recruitment.
Collapse
Affiliation(s)
- Tracy L Fetterly
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Psychology Department (Biopsychology) University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Medina ND, de Carvalho-Ferreira JP, Beghini J, da Cunha DT. The Psychological Impact of the Widespread Availability of Palatable Foods Predicts Uncontrolled and Emotional Eating in Adults. Foods 2023; 13:52. [PMID: 38201080 PMCID: PMC10778353 DOI: 10.3390/foods13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to investigate the role of the psychological impact of environments rich in palatable foods on three aspects of eating behavior: cognitive restraint (CR), uncontrolled eating (UE), and emotional eating (EE). The hypotheses were as follows: (a) The psychological impact (i.e., motivation to eat) of an environment rich in palatable foods will positively predict CR, UE, and EE; (b) dieting will predict CR, UE, and EE; and (c) CR, UE, and EE will positively predict body mass index (BMI). This study had a cross-sectional design in which data were collected online from 413 subjects. The psychological impact of food-rich environments (food available, food present, and food tasted) was assessed using the Power of Food Scale (PFS), and CR, UE, and EE were assessed using the Three-Factor Eating Questionnaire (TFEQ-R18). Both instruments were tested for confirmatory factor analysis. The relationship between constructs was measured using partial least-square structural equation modeling (PLS-SEM). "Food available" positively predicted all TFEQ-R18 factors (p < 0.01). "Food present" positively predicted UE (p < 0.001) and EE (p = 0.01). People currently on a diet showed higher levels of CR (p < 0.001) and EE (p = 0.02). UE and EE positively predicted BMI. Thus, CR, UE, and EE were positively predicted by the motivation to consume palatable foods in varying proximity, suggesting that the presence of food and, more importantly, its general availability may be important determinants of eating behavior, particularly UE and EE. Health strategies should consider the influence of the food environment to prevent and better manage impairments in eating behavior. Sex differences suggest that special attention should be paid to women. Furthermore, dieting was associated with higher levels of EE, which in turn was associated with higher BMI. Weight loss interventions should consider this vulnerability.
Collapse
Affiliation(s)
| | | | | | - Diogo Thimoteo da Cunha
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Sao Paulo 13083-872, Brazil; (N.d.M.); (J.P.d.C.-F.); (J.B.)
| |
Collapse
|
5
|
Sadler JR, Thapaliya G, Ranganath K, Gabay A, Chen L, Smith KR, Osorio RS, Convit A, Carnell S. Paediatric obesity and metabolic syndrome associations with cognition and the brain in youth: Current evidence and future directions. Pediatr Obes 2023; 18:e13042. [PMID: 37202148 PMCID: PMC10826337 DOI: 10.1111/ijpo.13042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Obesity and components of the metabolic syndrome (MetS) are associated with differences in brain structure and function and in general and food-related cognition in adults. Here, we review evidence for similar phenomena in children and adolescents, with a focus on the implications of extant research for possible underlying mechanisms and potential interventions for obesity and MetS in youth. Current evidence is limited by a relative reliance on small cross-sectional studies. However, we find that youth with obesity and MetS or MetS components show differences in brain structure, including alterations in grey matter volume and cortical thickness across brain regions subserving reward, cognitive control and other functions, as well as in white matter integrity and volume. Children with obesity and MetS components also show some evidence for hyperresponsivity of food reward regions and hyporesponsivity of cognitive control circuits during food-related tasks, altered brain responses to food tastes, and altered resting-state connectivity including between cognitive control and reward processing networks. Potential mechanisms for these findings include neuroinflammation, impaired vascular reactivity, and effects of diet and obesity on myelination and dopamine function. Future observational research using longitudinal measures, improved sampling strategies and study designs, and rigorous statistical methods, promises to further illuminate dynamic relationships and causal mechanisms. Intervention studies targeted at modifiable biological and behavioural factors associated with paediatric obesity and MetS can further inform mechanisms, as well as test whether brain and behaviour can be altered for beneficial outcomes.
