1
|
Desaint H, Héreil A, Belinchon-Moreno J, Carretero Y, Pelpoir E, Pascal M, Brault M, Dumont D, Lecompte F, Laugier P, Duboscq R, Bitton F, Grumic M, Giraud C, Ferrante P, Giuliano G, Sunseri F, Causse M. Integration of QTL and transcriptome approaches for the identification of genes involved in tomato response to nitrogen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5880-5896. [PMID: 38869971 DOI: 10.1093/jxb/erae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Optimizing plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterized a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in a greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven QTLs were detected for three target traits (leaf N content, leaf nitrogen balance index, and petiole NO3- content), 10 and six in the low and high N condition, respectively, while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4752 and 2405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3628 (50.6%) in leaves and 1717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1677 DEGs were shared between organs or tissues. Finally, we integrated DEG and QTL analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Pascal
- INRAE, UR407, Pathologie Végétale, 84143 Montfavet, France
| | | | | | | | | | | | | | | | | | - Paola Ferrante
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | - Giovanni Giuliano
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | | | | |
Collapse
|
2
|
Dahanayaka BA, Martin A. Multi-parental fungal mapping population study to detect genomic regions associated with Pyrenophora teres f. teres virulence. Sci Rep 2023; 13:9804. [PMID: 37328500 PMCID: PMC10275933 DOI: 10.1038/s41598-023-36963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
In recent years multi-parental mapping populations (MPPs) have been widely adopted in many crops to detect quantitative trait loci (QTLs) as this method can compensate for the limitations of QTL analyses using bi-parental mapping populations. Here we report the first multi-parental nested association mapping (MP-NAM) population study used to detect genomic regions associated with host-pathogenic interactions. MP-NAM QTL analyses were conducted on 399 Pyrenophora teres f. teres individuals using biallelic, cross-specific and parental QTL effect models. A bi-parental QTL mapping study was also conducted to compare the power of QTL detection between bi-parental and MP-NAM populations. Using MP-NAM with 399 individuals detected a maximum of eight QTLs with a single QTL effect model whilst only a maximum of five QTLs were detected with an individual bi-parental mapping population of 100 individuals. When reducing the number of isolates in the MP-NAM to 200 individuals the number of QTLs detected remained the same for the MP-NAM population. This study confirms that MPPs such as MP-NAM populations can be successfully used in detecting QTLs in haploid fungal pathogens and that the power of QTL detection with MPPs is greater than with bi-parental mapping populations.
Collapse
Affiliation(s)
- Buddhika A Dahanayaka
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| |
Collapse
|
3
|
Gupta PK, Vasistha NK, Singh S, Joshi AK. Genetics and breeding for resistance against four leaf spot diseases in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1023824. [PMID: 37063191 PMCID: PMC10096043 DOI: 10.3389/fpls.2023.1023824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
In wheat, major yield losses are caused by a variety of diseases including rusts, spike diseases, leaf spot and root diseases. The genetics of resistance against all these diseases have been studied in great detail and utilized for breeding resistant cultivars. The resistance against leaf spot diseases caused by each individual necrotroph/hemi-biotroph involves a complex system involving resistance (R) genes, sensitivity (S) genes, small secreted protein (SSP) genes and quantitative resistance loci (QRLs). This review deals with resistance for the following four-leaf spot diseases: (i) Septoria nodorum blotch (SNB) caused by Parastagonospora nodorum; (ii) Tan spot (TS) caused by Pyrenophora tritici-repentis; (iii) Spot blotch (SB) caused by Bipolaris sorokiniana and (iv) Septoria tritici blotch (STB) caused by Zymoseptoria tritici.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Murdoch’s Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| | - Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Sahadev Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
- The International Maize and Wheat Improvement Center (CIMMYT), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| |
Collapse
|
4
|
Yuan G, Sun K, Yu W, Jiang Z, Jiang C, Liu D, Wen L, Si H, Wu F, Meng H, Cheng L, Yang A, Wang Y. Development of a MAGIC population and high-resolution quantitative trait mapping for nicotine content in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 13:1086950. [PMID: 36704165 PMCID: PMC9871594 DOI: 10.3389/fpls.2022.1086950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Multiparent Advanced Generation Inter-Cross (MAGIC) population is an ideal genetic and breeding material for quantitative trait locus (QTL) mapping and molecular breeding. In this study, a MAGIC population derived from eight tobacco parents was developed. Eight parents and 560 homozygous lines were genotyped by a 430K single-nucleotide polymorphism (SNP) chip assay and phenotyped for nicotine content under different conditions. Four QTLs associated with nicotine content were detected by genome-wide association mapping (GWAS), and one major QTL, named qNIC7-1, was mapped repeatedly under different conditions. Furthermore, by combining forward mapping, bioinformatics analysis and gene editing, we identified an ethylene response factor (ERF) transcription factor as a candidate gene underlying the major QTL qNIC7-1 for nicotine content in tobacco. A presence/absence variation (PAV) at qNIC7-1 confers changes in nicotine content. Overall, the large size of this MAGIC population, diverse genetic composition, balanced parental contributions and high levels of recombination all contribute to its value as a genetic and breeding resource. The application of the tobacco MAGIC population for QTL mapping and detecting rare allelic variation was demonstrated using nicotine content as a proof of principle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lirui Cheng
- *Correspondence: Lirui Cheng, ; Aiguo Yang, ; Yuanying Wang,
| | - Aiguo Yang
- *Correspondence: Lirui Cheng, ; Aiguo Yang, ; Yuanying Wang,
| | - Yuanying Wang
- *Correspondence: Lirui Cheng, ; Aiguo Yang, ; Yuanying Wang,
| |
Collapse
|
5
|
Wahinya FW, Yamazaki K, Jing Z, Takami T, Kamiya T, Kajiya-Kanegae H, Takanashi H, Iwata H, Tsutsumi N, Fujiwara T, Sakamoto W. Sorghum Ionomics Reveals the Functional SbHMA3a Allele that Limits Excess Cadmium Accumulation in Grains. PLANT & CELL PHYSIOLOGY 2022; 63:713-728. [PMID: 35312772 DOI: 10.1093/pcp/pcac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Understanding uptake and redistribution of essential minerals or sequestering of toxic elements is important for optimized crop production. Although the mechanisms controlling mineral transport have been elucidated in rice and other species, little is understood in sorghum-an important C4 cereal crop. Here, we assessed the genetic factors that govern grain ionome profiles in sorghum using recombinant inbred lines (RILs) derived from a cross between BTx623 and NOG (Takakibi). Pairwise correlation and clustering analysis of 22 elements, measured in sorghum grains harvested under greenhouse conditions, indicated that the parental lines, as well as the RILs, show different ionomes. In particular, BTx623 accumulated significantly higher levels of cadmium (Cd) than NOG, because of differential root-to-shoot translocation factors between the two lines. Quantitative trait locus (QTL) analysis revealed a prominent QTL for grain Cd concentration on chromosome 2. Detailed analysis identified SbHMA3a, encoding a P1B-type ATPase heavy metal transporter, as responsible for low Cd accumulation in grains; the NOG allele encoded a functional HMA3 transporter (SbHMA3a-NOG) whose Cd-transporting activity was confirmed by heterologous expression in yeast. BTx623 possessed a truncated, loss-of-function SbHMA3a allele. The functionality of SbHMA3a in NOG was confirmed by Cd concentrations of F2 grains derived from the reciprocal cross, in which the NOG allele behaved in a dominant manner. We concluded that SbHMA3a-NOG is a Cd transporter that sequesters excess Cd in root tissues, as shown in other HMA3s. Our findings will facilitate the isolation of breeding cultivars with low Cd in grains or in exploiting high-Cd cultivars for phytoremediation.
Collapse
Affiliation(s)
- Fiona Wacera Wahinya
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Kiyoshi Yamazaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Zihuan Jing
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiromi Kajiya-Kanegae
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 2-14-1 Nishi-shimbashi, Minato-ku, Tokyo, 105-0003 Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
6
|
Li W, Boer MP, Zheng C, Joosen RVL, van Eeuwijk FA. An IBD-based mixed model approach for QTL mapping in multiparental populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3643-3660. [PMID: 34342658 PMCID: PMC8519866 DOI: 10.1007/s00122-021-03919-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 05/16/2023]
Abstract
The identity-by-descent (IBD)-based mixed model approach introduced in this study can detect quantitative trait loci (QTLs) referring to the parental origin and simultaneously account for multilevel relatedness of individuals within and across families. This unified approach is proved to be a powerful approach for all kinds of multiparental population (MPP) designs. Multiparental populations (MPPs) have become popular for quantitative trait loci (QTL) detection. Tools for QTL mapping in MPPs are mostly developed for specific MPPs and do not generalize well to other MPPs. We present an IBD-based mixed model approach for QTL mapping in all kinds of MPP designs, e.g., diallel, Nested Association Mapping (NAM), and Multiparental Advanced Generation Intercross (MAGIC) designs. The first step is to compute identity-by-descent (IBD) probabilities using a general Hidden Markov model framework, called reconstructing ancestry blocks bit by bit (RABBIT). Next, functions of IBD information are used as design matrices, or genetic predictors, in a mixed model approach to estimate variance components for multiallelic genetic effects associated with parents. Family-specific residual genetic effects are added, and a polygenic effect is structured by kinship relations between individuals. Case studies of simulated diallel, NAM, and MAGIC designs proved that the advanced IBD-based multi-QTL mixed model approach incorporating both kinship relations and family-specific residual variances (IBD.MQMkin_F) is robust across a variety of MPP designs and allele segregation patterns in comparison to a widely used benchmark association mapping method, and in most cases, outperformed or behaved at least as well as other tools developed for specific MPP designs in terms of mapping power and resolution. Successful analyses of real data cases confirmed the wide applicability of our IBD-based mixed model methodology.
