1
|
Flores-Espinosa P, Menon R, Kammala A, Richardson LS. Lead exposure at the feto-maternal interface: a cause for concern for fetal membrane trophoblasts. Toxicol Sci 2025; 203:195-205. [PMID: 39579145 PMCID: PMC11775422 DOI: 10.1093/toxsci/kfae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
The integrity of fetal membranes enables biological functions that protect the fetus and maintain the pregnancy. Any compromise in fetal membrane function can predispose a pregnant woman to prelabor rupture of the membranes (pPROMs) and subsequently to preterm birth (PTB). Epidemiologic data suggest that lead exposure during pregnancy is one of several risk factors associated with PTB and pPROM. This heavy metal can cross placental and fetal membrane barriers, disrupting homeostasis in these tissues. Autophagy contributes to the maintenance of fetal membrane homeostasis during gestation, and dysfunctional autophagy is associated with pPROM. In this study, we determined the mechanistic impact of lead-induced cellular changes, autophagy, senescence, and inflammation in chorion trophoblast cells (CTCs) and amnion epithelial cells (AECs) of the fetal membranes. Lead exposure in CTCs induced autophagy dysfunction (increase in LC3B-II), augmented senescence (increased SA-β-galactosidase activity), and increased the release of inflammation. In AECs, lead exposure did effect autophagy, senescence, nor inflammation. The differential changes observed in CTCs and AECs after exposure to high lead concentrations may promote the weakening of fetal membranes and contribute to preterm rupture.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
- Laboratorio de Inmunología de la Unidad Feto-Placentaria, Department of Immunobiochemestry, Instituto Nacional de Perinatología I.E.R, Mexico City 11000, Mexico
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| | - Ananth Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| |
Collapse
|
2
|
Geremew H, Ali MA, Simegn MB, Golla EB, Abate A, Wondie SG, Kumbi H, Taderegew MM, Tilahun WM. Determinants of preterm prelabor rupture of fetal membrane among pregnant women in Ethiopia: A systematic review and meta-analysis. PLoS One 2024; 19:e0311151. [PMID: 39514514 PMCID: PMC11548779 DOI: 10.1371/journal.pone.0311151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Ethiopia is one of the countries where persistently high neonatal and maternal mortalities are reported. Preterm prelabor rupture of membrane (PPROM) plays an important contribution to these high mortalities. However, there is a paucity of comprehensive evidence about the epidemiology of PPROM in Ethiopia. Therefore, this systematic review was conducted to assess the pooled prevalence and determinants of PPROM among pregnant women in Ethiopia. METHODS A systematic review and meta-analysis were conducted following the PRISMA guideline. Relevant literatures were searched on African Journals Online (AJOL), PubMed, Scopus, Epistemonikos, CINAHL, Cochrane Library and gray literature. All statistical analyses were performed using STATA 17 software. The random effect meta-analysis model was employed to summarize the pooled estimates. Heterogeneity between included studies was evaluated using I2 statistic. Egger's regression test and Begg's correlation test were employed to assess publication bias, in conjunction with funnel plot. Besides, the non-parametric trim-and-fill analysis, sensitivity analysis, subgroup analysis and meta-regression were also performed. RESULTS A total of 13 original studies with 24,386 participants were considered in this systematic review. The pooled prevalence of PPROM was 6.58% (95% CI: 5.36, 7.79). Urinary tract infection (OR: 3.44; 95% CI: 1.81, 6.53), abnormal vaginal discharge (OR: 4.78; 95% CI: 2.85, 8.01), vaginal bleeding (OR: 2.04; 95% CI: 1.03, 4.06), history of PROM (OR: 4.64; 95% CI: 2.71, 7.95), history of abortion (OR: 3.06; 95% CI: 1.71, 5.46), malnutrition (OR: 5.24; 95% CI: 2.63, 10.44), anemia (OR: 3.97; 95% CI: 2.01, 7.85) and gestational diabetes (OR: 5.08; 95% CI: 1.93, 13.36) were significantly associated with PPROM. CONCLUSION This meta-analysis found a high prevalence of PPROM in Ethiopia. Urinary tract infection, abnormal vaginal discharge, vaginal bleeding, history of PROM, history of abortion, malnutrition, anemia and gestational diabetes were risk factors for PPROM. Prevention and control of antenatal infections and malnutrition are highly recommended to reduce the magnitude of PPROM in Ethiopia. Additionally, healthcare providers should emphasize the identified risk factors. PROTOCOL REGISTRATION NUMBER CRD42024536647.
Collapse
Affiliation(s)
- Habtamu Geremew
- College of Health Science, Oda Bultum University, Chiro, Ethiopia
| | - Mohammed Ahmed Ali
- Department of Midwifery, College of Health Science, Oda Bultum University, Chiro, Ethiopia
| | - Mulat Belay Simegn
- Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | | | - Alegntaw Abate
- Department of Medical Laboratory Science, College of Health Science, Oda Bultum University, Chiro, Ethiopia
| | - Smegnew Gichew Wondie
- Department of Human Nutrition, College of Medicine and Health Science, Mizan Tepi University, Mizan Aman, Ethiopia
| | - Hawi Kumbi
- Department of Laboratory, Adama Hospital Medical College, Adama, Ethiopia
| | - Mitku Mammo Taderegew
- Department of Biomedical Sciences, College of Medicine and Health Sciences, Wolkite University, Wolkite, Ethiopia
| | - Werkneh Melkie Tilahun
- Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Ma W, Zhou T, Tang S, Gan L, Cao Y. Advantages and disadvantages of targeting senescent endothelial cells in cardiovascular and cerebrovascular diseases based on small extracellular vesicles. Expert Opin Ther Targets 2024; 28:1001-1015. [PMID: 39475108 DOI: 10.1080/14728222.2024.2421760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION With the growth of the aging population, age-related diseases have become a heavy global burden, particularly cardiovascular and cerebrovascular diseases (CVDs). Endothelial cell (EC) senescence constitutes an essential factor in the development of CVDs, prompting increased focus on strategies to alleviate or reverse EC senescence. AREAS COVERED Small extracellular vesicles (sEVs) are cell-derived membrane structures, that contain proteins, lipids, RNAs, metabolites, growth factors and cytokines. They are widely used in treating CVDs, and show remarkable therapeutic potential in alleviating age-related CVDs by inhibiting or reversing EC senescence. However, unclear anti-senescence mechanism poses challenges for clinical application of sEVs, and a systematic review is lacking. EXPERT OPINION Targeting senescent ECs with sEVs in age-related CVDs treatment represents a promising therapeutic strategy, with modifying sEVs and their contents emerging as a prevalent approach. Nevertheless, challenges remain, such as identifying and selectively targeting senescent cells, understanding the consequences of removing senescent ECs and senescence-associated secretory phenotype (SASP), and assessing the side effects of therapeutic sEVs on CVDs. More substantial experimental and clinical data are needed to advance clinical practice.
Collapse
Affiliation(s)
- Wen Ma
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Yu Cao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Hernández-Rodríguez J, Pérez-Hernández J, Flores-Espinosa P, Olmos-Ortiz A, Velazquez P, Zamora-Escudero R, Islas-López M, Helguera-Repetto AC, Hernández-Bones K, Rodríguez-Flores S, Jiménez-Escutia R, Fortanel-Fonseca A, Flores-Pliego A, Lopez-Vancell R, Zaga-Clavellina V. Galectin-1 Elicits a Tissue-Specific Anti-Inflammatory and Anti-Degradative Effect Upon LPS-Induced Response in an Ex Vivo Model of Human Fetal Membranes Modeling an Intraamniotic Inflammation. Am J Reprod Immunol 2024; 92:e70016. [PMID: 39575516 PMCID: PMC11582940 DOI: 10.1111/aji.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
PROBLEM Intrauterine infection is one of the most jeopardizing conditions associated with adverse outcomes, including preterm birth; however, multiple tolerance mechanisms operate at the maternal-fetal interface to avoid the rejection of the fetus. Among the factors that maintain the uterus as an immunoprivileged site, Galectin-1 (Gal-1), an immunomodulatory glycan-binding protein secreted by the maternal-fetal unit, is pivotal in promoting immune cell homeostasis. This work aimed to evaluate the role of Gal-1 during a lipopolysaccharide (LPS)-induced-inflammatory milieu. METHOD OF STUDY Using an ex vivo culture with two independent compartments, human fetal membranes at term were pretreated with 40 and 80 ng/mL of Gal-1, then to reproduce an intraamniotic inflammation, the fetal side of membranes was stimulated with 500 ng/mL of LPS for 24 h. The concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein (MCP1), macrophage inflammatory protein (MIP1) α, regulated upon activation normal T cell expressed and secreted (RANTES), and matrix metalloproteinase (MMP)-9 were measured in both amnion and choriodecidua compartments. RESULTS In a tissue-specific fashion profile, pretreatment with the physiologic concentration of Gal-1 significantly diminished the LPS-dependent secretion of TNF-α, IL-1β, Il-6, MCP1, MIP1α, RANTES, and MMP-9. CONCLUSION Gal-1 elicits an anti-inflammatory effect on the human fetal membranes stimulated with LPS, which supports the hypothesis that Gal-1 is part of the immunomodulatory mechanisms intended to stop the harmful effect of inflammation of the maternal-fetal interface.