Collapse
Affiliation(s)
- Jennifer R. Sadler
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kushi Ranganath
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Gabay
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly R. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - Antonio Convit
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Gladding JM, Lingawi NW, Leung BK, Kendig MD, Chieng BC, Laurent V. High fat diet allows food-predictive stimuli to energize action performance in the absence of hunger, without distorting insulin signaling on accumbal cholinergic interneurons. Appetite 2023:106769. [PMID: 37399905 DOI: 10.1016/j.appet.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Obesity can disrupt how food-predictive stimuli control action performance and selection. These two forms of control recruit cholinergic interneurons (CIN) located in the nucleus accumbens core (NAcC) and shell (NAcS), respectively. Given that obesity is associated with insulin resistance in this region, we examined whether interfering with CIN insulin signaling disrupts how food-predictive stimuli control actions. To interfere with insulin signaling we used a high-fat diet (HFD) or genetic excision of insulin receptor (InsR) from cholinergic cells. HFD left intact the capacity of food-predictive stimuli to energize performance of an action earning food when mice were tested hungry. However, it allowed this energizing effect to persist when the mice were tested sated. This persistence was linked to NAcC CIN activity but was not associated with distorted CIN insulin signaling. Accordingly, InsR excision had no effect on how food-predicting stimuli control action performance. Next, we found that neither HFD nor InsR excision altered the capacity of food-predictive stimuli to guide action selection. Yet, this capacity was associated with changes in NAcS CIN activity. These results indicate that insulin signaling on accumbal CIN does not modulate how food-predictive stimuli control action performance and selection. However, they show that HFD allows food-predictive stimuli to energize performance of an action earning food in the absence of hunger.
Collapse
Affiliation(s)
- Joanne M Gladding
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nura W Lingawi
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Beatrice K Leung
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael D Kendig
- Brain & Behaviour Group, School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Billy C Chieng
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Laurent
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Gladding JM, Bradfield LA, Kendig MD. Diet and obesity effects on cue-driven food-seeking: insights from studies of Pavlovian-instrumental transfer in rodents and humans. Front Behav Neurosci 2023; 17:1199887. [PMID: 37424751 PMCID: PMC10325859 DOI: 10.3389/fnbeh.2023.1199887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Our modern environment is said to be obesogenic, promoting the consumption of calorically dense foods and reducing energy expenditure. One factor thought to drive excess energy intake is the abundance of cues signaling the availability of highly palatable foods. Indeed, these cues exert powerful influences over food-related decision-making. Although obesity is associated with changes to several cognitive domains, the specific role of cues in producing this shift and on decision-making more generally, remains poorly understood. Here we review the literature examining how obesity and palatable diets affect the ability of Pavlovian cues to influence instrumental food-seeking behaviors by examining rodent and human studies incorporating Pavlovian-instrumental transfer (PIT) protocols. There are two types of PIT: (a) general PIT that tests whether cues can energize actions elicited in the pursuit of food generally, and (b) specific PIT which tests whether cues can elicit an action that earns a specific food outcome when faced with a choice. Both types of PIT have been shown to be vulnerable to alterations as a result of changes to diet and obesity. However, effects appear to be driven less by increases in body fat and more by palatable diet exposure per se. We discuss the limitations and implications of the current findings. The challenges for future research are to uncover the mechanisms underlying these alterations to PIT, which appear unrelated to excess weight itself, and to better model the complex determinants of food choice in humans.
Collapse
|
9
|
Fetterly TL, Catalfio AM, Ferrario CR. Effects of junk-food on food-motivated behavior and NAc glutamate plasticity; insights into the mechanism of NAc calcium-permeable AMPA receptor recruitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540977. [PMID: 37292760 PMCID: PMC10245687 DOI: 10.1101/2023.05.16.540977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In rats, eating obesogenic diets increase calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly these diet-induced alterations in NAc transmission are pronounced in obesity-prone (OP) rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Behavioral tests included conditioned reinforcement, instrumental responding, and free consumption. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work improves our understanding of how sugary, fatty food consumption interacts with obesity susceptibility to influence food-motivated behavior. It also extends our fundamental understanding of NAc CP-AMPAR recruitment; this has important implications for motivation in the context of obesity as well as drug addiction.