Collapse
Affiliation(s)
- Wenhao Li
- Biometris, Wageningen University and Research Center, P.O Box 100, 6700 AC, Wageningen, The Netherlands
| | - Martin P Boer
- Biometris, Wageningen University and Research Center, P.O Box 100, 6700 AC, Wageningen, The Netherlands
| | - Chaozhi Zheng
- Biometris, Wageningen University and Research Center, P.O Box 100, 6700 AC, Wageningen, The Netherlands
| | - Ronny V L Joosen
- Rijk Zwaan Breeding B.V., P.O Box 40, 2678 ZG, De Lier, The Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research Center, P.O Box 100, 6700 AC, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Kumar R, Gyawali A, Morrison GD, Saski CA, Robertson DJ, Cook DD, Tharayil N, Schaefer RJ, Beissinger TM, Sekhon RS. Genetic Architecture of Maize Rind Strength Revealed by the Analysis of Divergently Selected Populations. PLANT & CELL PHYSIOLOGY 2021; 62:1199-1214. [PMID: 34015110 DOI: 10.1093/pcp/pcab059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The strength of the stalk rind, measured as rind penetrometer resistance (RPR), is an important contributor to stalk lodging resistance. To enhance the genetic architecture of RPR, we combined selection mapping on populations developed by 15 cycles of divergent selection for high and low RPR with time-course transcriptomic and metabolic analyses of the stalks. Divergent selection significantly altered allele frequencies of 3,656 and 3,412 single- nucleotide polymorphisms (SNPs) in the high and low RPR populations, respectively. Surprisingly, only 110 (1.56%) SNPs under selection were common in both populations, while the majority (98.4%) were unique to each population. This result indicated that high and low RPR phenotypes are produced by biologically distinct mechanisms. Remarkably, regions harboring lignin and polysaccharide genes were preferentially selected in high and low RPR populations, respectively. The preferential selection was manifested as higher lignification and increased saccharification of the high and low RPR stalks, respectively. The evolution of distinct gene classes according to the direction of selection was unexpected in the context of parallel evolution and demonstrated that selection for a trait, albeit in different directions, does not necessarily act on the same genes. Tricin, a grass-specific monolignol that initiates the incorporation of lignin in the cell walls, emerged as a key determinant of RPR. Integration of selection mapping and transcriptomic analyses with published genetic studies of RPR identified several candidate genes including ZmMYB31, ZmNAC25, ZmMADS1, ZmEXPA2, ZmIAA41 and hk5. These findings provide a foundation for an enhanced understanding of RPR and the improvement of stalk lodging resistance.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Abiskar Gyawali
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ginnie D Morrison
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniel J Robertson
- Department of Mechanical Engineering, University of Idaho, Moscow, ID, USA
| | - Douglas D Cook
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Timothy M Beissinger
- Department of Plant Breeding Methodology, University of Göttingen, Göttingen 37075, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen 37075, Germany
| | - Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Tripodi P, Soler S, Campanelli G, Díez MJ, Esposito S, Sestili S, Figàs MR, Leteo F, Casanova C, Platani C, Soler E, Bertone A, Pereira-Dias L, Palma D, Burguet R, Pepe A, Rosa-Martínez E, Prohens J, Cardi T. Genome wide association mapping for agronomic, fruit quality, and root architectural traits in tomato under organic farming conditions. BMC PLANT BIOLOGY 2021; 21:481. [PMID: 34686145 PMCID: PMC8532347 DOI: 10.1186/s12870-021-03271-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/11/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Opportunity and challenges of the agriculture scenario of the next decades will face increasing demand for secure food through approaches able to minimize the input to cultivations. Large panels of tomato varieties represent a valuable resource of traits of interest under sustainable cultivation systems and for genome-wide association studies (GWAS). For mapping loci controlling the variation of agronomic, fruit quality, and root architecture traits, we used a heterogeneous set of 244 traditional and improved tomato accessions grown under organic field trials. Here we report comprehensive phenotyping and GWAS using over 37,300 SNPs obtained through double digest restriction-site associated DNA (dd-RADseq). RESULTS A wide range of phenotypic diversity was observed in the studied collection, with highly significant differences encountered for most traits. A variable level of heritability was observed with values up to 69% for morphological traits while, among agronomic ones, fruit weight showed values above 80%. Genotype by environment analysis highlighted the strongest genotypic effect for aboveground traits compared to root architecture, suggesting that the hypogeal part of tomato plants has been a minor objective for breeding activities. GWAS was performed by a compressed mixed linear model leading to 59 significantly associated loci, allowing the identification of novel genes related to flower and fruit characteristics. Most genomic associations fell into the region surrounding SUN, OVATE, and MYB gene families. Six flower and fruit traits were associated with a single member of the SUN family (SLSUN31) on chromosome 11, in a region involved in the increase of fruit weight, locules number, and fruit fasciation. Furthermore, additional candidate genes for soluble solids content, fruit colour and shape were found near previously reported chromosomal regions, indicating the presence of synergic and multiple linked genes underlying the variation of these traits. CONCLUSIONS Results of this study give new hints on the genetic basis of traits in underexplored germplasm grown under organic conditions, providing a framework for the development of markers linked to candidate genes of interest to be used in genomics-assisted breeding in tomato, in particular under low-input and organic cultivation conditions.
Collapse
Affiliation(s)
- Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy.
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - Sara Sestili
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Maria R Figàs
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Fabrizio Leteo
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Cristina Casanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Cristiano Platani
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Elena Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Aldo Bertone
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Daniela Palma
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Resurrección Burguet
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Andrea Pepe
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| |
Collapse
|
9
|
Pereira L, Zhang L, Sapkota M, Ramos A, Razifard H, Caicedo AL, van der Knaap E. Unraveling the genetics of tomato fruit weight during crop domestication and diversification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3363-3378. [PMID: 34283260 PMCID: PMC8440300 DOI: 10.1007/s00122-021-03902-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/28/2021] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Six novel fruit weight QTLs were identified in tomato using multiple bi-parental populations developed from ancestral accessions. Beneficial alleles at these loci arose in semi-domesticated subpopulations and were likely left behind. This study paves the way to introgress these alleles into breeding programs. The size and weight of edible organs have been strongly selected during crop domestication. Concurrently, human have also focused on nutritional and cultural characteristics of fruits and vegetables, at times countering selective pressures on beneficial size and weight alleles. Therefore, it is likely that novel improvement alleles for organ weight still segregate in ancestral germplasm. To date, five domestication and diversification genes affecting tomato fruit weight have been identified, yet the genetic basis for increases in weight has not been fully accounted for. We found that fruit weight increased gradually during domestication and diversification, and semi-domesticated subpopulations featured high phenotypic and nucleotide diversity. Columella and septum fruit tissues were proportionally increased, suggesting targeted selection. We developed twenty-one F2 populations with parents fixed for the known fruit weight genes, corresponding to putative key transitions from wild to fully domesticated tomatoes. These parents also showed differences in fruit weight attributes as well as the developmental timing of size increase. A subset of populations was targeted for QTL-seq, leading to the identification of six uncloned fruit weight QTLs. Three QTLs, located on chromosomes 1, 2 and 3, were subsequently validated by progeny testing. By exploring the segregation of the known fruit weight genes and the identified QTLs, we estimated that most beneficial alleles in the newly identified loci arose in semi-domesticated subpopulations from South America and were not likely transmitted to fully domesticated landraces. Therefore, these alleles could be incorporated into breeding programs using the germplasm and genetic resources identified in this study.
Collapse
Affiliation(s)
- Lara Pereira
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Lei Zhang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Manoj Sapkota
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Alexis Ramos
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Hamid Razifard
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana L Caicedo
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.
- Department of Horticulture, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Bineau E, Diouf I, Carretero Y, Duboscq R, Bitton F, Djari A, Zouine M, Causse M. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1213-1227. [PMID: 34160103 DOI: 10.1111/tpj.15379] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 05/15/2023]
Abstract
Tomato is a widely cultivated crop, which can grow in many environments. However, temperature above 30°C impairs its reproduction, subsequently impacting fruit yield. We assessed the impact of high-temperature stress (HS) in two tomato experimental populations, a multi-parental advanced generation intercross (MAGIC) population and a core-collection (CC) of small-fruited tomato accessions. Both populations were evaluated for 11 traits related to yield components, phenology and fruit quality in optimal and HS conditions. HS significantly impacted all traits in both populations, but a few genotypes with stable yield under HS were identified. A plasticity index was computed for each individual to measure the extent of the heat impact for each trait. Quantitative trait loci (QTL) were detected in control and HS conditions as well as for plasticity index. Linkage and genome-wide association analyses in the MAGIC and CC populations identified a total of 98 and 166 QTLs, respectively. Taking the two populations together, 69 plasticity QTLs (pQTLs) were involved in tomato heat response for 11 traits. The transcriptome changes in the ovary of six genotypes with contrasted responses to HS were studied, and 837 genes differentially expressed according to the conditions were detected. Combined with previous transcriptome studies, these results were used to propose candidate genes for HS response QTLs.
