1
|
Yi R, Li Y, Shan X. OPDA/dn-OPDA actions: biosynthesis, metabolism, and signaling. PLANT CELL REPORTS 2024; 43:206. [PMID: 39093416 DOI: 10.1007/s00299-024-03286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Plants cannot move, so they have evolved sophisticated strategies that integrate the external environmental cues and internal signaling networks for adaptation to dynamic circumstances. Cis-(+)-12-oxo-phytodienoic acid (OPDA) and 2,3-dinor-OPDA (dn-OPDA), the cyclopentenone-containing oxylipins, ubiquitously occur in the green lineage to orchestrate a series of growth and developmental processes as well as various stress and defense responses. OPDA/dn-OPDA are precursors of jasmonate (JA) biosynthesis in vascular plants. Dn-OPDA and its isomer also serve as bioactive JAs perceived by the coronatine insensitive 1/jasmonate ZIM-domain (COI1/JAZ) co-receptor complex in bryophytes and lycophytes. In addition, OPDA/dn-OPDA display signaling activities independent of (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) and COI1 in both vascular and non-vascular plants. In this review, we discuss recent advances in the biosynthesis, metabolism, and signaling of OPDA/dn-OPDA, and provide an overview of the evolution of OPDA/dn-OPDA actions to obtain a deeper understanding of the pervasive role of OPDA/dn-OPDA in the plant life cycle.
Collapse
Affiliation(s)
- Rong Yi
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yirou Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Wu R, Liu Z, Sun S, Qin A, Liu H, Zhou Y, Li W, Liu Y, Hu M, Yang J, Rochaix JD, An G, Herrera-Estrella L, Tran LSP, Sun X. Identification of bZIP Transcription Factors That Regulate the Development of Leaf Epidermal Cells in Arabidopsis thaliana by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:2553. [PMID: 38473801 DOI: 10.3390/ijms25052553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Epidermal cells are the main avenue for signal and material exchange between plants and the environment. Leaf epidermal cells primarily include pavement cells, guard cells, and trichome cells. The development and distribution of different epidermal cells are tightly regulated by a complex transcriptional regulatory network mediated by phytohormones, including jasmonic acid, and transcription factors. How the fate of leaf epidermal cells is determined, however, is still largely unknown due to the diversity of cell types and the complexity of their regulation. Here, we characterized the transcriptional profiles of epidermal cells in 3-day-old true leaves of Arabidopsis thaliana using single-cell RNA sequencing. We identified two genes encoding BASIC LEUCINE-ZIPPER (bZIP) transcription factors, namely bZIP25 and bZIP53, which are highly expressed in pavement cells and early-stage meristemoid cells. Densities of pavement cells and trichome cells were found to increase and decrease, respectively, in bzip25 and bzip53 mutants, compared with wild-type plants. This trend was more pronounced in the presence of jasmonic acid, suggesting that these transcription factors regulate the development of trichome cells and pavement cells in response to jasmonic acid.
Collapse
Affiliation(s)
- Rui Wu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhixin Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Susu Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Aizhi Qin
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Hao Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Weiqiang Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yumeng Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengke Hu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jincheng Yang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Guoyong An
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
3
|
Ninck S, Halder V, Krahn JH, Beisser D, Resch S, Dodds I, Scholtysik R, Bormann J, Sewald L, Gupta MD, Heilmann G, Bhandari DD, Morimoto K, Buscaill P, Hause B, van der Hoorn RAL, Kaschani F, Kaiser M. Chemoproteomics Reveals the Pan-HER Kinase Inhibitor Neratinib To Target an Arabidopsis Epoxide Hydrolase Related to Phytohormone Signaling. ACS Chem Biol 2023; 18:1076-1088. [PMID: 37115018 DOI: 10.1021/acschembio.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Plant phytohormone pathways are regulated by an intricate network of signaling components and modulators, many of which still remain unknown. Here, we report a forward chemical genetics approach for the identification of functional SA agonists in Arabidopsis thaliana that revealed Neratinib (Ner), a covalent pan-HER kinase inhibitor drug in humans, as a modulator of SA signaling. Instead of a protein kinase, chemoproteomics unveiled that Ner covalently modifies a surface-exposed cysteine residue of Arabidopsis epoxide hydrolase isoform 7 (AtEH7), thereby triggering its allosteric inhibition. Physiologically, the Ner application induces jasmonate metabolism in an AtEH7-dependent manner as an early response. In addition, it modulates PATHOGENESIS RELATED 1 (PR1) expression as a hallmark of SA signaling activation as a later effect. AtEH7, however, is not the exclusive target for this physiological readout induced by Ner. Although the underlying molecular mechanisms of AtEH7-dependent modulation of jasmonate signaling and Ner-induced PR1-dependent activation of SA signaling and thus defense response regulation remain unknown, our present work illustrates the powerful combination of forward chemical genetics and chemical proteomics for identifying novel phytohormone signaling modulatory factors. It also suggests that marginally explored metabolic enzymes such as epoxide hydrolases may have further physiological roles in modulating signaling.
Collapse
Affiliation(s)
- Sabrina Ninck
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Vivek Halder
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
- Chemical Biology Laboratory, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jan H Krahn
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Daniela Beisser
- Department of Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45117 Essen, Germany
| | - Sarah Resch
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Isobel Dodds
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - René Scholtysik
- Genomics and Transcriptomics Facility, Institute for Cell Biology (Tumour Research), University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Leonard Sewald
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Mainak D Gupta
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Geronimo Heilmann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Bettina Hause
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| |
Collapse
|
4
|
Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int J Mol Sci 2022; 23:ijms23073945. [PMID: 35409303 PMCID: PMC8999811 DOI: 10.3390/ijms23073945] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid-derived jasmonates (JAs) play a crucial role in a variety of plant development and defense mechanisms. In recent years, significant progress has been made toward understanding the JA signaling pathway. In this review, we discuss JA biosynthesis, as well as its core signaling pathway, termination mechanisms, and the evolutionary origin of JA signaling. JA regulates not only plant regeneration, reproductive growth, and vegetative growth but also the responses of plants to stresses, including pathogen as well as virus infection, herbivore attack, and abiotic stresses. We also focus on the JA signaling pathway, considering its crosstalk with the gibberellin (GA), auxin, and phytochrome signaling pathways for mediation of the trade-offs between growth and defense. In summary, JA signals regulate multiple outputs of plant defense and growth and act to balance growth and defense in order to adapt to complex environments.