Collapse
Affiliation(s)
- Tracy L. Fetterly
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda M. Catalfio
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carrie R. Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
10
|
Saraswat AA, Longyear LG, Kawa AB, Ferrario CR. Cocaine-induced plasticity, motivation, and cue responsivity do not differ in obesity-prone vs obesity-resistant rats; implications for food addiction. Psychopharmacology (Berl) 2023; 240:853-870. [PMID: 36806961 PMCID: PMC10006066 DOI: 10.1007/s00213-023-06327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/25/2023] [Indexed: 02/20/2023]
Abstract
RATIONALE Compared to obesity-resistant rats, obesity-prone rats consume more food, work harder to obtain food, show greater motivational responses to food-cues, and show greater striatal plasticity in response to eating sugary/fatty foods. Therefore, it is possible that obesity-prone rats may also be more sensitive to the motivational properties of cocaine and cocaine-paired cues, and to plasticity induced by cocaine. OBJECTIVE To examine baseline differences in motivation for cocaine and effects of intermittent access (IntA) cocaine self-administration on cocaine motivation, neurobehavioral responsivity to cocaine-paired cues, and locomotor sensitization in male obesity-prone vs obesity-resistant rats. METHODS Intravenous cocaine self-administration was used to examine drug-taking and drug-seeking in males. Motivation for cocaine was measured using a within session threshold procedure. Cue-induced c-Fos expression in mesocorticolimbic regions was measured. RESULTS Drug-taking and drug-seeking, cue-induced c-Fos, locomotor sensitization, and preferred level of cocaine consumption (Q0) were similar between obesity-prone and obesity-resistant groups. Maximal responding during demand testing (Rmax) was lower in obesity-prone rats. IntA experience enhanced motivation for cocaine (Pmax) in obesity-prone rats. CONCLUSIONS The results do not support robust inherent differences in motivation for cocaine, cue-induced cocaine seeking, or neurobehavioral plasticity induced by IntA in obesity-prone vs obesity-resistant rats. This contrasts with previously established differences seen for food and food cues in these populations and shows that inherent enhancements in motivation for food and food-paired cues do not necessarily transfer to drugs and drug-paired cues.
Collapse
Affiliation(s)
- Anish A Saraswat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lauren G Longyear
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex B Kawa
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Actions and Consequences of Insulin in the Striatum. Biomolecules 2023; 13:biom13030518. [PMID: 36979453 PMCID: PMC10046598 DOI: 10.3390/biom13030518] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Insulin crosses the blood–brain barrier to enter the brain from the periphery. In the brain, insulin has well-established actions in the hypothalamus, as well as at the level of mesolimbic dopamine neurons in the midbrain. Notably, insulin also acts in the striatum, which shows abundant expression of insulin receptors (InsRs) throughout. These receptors are found on interneurons and striatal projections neurons, as well as on glial cells and dopamine axons. A striking functional consequence of insulin elevation in the striatum is promoting an increase in stimulated dopamine release. This boosting of dopamine release involves InsRs on cholinergic interneurons, and requires activation of nicotinic acetylcholine receptors on dopamine axons. Opposing this dopamine-enhancing effect, insulin also increases dopamine uptake through the action of insulin at InsRs on dopamine axons. Insulin acts on other striatal cells as well, including striatal projection neurons and astrocytes that also influence dopaminergic transmission and striatal function. Linking these cellular findings to behavior, striatal insulin signaling is required for the development of flavor–nutrient learning, implicating insulin as a reward signal in the brain. In this review, we discuss these and other actions of insulin in the striatum, including how they are influenced by diet and other physio-logical states.
Collapse
|
12
|
Nieto AM, Catalfio AM, Papacostas Quintanilla H, Alonso‐Caraballo Y, Ferrario CR. Transient effects of junk food on NAc core MSN excitability and glutamatergic transmission in obesity-prone female rats. Obesity (Silver Spring) 2023; 31:434-445. [PMID: 36575127 PMCID: PMC9877139 DOI: 10.1002/oby.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The nucleus accumbens (NAc) plays critical roles in eating and food seeking in rodents and humans. Diets high in fats and sugars ("junk food") produce persistent increases in NAc function in male obesity-prone rats. This study examines effects of junk food and junk food deprivation on NAc core medium spiny neuron (MSN) excitability and glutamate transmission in females. METHODS Obesity-prone female rats were given access to ad libitum junk food for 10 days, and recordings were made from MSNs in the NAc core immediately or after a short (27-72 hours) or long (14-16 days) junk food deprivation period in which rats were returned to ad libitum standard chow. Controls remained on chow throughout. Whole-cell slice electrophysiology was used to examine MSN intrinsic membrane and firing properties and glutamatergic transmission. RESULTS The study found that intrinsic excitability was reduced, whereas glutamatergic transmission was enhanced, after the short, but not long, junk food deprivation period. A brief junk food deprivation period was necessary for increases in NAc calcium-permeable-AMPA receptor transmission and spontaneous excitatory postsynaptic current (sEPSC) frequency, but not for increases in sEPSC amplitude. CONCLUSIONS This study reveals that females are protected from long-lasting effects of sugary fatty foods on MSN neuronal function and provides evidence for sex-specific effects on plasticity in brain centers that influence food-seeking and feeding behavior.