Collapse
Affiliation(s)
- Estelle Bineau
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
- GAUTIER Semences, route d'Avignon, Eyragues, 13630, France
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Yolande Carretero
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Renaud Duboscq
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Anis Djari
- Laboratory of Genomics and Biotechnology of Fruit, University of Toulouse, INPT, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRAE, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Mohamed Zouine
- Laboratory of Genomics and Biotechnology of Fruit, University of Toulouse, INPT, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRAE, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| |
Collapse
|
11
|
Karunarathne SD, Han Y, Zhang XQ, Dang VH, Angessa TT, Li C. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:47. [PMID: 37309383 PMCID: PMC10236044 DOI: 10.1007/s11032-021-01239-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most important macronutrients for crop growth and development. Large amounts of N fertilizers are applied exogenously to improve grain yield and quality, which has led to environmental pollution and high cost of production. Therefore, improvement of N use efficiency (NUE) is a very important aspect for sustainable agriculture. Here, a pilot experiment was firstly conducted with a set of barley genotypes with confirmed NUE to validate the fast NUE screening, using chlorate as an analogue to nitrate. High NUE genotypes were susceptible to chlorate-induced toxicity whereas the low NUE genotypes were tolerant. A total of 180 barley RILs derived from four parents (Compass, GrangeR, Lockyer and La Trobe) were further screened for NUE. Leaf chlorosis induced by chlorate toxicity was the key parameter observed which was later related to low-N tolerance of the RILs. There was a distinct variation in chlorate susceptibility of the RILs with leaf chlorosis in the oldest leaf ranging from 10 to 80%. A genome-wide association study (GWAS) identified 9 significant marker-trait associations (MTAs) conferring high chlorate sensitivity on chromosomes 2H (2), 3H (1), 4H (4), 5H (1) and Un (1). Genes flanking with these markers were retrieved as potential targets for genetic improvement of NUE. Genes encoding Ferredoxin 3, leucine-rich receptor-like protein kinase family protein and receptor kinase are responsive to N stress. MTA4H5468 which exhibits concordance with high NUE phenotype can further be explored under different genetic backgrounds and successfully applied in marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01239-8.
Collapse
Affiliation(s)
- Sakura D. Karunarathne
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151 Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Viet Hoang Dang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151 Australia
| |
Collapse
|
12
|
Chang F, Lv W, Lv P, Xiao Y, Yan W, Chen S, Zheng L, Xie P, Wang L, Karikari B, Abou-Elwafa SF, Jiang H, Zhao T. Exploring genetic architecture for pod-related traits in soybean using image-based phenotyping. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:28. [PMID: 37309355 PMCID: PMC10236113 DOI: 10.1007/s11032-021-01223-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/18/2021] [Indexed: 06/14/2023]
Abstract
Mature pod color (PC) and pod size (PS) served as important characteristics are used in the soybean breeding programs. However, manual phenotyping of such complex traits is time-consuming, laborious, and expensive for breeders. Here, we collected pod images from two different populations, namely, a soybean association panel (SAP) consisting of 187 accessions and an inter-specific recombinant inbred line (RIL) population containing 284 RILs. An image-based phenotyping method was developed and used to extract the pod color- and size-related parameters from images. Genome-wide association study (GWAS) and linkage mapping were performed to decipher the genetic control of pod color- and size-related traits across 2 successive years. Both populations exhibited wide phenotypic variations and continuous distribution in pod color- and size-related traits, indicating quantitative polygenic inheritance of these traits. GWAS and linkage mapping approaches identified the two major quantitative trait loci (QTL) underlying the pod color parameters, i.e., qPC3 and qPC19, located to chromosomes 3 and 19, respectively, and 12 stable QTLs for pod size-related traits across nine chromosomes. Several genes residing within the genomic region of stable QTL were identified as potential candidates underlying these pod-related traits based on the gene annotation and expression profiling data. Our results provide the useful information for fine-mapping/map-based cloning of QTL and marker-assisted selection of elite varieties with desirable pod traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01223-2.
Collapse
Affiliation(s)
- Fangguo Chang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenhuan Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuntao Xiao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenliang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shu Chen
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Lingyi Zheng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ping Xie
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ling Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, P. O. Box TL, 1882 Tamale, Ghana
| | | | - Haiyan Jiang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
13
|
Zhang H, Lu Y, Ma Y, Fu J, Wang G. Genetic and molecular control of grain yield in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:18. [PMID: 37309425 PMCID: PMC10236077 DOI: 10.1007/s11032-021-01214-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/07/2021] [Indexed: 06/14/2023]
Abstract
Understanding the genetic and molecular basis of grain yield is important for maize improvement. Here, we identified 49 consensus quantitative trait loci (cQTL) controlling maize yield-related traits using QTL meta-analysis. Then, we collected yield-related traits associated SNPs detected by association mapping and identified 17 consensus significant loci. Comparing the physical positions of cQTL with those of significant SNPs revealed that 47 significant SNPs were located within 20 cQTL regions. Furthermore, intensive reviews of 31 genes regulating maize yield-related traits found that the functions of many genes were conservative in maize and other plant species. The functional conservation indicated that some of the 575 maize genes (orthologous to 247 genes controlling yield or seed traits in other plant species) might be functionally related to maize yield-related traits, especially the 49 maize orthologous genes in cQTL regions, and 41 orthologous genes close to the physical positions of significant SNPs. In the end, we prospected on the integration of the public sources for exploring the genetic and molecular mechanisms of maize yield-related traits, and on the utilization of genetic and molecular mechanisms for maize improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01214-3.
Collapse
Affiliation(s)
- Hongwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Yantian Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Yuting Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Junjie Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Guoying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| |
Collapse
|
14
|
Fujii H, Nonaka K, Minamikawa MF, Endo T, Sugiyama A, Hamazaki K, Iwata H, Omura M, Shimada T. Allelic composition of carotenoid metabolic genes in 13 founders influences carotenoid composition in juice sac tissues of fruits among Japanese citrus breeding population. PLoS One 2021; 16:e0246468. [PMID: 33539435 PMCID: PMC7861536 DOI: 10.1371/journal.pone.0246468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
To enrich carotenoids, especially β-cryptoxanthin, in juice sac tissues of fruits via molecular breeding in citrus, allele mining was utilized to dissect allelic variation of carotenoid metabolic genes and identify an optimum allele on the target loci characterized by expression quantitative trait (eQTL) analysis. SNPs of target carotenoid metabolic genes in 13 founders of the Japanese citrus breeding population were explored using the SureSelect target enrichment method. An independent allele was determined based on the presence or absence of reliable SNPs, using trio analysis to confirm inheritability between parent and offspring. Among the 13 founders, there were 7 PSY alleles, 7 HYb alleles, 11 ZEP alleles, 5 NCED alleles, and 4 alleles for the eQTL that control the transcription levels of PDS and ZDS among the ancestral species, indicating that some founders acquired those alleles from them. The carotenoid composition data of 263 breeding pedigrees in juice sac tissues revealed that the phenotypic variance of carotenoid composition was similar to that in the 13 founders, whereas the mean of total carotenoid content increased. This increase in total carotenoid content correlated with the increase in either or both β-cryptoxanthin and violaxanthin in juice sac tissues. Bayesian statistical analysis between allelic composition of target genes and carotenoid composition in 263 breeding pedigrees indicated that PSY-a and ZEP-e alleles at PSY and ZEP loci had strong positive effects on increasing the total carotenoid content, including β-cryptoxanthin and violaxanthin, in juice sac tissues. Moreover, the pyramiding of these alleles also increased the β-cryptoxanthin content. Interestingly, the offset interaction between the alleles with increasing and decreasing effects on carotenoid content and the epistatic interaction among carotenoid metabolic genes were observed and these interactions complexed carotenoid profiles in breeding population. These results revealed that allele composition would highly influence the carotenoid composition in citrus fruits. The allelic genotype information for the examined carotenoid metabolic genes in major citrus varieties and the trio-tagged SNPs to discriminate the optimum alleles (PSY-a and ZEP-e) from the rest would promise citrus breeders carotenoid enrichment in fruit via molecular breeding.
Collapse
Affiliation(s)
- Hiroshi Fujii
- National Agriculture and Food Research Organization Institute of Fruit and Tea Tree Science, Shimizu, Shizuoka, Japan
| | - Keisuke Nonaka
- National Agriculture and Food Research Organization Institute of Fruit and Tea Tree Science, Shimizu, Shizuoka, Japan
| | - Mai F. Minamikawa
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tomoko Endo
- National Agriculture and Food Research Organization Institute of Fruit and Tea Tree Science, Shimizu, Shizuoka, Japan
| | - Aiko Sugiyama
- Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka, Japan
| | - Kosuke Hamazaki
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroyoshi Iwata
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka, Japan
| | - Takehiko Shimada
- National Agriculture and Food Research Organization Institute of Fruit and Tea Tree Science, Shimizu, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
15
|
Scossa F, Alseekh S, Fernie AR. Integrating multi-omics data for crop improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153352. [PMID: 33360148 DOI: 10.1016/j.jplph.2020.153352] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/26/2023]
Abstract
Our agricultural systems are now in urgent need to secure food for a growing world population. To meet this challenge, we need a better characterization of plant genetic and phenotypic diversity. The combination of genomics, transcriptomics and metabolomics enables a deeper understanding of the mechanisms underlying the complex architecture of many phenotypic traits of agricultural relevance. We review the recent advances in plant genomics to see how these can be integrated with broad molecular profiling approaches to improve our understanding of plant phenotypic variation and inform crop breeding strategies.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178, Rome, Italy.
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|
16
|
Diouf I, Pascual L. Multiparental Population in Crops: Methods of Development and Dissection of Genetic Traits. Methods Mol Biol 2021; 2264:13-32. [PMID: 33263900 DOI: 10.1007/978-1-0716-1201-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiparental populations are located midway between association mapping that relies on germplasm collections and classic linkage analysis, based upon biparental populations. They provide several key advantages such as the possibility to include a higher number of alleles and increased level of recombination with respect to biparental populations, and more equilibrated allelic frequencies than association mapping panels. Moreover, in these populations new allele's combinations arise from recombination that may reveal transgressive phenotypes and make them a useful pre-breeding material. Here we describe the strategies for working with multiparental populations, focusing on nested association mapping populations (NAM) and multiparent advanced generation intercross populations (MAGIC). We provide details from the selection of founders, population development, and characterization to the statistical methods for genetic mapping and quantitative trait detection.