Collapse
Affiliation(s)
- Jazmin Hernández-Rodríguez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Jesús Pérez-Hernández
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Pilar Velazquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México, Mexico
| | | | - Marcela Islas-López
- Ginecología y Obstetricia, Hospital Ángeles Lomas-UNAM, Huixquilucan, Mexico
| | | | - Karla Hernández-Bones
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Médicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Samara Rodríguez-Flores
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Médicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rodrigo Jiménez-Escutia
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Rosario Lopez-Vancell
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | | |
Collapse
|
5
|
Lei WJ, Zhang F, Li MD, Pan F, Ling LJ, Lu JW, Myatt L, Sun K, Wang WS. C/EBPδ deficiency delays infection-induced preterm birth. BMC Med 2024; 22:432. [PMID: 39379940 PMCID: PMC11462803 DOI: 10.1186/s12916-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Parturition is an inflammation process. Exaggerated inflammatory reactions in infection lead to preterm birth. Although nuclear factor kappa B (NF-κB) has been recognized as a classical transcription factor mediating inflammatory reactions, those mediated by NF-κB per se are relatively short-lived. Therefore, there may be other transcription factors involved to sustain NF-κB-initiated inflammatory reactions in gestational tissues in infection-induced preterm birth. METHODS Cebpd-deficient mice were generated to investigate the role of CCAAT enhancer-binding protein δ (C/EBPδ) in lipopolysaccharide (LPS)-induced preterm birth, and the contribution of fetal and maternal C/EBPδ was further dissected by transferring Cebpd-/- or WT embryos to Cebpd-/- or WT dams. The effects of C/EBPδ pertinent to parturition were investigated in mouse and human myometrial and amnion cells. The interplay between C/EBPδ and NF-κB was examined in cultured human amnion fibroblasts. RESULTS The mouse study showed that LPS-induced preterm birth was delayed by Cebpd deficiency in either the fetus or the dam, with further delay being observed in conceptions where both the dam and the fetus were deficient in Cebpd. Mouse and human studies showed that the abundance of C/EBPδ was significantly increased in the myometrium and fetal membranes in infection-induced preterm birth. Furthermore, C/EBPδ participated in LPS-induced upregulation of pro-inflammatory cytokines as well as genes pertinent to myometrial contractility and fetal membrane activation in the myometrium and amnion respectively. A mechanistic study in human amnion fibroblasts showed that C/EBPδ, upon induction by NF-κB, could serve as a supplementary transcription factor to NF-κB to sustain the expression of genes pertinent to parturition. CONCLUSIONS C/EBPδ is a transcription factor to sustain the expression of gene initiated by NF-κB in the myometrium and fetal membranes in infection-induced preterm birth. Targeting C/EBPδ may be of therapeutic value in the treatment of infection-induced preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
6
|
Bautista-Bautista G, Salguero-Zacarias S, Villeda-Gabriel G, García-López G, Osorio-Caballero M, Palafox-Vargas ML, Acuña-González RJ, Lara-Pereyra I, Díaz-Ruíz O, Flores-Herrera H. Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual. BMC Pregnancy Childbirth 2024; 24:645. [PMID: 39367340 PMCID: PMC11451097 DOI: 10.1186/s12884-024-06847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. METHODS Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. RESULTS Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. CONCLUSIONS P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Collapse
Affiliation(s)
- Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Santos Salguero-Zacarias
- Departamento de Tococirugia y Urgencias, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes , Ciudad de México, México
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Ricardo Josué Acuña-González
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Irlando Lara-Pereyra
- Departamento de Ginecología, Hospital General de Zona 252, Instituto Mexicano del Seguro Social, Atlacomulco, México
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México.
| |
Collapse
|
7
|
Ling LJ, Zhou Q, Zhang F, Lei WJ, Li MD, Lu JW, Wang WS, Sun K, Ying H. The dual role of glucocorticoid regeneration in inflammation at parturition. Front Immunol 2024; 15:1459489. [PMID: 39290694 PMCID: PMC11405189 DOI: 10.3389/fimmu.2024.1459489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Fetal membrane inflammation is an integral event of parturition. However, excessive pro-inflammatory cytokines can impose threats to the fetus. Coincidentally, the fetal membranes express abundant 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which generates biologically active cortisol to promote labor through induction of prostaglandin synthesis. Given the well-recognized anti-inflammatory actions of glucocorticoids, we hypothesized that cortisol regenerated in the fetal membranes might be engaged in restraining fetus-hazardous pro-inflammatory cytokine production for the safety of the fetus, while reserving pro-labor effect on prostaglandin synthesis to ensure safe delivery of the fetus. Methods The hypothesis was examined in human amnion tissue and cultured primary human amnion fibroblasts as well as a mouse model. Results 11β-HSD1 was significantly increased in the human amnion in infection-induced preterm birth. Studies in human amnion fibroblasts showed that lipopolysaccharide (LPS) induced 11β-HSD1 expression synergistically with cortisol. Cortisol completely blocked NF-κB-mediated pro-inflammatory cytokine expression by LPS, but STAT3-mediated cyclooxygenase 2 expression, a crucial prostaglandin synthetic enzyme, remained. Further studies in pregnant mice showed that corticosterone did not delay LPS-induced preterm birth, but alleviated LPS-induced fetal organ damages, along with increased 11β-HSD1, cyclooxygenase 2, and decreased pro-inflammatory cytokine in the fetal membranes. Discussion There is a feed-forward cortisol regeneration in the fetal membranes in infection, and cortisol regenerated restrains pro-inflammatory cytokine expression, while reserves pro-labor effect on prostaglandin synthesis. This dual role of cortisol regeneration can prevent excessive pro-inflammatory cytokine production, while ensure in-time delivery for the safety of the fetus.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| |
Collapse
|
8
|
Lintao RCV, Richardson LS, Kammala AK, Chapa J, Yunque-Yap DA, Khanipov K, Golovko G, Dalmacio LMM, Menon R. PGRMC2 and HLA-G regulate immune homeostasis in a microphysiological model of human maternal-fetal membrane interface. Commun Biol 2024; 7:1041. [PMID: 39179795 PMCID: PMC11344061 DOI: 10.1038/s42003-024-06740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Chorion trophoblasts (CTCs) and immune cell-enriched decidua (DECs) comprise the maternal-fetal membrane interface called the chorio-decidual interface (CDi) which constantly gets exposed to maternal stressors without leading to labor activation. This study explored how CTCs act as a barrier at CDi. The roles of human leukocyte antigen (HLA)-G and progesterone receptor membrane component 2 (PGRMC2) in mediating immune homeostasis were also investigated. The CDi was recreated in a two-chamber microfluidic device (CDi-on-chip) with an outer chamber of primary DECs and immune cell line-derived innate immune cells and an inner chamber of wild-type or PGRMC2 or HLA-G knockout immortalized CTCs. To mimic maternal insults, DECs were treated with lipopolysaccharide, poly(I:C), or oxidative stress inducer cigarette smoke extract. Expression levels of inflammation and immunity genes via targeted RNA sequencing, production of soluble mediators, and immune cell migration into CTCs were determined. In CDi-on-chip, decidua and immune cells became inflammatory in response to insults while CTCs were refractory, highlighting their barrier function. HLA-G and PGRMC2 are found to be vital to immune homeostasis at the CDi, with PGRMC2 serving as an upstream regulator of inflammation, HLA-G expression, and mesenchymal-epithelial transition, and HLA-G serving as a frontline immunomodulatory molecule, thus preventing fetal membrane compromise.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Institute of Reproductive Health, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jenieve Chapa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Dianne Aster Yunque-Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
- KBR, Houston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
9
|
Richardson LS, Severino ME, Chauhan R, Zhang W, Kacerovsky M, Bhavnani SK, Menon R. Spatial transcriptomics of fetal membrane-Decidual interface reveals unique contributions by cell types in term and preterm births. PLoS One 2024; 19:e0309063. [PMID: 39159152 PMCID: PMC11332933 DOI: 10.1371/journal.pone.0309063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
During pregnancy, two fetomaternal interfaces, the placenta-decidua basalis and the fetal membrane-decidua parietals, allow for fetal growth and maturation and fetal-maternal crosstalk, and protect the fetus from infectious and inflammatory signaling that could lead to adverse pregnancy outcomes. While the placenta has been studied extensively, the fetal membranes have been understudied, even though they play critical roles in pregnancy maintenance and the initiation of term or preterm parturition. Fetal membrane dysfunction has been associated with spontaneous preterm birth (PTB, < 37 weeks gestation) and preterm prelabor rupture of the membranes (PPROM), which is a disease of the fetal membranes. However, it is unknown how the individual layers of the fetal membrane decidual interface (the amnion epithelium [AEC], the amnion mesenchyme [AMC], the chorion [CTC], and the decidua [DEC]) contribute to these pregnancy outcomes. In this study, we used a single-cell transcriptomics approach to unravel the transcriptomics network at spatial levels to discern the contributions of each layer of the fetal membranes and the adjoining maternal decidua during the following conditions: scheduled caesarian section (term not in labor [TNIL]; n = 4), vaginal term in labor (TIL; n = 3), preterm labor with and without rupture of membranes (PPROM; n = 3; and PTB; n = 3). The data included 18,815 genes from 13 patients (including TIL, PTB, PPROM, and TNIL) expressed across the four layers. After quality control, there were 11,921 genes and 44 samples. The data were processed by two pipelines: one by hierarchical clustering the combined cases and the other to evaluate heterogeneity within the cases. Our visual analytical approach revealed spatially recognized differentially expressed genes that aligned with four gene clusters. Cluster 1 genes were present predominantly in DECs and Cluster 3 centered around CTC genes in all labor phenotypes. Cluster 2 genes were predominantly found in AECs in PPROM and PTB, while Cluster 4 contained AMC and CTC genes identified in term labor cases. We identified the top 10 differentially expressed genes and their connected pathways (kinase activation, NF-κB, inflammation, cytoskeletal remodeling, and hormone regulation) per cluster in each tissue layer. An in-depth understanding of the involvement of each system and cell layer may help provide targeted and tailored interventions to reduce the risk of PTB.
Collapse
Affiliation(s)
- Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Mary Elise Severino
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Rahul Chauhan
- Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Weibin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Suresh K. Bhavnani
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
10
|
Kim S, Lam PY, Richardson LS, Menon R, Han A. A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion. Biomed Microdevices 2024; 26:32. [PMID: 38963644 PMCID: PMC11624963 DOI: 10.1007/s10544-024-00714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Lv C, Lu Q, Zhang C, Yan S, Chen H, Pan XF, Fu C, Wang R, Song X. Relationship between first trimester physical activity and premature rupture of membranes: a birth cohort study in Chinese women. BMC Public Health 2024; 24:1736. [PMID: 38944666 PMCID: PMC11214697 DOI: 10.1186/s12889-024-18791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/08/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVE This study aimed to examine prospective associations of different intensity levels and types of physical activity (PA) in early pregnancy with premature rupture of membranes (PROM) among Chinese pregnant women. METHODS A total of 6284 pregnant women were included from the Tongji-Shuangliu Birth Cohort. Household/caregiving, occupational, sports/exercise and transportation activities during early pregnancy were investigated by the pregnancy physical activity questionnaire (PPAQ), and the diagnosis of PROM was ascertained during the whole pregnancy. Multivariate logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence interval (CI) for the associations between PA and PROM. RESULTS Among the 6284 pregnant women, 1246 were identified to have PROM (19.8%). Women undertaking the highest level (3 third tertile) of PA during pregnancy appeared to have a lower risk of PROM [OR = 0.68, 95%CI 0.58-0.80) when compared to those at the lowest tertile of PA. Similarly, women with increased levels of light intensity activity, moderate-vigorous intensive, household/caregiving activity and meeting exercise guidelines during pregnancy were associated with reduced risks of PROM (OR = 0.69, 95% CI 0.59-0.81, OR = 0.70, 95% CI 0.60-0.82, OR = 0.62, 95% CI 0.53-0.73 and OR = 0.82, 95% CI 0.70-0.97, respectively). CONCLUSIONS High levels of PA of different intensities and PA of household/caregiving activities and meeting exercise guidelines during the first trimester were associated with a lower incidence of PROM. TRIAL REGISTRATION The data of human participants in this study were conducted in accordance with the Helsinki Declaration. This study has been approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ([2017] No. S225). All participants provided written informed consent prior to enrollment. A statement to confirm that all methods were carried out in accordance with relevant guidelines and regulations.