Collapse
Affiliation(s)
- Allison M. Nieto
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Amanda M. Catalfio
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Helena Papacostas Quintanilla
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Biological SciencesUniversité du Québec à MontréalMontrealQuébecCanada
| | - Yanaira Alonso‐Caraballo
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Neuroscience DepartmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Carrie R. Ferrario
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Psychology, Biopsychology AreaUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
13
|
Vollbrecht PJ, Nesbitt KM, Addis VM, Boulnemour KM, Micheli DA, Smith KB, Sandoval DA, Kennedy RT, Ferrario CR. Differential regulation of nucleus accumbens glutamate and GABA in obesity-prone and obesity-resistant rats. J Neurochem 2023; 164:499-511. [PMID: 36336816 PMCID: PMC10604761 DOI: 10.1111/jnc.15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Obesity is one of the leading health concerns in the United States. Studies from human and rodent models suggest that inherent differences in the function of brain motivation centers, including the nucleus accumbens (NAc), contribute to overeating and thus obesity. For example, there are basal enhancements in the excitability of NAc GABAergic medium spiny neurons (MSN) and reductions in basal expression of AMPA-type glutamate receptors in obesity-prone vs obesity-resistant rats. However, very little is known about the regulation of extracellular glutamate and GABA within the NAc of these models. Here we gave obesity-prone and obesity-resistant rats stable isotope-labeled glucose (13 C6 -glucose) and used liquid chromatography mass spectrometry (LC-MS) analysis of NAc dialysate to examine the real-time incorporation of 13 C6 -glucose into glutamate, glutamine, and GABA. This novel approach allowed us to identify differences in glucose utilization for neurotransmitter production between these selectively bred lines. We found that voluntarily ingested or gastrically infused 13 C6 -glucose rapidly enters the NAc and is incorporated into 13 C2 -glutamine, 13 C2 -glutamate, and 13 C2 -GABA in both groups within minutes. However, the magnitude of increases in NAc 13 C2 -glutamine and 13 C2 -GABA were lower in obesity-prone than in obesity-resistant rats, while basal levels of glutamate were elevated. This suggested that there may be differences in the astrocytic regulation of these analytes. Thus, we next examined NAc glutamine synthetase, GAD67, and GLT-1 protein expression. Consistent with reduced 13 C2 -glutamine and 13 C2 -GABA, NAc glutamine synthetase and GLT-1 protein expression were reduced in obesity-prone vs obesity-resistant groups. Taken together, these data show that NAc glucose utilization differs dramatically between obesity-prone and obesity-resistant rats, favoring glutamate over GABA production in obesity-prone rats and that reductions in NAc astrocytic recycling of glutamate contribute to these differences. These data are discussed in light of established differences in NAc function between these models and the role of the NAc in feeding behavior.
Collapse
Affiliation(s)
- Peter J. Vollbrecht
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Kathryn M. Nesbitt
- Department of Chemistry, Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Victoria M. Addis
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Keenan M. Boulnemour
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Daniel A. Micheli
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Kendall B. Smith
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Darleen A. Sandoval
- Department of Pediatrics, University of Colorado, School of Medicine, Anshutz Medical Campus, Aurora, CO
| | - Robert T. Kennedy
- Department of Chemistry, Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Carrie R. Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology) University of Michigan, Ann Arbor, MI
| |
Collapse
|
14
|
Baković P, Kesić M, Kolarić D, Štefulj J, Čičin-Šain L. Metabolic and Molecular Response to High-Fat Diet Differs between Rats with Constitutionally High and Low Serotonin Tone. Int J Mol Sci 2023; 24:ijms24032169. [PMID: 36768493 PMCID: PMC9916796 DOI: 10.3390/ijms24032169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Maintaining energy balance is a complex physiological function whose dysregulation can lead to obesity and associated metabolic disorders. The bioamine serotonin (5HT) is an important regulator of energy homeostasis, with its central and peripheral pools influencing energy status in opposing ways. Using sublines of rats with constitutionally increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, we have previously shown that under standard diet constitutionally higher 5HT activity is associated with increased body weight, adiposity, and impaired glucose homeostasis. Here, we investigated the response of 5HT sublines to an obesogenic diet. Consistent with previous findings, high-5HT animals fed a standard diet had poorer metabolic health. However, in response to a high-fat diet, only low-5HT animals increased body weight and insulin resistance. They also showed more pronounced changes in blood metabolic parameters and the expression of various metabolic genes in hypothalamus and adipose tissue. On the other hand, high-5HT animals appeared to be protected from major metabolic disturbances of the obesogenic diet. The results suggest that constitutionally low 5HT activity is associated with higher susceptibility to harmful effects of a high-energy diet. High-5HT subline, which developed less adverse metabolic outcomes on hypercaloric diets, may prove useful in understanding metabolically healthy obesity in humans.