Collapse
Affiliation(s)
- Isidore Diouf
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Rodriguez M, Scintu A, Posadinu CM, Xu Y, Nguyen CV, Sun H, Bitocchi E, Bellucci E, Papa R, Fei Z, Giovannoni JJ, Rau D, Attene G. GWAS Based on RNA-Seq SNPs and High-Throughput Phenotyping Combined with Climatic Data Highlights the Reservoir of Valuable Genetic Diversity in Regional Tomato Landraces. Genes (Basel) 2020; 11:E1387. [PMID: 33238469 PMCID: PMC7709041 DOI: 10.3390/genes11111387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is a widely used model plant species for dissecting out the genomic bases of complex traits to thus provide an optimal platform for modern "-omics" studies and genome-guided breeding. Genome-wide association studies (GWAS) have become a preferred approach for screening large diverse populations and many traits. Here, we present GWAS analysis of a collection of 115 landraces and 11 vintage and modern cultivars. A total of 26 conventional descriptors, 40 traits obtained by digital phenotyping, the fruit content of six carotenoids recorded at the early ripening (breaker) and red-ripe stages and 21 climate-related variables were analyzed in the context of genetic diversity monitored in the 126 accessions. The data obtained from thorough phenotyping and the SNP diversity revealed by sequencing of ripe fruit transcripts of 120 of the tomato accessions were jointly analyzed to determine which genomic regions are implicated in the expressed phenotypic variation. This study reveals that the use of fruit RNA-Seq SNP diversity is effective not only for identification of genomic regions that underlie variation in fruit traits, but also of variation related to additional plant traits and adaptive responses to climate variation. These results allowed validation of our approach because different marker-trait associations mapped on chromosomal regions where other candidate genes for the same traits were previously reported. In addition, previously uncharacterized chromosomal regions were targeted as potentially involved in the expression of variable phenotypes, thus demonstrating that our tomato collection is a precious reservoir of diversity and an excellent tool for gene discovery.
Collapse
Affiliation(s)
- Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale—CBV, Università degli Studi di Sassari, 07041 Alghero, Italy
| | - Alessandro Scintu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Chiara M. Posadinu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Cuong V. Nguyen
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada;
| | - Honghe Sun
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Domenico Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Giovanna Attene
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale—CBV, Università degli Studi di Sassari, 07041 Alghero, Italy
| |
Collapse
|
18
|
Gramazio P, Pereira-Dias L, Vilanova S, Prohens J, Soler S, Esteras J, Garmendia A, Díez MJ. Morphoagronomic characterization and whole-genome resequencing of eight highly diverse wild and weedy S. pimpinellifolium and S. lycopersicum var. cerasiforme accessions used for the first interspecific tomato MAGIC population. HORTICULTURE RESEARCH 2020; 7:174. [PMID: 33328432 PMCID: PMC7603519 DOI: 10.1038/s41438-020-00395-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/02/2020] [Accepted: 08/30/2020] [Indexed: 05/11/2023]
Abstract
The wild Solanum pimpinellifolium (SP) and the weedy S. lycopersicum var. cerasiforme (SLC) are largely unexploited genetic reservoirs easily accessible to breeders, as they are fully cross-compatible with cultivated tomato (S. lycopersicum var. lycopersicum). We performed a comprehensive morphological and genomic characterization of four wild SP and four weedy SLC accessions, selected to maximize the range of variation of both taxa. These eight accessions are the founders of the first tomato interspecific multi-parent advanced generation inter-cross (MAGIC) population. The morphoagronomic characterization was carried out with 39 descriptors to assess plant, inflorescence, fruit and agronomic traits, revealing the broad range of diversity captured. Part of the morphological variation observed in SP was likely associated to the adaptation of the accessions to different environments, while in the case of SLC to both human activity and adaptation to the environment. Whole-genome resequencing of the eight accessions revealed over 12 million variants, ranging from 1.2 to 1.9 million variants in SLC and from 3.1 to 4.8 million in SP, being 46.3% of them (4,897,803) private variants. The genetic principal component analysis also confirmed the high diversity of SP and the complex evolutionary history of SLC. This was also reflected in the analysis of the potential footprint of common ancestors or old introgressions identified within and between the two taxa. The functional characterization of the variants revealed a significative enrichment of GO terms related to changes in cell walls that would have been negatively selected during domestication and breeding. The comprehensive morphoagronomic and genetic characterization of these accessions will be of great relevance for the genetic analysis of the first interspecific MAGIC population of tomato and provides valuable knowledge and tools to the tomato community for genetic and genomic studies and for breeding purposes.
Collapse
Affiliation(s)
- Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8572, Tsukuba, Japan
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Javier Esteras
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Alfonso Garmendia
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain.
| |
Collapse
|
19
|
Abebe AM, Choi J, Kim Y, Oh CS, Yeam I, Nou IS, Lee JM. Development of diagnostic molecular markers for marker-assisted breeding against bacterial wilt in tomato. BREEDING SCIENCE 2020; 70:462-473. [PMID: 32968349 PMCID: PMC7495205 DOI: 10.1270/jsbbs.20027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Bacterial wilt, caused by the Ralstonia pseudosolanacearum species complex, is an important vascular disease that limits tomato production in tropical and subtropical regions. Two major quantitative trait loci (QTL) of bacterial wilt resistance on chromosome 6 (Bwr-6) and 12 (Bwr-12) were previously identified in Solanum lycopersicum 'Hawaii 7996'; however, marker-assisted breeding for bacterial wilt resistance is not well established. To dissect the QTL, six cleaved amplified polymorphic sites (CAPS) and derived CAPS (dCAPS) markers within the Bwr-6 region and one dCAPS marker near Bwr-12 were developed, and resistance levels in 117 tomato cultivars were evaluated. Two markers, RsR6-5 on chromosome 6 and RsR12-1 on chromosome 12, were selected based on the genotypic and phenotypic analysis. The combination of RsR6-5 and RsR12-1 effectively distinguishes resistant and susceptible cultivars. Furthermore, the efficiency of the two markers was validated in the F3 generation derived from the F2 population between E6203 (susceptible) and Hawaii 7998 (resistant). Resistant alleles at both loci led to the resistance to bacterial wilt. These markers will facilitate marker-assisted breeding of tomato resistant to bacterial wilt.
Collapse
Affiliation(s)
- Alebel Mekuriaw Abebe
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, South Korea
| | - Jinwoo Choi
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, South Korea
| | - Youngjun Kim
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, South Korea
| | - Inhwa Yeam
- Department of Horticulture and Breeding, Andong National University, Andong, Gyeongbuk, 36729, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
20
|
Lin M, Corsi B, Ficke A, Tan KC, Cockram J, Lillemo M. Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:785-808. [PMID: 31996971 PMCID: PMC7021668 DOI: 10.1007/s00122-019-03507-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE A locus on wheat chromosome 2A was found to control field resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. The necrotrophic fungal pathogen Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch and glume blotch, which are common wheat (Triticum aestivum L.) diseases in humid and temperate areas. Susceptibility to Septoria nodorum leaf blotch can partly be explained by sensitivity to corresponding P. nodorum necrotrophic effectors (NEs). Susceptibility to glume blotch is also quantitative; however, the underlying genetics have not been studied in detail. Here, we genetically map resistance/susceptibility loci to leaf and glume blotch using an eight-founder wheat multiparent advanced generation intercross population. The population was assessed in six field trials across two sites and 4 years. Seedling infiltration and inoculation assays using three P. nodorum isolates were also carried out, in order to compare quantitative trait loci (QTL) identified under controlled conditions with those identified in the field. Three significant field resistance QTL were identified on chromosomes 2A and 6A, while four significant seedling resistance QTL were detected on chromosomes 2D, 5B and 7D. Among these, QSnb.niab-2A.3 for field resistance to both leaf blotch and glume blotch was detected in Norway and the UK. Colocation with a QTL for seedling reactions against culture filtrate from a Norwegian P. nodorum isolate indicated the QTL could be caused by a novel NE sensitivity. The consistency of this QTL for leaf blotch at the seedling and adult plant stages and culture filtrate infiltration was confirmed by haplotype analysis. However, opposite effects for the leaf blotch and glume blotch reactions suggest that different genetic mechanisms may be involved.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway
| | - Beatrice Corsi
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Andrea Ficke
- Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1433, Ås, Norway
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - James Cockram
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
21
|
Nubankoh P, Wanchana S, Saensuk C, Ruanjaichon V, Cheabu S, Vanavichit A, Toojinda T, Malumpong C, Arikit S. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.). PLANT CELL REPORTS 2020; 39:149-162. [PMID: 31570974 DOI: 10.1007/s00299-019-02477-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The QTL-seq approach was used to identify QTLs for spikelet fertility under heat stress in rice. QTLs were detected on chromosomes 1, 2 and 3. Rice is a staple food of more than half of the global population. Rice production is increasingly affected by extreme environmental fluctuations caused by climate change. Increasing temperatures that exceed the optimum temperature adversely affect rice growth and development, especially during reproductive stages. Heat stress during the reproductive stages has a large effect on spikelet fertility; hence, the yield decreases. To sustain rice yields under increasing temperatures, the development of rice varieties for heat tolerance is necessary. In this study, we applied the QTL-seq approach to rapidly identify QTLs for spikelet fertility under heat stress (air temperature of 40-45 °C) based on two DNA pools, each consisting of 25 individual plants that exhibited a heat-tolerant or heat-sensitive phenotype from an F2 population of a cross between M9962 (heat tolerant) and Sinlek (heat sensitive). Three QTLs, qSF1, qSF2 and qSF3, were detected on chromosomes 1, 2 and 3, respectively, according to the highest contrasting SNP index between the two bulks. The QTLs identified in this study were found to overlap or were linked to QTLs previously identified in other crosses using conventional QTL mapping. A few highly abundant and anther-specific genes that contain nonsynonymous variants were identified within the QTLs and were proposed to be potential candidate genes. These genes could be targets in rice breeding programs for heat tolerance.