Collapse
Affiliation(s)
- Cong Li
- Correspondence: (C.L.); (D.C.)
| | | | | | | | | | | |
Collapse
|
5
|
Romero-Puertas MC, Peláez-Vico MÁ, Pazmiño DM, Rodríguez-Serrano M, Terrón-Camero L, Bautista R, Gómez-Cadenas A, Claros MG, León J, Sandalio LM. Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. PLANT, CELL & ENVIRONMENT 2022; 45:572-590. [PMID: 34800292 DOI: 10.1111/pce.14229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) functions as an agronomic weed control herbicide. High concentrations of 2,4-D induce plant growth defects, particularly leaf epinasty and stem curvature. Although the 2,4-D triggered reactive oxygen species (ROS) production, little is known about its signalling. In this study, by using a null mutant in peroxisomal acyl CoA oxidase 1 (acx1-2), we identified acyl-coenzyme A oxidase 1 (ACX1) as one of the main sources of ROS production and, in part, also causing the epinastic phenotype following 2,4-D application. Transcriptomic analyses of wild type (WT) plants after treatment with 2,4-D revealed a ROS-related peroxisomal footprint in early plant responses, while other organelles, such as mitochondria and chloroplasts, are involved in later responses. Interestingly, a group of 2,4-D-responsive ACX1-dependent transcripts previously associated with epinasty is related to auxin biosynthesis, metabolism, and signalling. We found that the auxin receptor auxin signalling F-box 3 (AFB3), a component of Skp, Cullin, F-box containing complex (SCF) (ASK-cullin-F-box) E3 ubiquitin ligase complexes, which mediates auxin/indole acetic acid (AUX/IAA) degradation by the 26S proteasome, acts downstream of ACX1 and is involved in the epinastic phenotype induced by 2,4-D. We also found that protein degradation associated with ubiquitin E3-RING and E3-SCF-FBOX in ACX1-dependent signalling in plant responses to 2,4-D is significantly regulated over longer treatment periods.
Collapse
Affiliation(s)
- María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | | | - Diana M Pazmiño
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | - María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | | | - Rocío Bautista
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
| | - Aurelio Gómez-Cadenas
- Department Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Ciencias, Univ. de Málaga, Málaga, Spain
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Univ. Valencia), CPI Edificio 8E, Valencia, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| |
Collapse
|
6
|
Pirrello C, Malacarne G, Moretto M, Lenzi L, Perazzolli M, Zeilmaker T, Van den Ackerveken G, Pilati S, Moser C, Giacomelli L. Grapevine DMR6-1 Is a Candidate Gene for Susceptibility to Downy Mildew. Biomolecules 2022; 12:182. [PMID: 35204683 PMCID: PMC8961545 DOI: 10.3390/biom12020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approach.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Luisa Lenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Tieme Zeilmaker
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Lisa Giacomelli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| |
Collapse
|
7
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Congli Cao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
- Corresponding author
| |
Collapse
|
8
|
Uhrig RG, Echevarría‐Zomeño S, Schlapfer P, Grossmann J, Roschitzki B, Koerber N, Fiorani F, Gruissem W. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. PLANT, CELL & ENVIRONMENT 2021; 44:821-841. [PMID: 33278033 PMCID: PMC7986931 DOI: 10.1111/pce.13969] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 05/11/2023]
Abstract
Plant growth depends on the diurnal regulation of cellular processes, but it is not well understood if and how transcriptional regulation controls diurnal fluctuations at the protein level. Here, we report a high-resolution Arabidopsis thaliana (Arabidopsis) leaf rosette proteome acquired over a 12 hr light:12 hr dark diurnal cycle and the phosphoproteome immediately before and after the light-to-dark and dark-to-light transitions. We quantified nearly 5,000 proteins and 800 phosphoproteins, of which 288 fluctuated in their abundance and 226 fluctuated in their phosphorylation status. Of the phosphoproteins, 60% were quantified for changes in protein abundance. This revealed six proteins involved in nitrogen and hormone metabolism that had concurrent changes in both protein abundance and phosphorylation status. The diurnal proteome and phosphoproteome changes involve proteins in key cellular processes, including protein translation, light perception, photosynthesis, metabolism and transport. The phosphoproteome at the light-dark transitions revealed the dynamics at phosphorylation sites in either anticipation of or response to a change in light regime. Phosphorylation site motif analyses implicate casein kinase II and calcium/calmodulin-dependent kinases among the primary light-dark transition kinases. The comparative analysis of the diurnal proteome and diurnal and circadian transcriptome established how mRNA and protein accumulation intersect in leaves during the diurnal cycle of the plant.
Collapse
Affiliation(s)
- R. Glen Uhrig
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Pascal Schlapfer
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Bernd Roschitzki
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Niklas Koerber
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Fabio Fiorani
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Wilhelm Gruissem
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
9
|
Chemical Genetics Approach Identifies Abnormal Inflorescence Meristem 1 as a Putative Target of a Novel Sulfonamide That Protects Catalase2-Deficient Arabidopsis against Photorespiratory Stress. Cells 2020; 9:cells9092026. [PMID: 32887516 PMCID: PMC7563276 DOI: 10.3390/cells9092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
Alterations of hydrogen peroxide (H2O2) levels have a profound impact on numerous signaling cascades orchestrating plant growth, development, and stress signaling, including programmed cell death. To expand the repertoire of known molecular mechanisms implicated in H2O2 signaling, we performed a forward chemical screen to identify small molecules that could alleviate the photorespiratory-induced cell death phenotype of Arabidopsisthaliana mutants lacking H2O2-scavenging capacity by peroxisomal catalase2. Here, we report the characterization of pakerine, an m-sulfamoyl benzamide from the sulfonamide family. Pakerine alleviates the cell death phenotype of cat2 mutants exposed to photorespiration-promoting conditions and delays dark-induced senescence in wild-type Arabidopsis leaves. By using a combination of transcriptomics, metabolomics, and affinity purification, we identified abnormal inflorescence meristem 1 (AIM1) as a putative protein target of pakerine. AIM1 is a 3-hydroxyacyl-CoA dehydrogenase involved in fatty acid β-oxidation that contributes to jasmonic acid (JA) and salicylic acid (SA) biosynthesis. Whereas intact JA biosynthesis was not required for pakerine bioactivity, our results point toward a role for β-oxidation-dependent SA production in the execution of H2O2-mediated cell death.