Collapse
Affiliation(s)
- Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
15
|
Pearce AL, Fuchs BA, Keller KL. The role of reinforcement learning and value-based decision-making frameworks in understanding food choice and eating behaviors. Front Nutr 2022; 9:1021868. [PMID: 36483928 PMCID: PMC9722736 DOI: 10.3389/fnut.2022.1021868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
The obesogenic food environment includes easy access to highly-palatable, energy-dense, "ultra-processed" foods that are heavily marketed to consumers; therefore, it is critical to understand the neurocognitive processes the underlie overeating in response to environmental food-cues (e.g., food images, food branding/advertisements). Eating habits are learned through reinforcement, which is the process through which environmental food cues become valued and influence behavior. This process is supported by multiple behavioral control systems (e.g., Pavlovian, Habitual, Goal-Directed). Therefore, using neurocognitive frameworks for reinforcement learning and value-based decision-making can improve our understanding of food-choice and eating behaviors. Specifically, the role of reinforcement learning in eating behaviors was considered using the frameworks of (1) Sign-versus Goal-Tracking Phenotypes; (2) Model-Free versus Model-Based; and (3) the Utility or Value-Based Model. The sign-and goal-tracking phenotypes may contribute a mechanistic insight on the role of food-cue incentive salience in two prevailing models of overconsumption-the Extended Behavioral Susceptibility Theory and the Reactivity to Embedded Food Cues in Advertising Model. Similarly, the model-free versus model-based framework may contribute insight to the Extended Behavioral Susceptibility Theory and the Healthy Food Promotion Model. Finally, the value-based model provides a framework for understanding how all three learning systems are integrated to influence food choice. Together, these frameworks can provide mechanistic insight to existing models of food choice and overconsumption and may contribute to the development of future prevention and treatment efforts.
Collapse
Affiliation(s)
- Alaina L. Pearce
- Social Science Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Bari A. Fuchs
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Kathleen L. Keller
- Social Science Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
16
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
17
|
Wang D, Huang K, Schulte E, Zhou W, Li H, Hu Y, Fu J. The Association Between Food Addiction and Weight Status in School-Age Children and Adolescents. Front Psychiatry 2022; 13:824234. [PMID: 35615452 PMCID: PMC9125319 DOI: 10.3389/fpsyt.2022.824234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background The association between food addiction (FA) and weight status in children and adolescents remains poorly understood. This study aimed to elucidate the association between FA and weight status using the validated Chinese version of the dimensional Yale Food Addiction Scale for Children 2.0 (dYFAS-C 2.0). Methods Participants were enrolled from clinic visitors for regular physical check in a children's hospital. The dYFAS-C 2.0 was translated into Chinese and validated using reliability and validity tests. The participants' body mass index Z score (BMIZ) and waist-to-height ratio (WHtR) were used to characterize weight status. The FA severity was assessed using the translated dYFAS-C 2.0. Results Among the 903 children and adolescents enrolled, 426 (47.2%) completed the survey [277 (65%) females and 149 (35%) males]. The Cronbach α of translated dYFAS-C 2.0 was 0.934, and confirmatory factor analysis indicated an acceptable model fit. FA correlated positively with BMIZ and WHtR in the whole sample after adjusting for the effect of gender (p < 0.001). Further analyses showed that the correlation remained significant in participants with BMIZ > 1 (p = 0.006) but not in those with BMIZ ≤ 1 (p = 0.220). However, the correlations between FA and WHtR were statistically significant in both participants with or without abdominal obesity (p < 0.05). The FA could explain 12.1 and 15.8% of variance in BMIZ and WHtR, respectively. The corresponding cutoff points of FA for excessive weight risk were 0.7 (BMIZ) and 0.4 (WHtR). Conclusion The dYFAS-C 2.0 has good reliability and validity in the Chinese population. FA is associated with weight status characterized by BMIZ and WHtR, especially in participants with BMIZ > 1 and in those with abdominal obesity. Clinical Trial Registration [www.chictr.org.cn], identifier [ChiCTR2100052239].
