1
|
Özyalçın B, Sanlier N. Antiobesity pathways of pterostilbene and resveratrol: a comprehensive insight. Crit Rev Food Sci Nutr 2024; 64:11428-11436. [PMID: 37486219 DOI: 10.1080/10408398.2023.2238319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
It may not always be possible for obese individuals to limit energy intake or to provide and/or maintain greater energy expenditure through exercise and physical activity. Therefore, the search for effective methods for obesity continues. Recently, the anti-obesity effect of stilbenes has attracted attention. In this review, aim was evaluating the effect of pterostilbene and resveratrol against obesity and the possible mechanisms in this effect. Dietary phytochemicals can induce body weight loss by increasing basal metabolic rate and thermogenesis and/or altering lipid metabolism. Stilbenes are products of the plant phenylpropanoid pathway. Very important mechanisms for the anti-obesity impact belonging to resveratrol as well as pterostilbene include thermogenic activation in brown adipose tissue alongside the browning of white adipose tissue. Considering nutrition and dietary habits, which have an important place in lifestyle changes for both the prevention and the treatment of obesity, pterostilbene and resveratrol, which are polyphenols and stilbenes, are seen as promising. However, optimal dose, duration, mechanism, long-term safety, side effects, combination, elucidation of genomic interactions, and lifestyle modifications should be considered.
Collapse
Affiliation(s)
- Büşra Özyalçın
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
2
|
Wiegand V, Gao Y, Teusch N. Pharmacological Effects of Paeonia lactiflora Focusing on Painful Diabetic Neuropathy. PLANTA MEDICA 2024. [PMID: 39471979 DOI: 10.1055/a-2441-6488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Painful diabetic neuropathy (PDN) is a highly prevalent complication in patients suffering from diabetes mellitus. Given the inadequate pain-relieving effect of current therapies for PDN, there is a high unmet medical need for specialized therapeutic options. In traditional Chinese medicine (TCM), various herbal formulations have been implemented for centuries to relieve pain, and one commonly used plant in this context is Paeonia lactiflora (P. lactiflora). Here, we summarize the chemical constituents of P. lactiflora including their pharmacological mechanisms-of-action and discuss potential benefits for the treatment of PDN. For this, in silico data, as well as preclinical and clinical studies, were critically reviewed and comprehensively compiled. Our findings reveal that P. lactiflora and its individual constituents exhibit a variety of pharmacological properties relevant for PDN, including antinociceptive, anti-inflammatory, antioxidant, and antiapoptotic activities. Through this multifaceted and complex combination of various pharmacological effects, relevant hallmarks of PDN are specifically addressed, suggesting that P. lactiflora may represent a promising source for novel therapeutic approaches for PDN.
Collapse
Affiliation(s)
- Vanessa Wiegand
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
3
|
Wang B, Wu W, Wang Z, Chen Z, Wang X. Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis. Foods 2024; 13:3208. [PMID: 39410242 PMCID: PMC11476259 DOI: 10.3390/foods13193208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Soil mulching is a useful agronomic practice that promotes early fruit maturation and affects fruit quality. However, the regulatory mechanism of fruit metabolites under soil-mulching treatments remains unknown. In this study, variations in the gene sets and metabolites of grape berries after mulching (rice straw + felt + plastic film) using transcriptome and metagenomic sequencing were investigated. The results of the cluster analysis and orthogonal projection to latent structures discriminant analysis of the metabolites showed a difference between the mulching and control groups, as did the principal component analysis results for the transcriptome. In total, 36 differentially expressed metabolites were identified, of which 10 (resveratrol, ampelopsin F, piceid, 3,4'-dihydroxy-5-methoxystilbene, ε-viniferin, trans resveratrol, epsilon-viniferin, 3'-hydroxypterostilbene, 1-methyl-resveratrol, and pterostil-bene) were stilbenes. Their content increased after mulching, indicating that stilbene synthase activity increased after mulching. The weighted gene co-expression network analysis revealed that the turquoise and blue modules were positively and negatively related to stilbene compounds. The network analysis identified two seed genes (VIT_09s0054g00610, VIT_13s0156g00260) and two transcription factors (VIT_13s0156g00260, VIT_02s0025g04590). Overall, soil mulching promoted the accumulation of stilbene compounds in grapes, and the results provided key genetic information for further studies.
Collapse
Affiliation(s)
| | | | | | | | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing 210014, China; (B.W.)
| |
Collapse
|
4
|
Husanu E, Agbemeh VE, Andrusenko I, Marchetti D, Sonaglioni D, Gemmi M. Polymorphism in oxyresveratrol studied by 3D ED. ACS OMEGA 2024; 9:41555-41564. [PMID: 39398150 PMCID: PMC11465280 DOI: 10.1021/acsomega.4c05292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
The polymorphism of oxyresveratrol, a natural extract widely used in traditional Asian medicine, was investigated by means of the most recent structure characterization techniques. A previously unknown anhydrate oxyresveratrol crystal structure was identified for the first time from a submicrometric polyphasic mixture using 3D electron diffraction (3D ED). Additionally, a new polymorph of the dihydrate form of oxyresveratrol was also discovered and structurally studied. Detailed thermal and calorimetry studies revealed their thermal behavior and dehydration path. DFT calculations were also employed to investigate the stability of the rotational conformers involved in the hydrated phases (in both new and already known phases). This research exemplifies how 3D ED combined with cryo-plunging and routine solid-state analysis can elucidate the polymorphism scenario of a nanocrystalline natural compound.
Collapse
Affiliation(s)
- Elena Husanu
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Vincentia Emerson Agbemeh
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Iryna Andrusenko
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Danilo Marchetti
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Daniele Sonaglioni
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Dipartimento
di Fisica “E. Fermi”, University
of Pisa, Largo B. Pontecorvo
3, Pisa 56127, Italy
| | - Mauro Gemmi
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
5
|
Ta H, Yang YH, Zhu TT, Du NH, Hao Y, Fu J, Xu DD, Xu ZJ, Cheng AX, Lou HX. Catalytic divergence of O-methyltransferases shapes the chemo-diversity of polymethoxylated bibenzyls in Dendrobium catenatum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:29-44. [PMID: 39213173 DOI: 10.1111/tpj.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Erianin, crepidatin, and chrysotobibenzyl are typical medicinal polymethoxylated bibenzyls (PMBs) that are commercially produced in Dendrobium species. PMBs' chemo-diversity is mediated by the manifold combinations of O-methylation and hydroxylation in a definite order, which remains unsolved. To unequivocally elucidate the methylation mechanism of PMBs, 15 possible intermediates in the biosynthetic pathway of PMBs were chemically synthesized. DcOMT1-5 were highly expressed in tissues where PMBs were biosynthesized, and their expression patterns were well-correlated with the accumulation profiles of PMBs. Moreover, cell-free orthogonal tests based on the synthesized intermediates further confirmed that DcOMT1-5 exhibited distinct substrate preferences and displayed hydroxyl-group regiospecificity during the sequential methylation process. The stepwise methylation of PMBs was discovered from SAM to dihydro-piceatannol (P) in the following order: P → 3-MeP → 4-OH-3-MeP → 4-OH-3,5-diMeP → 3,3'(4'),5-triMeP → 3,4,4',5-tetraMeP (erianin) or 3,3',4,5-tetraMeP (crepidatin) → 3,3',4,4',5-pentaMeP (chrysotobibenzyl). Furthermore, the regioselectivities of DcOMTs were investigated by ligand docking analyses which corresponded precisely with the catalytic activities. In summary, the findings shed light on the sequential catalytic mechanisms of PMB biosynthesis and provide a comprehensive PMB biosynthetic network in D. catenatum. The knowledge gained from this study may also contribute to the development of plant-based medicinal applications and the production of high-value PMBs.