Collapse
|
10
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Wu X, Yan J, Wu Y, Zhang H, Mo S, Xu X, Zhou F, Ding H. Proteomic analysis by iTRAQ-PRM provides integrated insight into mechanisms of resistance in pepper to Bemisia tabaci (Gennadius). BMC PLANT BIOLOGY 2019; 19:270. [PMID: 31226939 PMCID: PMC6588876 DOI: 10.1186/s12870-019-1849-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/24/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND The Bemisia tabaci is a major leaf feeding insect pest to pepper (Capsicum annuum), causing serious damage to pepper growth and yield. It is particularly important to study the mechanism of pepper resistance to B. tabaci, and to breed and promote the varieties of pepper resistant to B. tabaci. However, very limited molecular mechanism is available about how plants perceive and defend themselves from the destructive pest. Proteome technologies have provided an idea method for studying plant physiological processes in response to B. tabaci. RESULTS Here, a highly resistant genotype and a highly susceptible genotype were exposed to B. tabaci feeding for 48 h to explore the defense mechanisms of pepper resistance to B. tabaci. The proteomic differences between both genotypes were compared using isobaric tag for relative and absolute quantification (iTRAQ). The quantitative data were validated by parallel reaction monitoring (PRM). The results showed that 37 differential abundance proteins (DAPs) were identified in the RG (resistant genotype), while 17 DAPs were identified in the SG (susceptible genotype) at 48 h after B. tabaci feeding. 77 DAPs were identified when comparing RG with SG without feeding. The DAP functions were determined for the classification of the pathways, mainly involved in redox regulation, stress response, protein metabolism, lipid metabolism and carbon metabolism. Some candidate DAPs are closely related to B. tabaci resistance such as annexin D4-like (ANN4), calreticulin-3 (CRT3), heme-binding protein 2-like (HBP1), acidic endochitinase pcht28-like (PR3) and lipoxygenase 2 (LOX2). CONCLUSIONS Taken together, this study indicates complex resistance-related events in B. tabaci interaction, provides novel insights into the molecular mechanism underlying the response of plant to B. tabaci, and identifies some candidate proteins against B. tabaci attack.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Jiaxing Yan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Yahong Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Haibo Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Shuangrong Mo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Fucai Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
12
|
Corpas FJ, Barroso JB. Peroxisomal plant metabolism - an update on nitric oxide, Ca 2+ and the NADPH recycling network. J Cell Sci 2018; 131:jcs.202978. [PMID: 28775155 DOI: 10.1242/jcs.202978] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant peroxisomes are recognized organelles that - with their capacity to generate greater amounts of H2O2 than other subcellular compartments - have a remarkable oxidative metabolism. However, over the last 15 years, new information has shown that plant peroxisomes contain other important molecules and enzymes, including nitric oxide (NO), peroxynitrite, a NADPH-recycling system, Ca2+ and lipid-derived signals, such as jasmonic acid (JA) and nitro-fatty acid (NO2-FA). This highlights the potential for complex interactions within the peroxisomal nitro-oxidative metabolism, which also affects the status of the cell and consequently its physiological processes. In this review, we provide an update on the peroxisomal interactions between all these molecules. Particular emphasis will be placed on the generation of the free-radical NO, which requires the presence of Ca2+, calmodulin and NADPH redox power. Peroxisomes possess several NADPH regeneration mechanisms, such as those mediated by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) proteins, which are involved in the oxidative phase of the pentose phosphate pathway, as well as that mediated by NADP-isocitrate dehydrogenase (ICDH). The generated NADPH is also an essential cofactor across other peroxisomal pathways, including the antioxidant ascorbate-glutathione cycle and unsaturated fatty acid β-oxidation, the latter being a source of powerful signaling molecules such as JA and NO2-FA.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| |
Collapse
|
13
|
Bao B, Chao H, Wang H, Zhao W, Zhang L, Raboanatahiry N, Wang X, Wang B, Jia H, Li M. Stable, Environmental Specific and Novel QTL Identification as Well as Genetic Dissection of Fatty Acid Metabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2018; 9:1018. [PMID: 30065738 PMCID: PMC6057442 DOI: 10.3389/fpls.2018.01018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/22/2018] [Indexed: 05/05/2023]
Abstract
Fatty acid (FA) composition is the typical quantitative trait in oil seed crops, of which study is not only closely related to oil content, but is also more critical for the quality improvement of seed oil. The double haploid (DH) population named KN with a high density SNP linkage map was applied for quantitative trait loci (QTL) analysis of FA composition in this study. A total of 406 identified QTL were detected for eight FA components with an average confidence interval (CI) of 2.92 cM, the explained phenotypic variation (PV) value ranged from 1.49 to 45.05%. Totally, 204 consensus and 91 unique QTL were further obtained via meta-analysis method for the purpose of detecting multiple environment expressed and pleiotropic QTL, respectively. Of which, 74 stable expressed and 22 environmental specific QTL were also revealed, respectively. In order to make clear the genetic mechanism of FA metabolism at individual QTL level, conditional QTL analysis was also conducted and more than two thousand conditional QTL which could not be detected under the unconditional mapping were detected, which indicated the complex interrelationship of the QTL controlling FA content in rapeseed. Through comparative genomic analysis and homologous gene annotation, 61 candidates related to acyl lipid metabolism were identified underlying the CI of FA QTL. To further visualize the genetic mechanism of FA metabolism, an intuitive and meticulous network about acyl lipid metabolism was constructed and some closely related candidates were positioned. This study provided a more accurate localization for stable and pleiotropic QTL, and a deeper dissection of the molecular regulatory mechanism of FA metabolism in rapeseed.
Collapse
Affiliation(s)
- Binghao Bao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Weiguo Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Lina Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nadia Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Wang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haibo Jia
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Haibo Jia
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
- Maoteng Li
| |
Collapse
|
14
|
The Roles of β-Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in Arabidopsis thaliana. Genetics 2016; 204:1089-1115. [PMID: 27605050 DOI: 10.1534/genetics.116.193169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid β-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of lipid-mobilization enzymes conferred peroxisomes clustered around retained oil bodies without other notable defects, suggesting that this microscopy-based approach was sensitive to minor perturbations, and that fatty acid β-oxidation rates in wild type are higher than required for normal growth. We recovered three mutants defective in PECTIN METHYLESTERASE31, revealing an unanticipated role in lipid mobilization for this cytosolic enzyme. Whereas mutations reducing fatty acid import had peroxisomes of wild-type size, mutations impairing fatty acid β-oxidation displayed enlarged peroxisomes, possibly caused by excess fatty acid β-oxidation intermediates in the peroxisome. Several fatty acid β-oxidation mutants also displayed defects in peroxisomal matrix protein import. Impairing fatty acid import reduced the large size of peroxisomes in a mutant defective in the PEROXISOMAL NAD+ TRANSPORTER (PXN), supporting the hypothesis that fatty acid accumulation causes pxn peroxisome enlargement. The diverse mutants isolated in this screen will aid future investigations of the roles of β-oxidation and peroxisomal cofactor homeostasis in plant development.