Collapse
Affiliation(s)
- Dan Wang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Huang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Erica Schulte
- Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, PA, United States
| | - Wanying Zhou
- Faculty of Education, University of Cambridge, Cambridge, United Kingdom
| | - Huiwen Li
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Kirkpatrick GE, Dingess PM, Aadland JA, Brown TE. Acute high-intensity interval exercise attenuates incubation of craving for foods high in fat. Obesity (Silver Spring) 2022; 30:994-998. [PMID: 35384349 PMCID: PMC9050900 DOI: 10.1002/oby.23418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Food-seeking behaviors can be driven by food-associated cues, and palatable food seeking in response to food cues is a risk factor for obesity development. Cue-induced food seeking increases following a period of abstinence, a behavioral phenomenon known as "incubation of craving," which may contribute to an individual's difficulty abstaining from palatable foods. Pharmacological and environmental manipulations have been employed to try and reduce incubation of craving, albeit primarily in drug abuse paradigms. The goal of this study was to determine whether forced exercise can attenuate incubation of high-fat food craving. METHODS Male Sprague Dawley rats learned to self-administer high-fat pellets (60%) in combination with a compound cue (light + tone). The influence of high-intensity interval exercise on the time-dependent increase in cue-induced lever responding was investigated 30 days after the first cue test. RESULTS Rats exposed to exercise during abstinence did not express incubation of craving. CONCLUSIONS The results suggest that high-intensity exercise can prevent the establishment of incubation of craving for foods high in fat and may reduce cue-induced maladaptive food-seeking behaviors that contribute to overeating and obesity.
Collapse
Affiliation(s)
- GE Kirkpatrick
- Biomedical Program, University of Wyoming, Laramie, WY 82071
- Integrative Physiology and Neuroscience, Washington State, Pullman WA 91164
| | - PM Dingess
- School of Pharmacy, University of Wyoming, Laramie, WY 82071
| | - JA Aadland
- School of Pharmacy, University of Wyoming, Laramie, WY 82071
| | - TE Brown
- Integrative Physiology and Neuroscience, Washington State, Pullman WA 91164
- To whom correspondence should be addressed, Contact Information: Travis E. Brown, Ph.D., Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, Phone: 509-335-5960,
| |
Collapse
|
19
|
Neuroimaging and modulation in obesity and diabetes research: 10th anniversary meeting. Int J Obes (Lond) 2022; 46:718-725. [PMID: 34934178 PMCID: PMC8960390 DOI: 10.1038/s41366-021-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
|
20
|
The role of the nucleus accumbens and ventral pallidum in feeding and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110394. [PMID: 34242717 DOI: 10.1016/j.pnpbp.2021.110394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 02/04/2023]
Abstract
Obesity is a growing global epidemic that stems from the increasing availability of highly-palatable foods and the consequent enhanced calorie consumption. Extensive research has shown that brain regions that are central to reward seeking modulate feeding and evidence linking obesity to pathology in such regions have recently started to accumulate. In this review we focus on the contribution of two major interconnected structures central to reward processing, the nucleus accumbens and the ventral pallidum, to obesity. We first review the known literature linking these structures to feeding behavior, then discuss recent advances connecting pathology in the nucleus accumbens and ventral pallidum to obesity, and finally examine the similarities and differences between drug addiction and obesity in the context of these two structures. The understanding of how pathology in brain regions involved in reward seeking and consumption may drive obesity and how mechanistically similar obesity and addiction are, is only now starting to be revealed. We hope that future research will advance knowledge in the field and open new avenues to studying and treating obesity.