Collapse
Affiliation(s)
- He Ta
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ya-Hui Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ni-Hong Du
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Hao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jie Fu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dan-Dan Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ze-Jun Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
6
|
Tain YL, Hsu CN. Maternal Polyphenols and Offspring Cardiovascular-Kidney-Metabolic Health. Nutrients 2024; 16:3168. [PMID: 39339768 PMCID: PMC11434705 DOI: 10.3390/nu16183168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has led to the recognition of cardiovascular-kidney-metabolic (CKM) syndrome, which represents a significant global health challenge. Polyphenols, a group of phytochemicals, have demonstrated potential health-promoting effects. METHODS This review highlights the impact of maternal polyphenol supplementation on the CKM health of offspring. RESULTS Initially, we summarize the interconnections between polyphenols and each aspect of CKM syndrome. We then discuss in vivo studies that have investigated the use of polyphenols during pregnancy and breastfeeding, focusing on their role in preventing CKM syndrome in offspring. Additionally, we explore the common mechanisms underlying the protective effects of maternal polyphenol supplementation. CONCLUSIONS Overall, this review underscores the potential of early-life polyphenol interventions in safeguarding against CKM syndrome in offspring. It emphasizes the importance of continued research to advance our understanding and facilitate the clinical translation of these interventions.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Halimski I, Karpicz R, Dementjev A, Jankunec M, Chmeliov J, Macernis M, Abramavicius D, Valkunas L. trans-Stilbene aggregates and crystallites in polystyrene films: microscopy and spectroscopy studies. Phys Chem Chem Phys 2024; 26:23692-23702. [PMID: 39224941 DOI: 10.1039/d4cp02291b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Solid and liquid stilbene forms were characterized using a range of techniques, including atomic force microscopy, coherent anti-Stokes Raman scattering microspectroscopy and optical spectroscopy. The obtained experimental results were analyzed by means of quantum chemical calculations and using a non-negative matrix factorization algorithm. It was confirmed that pure cis-stilbene formed a homogeneous fluid film on a glass substrate, whereas pure trans-stilbene formed crystals. Mixtures of trans-stilbene and polystyrene were shown to form stable solid films, which were non-homogeneous on the microscopic scale: stilbene molecules self-organized into microcrystals, which floated on the surface of polystyrene glass.
Collapse
Affiliation(s)
- Ivan Halimski
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
| | - Renata Karpicz
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
| | - Andrej Dementjev
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-10257, Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Mindaugas Macernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Darius Abramavicius
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Leonas Valkunas
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
8
|
Cruz Neto JPR, de Luna Freire MO, de Albuquerque Lemos DE, Ribeiro Alves RMF, de Farias Cardoso EF, de Moura Balarini C, Duman H, Karav S, de Souza EL, de Brito Alves JL. Targeting Gut Microbiota with Probiotics and Phenolic Compounds in the Treatment of Atherosclerosis: A Comprehensive Review. Foods 2024; 13:2886. [PMID: 39335815 PMCID: PMC11431284 DOI: 10.3390/foods13182886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Dysregulated lipid metabolism, oxidative stress, and inflammation are the major mechanisms implicated in the development of AS. In addition, evidence suggests that gut dysbiosis plays an important role in atherogenesis, and modulation of the gut microbiota with probiotics and phenolic compounds has emerged as a promising strategy for preventing and treating AS. It has been shown that probiotics and phenolic compounds can improve atherosclerosis-related parameters by improving lipid profile, oxidative stress, and inflammation. In addition, these compounds may modulate the diversity and composition of the gut microbiota and improve atherosclerosis. The studies evaluated in the present review showed that probiotics and phenolic compounds, when consumed individually, improved atherosclerosis by modulating the gut microbiota in various ways, such as decreasing gut permeability, decreasing TMAO and LPS levels, altering alpha and beta diversity, and increasing fecal bile acid loss. However, no study was found that evaluated the combined use of probiotics and phenolic compounds to improve atherosclerosis. The available literature highlights the synergistic potential between phenolic compounds and probiotics to improve their health-promoting properties and functionalities. This review aims to summarize the available evidence on the individual effects of probiotics and phenolic compounds on AS, while providing insights into the potential benefits of nutraceutical approaches using probiotic strains, quercetin, and resveratrol as potential adjuvant therapies for AS treatment through modulation of the gut microbiota.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Rayanne Maira Felix Ribeiro Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Emmily Ferreira de Farias Cardoso
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Camille de Moura Balarini
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| |
Collapse
|
9
|
Fu JX, Jiao J, Gai QY, Fu YJ, Gao J, Zhang ZY, Wang Y, Wang XQ. Enhanced production of health-promoting phenolic compounds using a novel endophytic fungus Talaromyces neorugulosus R-209 isolated from pigeon pea in a natural habitat by l-phenylalanine feeding. World J Microbiol Biotechnol 2024; 40:317. [PMID: 39261398 DOI: 10.1007/s11274-024-04122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
In this study, nine endophytic fungi capable of producing multiple phenolic compounds were screened and identified from 152 fungi isolated from pigeon pea in a natural habitat (Honghe, Yunnan Province, China). Talaromyces neorugulosus R-209 exhibited the highest potential for phenolic compound production. L-phenylalanine feeding was used to enhance phenolic compound production in T. neorugulosus R-209 cultures. Under the optimal feeding conditions (l-phenylalanine dose of 0.16 g/L and feeding phase of 6 days), the yields of genistein, apigenin, biochanin A, and cajaninstilbene acid increased by 15.59-fold, 7.20-fold, 25.93-fold, and 10.30-fold over control, respectively. T. neorugulosus R-209 fed with l-phenylalanine was found to be stable in the production of phenolic compounds during ten successive subcultures. Moreover, bioactivities of extracts of T. neorugulosus R-209 cultures were significantly increased by l-phenylalanine feeding. Overall, l-phenylalanine feeding strategy made T. neorugulosus R-209 more attractive as a promising alternative source for the production of health-beneficial phenolic compounds in the nutraceutical/medicinal industries.
Collapse
Affiliation(s)
- Jin-Xian Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040, PR China
| | - Jiao Jiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China.
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China.
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040, PR China.
| | - Qing-Yan Gai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040, PR China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Jie Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040, PR China
| | - Zi-Yi Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040, PR China
| | - Yuan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040, PR China
| | - Xiao-Qing Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040, PR China
| |
Collapse
|
10
|
Tian R, Miao L, Cheang WS. Effects of Pterostilbene on Cardiovascular Health and Disease. Curr Issues Mol Biol 2024; 46:9576-9587. [PMID: 39329921 PMCID: PMC11430207 DOI: 10.3390/cimb46090569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Pterostilbene is a phenolic compound commonly found in blueberries, peanuts, grapes, and other plants. It is a dimethoxy derivative of resveratrol. In recent years, it has gained significant attention due to its remarkable anti-inflammatory and antioxidant effects. In addition, its high bioavailability and low toxicity in many species has contributed to its promising research prospects. Cardiovascular disease is closely related to pathological processes such as inflammation and oxidative stress, which aligns well with the treatment applications of pterostilbene. As a result, numerous studies have investigated the effects of pterostilbene on cardiovascular health and disease. This paper summarizes the current research on pterostilbene, with a specific focus on its potential therapeutic role in treating cardiovascular disease.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Wai-San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
11
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Hatem O, Steinbach A, Schneider G, Röckel F, Kőrösi L. Wild Vitis Species as Stilbenes Sources: Cane Extracts and Their Antibacterial Activity against Listeria monocytogenes. Molecules 2024; 29:3518. [PMID: 39124922 PMCID: PMC11314568 DOI: 10.3390/molecules29153518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Grapevines (Vitis spp.) produce several valuable polyphenol-type secondary metabolites including various stilbenoids. Although the potential application of stilbenes may offer alternative solutions to food safety or health challenges, only little information is available on their antibacterial activity against foodborne pathogens. In this work, high-performance liquid chromatography was used to analyze the stilbenoid profile of various wild Vitis species, including V. amurensis, V. davidii, V. pentagona, and V. romanetii, selected from the gene bank for grapes at the University of Pécs, Hungary. We found that the stilbene profile of cane extracts is strongly genotype-dependent, showing the predominant presence of ε-viniferin with a wide concentration range ≈ 320-3870 µg/g dry weight. A novel yet simple and efficient extraction procedure was developed and applied for the first time on grape canes, resulting in ε-viniferin-rich crude extracts that were tested against Listeria monocytogenes, an important foodborne pathogen. After 24 h exposure, V. pentagona and V. amurensis crude extracts completely eliminated the bacteria at a minimum bactericidal concentration of 42.3 µg/mL and 39.2 µg/mL of ε-viniferin, respectively. On the other hand, V. romanetii extract with 7.8 µg/mL of ε-viniferin resulted in 4 log reduction in the viable bacterial cells, while V. davidii extract with 1.4 µg/mL of ε-viniferin did not show significant antibacterial activity. These findings indicate that the ε-viniferin content was directly responsible for the antibacterial effect of cane extract. However, pure ε-viniferin (purity > 95%) required a higher concentration (188 µg/mL) to eradicate the bacteria under the same conditions, suggesting the presence of other antibacterial compounds in the cane extracts. Investigating the onset time of the bactericidal action was conducted through a kinetic experiment, and results showed that the reduction in living bacterial number started after 2 h; however, the bactericidal action demanded 24 h of exposure. Our results revealed that the canes of V. pentagona and V. amurensis species are a crucial bio-source of an important stilbene with antimicrobial activity and health benefits.