Collapse
Affiliation(s)
- Chuanzhu Lv
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Research Unit of Island Emergency Medicine, Hainan Medical University, Chinese Academy of Medical Sciences, (No. 2019RU013), Haikou, 570100, Hainan, China
| | - Qian Lu
- School of Public Health, Hainan Medical University, Haikou, 570100, Hainan, China
| | - Caihong Zhang
- International school of Nursing, Hainan Medical University, Haikou, 570100, China
| | - Shijiao Yan
- School of Public Health, Hainan Medical University, Haikou, 570100, Hainan, China
| | - Huanjun Chen
- School of Public Health, Hainan Medical University, Haikou, 570100, Hainan, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health, Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China
- Center for Epidemiology and Population Health, Integrated Traditional Chinese and Western Medicine Institute & Chengdu Integrated Traditional Chinese and Western Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610041, Sichuan, China
| | - Chao Fu
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, China.
| | - Rixing Wang
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, China.
| | - Xingyue Song
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, China.
| |
Collapse
|
12
|
Mosebarger A, Vidal MS, Bento GFC, Lintao RCV, Severino MEL, Kumar Kammala A, Menon R. Immune cells at the feto-maternal interface: Comprehensive characterization and insights into term labor. J Reprod Immunol 2024; 163:104239. [PMID: 38493591 DOI: 10.1016/j.jri.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Immune cells at the feto-maternal interface play an important role in pregnancy; starting at implantation, maintenance of pregnancy, and parturition. The role of decidual immune cells in induction of labor still needs to be understood. Published reports on this topic show heterogeneity in methods of cell isolation, assay, analysis and cellular characterization making it difficult to collate available information in order to understand the contribution of immune cells at term leading to parturition. In the present study, available literature was reviewed to study the differences in immune cells between the decidua basalis and decidua parietalis, as well as between immune cells in term and preterm labor. Additionally, immune cells at the decidua parietalis were isolated from term not in labor (TNL) or term in labor (TL) samples and characterized via flow cytometry using a comprehensive, high-dimensional antibody panel. This allowed a full view of immune cell differences without combining multiple studies, which must include variation in isolation and analysis methods, for more conclusive data. The ratio of cells found in decidua parietalis in this study generally matched those reported in the literature, although we report a lower percentage of natural killer (NK) cells at term. We report that CD4 expression on CD8- NK cells decreased in term labor compared to not in labor samples, suggesting that natural killer cells may be migrating to other sites during labor. Also, we report a decrease in CD38 expression on CD8+ CD57+ T cells in labor, indicative of cytotoxic T cell senescence. Our study provides a comprehensive status of immune cells at the decidua-chorion interface at term.
Collapse
Affiliation(s)
- Angela Mosebarger
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Manuel S Vidal
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Philippines Manila, Manila, Philippines
| | | | - Ryan C V Lintao
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Philippines Manila, Manila, Philippines
| | - Mary Elise L Severino
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
13
|
Yang X, Xu F, Ma G, Pu F. Maternal Exposure to Environmental Air Pollution and Premature Rupture of Membranes: Evidence from Southern China. Med Sci Monit 2024; 30:e943601. [PMID: 38812259 PMCID: PMC11149469 DOI: 10.12659/msm.943601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exposure to air pollution (AP) during pregnancy is associated with pre-labor rupture of membranes (PROM). However, there is limited research on this topic, and the sensitive exposure windows remain unclear. The present study assessed the association between AP exposure and the risk of PROM, as well as seeking to identify the sensitive time windows. MATERIAL AND METHODS This retrospective study analyzed 4276 pregnant women's data from Tongling Maternal and Child Health Hospital from 2020 to 2022. We obtained air pollution data, including particulate matter (PM) with an aerodynamic diameter of ≤2.5 μm (PM₂․₅), particulate matter with an aerodynamic diameter of ≤10 μm (PM₁₀), nitrogen dioxide (NO₂), and ozone (O₃), from the Tongling Ecology and Environment Bureau. Demographic information was extracted from medical records. We employed a distributed lag model to identify the sensitive exposure windows of prenatal AP affecting the risk of PROM. We conducted a sensitivity analysis based on pre-pregnancy BMI. RESULTS We found a significant association between prenatal exposure to AP and increased PROM risk after adjusting for confounders, and the critical exposure windows of AP were the 6th to 7th months of pregnancy. In the underweight group, an increase of 10 µg/m³ in PM₂․₅ was associated with a risk of PROM, with an odds ratio (OR) of 1.48 (95% CI: 1.16, 1.89). Similarly, a 10 µg/m³ increase in PM₁₀ was associated with a risk of PROM, with an OR of 1.45 (95% CI: 1.05, 1.77). CONCLUSIONS Prenatal exposure to AP, particularly during months 6-7 of pregnancy, is associated with an increased risk of PROM. This study extends and strengthens the evidence on the association between prenatal exposure to AP and the risk of PROM, specifically identifying the critical exposure windows.
Collapse
Affiliation(s)
- Xiaowu Yang
- Department of Maternal Health Care, Maternal and Child Health Hospital of Tongling, Tongling, Anhui, PR China
| | - Fengsheng Xu
- Department of Diseases, The Public Health Service Center of Economic Development Zone of Hefei, Hefei, Anhui, PR China
| | - Gongyan Ma
- Department of AIDS Prevention and Control, Center for Disease Control of Liuan, Liuan, Anhui, PR China
| | - Feng Pu
- Department of Maternal Health Care, Maternal and Child Health Hospital of Tongling, Tongling, Anhui, PR China
| |
Collapse
|
14
|
Kim S, Lam PY, Richardson L, Menon R, Han A. A Dynamic Flow Fetal Membrane Organ-on-a-Chip System for Modeling the Effects of Amniotic Fluid Motion. RESEARCH SQUARE 2024:rs.3.rs-4372328. [PMID: 38798515 PMCID: PMC11118697 DOI: 10.21203/rs.3.rs-4372328/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fetal membrane(amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. An amnion membrane (AM) organ-on-chip (OOC) was utilized to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 hours flow culture to mimic fluid motion. Static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control for pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to CK-18 ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a flow culture environment is not necessary to mimic any in utero physiologic cellular conditions of fetal membrane-derived cells.
Collapse
|
15
|
Vidal MS, Radnaa E, Vora N, Khanipov K, Antich C, Ferrer M, Urrabaz-Garza R, Jacob JE, Menon R. Establishment and comparison of human term placenta-derived trophoblast cells†. Biol Reprod 2024; 110:950-970. [PMID: 38330185 PMCID: PMC11484515 DOI: 10.1093/biolre/ioae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jeena E Jacob
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
16
|
Eichholz HM, Cornelis A, Wolf B, Grubitzsch H, Friedrich P, Makky A, Aktas B, Käs JA, Stepan H. Anatomy of the fetal membranes: insights from spinning disk confocal microscopy. Arch Gynecol Obstet 2024; 309:1919-1923. [PMID: 37184578 PMCID: PMC11018647 DOI: 10.1007/s00404-023-07070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE The fetal membranes are essential for the maintenance of pregnancy, and their integrity until parturition is critical for both fetal and maternal health. Preterm premature rupture of the membranes (pPROM) is known to be an indicator of preterm birth, but the underlying architectural and mechanical changes that lead to fetal membrane failure are not yet fully understood. The aim of this study was to gain new insights into the anatomy of the fetal membrane and to establish a tissue processing and staining protocol suitable for future prospective cohort studies. METHODS In this proof of principle study, we collected fetal membranes from women undergoing vaginal delivery or cesarean section. Small membrane sections were then fixed, stained for nucleic acids, actin, and collagen using fluorescent probes, and subsequently imaged in three dimensions using a spinning disk confocal microscope. RESULTS Four fetal membranes of different types were successfully processed and imaged after establishing a suitable protocol. Cellular and nuclear outlines are clearly visible in all cases, especially in the uppermost membrane layer. Focal membrane (micro) fractures could be identified in several samples. CONCLUSION The presented method proves to be well suited to determine whether and how the occurrence of membrane (micro) fractures and cellular jamming correlate with the timing of membrane rupture and the mode of delivery. In future measurements, this method could be combined with mechanical probing techniques to compare optical and mechanical sample information.
Collapse
Affiliation(s)
- Hannah Marie Eichholz
- Leipzig Institute for Meteorology, Leipzig University, 04103, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105, Leipzig, Germany
| | - Alissa Cornelis
- Department of Obstetrics, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Benjamin Wolf
- Department of Gynecology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Hanna Grubitzsch
- Department of Obstetrics, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Philip Friedrich
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany
| | - Ahmad Makky
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076, Tübingen, Germany
| | - Bahriye Aktas
- Department of Gynecology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Josef Alfons Käs
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany
| | - Holger Stepan
- Department of Obstetrics, University Hospital Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
17
|
Li MD, Lu JW, Zhang F, Lei WJ, Pan F, Lin YK, Ling LJ, Myatt L, Wang WS, Sun K. ADAMTS4 is a crucial proteolytic enzyme for versican cleavage in the amnion at parturition. Commun Biol 2024; 7:301. [PMID: 38461223 PMCID: PMC10924920 DOI: 10.1038/s42003-024-06007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/03/2024] [Indexed: 03/11/2024] Open
Abstract
Hyalectan cleavage may play an important role in extracellular matrix remodeling. However, the proteolytic enzyme responsible for hyalectan degradation for fetal membrane rupture at parturition remains unknown. Here, we reveal that versican (VCAN) is the major hyalectan in the amnion, where its cleavage increases at parturition with spontaneous rupture of membrane. We further reveal that ADAMTS4 is a crucial proteolytic enzyme for VCAN cleavage in the amnion. Inflammatory factors may enhance VCAN cleavage by inducing ADAMTS4 expression and inhibiting ADAMTS4 endocytosis in amnion fibroblasts. In turn, versikine, the VCAN cleavage product, induces inflammatory factors in amnion fibroblasts, thereby forming a feedforward loop between inflammation and VCAN degradation. Mouse studies show that intra-amniotic injection of ADAMTS4 induces preterm birth along with increased VCAN degradation and proinflammatory factors abundance in the fetal membranes. Conclusively, there is enhanced VCAN cleavage by ADAMTS4 in the amnion at parturition, which can be reenforced by inflammation.