Collapse
Affiliation(s)
- Phakchana Nubankoh
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chatree Saensuk
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sulaiman Cheabu
- Faculty of Agriculture, Princess of Naradhiwas University, Naradhiwas, 96000, Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chanate Malumpong
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
22
|
Jiménez-Galindo JC, Malvar RA, Butrón A, Santiago R, Samayoa LF, Caicedo M, Ordás B. Mapping of resistance to corn borers in a MAGIC population of maize. BMC PLANT BIOLOGY 2019; 19:431. [PMID: 31623579 PMCID: PMC6796440 DOI: 10.1186/s12870-019-2052-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Corn borers constitute an important pest of maize around the world; in particular Sesamia nonagrioides Lefèbvre, named Mediterranean corn borer (MCB), causes important losses in Southern Europe. Methods of selection can be combined with transgenic approaches to increase the efficiency and durability of the resistance to corn borers. Previous studies of the genetic factors involved in resistance to MCB have been carried out using bi-parental populations that have low resolution or using association inbred panels that have a low power to detect rare alleles. We developed a Multi-parent Advanced Generation InterCrosses (MAGIC) population to map with high resolution the genetic determinants of resistance to MCB. RESULTS We detected multiple single nucleotide polymorphisms (SNPs) of low effect associated with resistance to stalk tunneling by MCB. We dissected a wide region related to stalk tunneling in multiple studies into three smaller regions (at ~ 150, ~ 155, and ~ 165 Mb in chromosome 6) that closely overlap with regions associated with cell wall composition. We also detected regions associated with kernel resistance and agronomic traits, although the co-localization of significant regions between traits was very low. This indicates that it is possible the concurrent improvement of resistance and agronomic traits. CONCLUSIONS We developed a mapping population which allowed a finer dissection of the genetics of maize resistance to corn borers and a solid nomination of candidate genes based on functional information. The population, given its large variability, was also adequate to map multiple traits and study the relationship between them.
Collapse
Affiliation(s)
- José Cruz Jiménez-Galindo
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Ave. Hidalgo 1213, Cd. Cuauhtémoc, 31500 Chihuahua, Mexico
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Rogelio Santiago
- Departamento Biología Vegetal y Ciencias del Suelo, Unidad Asociada BVE1-UVIGO y MBG (CSIC), Facultad de Biología, Universidad de Vigo, Campus As Lagoas Marcosende, 36310 Vigo, Spain
| | - Luis Fernando Samayoa
- North Carolina State University, 4210 Williams Hall 101, Derieux Place, Raleigh, NC 27695 USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620 USA
| | - Marlon Caicedo
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), 170315 Quito, Ecuador
| | - Bernardo Ordás
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
23
|
Murugaiyan V, Ali J, Mahender A, Aslam UM, Jewel ZA, Pang Y, Marfori-Nazarea CM, Wu LB, Frei M, Li Z. Mapping of genomic regions associated with arsenic toxicity stress in a backcross breeding populations of rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2019; 12:61. [PMID: 31399885 PMCID: PMC6689042 DOI: 10.1186/s12284-019-0321-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Arsenic (As) is an unwanted toxic mineral that threatens the major rice-growing regions in the world, especially in South Asia. Rice production in Bangladesh and India depends on As-contaminated groundwater sources for irrigating paddy fields, resulting in elevated amounts of As in the topsoil. Arsenic accumulating in rice plants has a significant negative effect on human and animal health. Here, we present a quantitative trait locus (QTL) mapping study to identify candidate genes conferring As toxicity tolerance and accumulation in rice (Oryza sativa L.) seedlings. An early backcross breeding population consisting of 194 lines derived from a cross between WTR1 (indica) and Hao-an-nong (japonica) was grown in hydroponics for 25 days, from the seventh day exposed to an environmentally relevant concentration of 10 ppm As. RESULTS Arsenic toxicity leads to significantly negative plant responses, including reduced biomass, stunted plant growth, reduced leaf chlorophyll content, and increased shoot As concentration ranging from 9 to 20 mg kg- 1. Marker-trait association was determined for seven As-related traits using 704 single nucleotide polymorphism (SNP) markers generated from a 6 K SNP-array. One QTL was mapped on chromosome 1 for relative chlorophyll content, two QTLs for As content in roots were mapped on chromosome 8, and six QTLs for As content in shoots were mapped on chromosomes 2, 5, 6, and 9. Using the whole-genome sequence of the parents, we narrowed down the number of candidate genes associated with the QTL intervals based on the existence of a non-synonymous mutation in genes between the parental lines. Also, by using publicly available gene expression profiles for As stress, we further narrowed down the number of candidate genes in the QTL intervals by comparing the expression profiles of genes under As stress and control conditions. Twenty-five genes showing transcription regulation were considered as candidate gene nominees for As toxicity-related traits. CONCLUSIONS Our study provides insight into the genetic basis of As tolerance and uptake in the early seedling stage of rice. Comparing our findings with the previously reported QTLs for As toxicity stress in rice, we identified some novel and co-localized QTLs associated with As stress. Also, the mapped QTLs harbor gene models of known function associated with stress responses, metal homeostasis, and transporter activity in rice. Overall, our findings will assist breeders with initial marker information to develop suitable varieties for As-contaminated ecosystems.
Collapse
Affiliation(s)
- Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, D-53012, Bonn, Germany
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines.
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Umair M Aslam
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Zilhas Ahmed Jewel
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Yunlong Pang
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Corinne M Marfori-Nazarea
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Lin-Bo Wu
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, D-53012, Bonn, Germany
| | - Michael Frei
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, D-53012, Bonn, Germany
| | - Zhikang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
24
|
Tello J, Roux C, Chouiki H, Laucou V, Sarah G, Weber A, Santoni S, Flutre T, Pons T, This P, Péros JP, Doligez A. A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2237-2252. [PMID: 31049634 DOI: 10.1007/s00122-019-03351-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/20/2019] [Indexed: 05/21/2023]
Abstract
A half-diallel population involving five elite grapevine cultivars was generated and genotyped by GBS, and highly-informative segregation data was used to construct a high-density genetic map for Vitis vinifera L. Grapevine is one of the most relevant fruit crops in the world. Deeper genetic knowledge could assist modern grapevine breeding programs to develop new wine grape varieties able to face climate change effects. To assist in the rapid identification of markers for crop yield components, grape quality traits and adaptation potential, we generated a large Vitis vinifera L. population (N = 624) by crossing five red wine cultivars in a half-diallel scheme, which was subsequently sequenced by an efficient GBS procedure. A high number of fully informative genetic variants was detected using a novel mapping approach capable of reconstructing local haplotypes from adjacent biallelic SNPs, which were subsequently used to construct the densest consensus genetic map available for the cultivated grapevine to date. This 1378.3-cM map integrates 10 bi-parental consensus maps and orders 4437 markers in 3353 unique positions on 19 chromosomes. Markers are well distributed all along the grapevine reference genome, covering up to 98.8% of its genomic sequence. Additionally, a good agreement was observed between genetic and physical orders, adding confidence in the quality of this map. Collectively, our results pave the way for future genetic studies (such as fine QTL mapping) aimed to understand the complex relationship between genotypic and phenotypic variation in the cultivated grapevine. In addition, the method used (which efficiently delivers a high number of fully informative markers) could be of interest to other outbred organisms, notably perennial fruit crops.
Collapse
Affiliation(s)
- Javier Tello
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Catherine Roux
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Hajar Chouiki
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Valérie Laucou
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Gautier Sarah
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Audrey Weber
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Sylvain Santoni
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Timothée Flutre
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Thierry Pons
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Patrice This
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Jean-Pierre Péros
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Agnès Doligez
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France.
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
25
|
Butrón A, Santiago R, Cao A, Samayoa LF, Malvar RA. QTLs for Resistance to Fusarium Ear Rot in a Multiparent Advanced Generation Intercross (MAGIC) Maize Population. PLANT DISEASE 2019; 103:897-904. [PMID: 30856072 DOI: 10.1094/pdis-09-18-1669-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alternative approaches to linkage and association mapping using inbred panels may allow further insights into loci involved in resistance to Fusarium ear rot and lead to the discovery of suitable markers for breeding programs. Here, the suitability of a maize multiparent advanced-generation intercross population for detecting quantitative trait loci (QTLs) associated with Fusarium ear rot resistance was evaluated and found to be valuable in uncovering genomic regions containing resistance-associated loci in temperate materials. In total, 13 putative minor QTLs were located over all of the chromosomes, except chromosome 5, and frequencies of favorable alleles for resistance to Fusarium ear rot were, in general, high. These findings corroborated the quantitative characteristic of resistance to Fusarium ear rot in which many loci have small additive effects. Present and previous results indicate that crucial regions such as 210 to 220 Mb in chromosome 3 and 166 to 173 Mb in chromosome 7 (B73-RefGen-v2) contain QTLs for Fusarium ear rot resistance and fumonisin content.