Collapse
Affiliation(s)
- Okba Hatem
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, H-7622 Pécs, Hungary;
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (A.S.); (G.S.)
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (A.S.); (G.S.)
| | - Franco Röckel
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany;
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, H-7634 Pécs, Hungary
| |
Collapse
|
13
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
14
|
Dávid CZ, Kúsz N, Agbadua OG, Berkecz R, Kincses A, Spengler G, Hunyadi A, Hohmann J, Vasas A. Phytochemical Investigation of Carex praecox Schreb. and ACE-Inhibitory Activity of Oligomer Stilbenes of the Plant. Molecules 2024; 29:3427. [PMID: 39065005 PMCID: PMC11280411 DOI: 10.3390/molecules29143427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phenolic compounds are the main special metabolites of Cyperaceae species from phytochemical, pharmacological, and chemotaxonomical points of view. The present study focused on the isolation, structure determination, and pharmacological investigation of constituents from Carex praecox. Twenty-six compounds, including lignans, stilbenes, flavonoids, megastigmanes, chromenes, and phenylpropanoids, were identified from the methanol extract of the plant. Five of these compounds, namely, carexines A-E, are previously undescribed natural products. All compounds were isolated for the first time from C. praecox. The ACE-inhibitory activity of seven stilbenoid compounds was tested, and (-)-hopeaphenol proved to be the most active (IC50 7.7 ± 0.9 μM). The enzyme-kinetic studies revealed a mixed-type inhibition; therefore, domain-specific studies were also conducted. The in silico docking of (-)-hopeaphenol to the ACE affirmed some favorable interactions. In addition, the antiproliferative and antibacterial effects of some compounds were also evaluated.
Collapse
Affiliation(s)
- Csilla Zsuzsanna Dávid
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
| | - Norbert Kúsz
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
| | - Orinamhe Godwin Agbadua
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, 6720 Szeged, Hungary;
| | - Annamária Kincses
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary;
| | - Attila Hunyadi
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Andrea Vasas
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| |
Collapse
|
15
|
Nagasawa S, Itagaki Y, Sasano Y, Iwabuchi Y. Controlled Aerobic Oxidative Dimerization of Hydroxystilbenoids by Chromium Catalysis. Org Lett 2024; 26:4178-4182. [PMID: 38728298 DOI: 10.1021/acs.orglett.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Aerobic oxidative dimerization of hydroxystilbenoids is described. A Cr-salen complex catalyzed the dimerization of hydroxystilbenoids in 1,1,1,3,3,3-hexafluoroisopropanol to form compounds comprising a natural product-like scaffold (quadrangularin) or its precursor depending on the aromatic substituents. The addition of a catalytic amount of scandium triflate [Sc(OTf)3] to the reaction system altered the reaction outcome to give a different natural product-like compound, a pallidol-type dimer.
Collapse
Affiliation(s)
- Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yudai Itagaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yusuke Sasano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
16
|
Guan Q, Xing S, Wang L, Zhu J, Guo C, Xu C, Zhao Q, Wu Y, Chen Y, Sun H. Triazoles in Medicinal Chemistry: Physicochemical Properties, Bioisosterism, and Application. J Med Chem 2024; 67:7788-7824. [PMID: 38699796 DOI: 10.1021/acs.jmedchem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Triazole demonstrates distinctive physicochemical properties, characterized by weak basicity, various dipole moments, and significant dual hydrogen bond acceptor and donor capabilities. These features are poised to play a pivotal role in drug-target interactions. The inherent polarity of triazole contributes to its lower logP, suggesting the potential improvement in water solubility. The metabolic stability of triazole adds additional value to drug discovery. Moreover, the metal-binding capacity of the nitrogen atom lone pair electrons of triazole has broad applications in the development of metal chelators and antifungal agents. This Perspective aims to underscore the unique physicochemical attributes of triazole and its application. A comparative analysis involving triazole isomers and other heterocycles provides guiding insights for the subsequent design of triazoles, with the hope of offering valuable considerations for designing other heterocycles in medicinal chemistry.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jiawei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
17
|
Yuan MH, Zhong WX, Wang YL, Liu YS, Song JW, Guo YR, Zeng B, Guo YP, Guo L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother Res 2024; 38:2128-2153. [PMID: 38400575 DOI: 10.1002/ptr.8151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.
Collapse
Affiliation(s)
- Ming-Hao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Rou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Au TTD, Ho YL, Chang YS. Qualitative and quantitative analysis methods for quality control of rhubarb in Taiwan's markets. Front Pharmacol 2024; 15:1364460. [PMID: 38746013 PMCID: PMC11091417 DOI: 10.3389/fphar.2024.1364460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction: Rhubarb is a traditional Chinese medicine (TCM) used to release heat and has cathartic effects. Official rhubarb in Taiwan Herbal Pharmacopeias 4th edition (THP 4th) and China Pharmacopeia 2020 (CP 2020) are the roots and rhizomes of Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill. However, the Rheum genus is a large genus with many different species, and owing to the similarity in appearance and taste with official rhubarb, there needs to be more clarity in the distinction between the species of rhubarb and their applications. Given the time-consuming and complicated extraction and chromatography methods outlined in pharmacopeias, we improved the qualitative analysis and quantitative analysis methods for rhubarb in the market. Hence, we applied our method to identify the species and quality of official and unofficial rhubarb. Method: We analyzed 21 rhubarb samples from the Taiwanese market using a proposed HPLC-based extraction and qualitative analysis employing eight markers: aloe-emodin, rhein, emodin, chrysophanol, physcion, rhapontigenin, rhaponticin, and resveratrol. Additionally, we developed a TLC method for the analysis of rhubarb. KEGG pathway analysis was used to clarify the phytochemical and pharmacological knowledge of official and unofficial rhubarb. Results: Rhein and rhapontigenin emerged as key markers to differentiate official and unofficial rhubarb. Rhapontigenin is abundant in unofficial rhubarb; however, rhein content was low. In contrast, their contents in official rhubarb were opposite to their contents in unofficial rhubarb. The TLC analysis used rhein and rhapontigenin to identify rhubarb in Taiwan's markets, whereas the KEGG pathway analysis revealed that anthraquinones and stilbenes affected different pathways. Discussion: Eight reference standards were used in this study to propose a quality control method for rhubarb in Taiwanese markets. We propose a rapid extraction method and quantitative analysis of rhubarb to differentiate between official and unofficial rhubarb.