Collapse
Affiliation(s)
- Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
18
|
Underhill LA, Mennella JM, Tollefson GA, Uzun A, Lechner BE. Transcriptomic analysis delineates preterm prelabor rupture of membranes from preterm labor in preterm fetal membranes. BMC Med Genomics 2024; 17:72. [PMID: 38443884 PMCID: PMC10916314 DOI: 10.1186/s12920-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Globally, preterm birth remains the leading cause of death in children younger than 5 years old. Spontaneous preterm birth is comprised of two events that may or may not occur simultaneously: preterm labor and preterm prelabor rupture of membranes (PPROM). To further explore the concept that spontaneous preterm birth can result from the initializing of two separate but overlapping pathological events, we compared fetal membrane tissue from preterm labor deliveries to fetal tissue from preterm labor with PPROM deliveries. We hypothesized that the fetal membrane tissue from preterm labor with PPROM cases will have an RNA-seq profile divergent from the fetal membrane tissue from preterm labor controls. METHODS Chorioamnion, separated into amnion and chorion, was collected from eight gestationally age-matched cases and controls within 15 min of birth, and analyzed using RNA sequencing. Pathway enrichment analyses and functional annotations of differentially expressed genes were performed using KEGG and Gene Ontogeny Pathway enrichment analyses. RESULTS A total of 1466 genes were differentially expressed in the amnion, and 484 genes were differentially expressed in the chorion (log2 fold change > 1, FDR < 0.05) in cases (preterm labor with PPROM), versus controls (preterm labor only). In the amnion, the most significantly enriched (FDR < 0.01) KEGG pathway among down-regulated genes was the extracellular matrix receptor interaction pathway. Seven of the most significantly enriched pathways were comprised of multiple genes from the COL family, including COL1A, COL3A1, COL4A4, and COL4A6. In the chorion, the most significantly enriched KEGG pathways in up-regulated genes were chemokine, NOD receptor, Toll-like receptor, and cytokine-cytokine receptor signaling pathways. Similarly, KEGG pathway enrichment analysis for up-regulated genes in the amnion included three inflammatory pathways: cytokine-cytokine interaction, TNF signaling and the CXCL family. Six genes were significantly up regulated in chorionic tissue discriminated between cases (preterm labor with PPROM) and controls (preterm labor only) including GBP5, CXCL9, ALPL, S100A8, CASP5 and MMP25. CONCLUSIONS In our study, transcriptome analysis of preterm fetal membranes revealed distinct differentially expressed genes for PPROM, separate from preterm labor. This study is the first to report transcriptome data that reflects the individual pathophysiology of amnion and chorion tissue from PPROM deliveries.
Collapse
Affiliation(s)
- Lori A Underhill
- Warren Alpert Medical School at Brown University, Providence, RI, USA.
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA.
- Women and Infants Hospital, 101 Dudley St, 02905, Providence, RI, USA.
| | - J M Mennella
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - G A Tollefson
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - A Uzun
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - B E Lechner
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| |
Collapse
|
19
|
Severino MEL, Richardson L, Kammala AK, Radnaa E, Khanipov K, Dalmacio LMM, Mysorekar IU, Kacerovsky M, Menon R. Autophagy Determines Distinct Cell Fates in Human Amnion and Chorion Cells. AUTOPHAGY REPORTS 2024; 3:2306086. [PMID: 38370394 PMCID: PMC10871702 DOI: 10.1080/27694127.2024.2306086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Human fetal membranes (amniochorion) that line the intrauterine cavity consist of two distinct cell layers; single-layer amnion epithelial cells (AEC) and multilayer chorion trophoblast cells (CTC). These layers are connected through a collagen-rich extracellular matrix. Cellular remodeling helps support membrane growth and integrity during gestation and helps to maintain pregnancy. Preterm prelabor rupture of the human amniochorionic (fetal) membrane (pPROM) is antecedent to 40% of all spontaneous preterm birth. Oxidative stress (OS) induced activation of the p38 MAPK due to various maternal risk exposures and the amniochorion cells' senescence are reported pathological features of pPROM. Our transcriptomics analysis implicated dysregulated autophagy and epithelial-mesenchymal transition (EMT) in fetal membranes from pPROM. The molecular interplay between OS-induced p38 MAPK activation, autophagy, and EMT was investigated in AECs and CTCs to better understand the involvement of autophagy and EMT. We report the differential impact of OS on the autophagic machinery in AECs and CTCs, resulting in distinct cell fates. In AECs, OS-induced p38 MAPK activation causes autophagosome accumulation and reduced autophagic flux mediated by decreased ULK1 activity and kinase activity, leading to senescence. In CTCs, induction of autophagy has a limited effect; however, inhibition of autophagy led to SQSTM1-mediated EMT of trophoblast cells. Autophagy, EMT, and senescence were associated with proinflammatory changes. Thus, AECs and CTCs respond differently to OS via differential autophagy response, partly mediated via p38 MAPK. Besides senescence, OS-induced autophagy dysregulation in amniochorion cells may play a mechanistic role in pPROM pathophysiology.
Collapse
Affiliation(s)
- Mary Elise L. Severino
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren Richardson
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Texas, USA
| | | | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Centre on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Ramkumar Menon
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
20
|
Li Q, Li D, Lu J, Zou K, Wang L, Jiao Y, Wang M, Gao R, Song J, Li Y, Li F, Ji J, Wang J, Li L, Ye T, He E, Chen H, Wang Y, Ren J, Bai C, Yang S, Zhang Y. Interface-Stabilized Fiber Sensor for Real-Time Monitoring of Amniotic Fluid During Pregnancy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307726. [PMID: 37775103 DOI: 10.1002/adma.202307726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 10/01/2023]
Abstract
Diseases in pregnancy endanger millions of fetuses worldwide every year. The onset of these diseases can be early warned by the dynamic abnormalities of biochemicals in amniotic fluid, thus requiring real-time monitoring. However, when continuously penetrated by detection devices, the amnion is prone to loss of robustness and rupture, which is difficult to regenerate. Here, an interface-stabilized fiber sensor is presented for real-time monitoring of biochemical dynamics in amniotic fluid during pregnancy. The sensor is seamlessly integrated into the amnion through tissue adhesion, amniotic regeneration, and uniform stress distribution, posing no risk to the amniotic fluid environment. The sensor demonstrates a response performance of less than 0.3% fluctuation under complex dynamic conditions and an accuracy of more than 98% from the second to the third trimester. By applying it to early warning of diseases such as intrauterine hypoxia, intrauterine infection, and fetal growth restriction, fetal survival increases to 95% with timely intervention.
Collapse
Affiliation(s)
- Qianming Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Dan Li
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Kuangyi Zou
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Maosen Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Rui Gao
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jie Song
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Fangyan Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jianjian Ji
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiacheng Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Luhe Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Er He
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Hao Chen
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yuanzhen Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Junye Ren
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chenyu Bai
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Shuo Yang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ye Zhang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Karakus S, Dogan HO. Maternal serum amino acid levels as predictors of premature rupture of membranes: A comprehensive analysis. Placenta 2024; 145:92-99. [PMID: 38113635 DOI: 10.1016/j.placenta.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION The aim of this study is to investigate the association between altered maternal serum amino acids (AAs) levels and premature rupture of membranes (pPROM) in pregnant women. METHODS We conducted a case-control study involving 60 pregnant women diagnosed with pPROM and 60 healthy pregnant women as controls. Amino acid levels were quantified using high-performance liquid chromatography. Receiver operating characteristic (ROC) curve analysis was performed to determine the predictive capability of specific AAs for pPROM. RESULTS Our findings revealed that lysine, glycine, and glutamic acid levels were significantly elevated in the pPROM group compared with the control group. Lysine, with a threshold value exceeding 137.90 μmol/L, exhibited the highest predictive accuracy, with an area under the curve (AUC) of 0.796 (p < 0.001), sensitivity of 66.7 %, and specificity of 80.0 %. Glycine, with a cut-off value of >242.48 μmol/L, had an AUC of 0.789 (p < 0.001), sensitivity of 83.3 %, and specificity of 65.0 %. Glutamic acid, at a threshold of 111.40 μmol/L, demonstrated an AUC of 0.787 (p < 0.001), sensitivity of 88.3 %, and specificity of 65.0 %. These AAs could effectively predict the occurrence of pPROM. CONCLUSION Elevated blood levels of lysine, glycine, and glutamic acid were found to be associated with pPROM. These AAs serve as potential predictive biomarkers for pPROM, with lysine showing the highest AUC and sensitivity. Identifying such biomarkers may contribute to the development of non-invasive diagnostic tools for pPROM risk assessment, enabling timely interventions and improved maternal and fetal outcomes.
Collapse
Affiliation(s)
- Savas Karakus
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Halef Okan Dogan
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet University School of Medicine, 58140, Sivas, Turkey.
| |
Collapse
|
22
|
Khan N, Khattak S. Frequency of Maternal Anemia in Patients Presenting With Preterm Premature Rupture of Membranes. Cureus 2024; 16:e52973. [PMID: 38406089 PMCID: PMC10894446 DOI: 10.7759/cureus.52973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Preterm premature rupture of membranes (PPROM) is the rupture of fetal membranes before 38 weeks of gestation. The etiology is multifactorial. Maternal anemia is one of the factors leading to PPROM. This study aims to determine the frequency of maternal anemia in patients presenting with PPROM. MATERIALS AND METHODS This cross-sectional study was carried out at the Department of Obstetrics and Gynecology, Lady Reading Hospital, Peshawar. This study was conducted from July 1 to December 31, 2021. One hundred and twenty two patients with PPROM presenting to the Department of Obstetrics and Gynecology were included. The diagnosis of PPROM was made based on the history of the PV leak, followed by confirmation with the nitrazine litmus test, microscopic fern test, and ultrasonographic amniotic fluid index measurement. Anemia was determined by examination of hemoglobin levels in the maternal blood samples. Hb <11gm/dl was labeled as anemia. IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. was used for statistical analysis. RESULTS The age of the patients ranged from 20 to 40 years. The mean age was 29.14 ± 6.194 years. 63 patients (51.6%) were multiparous (parity 2 to 4). Maternal anemia was observed in 39 patients (32.0%). A significant association (p = 0.005) was observed between maternal anemia and grand multiparity (parity 2 to 4). CONCLUSION Maternal anemia significantly contributes to PPROM, especially in multiple pregnancies. Meticulous family planning and consistent obstetrical monitoring throughout pregnancy are key to addressing this, potentially reducing both maternal anemia risk and PPROM complications.