Collapse
|
15
|
Perazzolli M, Palmieri MC, Matafora V, Bachi A, Pertot I. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:59-72. [PMID: 27010348 DOI: 10.1016/j.jplph.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew.
Collapse
Affiliation(s)
- Michele Perazzolli
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy.
| | - Maria Cristina Palmieri
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Vittoria Matafora
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
16
|
Litholdo CG, Leal GA, Albuquerque PSB, Figueira A. Differential expression of jasmonate biosynthesis genes in cacao genotypes contrasting for resistance against Moniliophthora perniciosa. PLANT CELL REPORTS 2015; 34:1747-1759. [PMID: 26071948 DOI: 10.1007/s00299-015-1821-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/19/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
The resistance mechanism of cacao against M. perniciosa is likely to be mediated by JA/ET-signaling pathways due to the preferential TcAOS and TcSAM induction in a resistant genotype. The basidiomycete Moniliophthora perniciosa causes a serious disease in cacao (Theobroma cacao L.), and the use of resistant varieties is the only sustainable long-term solution. Cacao resistance against M. perniciosa is characterized by pathogen growth inhibition with reduced colonization and an attenuation of disease symptoms, suggesting a regulation by jasmonate (JA)/ethylene (ET) signaling pathways. The hypothesis that genes involved in JA biosynthesis would be active in the interaction of T. cacao and M. perniciosa was tested here. The cacao JA-related genes were evaluated for their relative quantitative expression in susceptible and resistant genotypes upon the exogenous application of ET, methyl-jasmonate (MJ), and salicylic acid (SA), or after M. perniciosa inoculation. MJ treatment triggered changes in the expression of genes involved in JA biosynthesis, indicating that the mechanism of positive regulation by exogenous MJ application occurs in cacao. However, a higher induction of these genes was observed in the susceptible genotype. Further, a contrast in JA-related transcriptional expression was detected between susceptible and resistant plants under M. perniciosa infection, with the induction of the allene oxide synthase gene (TcAOS), which encodes a key enzyme in the JA biosynthesis pathway in the resistant genotype. Altogether, this work provides additional evidences that the JA-dependent signaling pathway is modulating the defense response against M. perniciosa in a cacao-resistant genotype.
Collapse
Affiliation(s)
- Celso G Litholdo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil
- School of Biological Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Gildemberg A Leal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil
- Universidade Federal de Alagoas, Centro de Ciências Agrárias, BR 104, km 85 N, Rio Largo, AL, 57100-000, Brazil
| | - Paulo S B Albuquerque
- Comissão Executiva do Plano da Lavoura Cacaueira, ERJOH, BR 316 km 17, CP 46, Marituba, 67105-970, PA, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil.
| |
Collapse
|
17
|
Zhang S, Zhang L, Chai Y, Wang F, Li Y, Su L, Zhao Z. Physiology and proteomics research on the leaves of ancient Platycladus orientalis (L.) during winter. J Proteomics 2015; 126:263-78. [DOI: 10.1016/j.jprot.2015.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 12/23/2022]
|
18
|
Ziegler J, Qwegwer J, Schubert M, Erickson JL, Schattat M, Bürstenbinder K, Grubb CD, Abel S. Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization. J Chromatogr A 2014; 1362:102-9. [PMID: 25160953 DOI: 10.1016/j.chroma.2014.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/15/2014] [Accepted: 08/07/2014] [Indexed: 01/05/2023]
Abstract
A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA), trans-zeatin, and trans-zeatin 9-riboside using a single extraction is presented. Solid phase resins commonly employed for extraction of phytohormones do not allow the recovery of ACC. We circumvent this problem by attaching an apolar group to ACC via derivatization with the amino group specific reagent 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Derivatization in the methanolic crude extract does not modify other phytohormones. The derivatized ACC could be purified and detected together with the more apolar phytohormones using common solid phase extraction resins and reverse phase HPLC/electrospray negative ion tandem mass spectrometry. The limit of detection was in the low nanomolar range for all phytohormones, a sensitivity sufficient to accurately determine the phytohormone levels from less than 50mg (fresh weight) of Arabidopsis thaliana and Nicotiana benthamiana tissues. Comparison with previously published phytohormone levels and the reported changes in phytohormone levels after stress treatments confirmed the accuracy of the method.
Collapse
Affiliation(s)
- Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| | - Jakob Qwegwer
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| | - Melvin Schubert
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| | - Jessica L Erickson
- Institute of Biology - Plant Physiology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany.
| | - Martin Schattat
- Institute of Biology - Plant Physiology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany.
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| | - C Douglas Grubb
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| |
Collapse
|
19
|
Li XR, Li HJ, Yuan L, Liu M, Shi DQ, Liu J, Yang WC. Arabidopsis DAYU/ABERRANT PEROXISOME MORPHOLOGY9 is a key regulator of peroxisome biogenesis and plays critical roles during pollen maturation and germination in planta. THE PLANT CELL 2014; 26:619-35. [PMID: 24510720 PMCID: PMC3967029 DOI: 10.1105/tpc.113.121087] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 05/20/2023]
Abstract
Pollen undergo a maturation process to sustain pollen viability and prepare them for germination. Molecular mechanisms controlling these processes remain largely unknown. Here, we report an Arabidopsis thaliana mutant, dayu (dau), which impairs pollen maturation and in vivo germination. Molecular analysis indicated that DAU encodes the peroxisomal membrane protein ABERRANT PEROXISOME MORPHOLOGY9 (APEM9). DAU is transiently expressed from bicellular pollen to mature pollen during male gametogenesis. DAU interacts with peroxisomal membrane proteins PEROXIN13 (PEX13) and PEX16 in planta. Consistently, both peroxisome biogenesis and peroxisome protein import are impaired in dau pollen. In addition, the jasmonic acid (JA) level is significantly decreased in dau pollen, and the dau mutant phenotype is partially rescued by exogenous application of JA, indicating that the male sterility is mainly due to JA deficiency. In addition, the phenotypic survey of peroxin mutants indicates that the PEXs most likely play different roles in pollen germination. Taken together, these data indicate that DAU/APEM9 plays critical roles in peroxisome biogenesis and function, which is essential for JA production and pollen maturation and germination.