Collapse
Affiliation(s)
- Thanh-Thuy-Dung Au
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Mihaylova D, Dimitrova-Dimova M, Popova A. Dietary Phenolic Compounds-Wellbeing and Perspective Applications. Int J Mol Sci 2024; 25:4769. [PMID: 38731987 PMCID: PMC11084633 DOI: 10.3390/ijms25094769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Contemporary living is continuously leading to poor everyday choices resulting in the manifestation of various diseases. The benefits of plant-based nutrition are undeniable and research on the topic is rising. Modern man is now aware of the possibilities that plant nutrition can provide and is seeking ways to benefit from it. Dietary phenolic compounds are among the easily accessible beneficial substances that can exhibit antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, anti-diabetic, anti-atherogenic, antiproliferative, as well as cardio-and neuroprotective activities. Several industries are exploring ways to incorporate biologically active substances in their produce. This review is concentrated on presenting current information about the dietary phenolic compounds and their contribution to maintaining good health. Additionally, this content will demonstrate the importance and prosperity of natural compounds for various fields, i.e., food industry, cosmetology, and biotechnology, among others.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Maria Dimitrova-Dimova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
20
|
Kaur G, Kaur R, Sodhi GK, George N, Rath SK, Walia HK, Dwibedi V, Saxena S. Stilbenes: a journey from folklore to pharmaceutical innovation. Arch Microbiol 2024; 206:229. [PMID: 38647675 DOI: 10.1007/s00203-024-03939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.
Collapse
Affiliation(s)
- Gursharan Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Rajinder Kaur
- Department of Plant Sciences, University of Idaho Moscow, Idaho, ID, 83844, USA
| | - Gurleen Kaur Sodhi
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala, Patiala, Punjab, 147004, India
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Harleen Kaur Walia
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala, Patiala, Punjab, 147004, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India.
- Institute of Soil, Water and Environmental Sciences, Volcani Research Center, Agricultural Research Organization, 7505101, Rishon LeZion, Israel.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala, Patiala, Punjab, 147004, India
| |
Collapse
|
21
|
Zhang T, Zhou L, Pu Y, Tang Y, Liu J, Yang L, Zhou T, Feng L, Wang X. A chromosome-level genome reveals genome evolution and molecular basis of anthraquinone biosynthesis in Rheum palmatum. BMC PLANT BIOLOGY 2024; 24:261. [PMID: 38594606 PMCID: PMC11005207 DOI: 10.1186/s12870-024-04972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Pu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yadi Tang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
22
|
Gao Q, Zheng R, Lu J, Li X, Wang D, Cai X, Ren X, Kong Q. Trends in the Potential of Stilbenes to Improve Plant Stress Tolerance: Insights of Plant Defense Mechanisms in Response to Biotic and Abiotic Stressors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7655-7671. [PMID: 38536950 DOI: 10.1021/acs.jafc.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Stilbenes belong to the naturally synthesized plant phytoalexins, produced de novo in response to various biotic and abiotic stressors. The importance of stilbenes in plant resistance to stress and disease is of increasing interest. However, the defense mechanisms and potential of stilbenes to improve plant stress tolerance have not been thoroughly reviewed. This work overviewed the pentose phosphate pathway, glycolysis pathway, shikimate pathway, and phenylalanine pathway occurred in the synthesis of stilbenes when plants are subjected to biotic and abiotic stresses. The positive implications and underlying mechanisms regarding defensive properties of stilbenes were demonstrated. Ten biomimetic chemosynthesis methods can underpin the potential of stilbenes to improve plant stress tolerance. The prospects for the application of stilbenes in agriculture, food, cosmetics, and pharmaceuticals industries are anticipated. It is hoped that some of the detailed ideas and practices may contribute to the development of stilbene-related products and improvement of plant resistance breeding.
Collapse
Affiliation(s)
- Qingchao Gao
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Renyu Zheng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Jun Lu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xue Li
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Xinyu Cai
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| |
Collapse
|
23
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
24
|
Zhu T, Pan Q, Xiao K, Zuo C, Liu Q, Zhou D, Tu K. Stilbenes-enriched peanut sprouts alleviated physical fatigue via regulating interactions of nutrients-microbiota-metabolites revealed by multi-omics analysis. Food Funct 2024; 15:2960-2973. [PMID: 38407402 DOI: 10.1039/d3fo04076c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, the antifatigue effect and mechanism of peanut sprouts were explored. BALB/c mice divided into three groups (control, dark and UV-C) were respectively supplemented with a normal diet, peanut sprouts (dark germination) added diet and stilbenes-enriched peanut sprouts (UV-C radiated germination) added diet. Results showed that swimming time and levels of blood glucose and antioxidant enzymes significantly increased, while contents of triglyceride and malondialdehyde notably decreased by peanut sprout supplementation. Besides, combined analysis of gut microbiota gene sequencing and targeted metabolomics of fecal metabolites revealed that peanut sprout supplementation up-regulated abundances and metabolic transformations of Catenibacillus, Odoribacter, Prevotellaceae-UCG-001 and Butyricicoccus while it down-regulated the abundance of Parabacteroides. Consequently, contents of sebacic acid, azelaic acid, suberic acid, heptanoic acid, pimelic acid, aminoadipic acid and mono-phenolics notably increased, which were markedly correlated with the antifatigue effect. Compared with the dark group, the swimming time, glutathione peroxidase activity, methylmalonylcarnitine content and abundances of Butyricicoccus, Catenibacillus and Lachnospiraceae NK4A136 were higher in the UV-C group, while opposite results were obtained for the levels of triglyceride, malondialdehyde, alpha-linolenic acid, gamma-linolenic acid, 10Z-heptadecenoic acid and palmitelaidic acid. Overall, peanut sprout supplementation could alleviate fatigue by modulating gut microbiota composition to promote fatty acid oxidation and lysine and stilbene catabolism to increase energy supply and regulate redox balance. UV-C-radiated peanut sprout supplementation could alleviate fatigue more effectively by up-regulating abundances of Butyricicoccus, Catenibacillus and Lachnospiraceae NK4A136 to promote long-chain fatty acid oxidation and catabolism of flavonoids and stilbenes efficiently.
Collapse
Affiliation(s)
- Tong Zhu
- College of Food Science and Technology/Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, P. R. China
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| | - Qi Pan
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| | - Kunpeng Xiao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| | - Changzhou Zuo
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| | - Qiang Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, P. R. China.
| |
Collapse
|
25
|
Socała K, Żmudzka E, Lustyk K, Zagaja M, Brighenti V, Costa AM, Andres-Mach M, Pytka K, Martinelli I, Mandrioli J, Pellati F, Biagini G, Wlaź P. Therapeutic potential of stilbenes in neuropsychiatric and neurological disorders: A comprehensive review of preclinical and clinical evidence. Phytother Res 2024; 38:1400-1461. [PMID: 38232725 DOI: 10.1002/ptr.8101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
26
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
27
|
Yan QW, Su BJ, He S, Liao HB, Yue-Hou, Wang HS, Liang D. Structurally diverse stilbenes from Gnetum parvifolium and their anti-neuroinflammatory activities. Bioorg Chem 2024; 143:107060. [PMID: 38154389 DOI: 10.1016/j.bioorg.2023.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Phytochemical investigation on the aerial parts of Gnetum parvifolium led to the isolation of 15 new and eight known structurally diverse stilbenes. The isolated compounds comprised (E)- or (Z)-stilbene (1-6, 15-20), dihydrostilbene (21), phenylbenzofuran (7, 8, 22), benzylated stilbene (9-11), benzylated stilbene dimer (12), and nitrogen-containing stilbene (13a, 13b, 14) types. The structures of the new compounds (1-12, 13a, 13b, 14) were established through spectroscopic analyses and experimental and calculated ECD data. Compound 12 is the first stilbene dimer connected through a benzyl group. In the anti-neuroinflammatory activity assay, compounds 4, 5, 9-11, 13b, and 16-21 displayed significant inhibitory effects against LPS-induced NO release in BV-2 microglial cells, with IC50 values of 0.35-16.1 μM. Compound 10 had the most potent activity (IC50 = 0.35 μM), and the further research indicated that it could decrease the mRNA levels of iNOS, IL-1β, IL-6, and TNF-α in a dose-dependent manner.