Collapse
Affiliation(s)
- Naila Khan
- Obstetrics and Gynaecology, Medical Teaching Institution, Lady Reading Hospital, Peshawar, PAK
| | - Saima Khattak
- Obstetrics and Gynaecology, Medical Teaching Institution, Lady Reading Hospital, Peshawar, PAK
| |
Collapse
|
23
|
Hou J, Zheng Y, Gao C. Regulation of cellular senescence by innate immunity. BIOPHYSICS REPORTS 2023; 9:338-351. [PMID: 38524701 PMCID: PMC10960571 DOI: 10.52601/bpr.2023.230032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 03/26/2024] Open
Abstract
During the COVID-19 pandemic, the interplay between the processes of immunity and senescence is drawing more and more intensive attention. SARS-CoV-2 infection induces senescence in lung cells, failure to clear infected cells and increased presence of inflammatory factors could lead to a cytokine storm and acute respiratory disease syndrome (ARDS), which together with aging and age-associated disease lead to 70% of COVID-19-related deaths. Studies on how senescence initiates upon viral infection and how to restrict excessive accumulation of senescent cells to avoid harmful inflammation are crucially important. Senescence can induce innate immune signaling, and innate immunity can engage cell senescence. Here, we mainly review the innate immune pathways, such as cGAS-STING, TLRs, NF-κB, and NLRP3 inflammasome, participating in the senescence process. In these pathways, IFN-I and inflammatory factors play key roles. At the end of the review, we propose the strategies by which we can improve the immune function and reduce inflammation based on these findings.
Collapse
Affiliation(s)
- Jinxiu Hou
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
24
|
Janev A, Banerjee A, Weidinger A, Dimec J, Leskošek B, Silini AR, Cirman T, Wolbank S, Ramuta TŽ, Jerman UD, Pandolfi A, Di Pietro R, Pozzobon M, Giebel B, Eissner G, Ferk P, Lang-Olip I, Alviano F, Soritau O, Parolini O, Kreft ME. Recommendations from the COST action CA17116 (SPRINT) for the standardization of perinatal derivative preparation and in vitro testing. Front Bioeng Biotechnol 2023; 11:1258753. [PMID: 38033821 PMCID: PMC10682948 DOI: 10.3389/fbioe.2023.1258753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Many preclinical studies have shown that birth-associated tissues, cells and their secreted factors, otherwise known as perinatal derivatives (PnD), possess various biological properties that make them suitable therapeutic candidates for the treatment of numerous pathological conditions. Nevertheless, in the field of PnD research, there is a lack of critical evaluation of the PnD standardization process: from preparation to in vitro testing, an issue that may ultimately delay clinical translation. In this paper, we present the PnD e-questionnaire developed to assess the current state of the art of methods used in the published literature for the procurement, isolation, culturing preservation and characterization of PnD in vitro. Furthermore, we also propose a consensus for the scientific community on the minimal criteria that should be reported to facilitate standardization, reproducibility and transparency of data in PnD research. Lastly, based on the data from the PnD e-questionnaire, we recommend to provide adequate information on the characterization of the PnD. The PnD e-questionnaire is now freely available to the scientific community in order to guide researchers on the minimal criteria that should be clearly reported in their manuscripts. This review is a collaborative effort from the COST SPRINT action (CA17116), which aims to guide future research to facilitate the translation of basic research findings on PnD into clinical practice.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jure Dimec
- ELIXIR-SI Centre, Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | - Brane Leskošek
- ELIXIR-SI Centre, Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | | | - Tina Cirman
- Cryobiology Centre, Department of Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology—CAST, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Polonca Ferk
- ELIXIR-SI Centre, Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Olga Soritau
- Laboratory of Tumor Cell Biology and Radiobiology, Institute of Oncology “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Zhang X, He X, Wei L, He Y, Li Y, Wang Y, Li C. Nuclear erythroid 2-related factor 2 protects against reactive oxygen species -induced preterm premature rupture of membranes through regulation of mitochondria†. Biol Reprod 2023; 109:330-339. [PMID: 37427976 DOI: 10.1093/biolre/ioad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Preterm premature rupture of membranes (pPROM) is a major cause of preterm birth and neonatal mortality. Reactive oxygen species (ROS) have been identified as a critical factor in the development of pPROM. Mitochondria are known to be the primary source of ROS and play a vital role in maintaining cellular function. The Nuclear erythroid 2-related factor 2 (NRF2) has been demonstrated to play a crucial role in regulating mitochondrial function. However, research exploring the impact of NRF2-regulated mitochondria on pPROM is limited. Therefore, we collected fetal membrane tissues from pPROM and spontaneous preterm labor (sPTL) puerpera, measured the expression level of NRF2, and evaluated the degree of mitochondrial damage in both groups. In addition, we isolated human amniotic epithelial cells (hAECs) from the fetal membranes and used small interfering RNA (siRNA) to suppress NRF2 expression, enabling us to evaluate the impact of NRF2 on mitochondrial damage and ROS production. Our findings indicated that the expression level of NRF2 in pPROM fetal membranes was significantly lower than in sPTL fetal membranes, accompanied by increased mitochondrial damage. Furthermore, after the inhibition of NRF2 in hAECs, the degree of mitochondrial damage was significantly exacerbated, along with a marked increase in both cellular and mitochondrial ROS levels. The regulation of the mitochondrial metabolic process via NRF2 in fetal membranes has the potential to influence ROS production.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Xiao He
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Linna Wei
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, 401147, China
| | - Yang He
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, 401147, China
| | - Yunlong Li
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, 401147, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, 400016, China
| | - Chunli Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| |
Collapse
|
27
|
Ciampa EJ, Flahardy P, Srinivasan H, Jacobs C, Tsai L, Karumanchi SA, Parikh SM. Hypoxia-inducible factor 1 signaling drives placental aging and can provoke preterm labor. eLife 2023; 12:RP85597. [PMID: 37610425 PMCID: PMC10446824 DOI: 10.7554/elife.85597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Most cases of preterm labor have unknown cause, and the burden of preterm birth is immense. Placental aging has been proposed to promote labor onset, but specific mechanisms remain elusive. We report findings stemming from unbiased transcriptomic analysis of mouse placenta, which revealed that hypoxia-inducible factor 1 (HIF-1) stabilization is a hallmark of advanced gestational timepoints, accompanied by mitochondrial dysregulation and cellular senescence; we detected similar effects in aging human placenta. In parallel in primary mouse trophoblasts and human choriocarcinoma cells, we modeled HIF-1 induction and demonstrated resultant mitochondrial dysfunction and cellular senescence. Transcriptomic analysis revealed that HIF-1 stabilization recapitulated gene signatures observed in aged placenta. Further, conditioned media from trophoblasts following HIF-1 induction promoted contractility in immortalized uterine myocytes, suggesting a mechanism by which the aging placenta may drive the transition from uterine quiescence to contractility at the onset of labor. Finally, pharmacological induction of HIF-1 via intraperitoneal administration of dimethyloxalyl glycine (DMOG) to pregnant mice caused preterm labor. These results provide clear evidence for placental aging in normal pregnancy, and demonstrate how HIF-1 signaling in late gestation may be a causal determinant of the mitochondrial dysfunction and senescence observed within the trophoblast as well as a trigger for uterine contraction.
Collapse
Affiliation(s)
- Erin J Ciampa
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Padraich Flahardy
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Harini Srinivasan
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Christopher Jacobs
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Linus Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | | | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical SchoolDallasUnited States
| |
Collapse
|
28
|
Kammala AK, Richardson LS, Radnaa E, Han A, Menon R. Microfluidic technology and simulation models in studying pharmacokinetics during pregnancy. Front Pharmacol 2023; 14:1241815. [PMID: 37663251 PMCID: PMC10469630 DOI: 10.3389/fphar.2023.1241815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Preterm birth rates and maternal and neonatal mortality remain concerning global health issues, necessitating improved strategies for testing therapeutic compounds during pregnancy. Current 2D or 3D cell models and animal models often fail to provide data that can effectively translate into clinical trials, leading to pregnant women being excluded from drug development considerations and clinical studies. To address this limitation, we explored the utility of in silico simulation modeling and microfluidic-based organ-on-a-chip platforms to assess potential interventional agents. Methods: We developed a multi-organ feto-maternal interface on-chip (FMi-PLA-OOC) utilizing microfluidic channels to maintain intercellular interactions among seven different cell types (fetal membrane-decidua-placenta). This platform enabled the investigation of drug pharmacokinetics in vitro. Pravastatin, a model drug known for its efficacy in reducing oxidative stress and inflammation during pregnancy and currently in clinical trials, was used to test its transfer rate across both feto-maternal interfaces. The data obtained from FMi-PLA-OOC were compared with existing data from in vivo animal models and ex vivo placenta perfusion models. Additionally, we employed mechanistically based simulation software (Gastroplus®) to predict pravastatin pharmacokinetics in pregnant subjects based on validated nonpregnant drug data. Results: Pravastatin transfer across the FMi-PLA-OOC and predicted pharmacokinetics in the in silico models were found to be similar, approximately 18%. In contrast, animal models showed supraphysiologic drug accumulation in the amniotic fluid, reaching approximately 33%. Discussion: The results from this study suggest that the FMi-PLA-OOC and in silico models can serve as alternative methods for studying drug pharmacokinetics during pregnancy, providing valuable insights into drug transport and metabolism across the placenta and fetal membranes. These advanced platforms offer promising opportunities for safe, reliable, and faster testing of therapeutic compounds, potentially reducing the number of pregnant women referred to as "therapeutic orphans" due to the lack of consideration in drug development and clinical trials. By bridging the gap between preclinical studies and clinical trials, these approaches hold great promise in improving maternal and neonatal health outcomes.
