1
|
Cheng Y, Sun S, Lou H, Dong Y, He H, Mei Q, Liu J. The ectomycorrhizal fungus Scleroderma bovista improves growth of hazelnut seedlings and plays a role in auxin signaling and transport. Front Microbiol 2024; 15:1431120. [PMID: 39171259 PMCID: PMC11335501 DOI: 10.3389/fmicb.2024.1431120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Scleroderma bovista can form symbiotic ectomycorrhizal fungi with hazel roots. The mechanism through which S. bovista promotes hazelnut growth remains unclear. Methods This study aimed to evaluate the effect of ectomycorrhizal fungus S. bovista on the growth and development of hazel roots and gene expression changes through comparative transcriptome analysis. Results After inoculation with S. bovista, the fungus symbiotically formed ectomycorrhiza with hazel roots. The fresh weights of the aboveground and underground parts of My treatment (inoculated with S. bovista and formed mycorrhiza) were much higher than those of the control, respectively. The length, project area, surface area, volume, forks, and diameter of the inoculated seedlings root were 1.13 to 2.48 times higher than those of the control. In the paired comparison, 3,265 upregulated and 1,916 downregulated genes were identified. The most significantly enriched Gene Ontology term for the upregulated Differentially Expressed Genes was GO:0005215 (transporter activity). Immunohistochemical analysis suggested that the expression levels of auxin and Auxin Response Factor9 were significantly increased by S. bovista after the formation of mycorrhizal fungi in hazelnut root tips. Discussion These results indicate that genes related to auxin biosynthesis, transport and signaling, and transport of nutrients may contribute to root development regulation in hazel ectomycorrhiza.
Collapse
|
2
|
Jain D, Schmidt W. Protein Phosphorylation Orchestrates Acclimations of Arabidopsis Plants to Environmental pH. Mol Cell Proteomics 2024; 23:100685. [PMID: 38000714 PMCID: PMC10837763 DOI: 10.1016/j.mcpro.2023.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/18/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Environment pH (pHe) is a key parameter dictating a surfeit of conditions critical to plant survival and fitness. To elucidate the mechanisms that recalibrate cytoplasmic and apoplastic pH homeostasis, we conducted a comprehensive proteomic/phosphoproteomic inventory of plants subjected to transient exposure to acidic or alkaline pH, an approach that covered the majority of protein-coding genes of the reference plant Arabidopsis thaliana. Our survey revealed a large set-of so far undocumented pHe-dependent phospho-sites, indicative of extensive post-translational regulation of proteins involved in the acclimation to pHe. Changes in pHe altered both electrogenic H+ pumping via P-type ATPases and H+/anion co-transport processes, putatively leading to altered net trans-plasma membrane translocation of H+ ions. In pH 7.5 plants, the transport (but not the assimilation) of nitrogen via NRT2-type nitrate and AMT1-type ammonium transporters was induced, conceivably to increase the cytosolic H+ concentration. Exposure to both acidic and alkaline pH resulted in a marked repression of primary root elongation. No such cessation was observed in nrt2.1 mutants. Alkaline pH decreased the number of root hairs in the wild type but not in nrt2.1 plants, supporting a role of NRT2.1 in developmental signaling. Sequestration of iron into the vacuole via alterations in protein abundance of the vacuolar iron transporter VTL5 was inversely regulated in response to high and low pHe, presumptively in anticipation of associated changes in iron availability. A pH-dependent phospho-switch was also observed for the ABC transporter PDR7, suggesting changes in activity and, possibly, substrate specificity. Unexpectedly, the effect of pHe was not restricted to roots and provoked pronounced changes in the shoot proteome. In both roots and shoots, the plant-specific TPLATE complex components AtEH1 and AtEH2-essential for clathrin-mediated endocytosis-were differentially phosphorylated at multiple sites in response to pHe, indicating that the endocytic cargo protein trafficking is orchestrated by pHe.