Collapse
Affiliation(s)
- Qi-Wei Yan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Bao-Jun Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shuang He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hai-Bing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yue-Hou
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
28
|
Can B, Sanlier N. Alzheimer, Parkinson, dementia, and phytochemicals: insight review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38189347 DOI: 10.1080/10408398.2023.2299340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's, Parkinson's, and dementia are the leading neurodegenerative diseases that threaten the world with the aging population. Although the pathophysiology of each disease is unique, the steps to be taken to prevent diseases are similar. One of the changes that a person can make alone is to gain the habit of an antioxidant-rich diet. Phytochemicals known for their antioxidant properties have been reported to prevent neurodegenerative diseases in various studies. Phytochemicals with similar chemical structures are grouped. Accordingly, there are two main groups of phytochemicals, flavonoid and non-flavonoid. Various in vitro and in vivo studies on phytochemicals have proven neuroprotective effects by increasing cognitive function with their anti-inflammatory and antioxidant mechanisms. The purpose of this review is to summarize the in vitro and in vivo studies on phytochemicals with neuroprotective effects and to provide insight.
Collapse
Affiliation(s)
- Basak Can
- Nutrition and Dietetics, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
29
|
Wu Y, Leng F, Liao M, Yu Y, Chen Z, Wei S, Yang Z, Wu Q. Characterization of the physiological parameters, effective components, and transcriptional profiles of Polygonum multiflorum Thunb. Under pH stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108279. [PMID: 38128226 DOI: 10.1016/j.plaphy.2023.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Polygonum multiflorum Thunb. is a traditional Chinese medicine with extensive distribution and robust adaptability, but comprehensive research on its acid and alkali resistance is presently lacking. This study aimed to analyze the effects of 5 months of continuous pH stress on the physiological and photosynthetic parameters of P. multiflorum, and the content of effective components. Results revealed that pH stress significantly influenced the normal growth, physiological functions, and photosynthetic indicators of P. multiflorum. At soil pH 4.5, the tubers of P. multiflorum exhibited the highest levels of 2,3,5,4'-tetrahydroxy stilbene-2-O-β-d-glucoside (THSG) and total anthraquinones at 5.41% and 0.38%, respectively. However, increased soil pH significantly reduced the content of THSG and total anthraquinones. Reference-free transcriptome analysis was further conducted on P. multiflorum treated at pH 4.5 and 9.5, generating a total of 47,305 unigenes with an N50 of 2118 bp, of which 31,058 (65.65%) were annotated. Additionally, 2472 differentially expressed genes (DEGs) were identified. Among them, 17 DEGs associated with the biosynthesis of THSG and anthraquinones were screened. A comprehensive analysis of differential gene expression and effective component content demonstrated a significant positive correlation between the content of effective components and the 14 DEGs' expression but a negative correlation with soil pH. This study highlighted the influence of varying soil pH values on the effective component content of P. multiflorum. Specific acidic conditions proved beneficial for the synthesis and accumulation of THSG and total anthraquinones in P. multiflorum, thereby enhancing the quality of the medicinal material.
Collapse
Affiliation(s)
- Yichao Wu
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Fen Leng
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Mingli Liao
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Yan Yu
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Zhenyong Chen
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Shuhong Wei
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Zaijun Yang
- College of Life Science, China West Normal University, Nanchong 637002, PR China.
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
30
|
Hashim M, Badruddeen, Akhtar J, Khan MI, Ahmad M, Islam A, Ahmad A. Diabetic Neuropathy: An Overview of Molecular Pathways and Protective Mechanisms of Phytobioactives. Endocr Metab Immune Disord Drug Targets 2024; 24:758-776. [PMID: 37867264 DOI: 10.2174/0118715303266444231008143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Diabetic neuropathy (DN) is a common and debilitating complication of diabetes mellitus that affects the peripheral nerves and causes pain, numbness, and impaired function. The pathogenesis of DN involves multiple molecular mechanisms, such as oxidative stress, inflammation, and pathways of advanced glycation end products, polyol, hexosamine, and protein kinase C. Phytochemicals are natural compounds derived from plants that have various biological activities and therapeutic potential. Flavonoids, terpenes, alkaloids, stilbenes, and tannins are some of the phytochemicals that have been identified as having protective potential for diabetic neuropathy. These compounds can modulate various cellular pathways involved in the development and progression of neuropathy, including reducing oxidative stress and inflammation and promoting nerve growth and repair. In this review, the current evidence on the effects of phytochemicals on DN by focusing on five major classes, flavonoids, terpenes, alkaloids, stilbenes, and tannins, are summarized. This compilation also discusses the possible molecular targets of numerous pathways of DN that these phytochemicals modulate. These phytochemicals may offer a promising alternative or complementary approach to conventional drugs for DN management by modulating multiple pathological pathways and restoring nerve function.
Collapse
Affiliation(s)
- Mohd Hashim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
31
|
Fu JT, Hao YK, Zhan ZC, Yang SY, Tang Q, Lin Q, Zhao HY, Du JY, Zhu TX, Li YL, Zhang YB, Wang GC. Lysidrhodosides A-I, acylphloroglucinol glucosides with anti-inflammatory activities from the leaves of Lysidice rhodostegia. Fitoterapia 2024; 172:105768. [PMID: 38056698 DOI: 10.1016/j.fitote.2023.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Lysidrhodosides A-I (1-9), nine acylphloroglucinol glucoside derivatives along with three known analogues (10-12) were isolated from the leaves of Lysidice rhodostegia. Their structures and absolute configuration were elucidated by spectroscopic data analysis (NMR, UV, IR, HR-ESI-MS), single-crystal X-ray diffraction, and acid hydrolysis with HPLC analysis. Notably, compounds 7-9 represent the first examples of 3-methylbutyryl phloroglucinol glucoside dimers isolated from this plant. Additionally, compounds 1-12 were assessed for their inhibitory effects on nitric oxide (NO) in the LPS-induced BV-2 cells. The results showed that compounds 6 and 12 significantly inhibited the production of the inflammatory mediator NO, with an inhibitory rate of 95.96 and 91.13% at a concentration of 50 μM, respectively.
Collapse
Affiliation(s)
- Jin-Tao Fu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yi-Kun Hao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhao-Chun Zhan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Si-Yu Yang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Qing Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qiang Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hai-Yue Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jing-Yi Du
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tian-Xi Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yao-Lan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Yu-Bo Zhang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Guo-Cai Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
32
|
Liang Y, Chen X, Teng Z, Wang X, Yang J, Liu G. Discovery of a 4-Hydroxy-3'-Trifluoromethoxy-Substituted Resveratrol Derivative as an Anti-Aging Agent. Molecules 2023; 29:86. [PMID: 38202669 PMCID: PMC10779923 DOI: 10.3390/molecules29010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
With the intensification of population aging, aging-related diseases are attracting more and more attention, thus, the study of aging mechanisms and anti-aging drugs is becoming increasingly urgent. Resveratrol is a potential candidate as an anti-aging agent, but its low bioavailability limits its application in vivo. In this work, a 4-hydroxy-3'-trifluoromethoxy-substituted resveratrol derivative (4-6), owing to its superior cell accumulation, could inhibit NO production in an inflammatory cell model, inhibit oxidative cytotoxicity, and reduce ROS accumulation and the population of apoptotic cells in an oxidative stress cell model. In D-galactose (D-gal)-stimulated aging mice, 4-6 could reverse liver and kidney damage; protect the serum, brain, and liver against oxidative stress; and increase the body's immunity in the spleen. Further D-gal-induced brain aging studies showed that 4-6 could improve the pathological changes in the hippocampus and the dysfunction of the cholinergic system. Moreover, protein expression related to aging, oxidative stress, and apoptosis in the brain tissue homogenate measured via Western blotting also showed that 4-6 could ameliorate brain aging by protecting against oxidative stress and reducing apoptosis. This work revealed that meta-trifluoromethoxy substituted 4-6 deserved to be further investigated as an effective anti-aging candidate drug.