Collapse
Affiliation(s)
- Ananth K. Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
29
|
Lei WJ, Zhang F, Lin YK, Li MD, Pan F, Sun K, Wang WS. IL-33/ST2 axis of human amnion fibroblasts participates in inflammatory reactions at parturition. Mol Med 2023; 29:88. [PMID: 37403020 DOI: 10.1186/s10020-023-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Inflammation of the fetal membranes is an indispensable event of labor onset at both term and preterm birth. Interleukin-33 (IL-33) is known to participate in inflammation via ST2 (suppression of tumorigenicity 2) receptor as an inflammatory cytokine. However, it remains unknown whether IL-33/ST2 axis exists in human fetal membranes to promote inflammatory reactions in parturition. METHODS The presence of IL-33 and ST2 and their changes at parturition were examined with transcriptomic sequencing, quantitative real-time polymerase chain reaction, Western blotting or immunohistochemistry in human amnion obtained from term and preterm birth with or without labor. Cultured primary human amnion fibroblasts were utilized to investigate the regulation and the role of IL-33/ST2 axis in the inflammation reactions. A mouse model was used to further study the role of IL-33 in parturition. RESULTS Although IL-33 and ST2 expression were detected in both epithelial and fibroblast cells of human amnion, they are more abundant in amnion fibroblasts. Their abundance increased significantly in the amnion at both term and preterm birth with labor. Lipopolysaccharide, serum amyloid A1 and IL-1β, the inflammatory mediators pertinent to labor onset, could all induce IL-33 expression through NF-κB activation in human amnion fibroblasts. In turn, via ST2 receptor, IL-33 induced the production of IL-1β, IL-6 and PGE2 in human amnion fibroblasts via the MAPKs-NF-κB pathway. Moreover, IL-33 administration induced preterm birth in mice. CONCLUSION IL-33/ST2 axis is present in human amnion fibroblasts, which is activated in both term and preterm labor. Activation of this axis leads to increased production of inflammatory factors pertinent to parturition, and results in preterm birth. Targeting the IL-33/ST2 axis may have potential value in the treatment of preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China.
| |
Collapse
|
30
|
Richardson L, Kammala AK, Kim S, Lam PY, Truong N, Radnaa E, Urrabaz-Garza R, Han A, Menon R. Development of oxidative stress-associated disease models using feto-maternal interface organ-on-a-chip. FASEB J 2023; 37:e23000. [PMID: 37249377 PMCID: PMC10259454 DOI: 10.1096/fj.202300531r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Oxidative stress (OS) and inflammation arising from cellular derangements at the fetal membrane-decidual interface (feto-maternal interface [FMi]) is a major antecedent to preterm birth (PTB). However, it is impractical to study OS-associated FMi disease state during human pregnancy, and thus it is difficult to develop strategies to reduce the incidences of PTB. A microfluidic organ-on-chip model (FMi-OOC) that mimics the in vivo structure and functions of FMi in vitro was developed to address this challenge. The FMi-OOC contained fetal (amnion epithelial, mesenchymal, and chorion) and maternal (decidua) cells cultured in four compartments interconnected by arrays of microchannels to allow independent but interconnected co-cultivation. Using this model, we tested the effects of OS and inflammation on both fetal (fetal → maternal) and maternal (maternal → fetal) sides of the FMi and determined their differential impact on PTB-associated pathways. OS was induced using cigarette smoke extract (CSE) exposure. The impacts of OS were assessed by measuring cell viability, disruption of immune homeostasis, epithelial-to-mesenchymal transition (EMT), development of senescence, and inflammation. CSE propagated (LC/MS-MS analysis for nicotine) over a 72-hour period from the maternal to fetal side, or vice versa. However, they caused two distinct pathological effects on the maternal and fetal cells. Specifically, fetal OS induced cellular pathologies and inflammation, whereas maternal OS caused immune intolerance. The pronounced impact produced by the fetus supports the hypothesis that fetal inflammatory response is a mechanistic trigger for parturition. The FMi disease-associated changes identified in the FMi-OOC suggest the unique capability of this in vitro model in testing in utero conditions.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Nina Truong
- John Sealy School of Medicine at Galveston, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA5
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
31
|
Zhang F, Lu JW, Lei WJ, Li MD, Pan F, Lin YK, Wang WS, Sun K. Paradoxical Induction of ALOX15/15B by Cortisol in Human Amnion Fibroblasts: Implications for Inflammatory Responses of the Fetal Membranes at Parturition. Int J Mol Sci 2023; 24:10881. [PMID: 37446059 DOI: 10.3390/ijms241310881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammation of the fetal membranes is an indispensable event of parturition, with increasing prostaglandin E2 (PGE2) synthesis as one of the ultimate products that prime labor onset. In addition to PGE2, the fetal membranes also boast a large capacity for cortisol regeneration. It is intriguing how increased PGE2 synthesis is achieved in the presence of increasing amounts of classical anti-inflammatory glucocorticoids in the fetal membranes at parturition. 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) synthesized by lipoxygenase 15/15B (ALOX15/15B) has been shown to enhance inflammation-induced PGE2 synthesis in amnion fibroblasts. Here, we examined whether glucocorticoids could induce ALOX15/15B expression and 15(S)-HETE production to promote PGE2 synthesis in amnion fibroblasts at parturition. We found that cortisol and 15(S)-HETE abundance increased parallelly in the amnion at parturition. Cortisol induced ALOX15/15B expression and 15(S)-HETE production paradoxically in amnion fibroblasts. Mechanism study revealed that this paradoxical induction was mediated by p300-mediated histone acetylation and interaction of glucocorticoid receptor with transcription factors CREB and STAT3. Conclusively, cortisol regenerated in the fetal membranes can paradoxically induce ALOX15/15B expression and 15(S)-HETE production in human amnion fibroblasts, which may further assist in the induction of PGE2 synthesis in the inflammatory responses of the fetal membranes for parturition.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| |
Collapse
|
32
|
Flores-Espinosa P, Méndez I, Irles C, Olmos-Ortiz A, Helguera-Repetto C, Mancilla-Herrera I, Ortuño-Sahagún D, Goffin V, Zaga-Clavellina V. Immunomodulatory role of decidual prolactin on the human fetal membranes and placenta. Front Immunol 2023; 14:1212736. [PMID: 37359537 PMCID: PMC10288977 DOI: 10.3389/fimmu.2023.1212736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The close interaction between fetal and maternal cells during pregnancy requires multiple immune-endocrine mechanisms to provide the fetus with a tolerogenic environment and protection against any infectious challenge. The fetal membranes and placenta create a hyperprolactinemic milieu in which prolactin (PRL) synthesized by the maternal decidua is transported through the amnion-chorion and accumulated into the amniotic cavity, where the fetus is bedded in high concentrations during pregnancy. PRL is a pleiotropic immune-neuroendocrine hormone with multiple immunomodulatory functions mainly related to reproduction. However, the biological role of PRL at the maternal-fetal interface has yet to be fully elucidated. In this review, we have summarized the current information on the multiple effects of PRL, focusing on its immunological effects and biological significance for the immune privilege of the maternal-fetal interface.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Isabel Méndez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Claudine Irles
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Vincent Goffin
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)-S1151, CNRS Unité Mixte de Recherche (UMR)-S8253, Institut Necker Enfants Malades, Paris, France
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| |
Collapse
|
33
|
Wu L, Yin WJ, Yu LJ, Wang YH, Jiang XM, Zhang Y, Tao FB, Tao RX, Zhu P. Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47013. [PMID: 37074185 PMCID: PMC10116877 DOI: 10.1289/ehp11134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Exposure to air pollution in prenatal period is associated with prelabor rupture of membranes (PROM). However, the sensitive exposure time windows and the possible biological mechanisms underlying this association remain unclear. OBJECTIVE We aimed to identify the sensitive time windows of exposure to air pollution for PROM risk. Further, we examined whether maternal hemoglobin levels mediate the association between exposure to air pollution and PROM, as well as investigated the potential effect of iron supplementation on this association. METHOD From 2015 to 2021, 6,824 mother-newborn pairs were enrolled in the study from three hospitals in Hefei, China. We obtained air pollutant data [particulate matter (PM) with aerodynamic diameter ≤2.5μm (PM2.5), PM with aerodynamic diameter ≤10μm (PM10), sulfur dioxide (SO2), and carbon monoxide (CO)] from the Hefei City Ecology and Environment Bureau. Information on maternal hemoglobin levels, gestational anemia, iron supplementation, and PROM was obtained from medical records. Logistic regression models with distributed lags were used to identify the sensitive time window for the effect of prenatal exposure to air pollutant on PROM. Mediation analysis estimated the mediated effect of maternal hemoglobin in the third trimester, linking prenatal air pollution with PROM. Stratified analysis was used to investigate the potential effect of iron supplementation on PROM risk. RESULTS We found significant association between prenatal exposure to air pollution and increased PROM risk after adjusting for confounders, and the critical exposure windows of PM2.5, PM10, SO2 and CO were the 21th to 24th weeks of pregnancy. Every 10-μg/m3 increase in PM2.5 and PM10, 5-μg/m3 increase in SO2, and 0.1-mg/m3 increase in CO was associated with low maternal hemoglobin levels [-0.94g/L (95% confidence interval (CI): -1.15, -0.73), -1.31g/L (95% CI: -1.55, -1.07), -2.96g/L (95% CI: -3.32, -2.61), and -1.11g/L (95% CI: -1.31, -0.92), respectively] in the third trimester. The proportion of the association between air pollution and PROM risk mediated by hemoglobin levels was 20.61% [average mediation effect (95% CI): 0.02 (0.01, 0.05); average direct effect (95%): 0.08 (0.02, 0.14)]. The PROM risk associated with exposure to low-medium air pollution could be attenuated by maternal iron supplementation in women with gestational anemia. CONCLUSIONS Prenatal exposure to air pollution, especially in the 21st to 24th weeks of pregnancy, is associated with PROM risk, which is partly mediated by maternal hemoglobin levels. Iron supplementation in anemia pregnancies may have protective effects against PROM risk associated with exposure to low-medium air pollution. https://doi.org/10.1289/EHP11134.