Collapse
Affiliation(s)
- A Butrón
- 1 Misión Biológica de Galicia (CSIC), Box 28, Pontevedra 36080, Spain
| | - R Santiago
- 2 Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, Vigo 36310, Spain
- 3 Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra 36143, Spain; and
| | - A Cao
- 1 Misión Biológica de Galicia (CSIC), Box 28, Pontevedra 36080, Spain
| | - L F Samayoa
- 4 Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - R A Malvar
- 1 Misión Biológica de Galicia (CSIC), Box 28, Pontevedra 36080, Spain
| |
Collapse
|
26
|
Lea A, Subramaniam M, Ko A, Lehtimäki T, Raitoharju E, Kähönen M, Seppälä I, Mononen N, Raitakari OT, Ala-Korpela M, Pajukanta P, Zaitlen N, Ayroles JF. Genetic and environmental perturbations lead to regulatory decoherence. eLife 2019; 8:e40538. [PMID: 30834892 PMCID: PMC6400502 DOI: 10.7554/elife.40538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/14/2019] [Indexed: 01/24/2023] Open
Abstract
Correlation among traits is a fundamental feature of biological systems that remains difficult to study. To address this problem, we developed a flexible approach that allows us to identify factors associated with inter-individual variation in correlation. We use data from three human cohorts to study the effects of genetic and environmental variation on correlations among mRNA transcripts and among NMR metabolites. We first show that environmental exposures (infection and disease) lead to a systematic loss of correlation, which we define as 'decoherence'. Using longitudinal data, we show that decoherent metabolites are better predictors of whether someone will develop metabolic syndrome than metabolites commonly used as biomarkers of this disease. Finally, we demonstrate that correlation itself is under genetic control by mapping hundreds of 'correlation quantitative trait loci (QTLs)'. Together, this work furthers our understanding of how and why coordinated biological processes break down, and points to a potential role for decoherence in disease. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Amanda Lea
- Department of Ecology and EvolutionPrinceton UniversityPrincetonUnited States
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUnited States
| | - Meena Subramaniam
- Department of Medicine, Lung Biology CenterUniversity of California, San FranciscoSan FranciscoUnited States
| | - Arthur Ko
- Department of Medicine, David Geffen School of Medicine at UCLAUniversity of California, Los AngelesLos AngelesUnited States
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Emma Raitoharju
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Department of Clinical PhysiologyTampere University, Tampere University HospitalTampereFinland
| | - Ilkka Seppälä
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Nina Mononen
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular MedicineUniversity of TurkuTurkuFinland
- Department of Clinical Physiology and Nuclear MedicineTurku University HospitalTurkuFinland
| | - Mika Ala-Korpela
- Systems Epidemiology, Baker Heart and Diabetes InstituteMelbourneAustralia
- Computational Medicine, Faculty of Medicine, Biocenter OuluUniversity of OuluOuluFinland
- NMR Metabolomics Laboratory, School of PharmacyUniversity of Eastern FinlandKuopioFinland
- Population Health Science, Bristol Medical SchoolUniversity of BristolBristolUnited Kingdom
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUnited Kingdom
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health SciencesThe Alfred Hospital, Monash UniversityMelbourneAustralia
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLAUniversity of California, Los AngelesLos AngelesUnited States
| | - Noah Zaitlen
- Department of Medicine, Lung Biology CenterUniversity of California, San FranciscoSan FranciscoUnited States
| | - Julien F Ayroles
- Department of Ecology and EvolutionPrinceton UniversityPrincetonUnited States
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUnited States
| |
Collapse
|
27
|
Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:73-90. [PMID: 30417464 DOI: 10.1111/tpj.14152] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition, high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds of accessions have been sequenced, and databases gathering sequence data together with genetic and phenotypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to various biotic and abiotic stresses and root architecture, are increasingly being studied. Several major mutations and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favorable alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations discovered so far and review the existing genetic resources and most recent strategies for trait discovery in tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait editing in tomato.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Isidore Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| |
Collapse
|
28
|
Stadlmeier M, Hartl L, Mohler V. Usefulness of a Multiparent Advanced Generation Intercross Population With a Greatly Reduced Mating Design for Genetic Studies in Winter Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1825. [PMID: 30574161 PMCID: PMC6291512 DOI: 10.3389/fpls.2018.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/23/2018] [Indexed: 05/05/2023]
Abstract
Multiparent advanced generation intercross (MAGIC) populations were recently developed to allow the high-resolution mapping of quantitative traits. We present a genetic linkage map of an elite but highly diverse eight-founder MAGIC population in common wheat (Triticum aestivum L.). Our MAGIC population is composed of 394 F6:8 recombinant inbred lines lacking significant signatures of population structure. The linkage map included 5435 SNP markers distributed over 2804 loci and spanning 5230 cM. The analysis of population parameters, including genetic structure, kinship, founder probabilities, and linkage disequilibrium and congruency to other maps indicated appropriate construction of both the population and the genetic map. It was shown that eight-founder MAGIC populations exhibit a greater number of loci and higher recombination rates, especially in the pericentromeric regions, compared to four-founder MAGIC, and biparental populations. In addition, our greatly simplified eight-parental MAGIC mating design with an additional eight-way intercross step was found to be equivalent to a MAGIC design with all 210 possible four-way crosses regarding the levels of missing founder assignments and the number of recombination events. Furthermore, the MAGIC population captured 71.7% of the allelic diversity available in the German wheat breeding gene pool. As a proof of principle, we demonstrated the application of the resource for quantitative trait loci mapping analyzing seedling resistance to powdery mildew. As wheat is a crop with many breeding objectives, this resource will allow scientists and breeders to carry out genetic studies for a wide range of breeder-relevant parameters in a single genetic background and reveal possible interactions between traits of economic importance.
Collapse
Affiliation(s)
- Melanie Stadlmeier
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
29
|
Anderson SL, Mahan AL, Murray SC, Klein PE. Four Parent Maize (FPM) Population: Effects of Mating Designs on Linkage Disequilibrium and Mapping Quantitative Traits. THE PLANT GENOME 2018; 11:170102. [PMID: 30025026 DOI: 10.3835/plantgenome2017.11.0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multiparent advanced generation inter-cross (MAGIC) populations can provide improved genetic mapping resolution by increasing allelic diversity and effective recombination. The Four Parent Maize (FPM; L.) population implemented five different mating designs used in MAGIC and bi-parental populations to compare empirical effects on genetic resolution and power of quantitative trait locus (QTL) detection; the combined population here comprised of 1149 individuals with 118,509 genetic markers. Measurements were recorded for plant height (PH), ear height (EH), days to anthesis (DTA) and silking (DTS) in seven environments, spanning three years. Linkage disequilibrium (LD) analysis of subpopulations indicated MAGIC population designs should incorporate generations of intermating to overcome initial LD increase caused by population admixture in a non-intermated four parent population (4way0sib). A 3- to 4-fold increase in genetic resolution (<0.8) and a 2.5-fold decrease in the extent of LD decay (<0.2) compared to the biparental populations was found for the four parent cross at the third generation of intermating (4way3sib). Power of QTL detection was affected to a greater extent by sample size rather than by mating designs. The FPM power simulations indicated that MAGIC populations have the ability to meet or exceed the mapping power of nested association panels with fewer individuals and diversity inputs. Using association mapping software we identified 2, 5, 7, and 6 QTL for PH, EH, DTA, and DTS, respectively. The FPM population is a valuable resource for quantifying empirical improvements of parent number, intermating, and the number of progeny for QTL linkage mapping.
Collapse
|
30
|
Ogawa D, Yamamoto E, Ohtani T, Kanno N, Tsunematsu H, Nonoue Y, Yano M, Yamamoto T, Yonemaru JI. Haplotype-based allele mining in the Japan-MAGIC rice population. Sci Rep 2018. [PMID: 29531264 PMCID: PMC5847589 DOI: 10.1038/s41598-018-22657-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-parent advanced generation inter-cross (MAGIC) lines have broader genetic variation than bi-parental recombinant inbred lines. Genome-wide association study (GWAS) using high number of DNA polymorphisms such as single-nucleotide polymorphisms (SNPs) is a popular tool for allele mining in MAGIC populations, in which the associations of phenotypes with SNPs are investigated; however, the effects of haplotypes from multiple founders on phenotypes are not considered. Here, we describe an improved method of allele mining using the newly developed Japan-MAGIC (JAM) population, which is derived from eight high-yielding rice cultivars in Japan. To obtain information on the haplotypes in the JAM lines, we predicted the haplotype blocks in the whole chromosomes using 16,345 SNPs identified via genotyping-by-sequencing analysis. Using haplotype-based GWAS, we clearly detected the loci controlling the glutinous endosperm and culm length traits. Information on the alleles of the eight founders, which was based on the effects of mutations revealed by the analysis of next-generation sequencing data, was used to narrow down the candidate genes and reveal the associations between alleles and phenotypes. The haplotype-based allele mining (HAM) proposed in this study is a promising approach to the detection of allelic variation in genes controlling agronomic traits in MAGIC populations.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan.,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Eiji Yamamoto
- Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Toshikazu Ohtani
- Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Noriko Kanno
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan.,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Hiroshi Tsunematsu
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Yasunori Nonoue
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Masahiro Yano
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan.,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Toshio Yamamoto
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan. .,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan.
| | - Jun-Ichi Yonemaru
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan. .,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan.
| |
Collapse
|
31
|
SSR-based association mapping of fiber quality in upland cotton using an eight-way MAGIC population. Mol Genet Genomics 2018; 293:793-805. [PMID: 29392407 DOI: 10.1007/s00438-018-1419-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
The quality of fiber is significant in the upland cotton industry. As complex quantitative traits, fiber quality traits are worth studying at a genetic level. To investigate the genetic architecture of fiber quality traits, we conducted an association analysis using a multi-parent advanced generation inter-cross (MAGIC) population developed from eight parents and comprised of 960 lines. The reliable phenotypic data for six major fiber traits of the MAGIC population were collected from five environments in three locations. Phenotypic analysis showed that the MAGIC lines have a wider variation amplitude and coefficient than the founders. A total of 284 polymorphic SSR markers among eight parents screened from a high-density genetic map were used to genotype the MAGIC population. The MAGIC population showed abundant genetic variation and fast linkage disequilibrium (LD) decay (0.76 cM, r2 > 0.1), which revealed the advantages of high efficiency and power in QTL exploration. Association mapping via a mixed linear model identified 52 significant loci associated with six fiber quality traits; 14 of them were mapped in reported QTL regions with fiber-related or other agronomic traits. Nine markers demonstrated the pleiotropism that controls more than two fiber traits. Furthermore, two SSR markers, BNL1231 and BNL3452, were authenticated as hotspots that were mapped with multi-traits. In addition, we provided candidate regions and screened six candidate genes for identified loci according to the LD decay distance. Our results provide valuable QTL for further genetic mapping and will facilitate marker-based breeding for fiber quality in cotton.
Collapse
|
32
|
Desgroux A, Baudais VN, Aubert V, Le Roy G, de Larambergue H, Miteul H, Aubert G, Boutet G, Duc G, Baranger A, Burstin J, Manzanares-Dauleux M, Pilet-Nayel ML, Bourion V. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea. FRONTIERS IN PLANT SCIENCE 2018; 8:2195. [PMID: 29354146 PMCID: PMC5761208 DOI: 10.3389/fpls.2017.02195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/13/2017] [Indexed: 05/04/2023]
Abstract
Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.