Collapse
Affiliation(s)
- Yinhu Liang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
| | - Xi Chen
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
| | - Zhifeng Teng
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| |
Collapse
|
33
|
Brasileiro ACM, Gimenes MA, Pereira BM, Mota APZ, Aguiar MN, Martins ACQ, Passos MAS, Guimaraes PM. The Stilbene Synthase Family in Arachis: A Genome-Wide Study and Functional Characterization in Response to Stress. Genes (Basel) 2023; 14:2181. [PMID: 38137003 PMCID: PMC10742623 DOI: 10.3390/genes14122181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Peanut (Arachis hypogaea) and its wild relatives are among the few species that naturally synthesize resveratrol, a well-known stilbenoid phytoalexin that plays a crucial role in plant defense against biotic and abiotic stresses. Resveratrol has received considerable attention due to its health benefits, such as preventing and treating various human diseases and disorders. Chalcone (CHS) and Stilbene (STS) Synthases are plant-specific type III Polyketide Synthases (PKSs) that share the same substrates and are key branch enzymes in the biosynthesis of flavonoids and stilbenoids, respectively. Although resveratrol accumulation in response to external stimulus has been described in peanut, there are no comprehensive studies of the CHS and STS gene families in the genus Arachis. In the present study, we identified and characterized 6 CHS and 46 STS genes in the tetraploid peanut and an average of 4 CHS and 22 STS genes in three diploid wild species (Arachis duranensis, Arachis ipaënsis and Arachis stenosperma). The CHS and STS gene and protein structures, chromosomal distributions, phylogenetic relationships, conserved amino acid domains, and cis-acting elements in the promoter regions were described for all Arachis species studied. Based on gene expression patterns of wild A. stenosperma STS genes in response to different biotic and abiotic stresses, we selected the candidate AsSTS4 gene, which is strongly induced by ultraviolet (UV) light exposure, for further functional investigation. The AsSTS4 overexpression in peanut hairy roots significantly reduced (47%) root-knot nematode infection, confirming that stilbene synthesis activation in transgenic plants can increase resistance to pathogens. These findings contribute to understanding the role of resveratrol in stress responses in Arachis species and provide the basis for genetic engineering for improved production of valuable secondary metabolites in plants.
Collapse
Affiliation(s)
- Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
- National Institute of Science and Technology-INCT PlantStress Biotech-Embrapa, Brasília 70770-917, DF, Brazil
| | - Marcos Aparecido Gimenes
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Bruna Medeiros Pereira
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Ana Paula Zotta Mota
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Matheus Nascimento Aguiar
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Andressa Cunha Quintana Martins
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Mario Alfredo Saraiva Passos
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
- National Institute of Science and Technology-INCT PlantStress Biotech-Embrapa, Brasília 70770-917, DF, Brazil
| | - Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
- National Institute of Science and Technology-INCT PlantStress Biotech-Embrapa, Brasília 70770-917, DF, Brazil
| |
Collapse
|
34
|
Dutta BJ, Rakshe PS, Maurya N, Chib S, Singh S. Unlocking the therapeutic potential of natural stilbene: Exploring pterostilbene as a powerful ally against aging and cognitive decline. Ageing Res Rev 2023; 92:102125. [PMID: 37979699 DOI: 10.1016/j.arr.2023.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
The therapeutic potential of natural stilbenes, with a particular focus on pterostilbene (PTE), has emerged as a promising avenue of research targeting age-associated conditions encompassing cardiovascular diseases (CVD), diabetes mellitus (DM), and cognitive decline. This comprehensive investigation delves into the intricate mechanisms through which PTE, a polyphenolic compound abundant in grapes and blueberries, exerts its advantageous effects as an anti-aging agent. Central to its action is the modulation of hallmark aging processes, including oxidative damage, inflammatory responses, telomere attrition, and cellular senescence. PTE's ability to effectively penetrate the blood-brain barrier amplifies its potential for safeguarding neural health, thereby facilitating the regulation of neuronal signalling cascades, synaptic plasticity, and mitochondrial functionality. Through engagement with sirtuin proteins, it orchestrates cellular resilience, longevity, and metabolic equilibrium. Encouraging findings from preclinical studies portray PTE as a robust candidate for counteracting age-linked cognitive decline, augmenting memory consolidation, and potentially ameliorating neurodegenerative maladies such as Alzheimer's disease (AD). The synthesis of current scientific insights accentuates the promising translational prospects of PTE as a potent, naturally derived therapeutic agent against cognitive impairments associated with aging. Consequently, these collective findings lay a solid groundwork for forthcoming clinical inquiries and innovative therapeutic interventions in this realm.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
35
|
Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease. Molecules 2023; 28:7588. [PMID: 38005310 PMCID: PMC10673433 DOI: 10.3390/molecules28227588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological ailments, including stroke, Alzheimer's disease (AD), epilepsy, Parkinson's disease (PD), and other related diseases, have affected around 1 billion people globally to date. PD stands second among the common neurodegenerative diseases caused as a result of dopaminergic neuron loss in the midbrain's substantia nigra regions. It affects cognitive and motor activities, resulting in tremors during rest, slow movement, and muscle stiffness. There are various traditional approaches for the management of PD, but they provide only symptomatic relief. Thus, a survey for finding new biomolecules or substances exhibiting the therapeutic potential to patients with PD is the main focus of present-day research. Medicinal plants, herbal formulations, and natural bioactive molecules have been gaining much more attention in recent years as synthetic molecules orchestrate a number of undesired effects. Several in vitro, in vivo, and in silico studies in the recent past have demonstrated the therapeutic potential of medicinal plants, herbal formulations, and plant-based bioactives. Among the plant-based bioactives, polyphenols, terpenes, and alkaloids are of particular interest due to their potent anti-inflammatory, antioxidant, and brain-health-promoting properties. Further, there are no concise, elaborated articles comprising updated mechanism-of-action-based reviews of the published literature on potent, recently investigated (2019-2023) medicinal plants, herbal formulations, and plant based-bioactive molecules, including polyphenols, terpenes, and alkaloids, as a method for the management of PD. Therefore, we designed the current review to provide an illustration of the efficacious role of various medicinal plants, herbal formulations, and bioactives (polyphenols, terpenes, and alkaloids) that can become potential therapeutics against PD with greater specificity, target approachability, bioavailability, and safety to the host. This information can be further utilized in the future to develop several value-added formulations and nutraceutical products to achieve the desired safety and efficacy for the management of PD.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | | | - Neeraj K. Sethiya
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Manmohan Singhal
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| |
Collapse
|
36
|
Hu YM, Wang YR, Zhao WB, Ding YY, Wu ZR, Wang GH, Deng P, Zhang SY, An JX, Zhang ZJ, Luo XF, Liu YQ. Efficacy of pterostilbene suppression on Aspergillus flavus growth, aflatoxin B 1 biosynthesis and potential mechanisms. Int J Food Microbiol 2023; 404:110318. [PMID: 37454507 DOI: 10.1016/j.ijfoodmicro.2023.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/15/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Aspergillus flavus, a widespread saprotrophic filamentous fungus, could colonize agricultural crops with aflatoxin contamination, which endangers food security and the agricultural economy. A safe, effective and environmentally friendly fungicide is urgently needed. Pterostilbene, a natural phytoalexin originated from Pterocarpus indicus Willd., Vaccinium spp. and Vitis vinifera L., has been reported to possess excellent antimicrobial activity. More importantly, it is quite safe and healthy. In our screening tests of plant polyphenols for the inhibition of A. flavus, we found that pterostilbene evidently inhibited mycelial growth of Aspergillus flavus (EC50 = 15.94 μg/mL) and the inhibitory effect was better than that of natamycin (EC50 = 22.01 μg/mL), which is a natural product widely used in food preservation. Therefore, we provided insights into the efficacy of pterostilbene suppression on A. flavus growth, aflatoxin B1 biosynthesis and its potential mechanisms against A. flavus in the present study. Here, pterostilbene at concentrations of 250 and 500 μg/mL could effectively inhibit the infection of A. flavus on peanuts. And the biosynthesis of the secondary metabolite aflatoxin B1 was also inhibited. The antifungal effects of pterostilbene are exerted by inducing a large amount of intracellular reactive oxygen species production to bring the cells into a state of oxidative stress, damaging cellular biomolecules such as DNA, proteins and lipids and destroying the integrity of the cell membrane. Taken together, our study strongly supported the fact that pterostilbene could be considered a safe and effective antifungal agent against A. flavus infection.