Collapse
|
21
|
Sarangi M, Dus M. Crème de la Créature: Dietary Influences on Behavior in Animal Models. Front Behav Neurosci 2021; 15:746299. [PMID: 34658807 PMCID: PMC8511460 DOI: 10.3389/fnbeh.2021.746299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
In humans, alterations in cognitive, motivated, and affective behaviors have been described with consumption of processed diets high in refined sugars and saturated fats and with high body mass index, but the causes, mechanisms, and consequences of these changes remain poorly understood. Animal models have provided an opportunity to answer these questions and illuminate the ways in which diet composition, especially high-levels of added sugar and saturated fats, contribute to brain physiology, plasticity, and behavior. Here we review findings from invertebrate (flies) and vertebrate models (rodents, zebrafish) that implicate these diets with changes in multiple behaviors, including eating, learning and memory, and motivation, and discuss limitations, open questions, and future opportunities.
Collapse
Affiliation(s)
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
|
23
|
Insulin Bidirectionally Alters NAc Glutamatergic Transmission: Interactions between Insulin Receptor Activation, Endogenous Opioids, and Glutamate Release. J Neurosci 2021; 41:2360-2372. [PMID: 33514676 PMCID: PMC7984597 DOI: 10.1523/jneurosci.3216-18.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/27/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Furthermore, insulin dysregulation accompanying obesity is linked to cognitive decline, depression, anxiety, and altered motivation that rely on NAc excitatory transmission. Using whole-cell patch-clamp and biochemical approaches, we determined how insulin affects NAc glutamatergic transmission in nonobese and obese male rats and the underlying mechanisms. We find that there are concentration-dependent, bidirectional effects of insulin on excitatory transmission, with insulin receptor activation increasing and IGF receptor activation decreasing NAc excitatory transmission. Increases in excitatory transmission were mediated by activation of postsynaptic insulin receptors located on MSNs. However, this effect was due to an increase in presynaptic glutamate release. This suggested feedback from MSNs to presynaptic terminals. In additional experiments, we found that insulin-induced increases in presynaptic glutamate release are mediated by opioid receptor-dependent disinhibition. Furthermore, obesity resulted in a loss of insulin receptor-mediated increases in excitatory transmission and a reduction in NAc insulin receptor surface expression, while preserving reductions in transmission mediated by IGF receptors. These results provide the first insights into how insulin influences excitatory transmission in the adult brain, and evidence for a previously unidentified form of opioid receptor-dependent disinhibition of NAc glutamatergic transmission. SIGNIFICANCE STATEMENT Data here provide the first insights into how insulin influences excitatory transmission in the adult brain, and identify previously unknown interactions between insulin receptor activation, opioids, and glutamatergic transmission. These data contribute to our fundamental understanding of insulin's influence on brain motivational systems and have implications for the use of insulin as a cognitive enhancer and for targeting of insulin receptors and IGF receptors to alter motivation.
Collapse
|
24
|
Shifting motivational states: The effects of nucleus accumbens dopamine and opioid receptor activation on a modified effort-based choice task. Behav Brain Res 2020; 399:112999. [PMID: 33161034 DOI: 10.1016/j.bbr.2020.112999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
The nucleus accumbens (NAc) is critical for regulating the appetitive and consummatory phases of motivated behavior. These experiments examined the effects of dopamine and opioid receptor manipulations within the NAc during an effort-based choice task that allowed for simultaneous assessment of both phases of motivation. Male Sprague-Dawley rats received bilateral guide cannulas targeting the NAc core and were tested in 1-hr sessions with free access to rat chow and the choice to work for sugar pellets on a progressive ratio 2 (PR2) reinforcement schedule. Individual groups of rats were tested following stimulation or blockade of NAc D1-like or D2-like receptors, stimulation of μ-, δ-, or κ-opioid receptors, or antagonism of opioid receptors. Behavior was examined under ad libitum conditions and following 23-h food restriction. NAc blockade of the D1-like receptors or stimulation of the D2 receptor reduced break point for earning sugar pellets; D2 receptor stimulation also modestly lowered chow intake. NAc μ-opioid receptor stimulation increased intake of the freely-available chow while simultaneously reducing break point for the sugar pellets. In non-restricted conditions, δ-opioid receptor stimulation increased both food intake and breakpoint. There were no effects of stimulating NAc D1 or κ receptors, nor did blocking D2 or opioid receptors affect task behavior. These data support prior literature linking dopamine to appetitive motivational processes, and suggest that μ- and δ-opioid receptors affect food-directed motivation differentially. Specifically, μ-opioid receptors shifted behavior towards consumption, and δ-opioid receptor enhanced both sugar-seeking and consumption of the pabulum chow when animals were not food restricted.
Collapse
|