Collapse
Affiliation(s)
- Aurore Desgroux
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Valentin N. Baudais
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
| | - Véronique Aubert
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gwenola Le Roy
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Henri de Larambergue
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Henri Miteul
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Grégoire Aubert
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gilles Boutet
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Gérard Duc
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Alain Baranger
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Judith Burstin
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Maria Manzanares-Dauleux
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
| | - Marie-Laure Pilet-Nayel
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Virginie Bourion
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
33
|
Diouf IA, Derivot L, Bitton F, Pascual L, Causse M. Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:279. [PMID: 29559986 PMCID: PMC5845638 DOI: 10.3389/fpls.2018.00279] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/19/2018] [Indexed: 05/20/2023]
Abstract
Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs. drought condition and the other in control vs. salt condition. Overall 250 individual lines from the MAGIC population-derived from eight parental lines covering a large diversity in cultivated tomato-were used to identify QTL in both experiments for fruit quality and yield component traits (fruit weight, number of fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a vegetative trait, leaf length. All the traits showed a large genotype variation (33-86% of total phenotypic variation) in both experiments and high heritability whatever the year or treatment. Significant genotype × treatment interactions were detected for five of the seven traits over the 2 years of experiments. QTL were mapped using 1,345 SNP markers. A total of 54 QTL were found among which 15 revealed genotype × environment interactions and 65% (35 QTL) were treatment specific. Confidence intervals of the QTL were projected on the genome physical map and allowed identifying regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied a strategy for candidate gene detection based on the high resolution mapping offered by the MAGIC population, the allelic effect of each parental line at the QTL and the sequence information of the eight parental lines.
Collapse
Affiliation(s)
- Isidore A. Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | | | - Frédérique Bitton
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Laura Pascual
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- *Correspondence: Mathilde Causse
| |
Collapse
|
34
|
Swamy BPM, Shamsudin NAA, Rahman SNA, Mauleon R, Ratnam W, Sta. Cruz MT, Kumar A. Association Mapping of Yield and Yield-related Traits Under Reproductive Stage Drought Stress in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2017; 10:21. [PMID: 28523639 PMCID: PMC5436998 DOI: 10.1186/s12284-017-0161-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/09/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND The identification and introgression of major-effect QTLs for grain yield under drought are some of the best and well-proven approaches for improving the drought tolerance of rice varieties. In the present study, we characterized Malaysian rice germplasm for yield and yield-related traits and identified significant trait marker associations by structured association mapping. RESULTS The drought screening was successful in screening germplasm with a yield reduction of up to 60% and heritability for grain yield under drought was up to 78%. There was a wider phenotypic and molecular diversity within the panel, indicating the suitability of the population for quantitative trait loci (QTL) mapping. Structure analyses clearly grouped the accessions into three subgroups with admixtures. Linkage disequilibrium (LD) analysis revealed that LD decreased with an increase in distance between marker pairs and the LD decay varied from 5-20 cM. The Mixed Linear model-based structured association mapping identified 80 marker trait associations (MTA) for grain yield (GY), plant height (PH) and days to flowering (DTF). Seven MTA were identified for GY under drought stress, four of these MTA were consistently identified in at least two of the three analyses. Most of these MTA identified were on chromosomes 2, 5, 10, 11 and 12, and their phenotypic variance (PV) varied from 5% to 19%. The in silico analysis of drought QTL regions revealed the association of several drought-responsive genes conferring drought tolerance. The major-effect QTLs are useful in marker-assisted QTL pyramiding to improve drought tolerance. CONCLUSION The results have clearly shown that structured association mapping is one of the feasible options to identify major-effect QTLs for drought tolerance-related traits in rice.
Collapse
Affiliation(s)
- B. P. Mallikarjuna Swamy
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
| | - Noraziyah Abd Aziz Shamsudin
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Site Noorzuraini Abd Rahman
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
- MARDI, Seberang Perai, P.O. Box No. 203, 13200 Kepala Batas, Pulau Pinang Malaysia
| | - Ramil Mauleon
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
| | - Wickneswari Ratnam
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Ma. Teressa Sta. Cruz
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
| | - Arvind Kumar
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
| |
Collapse
|
35
|
Swamy BPM, Shamsudin NAA, Rahman SNA, Mauleon R, Ratnam W, Sta Cruz MT, Kumar A. Association Mapping of Yield and Yield-related Traits Under Reproductive Stage Drought Stress in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2017. [PMID: 28523639 DOI: 10.1186/s12284-017-0161-6©] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The identification and introgression of major-effect QTLs for grain yield under drought are some of the best and well-proven approaches for improving the drought tolerance of rice varieties. In the present study, we characterized Malaysian rice germplasm for yield and yield-related traits and identified significant trait marker associations by structured association mapping. RESULTS The drought screening was successful in screening germplasm with a yield reduction of up to 60% and heritability for grain yield under drought was up to 78%. There was a wider phenotypic and molecular diversity within the panel, indicating the suitability of the population for quantitative trait loci (QTL) mapping. Structure analyses clearly grouped the accessions into three subgroups with admixtures. Linkage disequilibrium (LD) analysis revealed that LD decreased with an increase in distance between marker pairs and the LD decay varied from 5-20 cM. The Mixed Linear model-based structured association mapping identified 80 marker trait associations (MTA) for grain yield (GY), plant height (PH) and days to flowering (DTF). Seven MTA were identified for GY under drought stress, four of these MTA were consistently identified in at least two of the three analyses. Most of these MTA identified were on chromosomes 2, 5, 10, 11 and 12, and their phenotypic variance (PV) varied from 5% to 19%. The in silico analysis of drought QTL regions revealed the association of several drought-responsive genes conferring drought tolerance. The major-effect QTLs are useful in marker-assisted QTL pyramiding to improve drought tolerance. CONCLUSION The results have clearly shown that structured association mapping is one of the feasible options to identify major-effect QTLs for drought tolerance-related traits in rice.
Collapse
Affiliation(s)
- B P Mallikarjuna Swamy
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Noraziyah Abd Aziz Shamsudin
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Site Noorzuraini Abd Rahman
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
- MARDI, Seberang Perai, P.O. Box No. 203, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Ramil Mauleon
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Wickneswari Ratnam
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ma Teressa Sta Cruz
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Arvind Kumar
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
36
|
Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. PLANT CELL REPORTS 2017; 36:1187-1213. [PMID: 28352970 DOI: 10.1007/s00299-017-2127-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
Advancement in the field of genetics and genomics after the discovery of Mendel's laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers' field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Rabat, Morocco
| |
Collapse
|
37
|
Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ, Fita A, Herraiz FJ, Rodríguez-Burruezo A, Soler S, Knapp S, Vilanova S. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. EUPHYTICA 2017; 213:158. [PMID: 0 DOI: 10.1007/s10681-017-1938-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/23/2017] [Indexed: 05/29/2023]
|
38
|
Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population. G3-GENES GENOMES GENETICS 2017; 7:1721-1730. [PMID: 28592653 PMCID: PMC5473752 DOI: 10.1534/g3.117.042101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multi-parent Advanced Generation Intercross (MAGIC) populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL) mapping. In this study, 1316 S6:8 indica MAGIC (MI) lines and the eight founders were sequenced using Genotyping by Sequencing (GBS). As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height), physical (grain length and grain width) and cooking properties (amylose content) of the rice grain, abiotic stress (submergence tolerance), and biotic stress (brown spot disease) were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations.
Collapse
|
39
|
Gascuel Q, Diretto G, Monforte AJ, Fortes AM, Granell A. Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. FRONTIERS IN PLANT SCIENCE 2017; 8:652. [PMID: 28553296 PMCID: PMC5427129 DOI: 10.3389/fpls.2017.00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices.
Collapse
Affiliation(s)
- Quentin Gascuel
- Laboratory of Plant-Microbe Interactions, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Toulouse UniversityCastanet Tolosan, France
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research CentreRome, Italy
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Ana M. Fortes
- Faculdade de Ciências de Lisboa, Instituto de Biossistemas e Ciências Integrativas (BioISI), Universidade de LisboaLisboa, Portugal
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| |
Collapse
|
40
|
Liu W, Maccaferri M, Bulli P, Rynearson S, Tuberosa R, Chen X, Pumphrey M. Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici in elite durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:649-667. [PMID: 28039515 DOI: 10.1007/s00122-016-2841-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 05/06/2023]
Abstract
Genome-wide association analysis in tetraploid wheat revealed novel and diverse loci for seedling and field resistance to stripe rust in elite spring durum wheat accessions from worldwide. Improving resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major objective for wheat breeding. To identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using 232 elite durum wheat (Triticum turgidum ssp. durum) lines from worldwide breeding programs. Genotyping with the 90 K iSelect wheat single nucleotide polymorphism (SNP) array resulted in 11,635 markers distributed across the genome. Response to stripe rust infection at the seedling stage revealed resistant and susceptible accessions present in rather balanced frequencies for the six tested races, with a higher frequency of susceptible responses to United States races as compared to Italian races (61.1 vs. 43.1% of susceptible accessions). Resistance at the seedling stage only partially explained adult plant resistance, which was found to be more frequent with 67.7% of accessions resistant across six nurseries in the United States. GWAS identified 82 loci associated with seedling stripe rust resistance, five of which were significant at the false discovery rate adjusted P value <0.1 and 11 loci were detected for the field response at the adult plant stages in at least two environments. Notably, Yrdurum-1BS.1 showed the largest effect for both seedling and field resistance, and is therefore considered as a major locus for resistance in tetraploid wheat. Our GWAS study is the first of its kind for stripe rust resistance in tetraploid wheat and provides an overview of resistance in elite germplasm and reports new loci that can be used in breeding resistant cultivars.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| | - Marco Maccaferri
- Department of Agricultural Sciences, University of Bologna, 40127, Bologna, Italy
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Sheri Rynearson
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Roberto Tuberosa
- Department of Agricultural Sciences, University of Bologna, 40127, Bologna, Italy
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, 99164-6430, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
41
|
Liller CB, Walla A, Boer MP, Hedley P, Macaulay M, Effgen S, von Korff M, van Esse GW, Koornneef M. Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:269-281. [PMID: 27734096 PMCID: PMC5263209 DOI: 10.1007/s00122-016-2807-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/29/2016] [Indexed: 05/18/2023]
Abstract
Awn length was mapped using a multiparent population derived from cv. Morex and four wild accessions. One QTL was fine mapped and candidate genes were identified in NILs by RNA-seq. Barley awns are photosynthetically active and contribute to grain yield. Awn length is variable among both wild and cultivated barley genotypes and many mutants with alterations in awn length have been identified. Here, we used a multiparent mapping population derived from cv. Morex and four genetically diverse wild barley lines to detect quantitative trait loci (QTLs) for awn length. Twelve QTLs, distributed over the barley genome, were identified with the most significant one located on chromosome arm 7HL (QTL AL7.1). The effect of AL7.1 was confirmed using near isogenic lines (NILs) and fine-mapped in two independent heterogeneous inbred families to a < 0.9 cM interval. With exception of a small effect on grain width, no other traits such as plant height or flowering time were affected by AL7.1. Variant calling on transcripts obtained from RNA sequencing reads in NILs was used to narrow down the list of candidate genes located in the interval. This data may be used for further characterization and unravelling of the mechanisms underlying natural variation in awn length.