Collapse
Affiliation(s)
- Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
37
|
Ortiz A, Sansinenea E. Phenylpropanoid Derivatives and Their Role in Plants' Health and as antimicrobials. Curr Microbiol 2023; 80:380. [PMID: 37864088 DOI: 10.1007/s00284-023-03502-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Phenylpropanoids belong to a wide group of compounds commonly secreted by plants and involved in different roles related with plant growth and development and the defense against plant pathogens. Some key intermediates from shikimate pathway are used to synthesize these compounds. In this way, by the phenylpropanoid pathway several building blocks are achieved to obtain flavonoids, isoflavonoids, coumarins, monolignols, phenylpropenes, phenolic acids, stilbenes and stilbenoids, and lignin, suberin and sporopollenin for plant-microbe interactions, structural support and mechanical strength, organ pigmentation, UV protection and acting against pathogens. Some reviews have revised phenylpropanoid biosynthesis and regulation of the biosynthetic pathways. In this review, the most important chemical structures about phenylpropanoid derivatives are summarized grouping them in different sections according to their structure. We have put special attention on their different roles in plants especially in plant health, growth and development and plant-environment interactions. Their interaction with microorganisms is discussed including their role as antimicrobials. We summarize all new findings about new developed structures and their involvement in plants health.
Collapse
Affiliation(s)
- Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, Mexico.
| |
Collapse
|
38
|
Karpicz R, Kareivaite G, Macernis M, Abramavicius D, Valkunas L. Two phases of trans-stilbene in a polystyrene matrix. Phys Chem Chem Phys 2023; 25:21183-21190. [PMID: 37531215 DOI: 10.1039/d3cp03015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Variability in the spectral properties of solid conformations of stilbene under various external conditions still remains obscure. The photophysical properties of trans-stilbene solution in solid polystyrene glass have been studied by absorption and time-resolved fluorescence. Concentration-induced quenching has been observed for small concentrations of stilbene. At large concentrations, the spectroscopic characteristics become split between the two phases of the sample: single-molecule properties are responsible for absorption, while the micro-crystalline phase dominates in fluorescence. Ab initio and molecular dynamics analyses suggest permanent twisting of the stilbene molecular structure upon crystallization, which supports spectroscopic phase separation.
Collapse
Affiliation(s)
- Renata Karpicz
- Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, Lithuania
| | - Gabriele Kareivaite
- Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, Lithuania
| | - Mindaugas Macernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, Vilnius, Lithuania.
| | - Darius Abramavicius
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, Vilnius, Lithuania.
| | - Leonas Valkunas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, Lithuania
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
39
|
Duta-Bratu CG, Nitulescu GM, Mihai DP, Olaru OT. Resveratrol and Other Natural Oligomeric Stilbenoid Compounds and Their Therapeutic Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2935. [PMID: 37631147 PMCID: PMC10459741 DOI: 10.3390/plants12162935] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
The use of natural compounds as an alternative to synthetic molecules has become a significant subject of interest in recent decades. Stilbenoids are a group of phenolic compounds found in many plant species and they have recently gained the focus of a multitude of studies in medicine and chemistry, resveratrol being the most representative molecule. In this review, we focused on the research that illustrates the therapeutic potential of this class of natural molecules considering various diseases with higher incidence rates. PubChem database was searched for bioactivities of natural stilbenoids, while several keywords (i.e., "stilbenoids", "stilbenoid anticancer") were used to query PubMed database for relevant studies. The diversity and the simplicity of stilbenes' chemical structures together with the numerous biological sources are key elements that can simplify both the isolation of these compounds and the drug design of novel bioactive molecules. Resveratrol and other related compounds are heterogeneously distributed in plants and are mainly found in grapes and wine. Natural stilbenes were shown to possess a wide range of biological activities, such as antioxidant, anti-inflammatory, antihyperglycemic, cardioprotective, neuroprotective, and antineoplastic properties. While resveratrol is widely investigated for its benefits in various disorders, further studies are warranted to properly harness the therapeutic potential of less popular stilbenoid compounds.
Collapse
Affiliation(s)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania (O.T.O.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania (O.T.O.)
| | | |
Collapse
|
40
|
Ziółkiewicz A, Kasprzak-Drozd K, Rusinek R, Markut-Miotła E, Oniszczuk A. The Influence of Polyphenols on Atherosclerosis Development. Int J Mol Sci 2023; 24:ijms24087146. [PMID: 37108307 PMCID: PMC10139042 DOI: 10.3390/ijms24087146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Polyphenols have attracted tremendous attention due to their pro-health properties, including their antioxidant, anti-inflammatory, antibacterial and neuroprotective activities. Atherosclerosis is a vascular disorder underlying several CVDs. One of the main risk factors causing atherosclerosis is the type and quality of food consumed. Therefore, polyphenols represent promising agents in the prevention and treatment of atherosclerosis, as demonstrated by in vitro, animal, preclinical and clinical studies. However, most polyphenols cannot be absorbed directly by the small intestine. Gut microbiota play a crucial role in converting dietary polyphenols into absorbable bioactive substances. An increasing understanding of the field has confirmed that specific GM taxa strains mediate the gut microbiota-atherosclerosis axis. The present study explores the anti-atherosclerotic properties and associated underlying mechanisms of polyphenols. Moreover, it provides a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and cardiovascular benefits.
Collapse
Affiliation(s)
- Agnieszka Ziółkiewicz
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| | - Robert Rusinek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Ewa Markut-Miotła
- Department of Lung Diseases and Children Rheumatology, Medical University of Lublin, Prof. Antoniego Gębali 6, 20-093 Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
41
|
Tran TM, Atanasova V, Tardif C, Richard-Forget F. Stilbenoids as Promising Natural Product-Based Solutions in a Race against Mycotoxigenic Fungi: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5075-5092. [PMID: 36951872 DOI: 10.1021/acs.jafc.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exposure to mycotoxins can pose a variety of adverse health effects to mammals. Despite dozens of mycotoxin decontamination strategies applied from pre- to postharvest stages, it is always challenging to guarantee a safe level of these natural toxic compounds in food and feedstuffs. In the context of the increased occurrence of drug-resistance strains of mycotoxin-producing fungi driven by the overuse of fungicides, the search for new natural-product-based solutions is a top priority. This review aims to shed a light on the promising potential of stilbenoids extracted from renewable agricultural wastes (e.g., grape canes and forestry byproducts) as antimycotoxin agents. Deeper insights into the mode of actions underlying the bioactivity of stilbenoid molecules against fungal pathogens, together with their roles in plant defense responses, are provided. Safety aspects of these natural compounds on humans and ecology are discussed. Perspectives on the development of stilbenoid-based formulations using encapsulation technology, which allows the bypassing of the limitations related to stilbenoids, particularly low aqueous solubility, are addressed. Optimistically, the knowledge gathered in the present review supports the use of currently underrated agricultural byproducts to produce stilbenoid-abundant extracts with a high efficiency in the mitigation of mycotoxins in food and feedstuffs.