Collapse
Affiliation(s)
- Lin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Wan-jun Yin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Li-jun Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Yu-hong Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Xiao-min Jiang
- Department of Obstetrics and Gynecology, Anhui Women and Child Health Care Hospital, Hefei, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang-biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Rui-xue Tao
- Department of Gynecology and Obstetrics, Hefei First People’s Hospital, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Ramos BRA, Tronco JA, Carvalho M, Felix TF, Reis PP, Silveira JC, Silva MG. Circulating Extracellular Vesicles microRNAs Are Altered in Women Undergoing Preterm Birth. Int J Mol Sci 2023; 24:ijms24065527. [PMID: 36982598 PMCID: PMC10058006 DOI: 10.3390/ijms24065527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Preterm labor (PTL) and preterm premature rupture of membranes (PPROM) lead to high perinatal morbidity/mortality rates worldwide. Small extracellular vesicles (sEV) act in cell communication and contain microRNAs that may contribute to the pathogenesis of these complications. We aimed to compare the expression, in sEV from peripheral blood, of miRNAs between term and preterm pregnancies. This cross-sectional study included women who underwent PTL, PPROM, and term pregnancies, examined at the Botucatu Medical School Hospital, SP, Brazil. sEV were isolated from plasma. Western blot used to detect exosomal protein CD63 and nanoparticle tracking analysis were performed. The expression of 800 miRNAs was assessed by the nCounter Humanv3 miRNA Assay (NanoString). The miRNA expression and relative risk were determined. Samples from 31 women—15 preterm and 16 term—were included. miR-612 expression was increased in the preterm groups. miR-612 has been shown to increase apoptosis in tumor cells and to regulate the nuclear factor κB inflammatory pathway, processes involved in PTL/PPROM pathogenesis. miR-1253, miR-1283, miR378e, and miR-579-3p, all associated with cellular senescence, were downregulated in PPROM compared with term pregnancies. We conclude that miRNAs from circulating sEV are differentially expressed between term and preterm pregnancies and modulate genes in pathways that are relevant to PTL/PPROM pathogenesis.
Collapse
Affiliation(s)
- Bruna Ribeiro Andrade Ramos
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
- Faculty of Medicine—Jaú Campus, University of Western São Paulo (UNOESTE), Jaú 17213-700, SP, Brazil
- Correspondence: ; Tel.: +55-(14)-3624-1109
| | - Júlia Abbade Tronco
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Márcio Carvalho
- Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Tainara Francini Felix
- Experimental Research Unity (UNIPEX), Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Patrícia Pintor Reis
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Juliano Coelho Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, São Paulo University (USP), Pirassununga 13635-900, SP, Brazil
| | - Márcia Guimarães Silva
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| |
Collapse
|
35
|
Coste K, Bruet S, Chollat-Namy C, Filhol O, Cochet C, Gallot D, Marceau G, Blanchon L, Sapin V, Belville C. Characterization of RAGE and CK2 Expressions in Human Fetal Membranes. Int J Mol Sci 2023; 24:ijms24044074. [PMID: 36835482 PMCID: PMC9966553 DOI: 10.3390/ijms24044074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
At the feto-maternal interface, fetal membranes (FM) play a crucial role throughout pregnancy. FM rupture at term implicates different sterile inflammation mechanisms including pathways activated by the transmembrane glycoprotein receptor for advanced glycation end-products (RAGE) belonging to the immunoglobulin superfamily. As the protein kinase CK2 is also implicated in the inflammation process, we aimed to characterize the expressions of RAGE and the protein kinase CK2 as a candidate regulator of RAGE expression. The amnion and choriodecidua were collected from FM explants and/or primary amniotic epithelial cells throughout pregnancy and at term in spontaneous labor (TIL) or term without labor (TNL). The mRNA and protein expressions of RAGE and the CK2α, CK2α', and CK2β subunits were investigated using reverse transcription quantitative polymerase chain reaction and Western blot assays. Their cellular localizations were determined with microscopic analyses, and the CK2 activity level was measured. RAGE and the CK2α, CK2α', and CK2β subunits were expressed in both FM layers throughout pregnancy. At term, RAGE was overexpressed in the amnion from the TNL samples, whereas the CK2 subunits were expressed at the same level in the different groups (amnion/choriodecidua/amniocytes, TIL/TNL), without modification of the CK2 activity level and immunolocalization. This work paves the way for future experiments regarding the regulation of RAGE expression by CK2 phosphorylation.
Collapse
Affiliation(s)
- Karen Coste
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Shaam Bruet
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Caroline Chollat-Namy
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Odile Filhol
- INSERM, CEA, UMR Biosanté, U1292, University Grenoble Alpes, F-38000 Grenoble, France
| | - Claude Cochet
- INSERM, CEA, UMR Biosanté, U1292, University Grenoble Alpes, F-38000 Grenoble, France
| | - Denis Gallot
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Obstetrics and Gynecology Department, F-63000 Clermont-Ferrand, France
| | - Geoffroy Marceau
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-4-7317-8174
| |
Collapse
|
36
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
37
|
Olaya Contreras M, Caicedo Marmolejo BE. Actualidad en corioamnionitis. UNIVERSITAS MÉDICA 2022. [DOI: 10.11144/javeriana.umed63-4.cori] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
La corioamnionitis se ha relacionados con desenlaces desfavorables en el período prenatal y neonatal (abortos, parto pretérmino, sepsis neonatal, entre otros), además de implicaciones a largo plazo en la infancia, tales como alteraciones en el coeficiente intelectual. Por esta razón es de vital importancia el diagnóstico histopatológico oportuno. En este artículo se revisará el abordaje histopatológico de la corioamnionitis, su estadificación e implicaciones clínicas.
Collapse
|
38
|
Richardson LS, K Kammala A, Costantine MM, Fortunato SJ, Radnaa E, Kim S, Taylor RN, Han A, Menon R. Testing of drugs using human feto-maternal interface organ-on-chips provide insights into pharmacokinetics and efficacy. LAB ON A CHIP 2022; 22:4574-4592. [PMID: 36322152 PMCID: PMC9682442 DOI: 10.1039/d2lc00691j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
Objectives: To improve preclinical drug testing during pregnancy, we developed multiple microfluidic organ-on-chip (OOC) devices that represent the structure, functions, and responses of the two feto-maternal interfaces (FMis) in humans (fetal membrane [FMi-OOC] and placenta [PLA-OOC]). This study utilized feto-maternal interface OOCs to test the kinetics and efficacy of drugs during pregnancy. Study design: The FMi-OOC contained amnion epithelial, mesenchymal, chorion trophoblast, and decidual cells. The PLA-OOC contained cytotrophoblasts (BeWo), syncytiotrophoblasts (BeWo + forskolin), and human umbilical vein endothelial cell lines. Therapeutic concentrations of either pravastatin or rosuvastatin (200 ng mL-1), a model drug for these experiments, were applied to either decidua (in FMi-OOC) and syncytiotrophoblasts (in PLA-OOC) chambers under normal and oxidative stress conditions (induced by cigarette smoke extract [CSE 1 : 25]) to evaluate maternal drug exposure during normal pregnancy or oxidative stress (OS) associated pathologies, respectively. We determined statin pharmacokinetics and metabolism (LC-MS/MS), drug-induced cytotoxicity (LDH assay), and efficacy to reduce OS-induced inflammation (multiplex cytokine assay). Results: Both OOCs mimicked two distinct human feto-maternal interfaces. The drugs tested permeated the maternal-fetal cell layers of the FMi-OOC and PLA-OOC within 4 hours and generated cell and time-specific statin metabolites from various cell types without causing any cytotoxicity. OS-induced pro-inflammatory cytokines were effectively reduced by statins by increasing anti-inflammatory cytokine response across the FMi-OOC and PLA-OOC. Conclusion: Two distinct feto-maternal interface OOCs were developed, tested, and validated for their utility to conduct preclinical trials during pregnancy. We demonstrated that the placenta and fetal membranes-decidual interface both are able to transport and metabolize drugs and that the safety and efficacy of a drug can be determined using the anatomical structures recreated on OOCs.
Collapse
Affiliation(s)
- Lauren S Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Ananth K Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Maged M Costantine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Fortunato
- Obstetrics and Gynecology, Maternal-Fetal Medicine, Ochsner Medical Center, New Orleans, LA, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| |
Collapse
|
39
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
40
|
Sudiarta KE, Candra CJ, Khan J, Rahadianto, Handajani F. RAGE and HMGB1 expressions in fetal membranes of premature rupture of membranes patients. MEDICAL JOURNAL OF INDONESIA 2022. [DOI: 10.13181/mji.oa.226099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Premature rupture of membranes (PROM) often occurs in pregnancy. The fetal membrane weakening is caused by inflammation involving receptor activation for advanced glycation end-products (RAGE) and high mobility group box protein 1 (HMGB1). The associations between RAGE and HMGB1 with PROM are rarely studied. Hence, this study aimed to determine those associations in fetal membranes with PROM occurrence.
METHODS This case-control study was conducted at Dr. Ramelan Central Naval Hospital, Surabaya, Indonesia, from August to November 2019. The subjects, determined using a non-probability sampling method (a saturated sample), were divided into PROM and normal pregnancy with intact fetal membranes (control) groups. Fetal membrane specimens were collected during vaginal and cesarean section deliveries. The expressions of RAGE and HMGB1 were determined using the immunohistochemical method and further analyzed using the Mann–Whitney U test.
RESULTS The expression of RAGE in fetal membranes with PROM was significantly higher than the control (52.74% versus 14.9% expression/mm2, p<0.001), as well as the expression of HMGB1 (45.9% versus 8.5% expression/mm2, p<0.001).
CONCLUSIONS The higher expressions of RAGE and HMGB1 in fetal membranes were associated with PROM.