Collapse
Affiliation(s)
- Corinna B Liller
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Agatha Walla
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Institute of Plant Genetics, Heinrich Heine University Duesseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255, Düsseldorf, Germany
| | - Martin P Boer
- Biometris, Plant Research International, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Pete Hedley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Malcolm Macaulay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Sieglinde Effgen
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Maria von Korff
- Institute of Plant Genetics, Heinrich Heine University Duesseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
- Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255, Düsseldorf, Germany.
| | - G Wilma van Esse
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
- Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255, Düsseldorf, Germany.
| | - Maarten Koornneef
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
- Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255, Düsseldorf, Germany.
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
42
|
Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton JM, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, Durel CE. Genome-Wide Association Mapping of Flowering and Ripening Periods in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:1923. [PMID: 29176988 PMCID: PMC5686452 DOI: 10.3389/fpls.2017.01923] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 05/17/2023]
Abstract
Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.
Collapse
Affiliation(s)
- Jorge Urrestarazu
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
- Department of Agricultural Sciences, Public University of Navarre, Pamplona, Spain
- *Correspondence: Jorge Urrestarazu
| | - Hélène Muranty
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Caroline Denancé
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Diane Leforestier
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Elisa Ravon
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Arnaud Guyader
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Rémi Guisnel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Laurence Feugey
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Sébastien Aubourg
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Nicolas Daccord
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Luca Dondini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Roberto Gregori
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Marc Lateur
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Patrick Houben
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - Jiri Sedlak
- Research and Breeding Institute of Pomology Holovousy Ltd., Horice, Czechia
| | - Hilde Nybom
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Kristianstad, Sweden
| | | | | | - Luca Bianco
- Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Charles Poncet
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Anthony Théron
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Shigeki Moriya
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Apple Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Morioka, Japan
| | - Marco C. A. M. Bink
- Wageningen UR, Biometris, Wageningen, Netherlands
- Hendrix Genetics, Boxmeer, Netherlands
| | - François Laurens
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Charles-Eric Durel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Charles-Eric Durel
| |
Collapse
|
43
|
Constantinescu D, Memmah MM, Vercambre G, Génard M, Baldazzi V, Causse M, Albert E, Brunel B, Valsesia P, Bertin N. Model-Assisted Estimation of the Genetic Variability in Physiological Parameters Related to Tomato Fruit Growth under Contrasted Water Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:1841. [PMID: 28018381 PMCID: PMC5145867 DOI: 10.3389/fpls.2016.01841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/22/2016] [Indexed: 05/25/2023]
Abstract
Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD) condition is a crucial challenge for breeders and growers. In the present work, 117 recombinant inbred lines of a population of Solanum lycopersicum were phenotyped under control and WD conditions. Plant water status, fruit growth and composition were measured and data were used to calibrate a process-based model describing water and carbon fluxes in a growing fruit as a function of plant and environment. Eight genotype-dependent model parameters were estimated using a multiobjective evolutionary algorithm in order to minimize the prediction errors of fruit dry and fresh mass throughout fruit development. WD increased the fruit dry matter content (up to 85%) and decreased its fresh weight (up to 60%), big fruit size genotypes being the most sensitive. The mean normalized root mean squared errors of the predictions ranged between 16-18% in the population. Variability in model genotypic parameters allowed us to explore diverse genetic strategies in response to WD. An interesting group of genotypes could be discriminated in which (i) the low loss of fresh mass under WD was associated with high active uptake of sugars and low value of the maximum cell wall extensibility, and (ii) the high dry matter content in control treatment (C) was associated with a slow decrease of mass flow. Using 501 SNP markers genotyped across the genome, a QTL analysis of model parameters allowed to detect three main QTLs related to xylem and phloem conductivities, on chromosomes 2, 4, and 8. The model was then applied to design ideotypes with high dry matter content in C condition and low fresh mass loss in WD condition. The ideotypes outperformed the RILs especially for large and medium fruit-size genotypes, by combining high pedicel conductance and high active uptake of sugars. Interestingly, five small fruit-size RILs were close to the selected ideotypes, and likely bear interesting traits and alleles for adaptation to WD.
Collapse
Affiliation(s)
- Dario Constantinescu
- Plantes et Systèmes de Culture Horticoles, Institut National de la Recherche Agronomique - Centre PACAAvignon, France
| | - Mohamed-Mahmoud Memmah
- Plantes et Systèmes de Culture Horticoles, Institut National de la Recherche Agronomique - Centre PACAAvignon, France
| | - Gilles Vercambre
- Plantes et Systèmes de Culture Horticoles, Institut National de la Recherche Agronomique - Centre PACAAvignon, France
| | - Michel Génard
- Plantes et Systèmes de Culture Horticoles, Institut National de la Recherche Agronomique - Centre PACAAvignon, France
| | - Valentina Baldazzi
- Plantes et Systèmes de Culture Horticoles, Institut National de la Recherche Agronomique - Centre PACAAvignon, France
| | - Mathilde Causse
- Unité Génétique et Amélioration des Fruits et Légumes, Institut National de la Recherche Agronomique – Centre PACAMontfavet, France
| | - Elise Albert
- Unité Génétique et Amélioration des Fruits et Légumes, Institut National de la Recherche Agronomique – Centre PACAMontfavet, France
| | - Béatrice Brunel
- Plantes et Systèmes de Culture Horticoles, Institut National de la Recherche Agronomique - Centre PACAAvignon, France
| | - Pierre Valsesia
- Plantes et Systèmes de Culture Horticoles, Institut National de la Recherche Agronomique - Centre PACAAvignon, France
| | - Nadia Bertin
- Plantes et Systèmes de Culture Horticoles, Institut National de la Recherche Agronomique - Centre PACAAvignon, France
| |
Collapse
|
44
|
Albert E, Segura V, Gricourt J, Bonnefoi J, Derivot L, Causse M. Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6413-6430. [PMID: 27856709 PMCID: PMC5181584 DOI: 10.1093/jxb/erw411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses.
Collapse
Affiliation(s)
- Elise Albert
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Vincent Segura
- INRA, UR0588, Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, Centre de Recherche Val de Loire, CS 40001, Orléans, 45075, France
| | - Justine Gricourt
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | | | | | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| |
Collapse
|
45
|
Desgroux A, L'Anthoëne V, Roux-Duparque M, Rivière JP, Aubert G, Tayeh N, Moussart A, Mangin P, Vetel P, Piriou C, McGee RJ, Coyne CJ, Burstin J, Baranger A, Manzanares-Dauleux M, Bourion V, Pilet-Nayel ML. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 2016; 17:124. [PMID: 26897486 PMCID: PMC4761183 DOI: 10.1186/s12864-016-2429-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/02/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. METHODS A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. RESULTS GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and others suggested that the QTL are involved in diverse functions. CONCLUSION This study provides valuable markers, marker haplotypes and germplasm lines to increase levels of partial resistance to A. euteiches in pea breeding.
Collapse
Affiliation(s)
- Aurore Desgroux
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Virginie L'Anthoëne
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- Present Address: Nestlé R&D Center Tours, 101 Avenue Gustave Eiffel, 37097, Tours Cedex 2, France.
| | - Martine Roux-Duparque
- GSP, Domaine Brunehaut, 80200, Estrées-Mons Cedex, France.
- Present Address: Chambre d'Agriculture de l'Aisne, 1 rue René Blondelle, 02007, Laon Cedex, France.
| | - Jean-Philippe Rivière
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Grégoire Aubert
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Nadim Tayeh
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Anne Moussart
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- Terres Inovia, 11 rue de Monceau, CS 60003, 75378, Paris Cedex, France.
| | - Pierre Mangin
- INRA, Domaine Expérimental d'Epoisses, UE0115, 21110, Bretenières Cedex, France.
| | - Pierrick Vetel
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Christophe Piriou
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Rebecca J McGee
- USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164-6434, USA.
| | - Clarice J Coyne
- USDA, ARS, Western Regional Plant Introduction Station, Washington State University, Pullman, WA, 99164-6402, USA.
| | - Judith Burstin
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Alain Baranger
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Maria Manzanares-Dauleux
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- AgroCampus Ouest, UMR IGEPP 1349 IGEPP, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Virginie Bourion
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Marie-Laure Pilet-Nayel
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| |
Collapse
|