Collapse
Affiliation(s)
- Xin-Ran Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Yuan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
20
|
Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6125-38. [PMID: 23028017 PMCID: PMC3481204 DOI: 10.1093/jxb/ers261] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Jasmonates are important signals in plant stress responses and plant development. An essential step in the biosynthesis of jasmonic acid (JA) is catalysed by ALLENE OXIDE CYCLASE (AOC) which establishes the naturally occurring enantiomeric structure of jasmonates. In Arabidopsis thaliana, four genes encode four functional AOC polypeptides (AOC1, AOC2, AOC3, and AOC4) raising the question of functional redundancy or diversification. Analysis of transcript accumulation revealed an organ-specific expression pattern, whereas detailed inspection of transgenic lines expressing the GUS reporter gene under the control of individual AOC promoters showed partially redundant promoter activities during development: (i) In fully developed leaves, promoter activities of AOC1, AOC2, and AOC3 appeared throughout all leaf tissue, but AOC4 promoter activity was vascular bundle-specific; (ii) only AOC3 and AOC4 showed promoter activities in roots; and (iii) partially specific promoter activities were found for AOC1 and AOC4 in flower development. In situ hybridization of flower stalks confirmed the GUS activity data. Characterization of single and double AOC loss-of-function mutants further corroborates the hypothesis of functional redundancies among individual AOCs due to a lack of phenotypes indicative of JA deficiency (e.g. male sterility). To elucidate whether redundant AOC expression might contribute to regulation on AOC activity level, protein interaction studies using bimolecular fluorescence complementation (BiFC) were performed and showed that all AOCs can interact among each other. The data suggest a putative regulatory mechanism of temporal and spatial fine-tuning in JA formation by differential expression and via possible heteromerization of the four AOCs.
Collapse
Affiliation(s)
- Irene Stenzel
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Carolin Delker
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Nils Kirmse
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Diana Schmidt
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Otto Miersch
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Claus Wasternack
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
21
|
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. PLANT PHYSIOLOGY 2012; 159:266-85. [PMID: 22392279 PMCID: PMC3375964 DOI: 10.1104/pp.111.192641] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/05/2012] [Indexed: 05/17/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph.
Collapse
Affiliation(s)
| | | | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (R.P.B., I.E.S.); Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena 07745, Germany (C.D.)
| |
Collapse
|
22
|
Kaur N, Hu J. Defining the plant peroxisomal proteome: from Arabidopsis to rice. FRONTIERS IN PLANT SCIENCE 2011; 2:103. [PMID: 22645559 PMCID: PMC3355810 DOI: 10.3389/fpls.2011.00103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/08/2011] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small subcellular organelles mediating a multitude of processes in plants. Proteomics studies over the last several years have yielded much needed information on the composition of plant peroxisomes. In this review, the status of peroxisome proteomics studies in Arabidopsis and other plant species and the cumulative advances made through these studies are summarized. A reference Arabidopsis peroxisome proteome is generated, and some unique aspects of Arabidopsis peroxisomes that were uncovered through proteomics studies and hint at unanticipated peroxisomal functions are also highlighted. Knowledge gained from Arabidopsis was utilized to compile a tentative list of peroxisome proteins for the model monocot plant, rice. Differences in the peroxisomal proteome between these two model plants were drawn, and novel facets in rice were expounded upon. Finally, we discuss about the current limitations of experimental proteomics in decoding the complete and dynamic makeup of peroxisomes, and complementary and integrated approaches that would be beneficial to defining the peroxisomal metabolic and regulatory roadmaps. The synteny of genomes in the grass family makes rice an ideal model to study peroxisomes in cereal crops, in which these organelles have received much less attention, with the ultimate goal to improve crop yield.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Plant Biology Department, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Jianping Hu, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
23
|
Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. PLANTA 2010; 232:1423-32. [PMID: 20839007 PMCID: PMC2957573 DOI: 10.1007/s00425-010-1265-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.
Collapse
Affiliation(s)
- Antonio Leon-Reyes
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
- Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica (Cumbaya), P.O. Box 17-1200-841, Quito, Ecuador
| | - Dieuwertje Van der Does
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
| | - Elvira S. De Lange
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
| | - Carolin Delker
- Leibniz Institute of Plant Biochemistry, 06120 Halle, Weinberg 3, Germany
| | - Claus Wasternack
- Leibniz Institute of Plant Biochemistry, 06120 Halle, Weinberg 3, Germany
| | - Saskia C. M. Van Wees
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
| | - Tita Ritsema
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
- Present Address: Amsterdam Molecular Therapeutics, Meibergdreef 61, 1100 DA Amsterdam, The Netherlands
| | - Corné M. J. Pieterse
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
24
|
Arent S, Christensen CE, Pye VE, Nørgaard A, Henriksen A. The multifunctional protein in peroxisomal beta-oxidation: structure and substrate specificity of the Arabidopsis thaliana protein MFP2. J Biol Chem 2010; 285:24066-77. [PMID: 20463021 PMCID: PMC2911295 DOI: 10.1074/jbc.m110.106005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
Plant fatty acids can be completely degraded within the peroxisomes. Fatty acid degradation plays a role in several plant processes including plant hormone synthesis and seed germination. Two multifunctional peroxisomal isozymes, MFP2 and AIM1, both with 2-trans-enoyl-CoA hydratase and l-3-hydroxyacyl-CoA dehydrogenase activities, function in mouse ear cress (Arabidopsis thaliana) peroxisomal beta-oxidation, where fatty acids are degraded by the sequential removal of two carbon units. A deficiency in either of the two isozymes gives rise to a different phenotype; the biochemical and molecular background for these differences is not known. Structure determination of Arabidopsis MFP2 revealed that plant peroxisomal MFPs can be grouped into two families, as defined by a specific pattern of amino acid residues in the flexible loop of the acyl-binding pocket of the 2-trans-enoyl-CoA hydratase domain. This could explain the differences in substrate preferences and specific biological functions of the two isozymes. The in vitro substrate preference profiles illustrate that the Arabidopsis AIM1 hydratase has a preference for short chain acyl-CoAs compared with the Arabidopsis MFP2 hydratase. Remarkably, neither of the two was able to catabolize enoyl-CoA substrates longer than 14 carbon atoms efficiently, suggesting the existence of an uncharacterized long chain enoyl-CoA hydratase in Arabidopsis peroxisomes.