Collapse
|
41
|
Gems D, Kern CC. Is "cellular senescence" a misnomer? GeroScience 2022; 44:2461-2469. [PMID: 36068483 PMCID: PMC9768054 DOI: 10.1007/s11357-022-00652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2023] Open
Abstract
One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| | - Carina C. Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
42
|
Menon R. Epithelial to mesenchymal transition (EMT) of feto-maternal reproductive tissues generates inflammation: a detrimental factor for preterm birth. BMB Rep 2022. [PMID: 35880430 PMCID: PMC9442346 DOI: 10.5483/bmbrep.2022.55.8.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston 77555-1062, TX, USA
| |
Collapse
|
43
|
Motomura K, Romero R, Galaz J, Tao L, Garcia-Flores V, Xu Y, Done B, Arenas-Hernandez M, Miller D, Gutierrez-Contreras P, Farias-Jofre M, Aras S, Grossman LI, Tarca AL, Gomez-Lopez N. Fetal and maternal NLRP3 signaling is required for preterm labor and birth. JCI Insight 2022; 7:158238. [PMID: 35993366 PMCID: PMC9462488 DOI: 10.1172/jci.insight.158238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pedro Gutierrez-Contreras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Siddhesh Aras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
44
|
Ran Y, Chen R, Huang D, Qin Y, Liu Z, He J, Mei Y, Zhou Y, Yin N, Qi H. The landscape of circular RNA in preterm birth. Front Immunol 2022; 13:879487. [PMID: 36072601 PMCID: PMC9441874 DOI: 10.3389/fimmu.2022.879487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Preterm birth (PTB) is a multifactorial syndrome that seriously threatens the health of pregnant women and babies worldwide. Recently, circular RNAs (circRNAs) have been understood as important regulators of various physiological and pathological processes. However, the expression pattern and potential roles of circRNAs in PTB are largely unclear. Methods In this study, we extracted and analyzed the circRNA expression profiles in maternal and fetal samples of preterm and term pregnancies, including maternal plasma, maternal monocytes, myometrium, chorion, placenta, and cord blood. We identified the circRNAs which is associated with PTB in different tissues and explored their relationships from the perspective of the overall maternal-fetal system. Furthermore, co-expression analysis of circRNAs and mRNAs, target microRNAs (miRNAs), and RNA-binding proteins (RBPs), provided new clues about possible mechanisms of circRNA function in PTB. In the end, we investigated the potential special biofunctions of circRNAs in different tissues and their common features and communication in PTB. Results Significant differences in circRNA types and expression levels between preterm and term groups have been proved, as well as between tissues. Nevertheless, there were still some PTB-related differentially expressed circRNAs (DECs) shared by these tissues. The functional enrichment analysis showed that the DECs putatively have important tissue-specific biofunctions through their target miRNA and co-expressed mRNAs, which contribute to the signature pathologic changes of each tissue within the maternal-fetal system in PTB (e.g., the contraction of the myometrium). Moreover, DECs in different tissues might have some common biological activities, which are mainly the activation of immune-inflammatory processes (e.g., interleukin1/6/8/17, chemokine, TLRs, and complement). Conclusions In summary, our data provide a preliminary blueprint for the expression and possible roles of circRNAs in PTB, which lays the foundation for future research on the mechanisms of circRNAs in PTB.
Collapse
Affiliation(s)
- Yuxin Ran
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongni Huang
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Qin
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie He
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youwen Mei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqian Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nanlin Yin
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Nanlin Yin, ; Hongbo Qi,
| | - Hongbo Qi
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Nanlin Yin, ; Hongbo Qi,
| |
Collapse
|
45
|
Kammala AK, Lintao RC, Vora N, Mosebarger A, Khanipov K, Golovko G, Yaklic JL, Peltier MR, Conrads TP, Menon R. Expression of CYP450 enzymes in human fetal membranes and its implications in xenobiotic metabolism during pregnancy. Life Sci 2022; 307:120867. [DOI: 10.1016/j.lfs.2022.120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
46
|
Richardson L, Menon R. Fetal membrane at the feto-maternal interface: An underappreciated and understudied intrauterine tissue. PLACENTA AND REPRODUCTIVE MEDICINE 2022; 1:10.54844/prm.2022.0104. [PMID: 37502422 PMCID: PMC10373051 DOI: 10.54844/prm.2022.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston 77555, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston 77555, TX, USA
| |
Collapse
|
47
|
Harris SM, Colacino J, Buxton M, Croxton L, Nguyen V, Loch-Caruso R, Bakulski KM. A Data Mining Approach Reveals Chemicals Detected at Higher Levels in Non-Hispanic Black Women Target Preterm Birth Genes and Pathways. Reprod Sci 2022; 29:2001-2012. [PMID: 35107823 PMCID: PMC9288534 DOI: 10.1007/s43032-022-00870-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Preterm birth occurs disproportionately in the USA non-Hispanic Black population. Black women also face disproportionate exposure to certain environmental chemicals. The goal of this study was to use publicly available toxicogenomic data to identify chemical exposures that may contribute to preterm birth disparities. We tested 19 chemicals observed at higher levels in the blood or urine of non-Hispanic Black women compared to non-Hispanic White women. We obtained chemical-gene interactions from the Comparative Toxicogenomics Database and a list of genes involved in preterm birth from the Preterm Birth Database. We tested chemicals for enrichment with preterm birth genes using chi-squared tests. We then conducted pathway enrichment analysis for the preterm birth genes using DAVID software and identified chemical impacts on genes involved in these pathways. Genes annotated to all 19 chemicals were enriched with preterm birth genes (FDR-adjusted p value < 0.05). Preterm birth enriched chemicals that were detected at the highest levels in non-Hispanic Black women included methyl mercury, methylparaben, propylparaben, diethyl phthalate, dichlorodiphenyldichloroethylene, and bisphenol S. The preterm birth genes were enriched for pathways including "inflammatory response" (FDR-adjusted p value = 3 × 10-19), "aging" (FDR-adjusted p value = 4 × 10-8) and "response to estradiol" (FDR-adjusted p value = 2 × 10-4). Chemicals enriched with preterm birth genes impacted genes in all three pathways. This study adds to the body of knowledge suggesting that exposures to environmental chemicals contribute to racial disparities in preterm birth and that multiple chemicals drive these effects. These chemicals affect genes involved in biological processes relevant to preterm birth such as inflammation, aging, and estradiol pathways.
Collapse
Affiliation(s)
- Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Justin Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Miatta Buxton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Croxton
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Vy Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Saito Reis CA, Ng PK, Kurashima CK, Padron J, Kendal-Wright CE. Fetal DNA Causes Sex-Specific Inflammation From Human Fetal Membranes. Front Physiol 2022; 13:901726. [PMID: 35812324 PMCID: PMC9257279 DOI: 10.3389/fphys.2022.901726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammation is central to the mechanisms of parturition, but the lack of understanding of how it is controlled in normal parturition hampers our ability to understand how it may diverge resulting in preterm birth. Cell-free fetal DNA is found in the amniotic fluid, and it is thought to be able to activate inflammation as a danger-associated molecular pattern. Although its levels increases with gestational age, its effect has not been studied on the human fetal membranes. Thus, the aim of this study was to determine if the fetal DNA can trigger inflammation in the human fetal membranes and, thus, potentially contribute to the inflammatory load. Isolated human amniotic epithelial cells and fetal membrane explants were treated apically with fetal DNA causing the translocation of NF-KB into the nucleus of cells and throughout the cells of the explant layers with time. Fetal membrane explants were treated apically with either small or larger fragments of fetal DNA. IL-6, TNFα, and GM-CSF secretion was measured by ELISA, and pro-MMP2 and pro-MMP9 activity was measured by zymography from apical and basal media. Increased apical IL-6 secretion and basal pro-MMP2 activity was seen with small fragments of fetal DNA. When the data were disaggregated based on fetal sex, males had significant increases in IL-6 secretion and basal increased activity in pro-MMP2 and 9, whereas females had significantly increased basal secretion of TNFα. This was caused by the smaller fragments of fetal DNA, whereas the larger fragments did not cause any significant increases. Male fetal DNA had significantly lower percentages of methylation than females. Thus, when the cytokine and pro-MMP activity data were correlated with methylation percentage, IL-6 secretion significantly correlated negatively, whereas GM-CSF secretion positively correlated. These data support the role of fetal DNA as an inflammatory stimulus in the FM, as measured by increased NF-κB translocation, cytokine secretion, and increased pro-MMP activity. However, the data also suggested that the responses are different from FM tissues of male and female fetuses, and both the fragment size and methylation status of the fetal DNA can influence the magnitude and type of molecule secreted.
Collapse
Affiliation(s)
- Chelsea A. Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | | | - Justin Padron
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Claire Enid Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- *Correspondence: Claire Enid Kendal-Wright,
| |
Collapse
|
49
|
Famos F, Avilla-Royo E, Vonzun L, Ochsenbein-Kölble N, Ehrbar M. Miniaturized bioengineered models for preterm fetal membrane healing. Fetal Diagn Ther 2022; 49:235-244. [PMID: 35709687 DOI: 10.1159/000525559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The reason for the absence of fetal membrane (FM) healing after a fetoscopic intervention is not known. We hypothesize that the lack of robust miniaturized models to study preterm FM functions is currently hampering the development of new treatments for FM healing. Specifically, miniaturized models to study preterm FM healing with minimal amounts of tissue are currently lacking. METHODS In this study, we collected FMs from planned cesarean deliveries and developed different ex vivo models with an engineered biomaterial to study FM healing. Then, the effect of PDGF-BB on the migration of cells from preterm and term FMs was evaluated. RESULTS FMs could be viably cultured ex vivo for 14 days. In a model of punctured FMs, migration of cells into FM defects was less pronounced than migration out of the tissue into the biomaterial. In a miniaturized model of preterm cell migration, PDGF-BB promoted migration of preterm amnion cells into the biomaterial. DISCUSSION AND CONCLUSION By using a novel miniaturized model of preterm tissue, we here successfully demonstrate that PDGF-BB can promote preterm FM cell migration of microtissues encapsulated in a three-dimensional environment.
Collapse
Affiliation(s)
- Flurina Famos
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eva Avilla-Royo
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ladina Vonzun
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - Nicole Ochsenbein-Kölble
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| |
Collapse
|
50
|
Padron JG, Norman Ing ND, Ng PK, Kendal-Wright CE. Stretch Causes Cell Stress and the Downregulation of Nrf2 in Primary Amnion Cells. Biomolecules 2022; 12:766. [PMID: 35740891 PMCID: PMC9220942 DOI: 10.3390/biom12060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear-factor-E2-related factor 2 (Nrf2) is a key transcription factor for the regulation of cellular responses to cellular stress and inflammation, and its expression is significantly lower after spontaneous term labor in human fetal membranes. Pathological induction of inflammation can lead to adverse pregnancy outcomes such as pre-eclampsia, preterm labor, and fetal death. As stretch forces are known to act upon the fetal membranes in utero, we aimed to ascertain the effect of stretch on Nrf2 to increase our understanding of the role of this stimulus on cells of the amnion at term. Our results indicated a significant reduction in Nrf2 expression in stretched isolated human amnion epithelial cells (hAECs) that could be rescued with sulforaphane treatment. Downregulation of Nrf2 as a result of stretch was accompanied with activation of proinflammatory nuclear factor-kB (NF-kB) and increases in LDH activity, ROS, and HMGB1. This work supports stretch as a key modulator of cellular stress and inflammation in the fetal membranes. Our results showed that the modulation of the antioxidant response pathway in the fetal membranes through Nrf2 activation may be a viable approach to improve outcomes in pregnancy.
Collapse
Affiliation(s)
- Justin Gary Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Nainoa D. Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
| | - Claire E. Kendal-Wright
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
- Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96826, USA
| |
Collapse
|