Collapse
Affiliation(s)
- Trang Minh Tran
- RU 1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d'Ornon, France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d'Ornon, France
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Univ. Bordeaux, 33882 Villenave d'Ornon, France
| | | |
Collapse
|
42
|
Synthesis, cytotoxicity, Pan-HDAC inhibitory activity and docking study of new N-(2-aminophenyl)-2-methylquinoline-4-carboxamide and (E)-N-(2-aminophenyl)-2-styrylquinoline-4-carboxamide derivatives as anticancer agents. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
44
|
Chen YY, Lu HQ, Jiang KX, Wang YR, Wang YP, Jiang JJ. The Flavonoid Biosynthesis and Regulation in Brassica napus: A Review. Int J Mol Sci 2022; 24:ijms24010357. [PMID: 36613800 PMCID: PMC9820570 DOI: 10.3390/ijms24010357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Brassica napus is an important crop for edible oil, vegetables, biofuel, and animal food. It is also an ornamental crop for its various petal colors. Flavonoids are a group of secondary metabolites with antioxidant activities and medicinal values, and are important to plant pigmentation, disease resistance, and abiotic stress responses. The yellow seed coat, purple leaf and inflorescence, and colorful petals of B. napus have been bred for improved nutritional value, tourism and city ornamentation. The putative loci and genes regulating flavonoid biosynthesis in B. napus have been identified using germplasms with various seed, petal, leaf, and stem colors, or different flavonoid contents under stress conditions. This review introduces the advances of flavonoid profiling, biosynthesis, and regulation during development and stress responses of B. napus, and hopes to help with the breeding of B. napus with better quality, ornamental value, and stress resistances.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Qin Lu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Kai-Xuan Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yi-Ran Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - You-Ping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jin-Jin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
45
|
Resveratrol: Its Path from Isolation to Therapeutic Action in Eye Diseases. Antioxidants (Basel) 2022; 11:antiox11122447. [PMID: 36552655 PMCID: PMC9774148 DOI: 10.3390/antiox11122447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Due to the confirmed therapeutic potential of resveratrol (Rv) for eye diseases, namely its powerful anti-angiogenic and antioxidant effects, this molecule must be studied more deeply. Nowadays, the pharmaceutic and pharmacokinetic available studies offer a troubling picture because of its low stability and bioavailability. To overcome this problem, researchers started to design and create different delivery systems that could improve the delivery amount of Rv. Therefore, this review aims to shed light on the proper and efficient techniques to isolate, purify and quantify the Rv molecule, and how this therapeutic molecule can be a part of a delivery system. The Rv great impact on aspects regarding its stability, bioavailability and absorption are also debated here, based on the existent literature on in vitro and in vivo human and animal studies. Moreover, after its absorption the Rv influence at the molecular level in ocular pathologies is described. In addition, the present review summarizes the available literature about Rv, hoping that Rv will gain more attention to investigate its unexplored side.
Collapse
|
46
|
Stockdale DP, Beutler JA, Wiemer DF. Substitution of a triazole for the central olefin in biologically active stilbenes. Bioorg Med Chem Lett 2022; 75:128980. [PMID: 36096344 PMCID: PMC9563006 DOI: 10.1016/j.bmcl.2022.128980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
The stilbene moiety is commonly found in natural products and these compounds display an extraordinary range of biological activity. Efforts to derive useful drugs from stilbenes must address the potential liabilities of this structure, including a propensity for cis/trans isomerization. To identify olefin replacements that address this limitation while preserving biological activity we have prepared analogues of two bioactive stilbenes, a pawhuskin and a schweinfurthin, where a 1,2,3-triazole ring formally replaces the stilbene double bond. The new schweinfurthin analogue (23) has been tested for anti-proliferative activity against 60 cell lines, and shows a strong correlation of bioactivity when compared to the compound that inspired its synthesis (22).
Collapse
Affiliation(s)
- David P Stockdale
- Department of Chemistry University of Iowa, Iowa City, IA 52242-1294, United States
| | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702, United States
| | - David F Wiemer
- Department of Chemistry University of Iowa, Iowa City, IA 52242-1294, United States.
| |
Collapse
|
47
|
Ali A, Cottrell JJ, Dunshea FR. LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants. Metabolites 2022; 12:1016. [PMID: 36355099 PMCID: PMC9698446 DOI: 10.3390/metabo12111016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Polyphenols are considered vital bioactive compounds beneficial for human health. The Australian flora is enriched with polyphenols which are not fully characterized yet. Thus, the main objective of this study was to identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, and old man saltbush for phenolic compounds and their antioxidant activities. In this study, we tentatively identified a total of 155 phenolic compounds including 25 phenolic acids, 55 flavonoids, 22 isoflavonoids, 22 tannins, 22 lignans, 33 stilbenes, 33 coumarins and derivatives, 12 tyrosols and derivatives, and 6 phenolic terpenes. The highest total phenolic content (TPC) (15.09 ± 0.88 mg GAE/g) was quantified in lemongrass, while the lowest TPC (4.17 ± 0.33 mg GAE/g) was measured in wattle seeds. The highest total flavonoid content (TFC) and total condensed tannins (TCT) were measured in lemongrass and wattle seeds, respectively. A total of 18 phenolic metabolites were quantified/semi-quantified in this experiment. Lemongrass contains a vast number of phenolic metabolites.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- The Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
48
|
LC-DAD-ESI-MS/MS and NMR Analysis of Conifer Wood Specialized Metabolites. Cells 2022; 11:cells11203332. [PMID: 36291197 PMCID: PMC9600761 DOI: 10.3390/cells11203332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Many species from the Pinaceae family have been recognized as a rich source of lignans, flavonoids, and other polyphenolics. The great common occurrence of conifers in Europe, as well as their use in the wood industry, makes both plant material and industrial waste material easily accessible and inexpensive. This is a promising prognosis for both discovery of new active compounds as well as for finding new applications for wood and its industry waste products. This study aimed to analyze and phytochemically profile 13 wood extracts of the Pinaceae family species, endemic or introduced in Polish flora, using the LC-DAD–ESI-MS/MS method and compare their respective metabolite profiles. Branch wood methanolic extracts were phytochemically profiled. Lignans, stilbenes, flavonoids, diterpenes, procyanidins, and other compounds were detected, with a considerable variety of chemical content among distinct species. Norway spruce (Picea abies (L.) H.Karst.) branch wood was the most abundant source of stilbenes, European larch (Larix decidua Mill.) mostly contained flavonoids, while silver fir (Abies alba Mill.) was rich in lignans. Furthermore, 10 lignans were isolated from the studied material. Our findings confirm that wood industry waste materials, such as conifer branches, can be a potent source of different phytochemicals, with the plant matrix being relatively simple, facilitating future isolation of target compounds.
Collapse
|
49
|
Lucas Tenório CJ, Assunção Ferreira MR, Lira Soares LA. Recent advances on preparative LC approaches for polyphenol separation and purification: Their sources and main activities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Aidhen IS, Srikanth S, Lal H. The Emerging Promise with O/C‐Glycosides of Important Dietary Phenolic Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Indrapal Singh Aidhen
- Indian Institute of Technology Madras Department of Chemistry Adyar 600036 Chennai INDIA
| | | | - Heera Lal
- Indian Institute of Technology Madras Chemistry 600036 Chennai INDIA
| |
Collapse
|