Collapse
Affiliation(s)
- Susan Arent
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Caspar E. Christensen
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Valerie E. Pye
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Allan Nørgaard
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Anette Henriksen
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| |
Collapse
|
25
|
Pye VE, Christensen CE, Dyer JH, Arent S, Henriksen A. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J Biol Chem 2010; 285:24078-88. [PMID: 20463027 DOI: 10.1074/jbc.m110.106013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The breakdown of fatty acids, performed by the beta-oxidation cycle, is crucial for plant germination and sustainability. beta-Oxidation involves four enzymatic reactions. The final step, in which a two-carbon unit is cleaved from the fatty acid, is performed by a 3-ketoacyl-CoA thiolase (KAT). The shortened fatty acid may then pass through the cycle again (until reaching acetoacetyl-CoA) or be directed to a different cellular function. Crystal structures of KAT from Arabidopsis thaliana and Helianthus annuus have been solved to 1.5 and 1.8 A resolution, respectively. Their dimeric structures are very similar and exhibit a typical thiolase-like fold; dimer formation and active site conformation appear in an open, active, reduced state. Using an interdisciplinary approach, we confirmed the potential of plant KATs to be regulated by the redox environment in the peroxisome within a physiological range. In addition, co-immunoprecipitation studies suggest an interaction between KAT and the multifunctional protein that is responsible for the preceding two steps in beta-oxidation, which would allow a route for substrate channeling. We suggest a model for this complex based on the bacterial system.
Collapse
Affiliation(s)
- Valerie E Pye
- Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark.
| | | | | | | | | |
Collapse
|
26
|
Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latché A, Bouzayen M, Pech JC. Characteristics of the tomato chromoplast revealed by proteomic analysis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2413-31. [PMID: 20363867 DOI: 10.1093/jxb/erq070] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chromoplasts are non-photosynthetic specialized plastids that are important in ripening tomato fruit (Solanum lycopersicum) since, among other functions, they are the site of accumulation of coloured compounds. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial databanks. These data revealed several features of the chromoplast. Proteins of lipid metabolism and trafficking were well represented, including all the proteins of the lipoxygenase pathway required for the synthesis of lipid-derived aroma volatiles. Proteins involved in starch synthesis co-existed with several starch-degrading proteins and starch excess proteins. Chromoplasts lacked proteins of the chlorophyll biosynthesis branch and contained proteins involved in chlorophyll degradation. None of the proteins involved in the thylakoid transport machinery were discovered. Surprisingly, chromoplasts contain the entire set of Calvin cycle proteins including Rubisco, as well as the oxidative pentose phosphate pathway (OxPPP). The present proteomic analysis, combined with available physiological data, provides new insights into the metabolic characteristics of the tomato chromoplast and enriches our knowledge of non-photosynthetic plastids.
Collapse
Affiliation(s)
- Cristina Barsan
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
ARABIDOPSIS IS A SUPERB MODEL FOR THE STUDY OF AN IMPORTANT SUBGROUP OF OXYLIPINS: the jasmonates. Jasmonates control many responses to cell damage and invasion and are essential for reproduction. Jasmonic acid (JA) is a prohormone and is conjugated to hydrophobic amino acids to produce regulatory ligands. The major receptor for active jasmonate ligands is closely related to auxin receptors and, as in auxin signaling, jasmonate signaling requires the destruction of repressor proteins. This chapter uses a frequently asked question (FAQ) approach and concludes with a practical section.
Collapse
Affiliation(s)
- Iván F. Acosta
- Department of Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Edward E. Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
- Address correspondence to
| |
Collapse
|
28
|
Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function. THE ARABIDOPSIS BOOK 2009; 7:e0123. [PMID: 22303249 PMCID: PMC3243405 DOI: 10.1199/tab.0123] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis.
Collapse
Affiliation(s)
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and
- Plant Biology Department, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
29
|
Browse J. The power of mutants for investigating jasmonate biosynthesis and signaling. PHYTOCHEMISTRY 2009; 70:1539-46. [PMID: 19740496 DOI: 10.1016/j.phytochem.2009.08.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 05/18/2023]
Abstract
Mutant analysis includes approaches that range from traditional screening of mutant populations (forward genetics), to identifying mutations in known genes (reverse genetics), to examining the effects of site-specific mutations that encode modified proteins. All these methodologies have been applied to study jasmonate synthesis and signaling, and their use has led to important discoveries. The fad3 fad7 fad8 mutant of Arabidopsis, and other mutants defective in jasmonate synthesis, revealed the roles of jasmonate in flower development and plant defense against necrotrophic fungal pathogens. The coi1 mutant identified the F-box protein that is now known to be the receptor for jasmonoyl-isoleucine, the active form of jasmonate hormone. Investigations of how JASMONATE-ZIM DOMAIN (JAZ) proteins bind to COI1 and facilitate jasmonate perception have relied on the jai3 mutant, on JAZDeltaJas constructs, and on site-specific mutations in the Jas and ZIM domains of these proteins.
Collapse
Affiliation(s)
- John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| |
Collapse
|
30
|
Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis - structure, function, regulation. PHYTOCHEMISTRY 2009; 70:1532-8. [PMID: 19703696 DOI: 10.1016/j.phytochem.2009.07.032] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 05/20/2023]
Abstract
Jasmonates are a growing class of lipid-derived signaling molecules with diverse functions ranging from the initiation of biotic and abiotic stress responses to the regulation of plant growth and development. Jasmonate biosynthesis originates from polyunsaturated fatty acids in chloroplast membranes. In a first lipoxygenase-catalyzed reaction molecular oxygen is introduced to yield their 13-hydroperoxy derivatives. These fatty acid hydroperoxides are converted by allene oxide synthase and allene oxide cyclase to 12-oxophytodienoic acid (OPDA) and dinor-OPDA, i.e. the first cyclic intermediates of the pathway. In the subsequent step, the characteristic cyclopentanone ring structure of jasmonates is established by OPDA reductase. Until recently, jasmonic acid has been viewed as the end product of the pathway and as the bioactive hormone. It becomes increasingly clear, however, that biological activity extends to and may even differ between the various jasmonic acid metabolites and conjugates as well as its biosynthetic precursors. It has also become clear that oxygenated fatty acids give rise to a vast variety of bioactive compounds including but not limited to jasmonates. Recent insights into the structure, function, and regulation of the enzymes involved in jasmonate biosynthesis help to explain how this variety is generated while specificity is maintained.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70599 Stuttgart, Germany.
| | | |
Collapse
|
31
|
Koo AJK, Gao X, Jones AD, Howe GA. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:974-86. [PMID: 19473329 DOI: 10.1111/j.1365-313x.2009.03924.x] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Jasmonic acid (JA) and its biologically active derivatives (bioactive JAs) perform a critical role in regulating plant responses to wound stress. The perception of bioactive JAs by the F-box protein COI1 triggers the SCF(COI1)/ubiquitin-dependent degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the expression of JA-response genes. JA is required for many wound-inducible systemic defense responses, but little is known about the role of the hormone in long-distance signal relay between damaged and undamaged leaves. Here, we show that the wounding of Arabidopsis thaliana leaves results in the rapid (<5 min) accumulation of jasmonoyl-l-isoleucine (JA-Ile), the bioactive form of JA, in leaves distal to the wound site. The rapid systemic increase in JA-Ile preceded the onset of early transcriptional responses, and was associated with JAZ degradation. Wound-induced systemic production of JA-Ile required the JA biosynthetic enzyme 12-oxo-phytodienoic acid (OPDA) reductase 3 (OPR3) in undamaged responding leaves, but not in wounded leaves, and was largely dependent on the JA-conjugating enzyme JAR1. Interestingly, the wound-induced synthesis of JA/JA-Ile in systemic leaves was correlated with a rapid decline in OPDA levels. These results are consistent with a model in which a rapidly transmitted wound signal triggers the systemic synthesis of JA, which, upon conversion to JA-Ile, activates the expression of early response genes by the SCF(COI1)/JAZ pathway.
Collapse
Affiliation(s)
- Abraham J K Koo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
32
|
Li ZG, Chen KX, Xie HY, Gao JR. Quantitative structure-property relationship studies on amino acid conjugates of jasmonic acid as defense signaling molecules. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:581-592. [PMID: 19522817 DOI: 10.1111/j.1744-7909.2009.00829.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Jasmonates and related compounds, including amino acid conjugates of jasmonic acid, have regulatory functions in the signaling pathway for plant developmental processes and responses to the complex equilibrium of biotic and abiotic stress. But the molecular details of the signaling mechanism are still poorly understood. Statistically significant quantitative structure-property relationship models (r(2) > 0.990) constructed by genetic function approximation and molecular field analysis were generated for the purpose of deriving structural requirements for lipophilicity of amino acid conjugates of jasmonic acid. The best models derived in the present study provide some valuable academic information in terms of the 2/3D-descriptors influencing the lipophilicity, which may contribute to further understanding the mechanism of exogenous application of jasmonates in their signaling pathway and designing novel analogs of jasmonic acid as ecological pesticides.
Collapse
Affiliation(s)
- Zu-Guang Li
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, China.
| | | | | | | |
Collapse
|
33
|
Vandenborre G, Miersch O, Hause B, Smagghe G, Wasternack C, Van Damme EJM. Spodoptera littoralis-induced lectin expression in tobacco. PLANT & CELL PHYSIOLOGY 2009; 50:1142-55. [PMID: 19416954 DOI: 10.1093/pcp/pcp065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The induced defense response in plants towards herbivores is mainly regulated by jasmonates and leads to the accumulation of so-called jasmonate-induced proteins. Recently, a jasmonate (JA) inducible lectin called Nicotiana tabacum agglutinin or NICTABA was discovered in tobacco (N. tabacum cv Samsun) leaves. Tobacco plants also accumulate the lectin after insect attack by caterpillars. To study the functional role of NICTABA, the accumulation of the JA precursor 12-oxophytodienoic acid (OPDA), JA as well as different JA metabolites were analyzed in tobacco leaves after herbivory by larvae of the cotton leafworm (Spodoptera littoralis) and correlated with NICTABA accumulation. It was shown that OPDA, JA as well as its methyl ester can trigger NICTABA accumulation. However, hydroxylation of JA and its subsequent sulfation and glucosylation results in inactive compounds that have lost the capacity to induce NICTABA gene expression. The expression profile of NICTABA after caterpillar feeding was recorded in local as well as in systemic leaves, and compared to the expression of several genes encoding defense proteins, and genes encoding a tobacco systemin and the allene oxide cyclase, an enzyme in JA biosynthesis. Furthermore, the accumulation of NICTABA was quantified after S. littoralis herbivory and immunofluorescence microscopy was used to study the localization of NICTABA in the tobacco leaf.
Collapse
Affiliation(s)
- Gianni Vandenborre
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Browse J. Jasmonate: preventing the maize tassel from getting in touch with his feminine side. Sci Signal 2009; 2:pe9. [PMID: 19244211 DOI: 10.1126/scisignal.259pe9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Reproduction of angiosperm plants is central to many aspects of global ecosystem biology and has been a determining factor in the rise and success of world civilizations. Many plants have developed mechanisms that favor outcrossing rather than self-fertilization. In maize (Zea mays), separate male and female flowers develop on a single plant. Sex determination in the male floral structure, the tassel, depends on signaling through the tasselseed (ts) pathway. Mutations affecting this pathway, such as ts1 and ts2, cause development of female flowers on the tassel. Cloning of ts1 and identification of the TS1 protein as an enzyme involved in jasmonate synthesis have revealed that jasmonate, an oxylipin plant hormone derived from linolenic acid, is an essential signal in determining male identity in the maize tassel.
Collapse
Affiliation(s)
- John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| |
Collapse
|
35
|
Halim VA, Altmann S, Ellinger D, Eschen-Lippold L, Miersch O, Scheel D, Rosahl S. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:230-42. [PMID: 18801014 DOI: 10.1111/j.1365-313x.2008.03688.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.
Collapse
Affiliation(s)
- Vincentius A Halim
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Weinberg 3, D-06120 Halle, Saale, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:183-205. [PMID: 19025383 DOI: 10.1146/annurev.arplant.043008.092007] [Citation(s) in RCA: 593] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The oxylipin jasmonate (JA) regulates many aspects of growth, development, and environmental responses in plants, particularly defense responses against herbivores and necrotrophic pathogens. Mutants of Arabidopsis helped researchers define the biochemical pathway for synthesis of jasmonoyl-isoleucine (JA-Ile), the active form of JA hormone, and demonstrated that JA is required for plant survival of insect and pathogen attacks and for plant fertility. Transcriptional profiling led to the discovery of the JASMONATE ZIM-DOMAIN (JAZ) proteins, which are repressors of JA signaling. JA-Ile relieves repression by promoting binding of the JAZ proteins to the F-box protein CORONATINE INSENSITIVE1 (COI1) and their subsequent degradation by the ubiquitination/26S-proteasome pathway. Although we now have a much better understanding of the molecular mechanism of JA action, many questions remain. Experimental answers to these questions will expand our knowledge of oxylipin signaling in plants and animals and will also provide new tools for efforts to improve crop protection and reproductive performance.
Collapse
Affiliation(s)
- John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.
| |
Collapse
|
37
|
Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber APM. Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. THE PLANT CELL 2008; 20:3241-57. [PMID: 19073763 PMCID: PMC2630453 DOI: 10.1105/tpc.108.062042] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Several recent proteomic studies of plant peroxisomes indicate that the peroxisomal matrix harbors multiple ATP-dependent enzymes and chaperones. However, it is unknown whether plant peroxisomes are able to produce ATP by substrate-level phosphorylation or whether external ATP fuels the energy-dependent reactions within peroxisomes. The existence of transport proteins that supply plant peroxisomes with energy for fatty acid oxidation and other ATP-dependent processes has not previously been demonstrated. Here, we describe two Arabidopsis thaliana genes that encode peroxisomal adenine nucleotide carriers, PNC1 and PNC2. Both proteins, when fused to enhanced yellow fluorescent protein, are targeted to peroxisomes. Complementation of a yeast mutant deficient in peroxisomal ATP import and in vitro transport assays using recombinant transporter proteins revealed that PNC1 and PNC2 catalyze the counterexchange of ATP with ADP or AMP. Transgenic Arabidopsis lines repressing both PNC genes were generated using ethanol-inducible RNA interference. A detailed analysis of these plants showed that an impaired peroxisomal ATP import inhibits fatty acid breakdown during early seedling growth and other beta-oxidation reactions, such as auxin biosynthesis. We show conclusively that PNC1 and PNC2 are essential for supplying peroxisomes with ATP, indicating that no other ATP generating systems exist inside plant peroxisomes.
Collapse
Affiliation(s)
- Nicole Linka
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Arent S, Pye VE, Henriksen A. Structure and function of plant acyl-CoA oxidases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:292-301. [PMID: 18272379 DOI: 10.1016/j.plaphy.2007.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Indexed: 05/08/2023]
Abstract
Acyl-CoA oxidases (in peroxisomes) and acyl-CoA dehydrogenases (in mitochondria) catalyse the first step in fatty acid beta-oxidation, the pathway responsible for lipid catabolism and plant hormone biosynthesis. The interplay and differences between peroxisomal and mitochondrial beta-oxidation processes are highlighted by the variation in the enzymes involved. Structure and sequence comparisons are made with a focus on the enzyme's mechanistic means to control electron transfer paths, reactivity towards molecular oxygen, and spatial and architectural requirements for substrate discrimination.
Collapse
Affiliation(s)
- Susan Arent
- Biostructure Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | | | | |
Collapse
|
39
|
Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. THE PLANT CELL 2008; 20:768-85. [PMID: 18334669 PMCID: PMC2329937 DOI: 10.1105/tpc.107.054809] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/14/2008] [Accepted: 02/19/2008] [Indexed: 05/17/2023]
Abstract
12-oxo-phytodienoic acid and several phytoprostanes are cyclopentenone oxylipins that are formed via the enzymatic jasmonate pathway and a nonenzymatic, free radical-catalyzed pathway, respectively. Both types of cyclopentenone oxylipins induce the expression of genes related to detoxification, stress responses, and secondary metabolism, a profile clearly distinct from that of the cyclopentanone jasmonic acid. Microarray analyses revealed that 60% of the induction by phytoprostanes and 30% of the induction by 12-oxo-phytodienoic acid was dependent on the TGA transcription factors TGA2, TGA5, and TGA6. Moreover, treatment with phytoprostanes and 12-oxo-phytodienoic acid inhibited cell division and root growth, a property also shared by jasmonic acid. Besides being potent signals, cyclopentenones and other lipid peroxidation products are reactive electrophiles that can covalently bind to and damage proteins. To this end, we show that at least two of the induced detoxification enzymes efficiently metabolize cyclopentenones in vitro. Accumulation of two of these metabolites was detectable during Pseudomonas infection. The cyclopentenone oxylipin gene induction profile resembles the defense response induced by a variety of lipophilic xenobiotics. Hence, oxidized lipids may activate chemosensory mechanisms of a general broad-spectrum detoxification network involving TGA transcription factors.
Collapse
Affiliation(s)
- Stefan Mueller
- Julius-von-Sachs-Institut fuer Biowissenschaften, Pharmazeutische Biologie, Biozentrum, Universitaet Wuerzburg, 97082 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Tretner C, Huth U, Hause B. Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2847-56. [PMID: 18540020 PMCID: PMC2486479 DOI: 10.1093/jxb/ern145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/28/2008] [Indexed: 05/18/2023]
Abstract
Wounding of plants leads to endogenous rise of jasmonic acid (JA) accompanied with the expression of a distinct set of genes. Among them are those coding for the allene oxide cyclase (AOC) that catalyses a regulatory step in JA biosynthesis, and for 1-deoxy-D-xylulose 5-phosphate synthase 2 (DXS2), an enzyme involved in isoprenoid biosynthesis. To address the question how roots and shoots of Medicago truncatula respond to mechanostimulation and wounding, M. truncatula plants were analysed in respect to JA levels as well as MtAOC1 and MtDXS2-1 transcript accumulation. Harvest-caused mechanostimulation resulted in a strong, but transient increase in JA level in roots and shoots followed by a transient increase in MtAOC1 transcript accumulation. Additional wounding of either shoots or roots led to further increased JA and MtAOC1 transcript levels in shoots, but not in roots. In situ hybridization revealed a cell-specific transcript accumulation of MtAOC1 after mechanostimulation in companion cells of the vascular tissue of the stem. AOC protein, however, was found to occur constitutively in vascular bundles. Further, transcript accumulation of MtDXS2-1 was similar to that of MtAOC1 in shoots, but its transcript levels were not enhanced in roots. Repeated touching of shoots increased MtAOC1 transcript levels and led to significantly shorter shoots and increased biomass. In conclusion, M. truncatula plants respond very sensitively to mechanostimulation with enhanced JA levels and altered transcript accumulation, which might contribute to the altered phenotype after repeated touching of plants.
Collapse
|
41
|
|