Collapse
Affiliation(s)
- Dharmesh Jain
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichun, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Shekhawat PK, Sardar S, Yadav B, Salvi P, Soni P, Ram H. Meta-analysis of transcriptomics studies identifies novel attributes and set of genes involved in iron homeostasis in rice. Funct Integr Genomics 2023; 23:336. [PMID: 37968542 DOI: 10.1007/s10142-023-01265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Iron (Fe) is an important micronutrient for humans as well as for plant growth and development. Rice employs multiple mechanisms to counteract the negative effects of Fe deficiency and Fe toxicity. Previously, many transcriptomics studies have identified hundreds of genes affected by Fe deficiency and/or Fe toxicity. These studies are highly valuable to identify novel genes involved in Fe homeostasis. However, in the absence of their systematic integration, they remain underutilized. A systematic meta-analysis of transcriptomics data from such ten previous studies was performed here to identify various common attributes. From this meta-analysis, it is revealed that under Fe deficiency conditions, root transcriptome is more sensitive and exhibits greater similarity across multiple studies than the shoot transcriptome. Furthermore, under Fe toxicity conditions, upregulated genes are more reliable and consistent than downregulated genes in susceptible cultivars. The integration of data from Fe deficiency and Fe toxicity conditions helped to identify key marker genes for Fe stress. As a proof-of-concept of the analysis, among the genes consistently regulated in opposite directions under Fe deficiency and toxicity conditions, two genes were selected: a proton-dependent oligopeptide transporter (POT) family protein and Vacuolar Iron Transporter (VIT)-Like (VTL) gene, and validated their expression and sub-cellular localization. Since VIT genes are known to play an important role in Fe homeostasis in plants, the entire OsVTL gene family in rice was characterized. This meta-analysis has identified many novel candidate genes that exhibit consistent expression patterns across multiple tissues, conditions, and studies. This makes them potential targets for future research aimed at developing Fe-biofortified rice varieties, as well as varieties tolerant to sub-optimal Fe levels in soil.
Collapse
Affiliation(s)
- Pooja Kanwar Shekhawat
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004, India
| | - Shaswati Sardar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute, Sector-81, SAS Nagar Mohali, India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India.
| |
Collapse
|
4
|
Mai HJ, Baby D, Bauer P. Black sheep, dark horses, and colorful dogs: a review on the current state of the Gene Ontology with respect to iron homeostasis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1204723. [PMID: 37554559 PMCID: PMC10406446 DOI: 10.3389/fpls.2023.1204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023]
Abstract
Cellular homeostasis of the micronutrient iron is highly regulated in plants and responsive to nutrition, stress, and developmental signals. Genes for iron management encode metal and other transporters, enzymes synthesizing chelators and reducing substances, transcription factors, and several types of regulators. In transcriptome or proteome datasets, such iron homeostasis-related genes are frequently found to be differentially regulated. A common method to detect whether a specific cellular pathway is affected in the transcriptome data set is to perform Gene Ontology (GO) enrichment analysis. Hence, the GO database is a widely used resource for annotating genes and identifying enriched biological pathways in Arabidopsis thaliana. However, iron homeostasis-related GO terms do not consistently reflect gene associations and levels of evidence in iron homeostasis. Some genes in the existing iron homeostasis GO terms lack direct evidence of involvement in iron homeostasis. In other aspects, the existing GO terms for iron homeostasis are incomplete and do not reflect the known biological functions associated with iron homeostasis. This can lead to potential errors in the automatic annotation and interpretation of GO term enrichment analyses. We suggest that applicable evidence codes be used to add missing genes and their respective ortholog/paralog groups to make the iron homeostasis-related GO terms more complete and reliable. There is a high likelihood of finding new iron homeostasis-relevant members in gene groups and families like the ZIP, ZIF, ZIFL, MTP, OPT, MATE, ABCG, PDR, HMA, and HMP. Hence, we compiled comprehensive lists of genes involved in iron homeostasis that can be used for custom enrichment analysis in transcriptomic or proteomic studies, including genes with direct experimental evidence, those regulated by central transcription factors, and missing members of small gene families or ortholog/paralog groups. As we provide gene annotation and literature alongside, the gene lists can serve multiple computational approaches. In summary, these gene lists provide a valuable resource for researchers studying iron homeostasis in A. thaliana, while they also emphasize the importance of improving the accuracy and comprehensiveness of the Gene Ontology.
Collapse
Affiliation(s)
- Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Heinrich Heine University, Center of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
5
|
Jadon V, Sharma S, Krishna H, Krishnappa G, Gajghate R, Devate NB, Panda KK, Jain N, Singh PK, Singh GP. Molecular Mapping of Biofortification Traits in Bread Wheat ( Triticum aestivum L.) Using a High-Density SNP Based Linkage Map. Genes (Basel) 2023; 14:221. [PMID: 36672962 PMCID: PMC9859277 DOI: 10.3390/genes14010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
A set of 188 recombinant inbred lines (RILs) derived from a cross between a high-yielding Indian bread wheat cultivar HD2932 and a synthetic hexaploid wheat (SHW) Synthetic 46 derived from tetraploid Triticum turgidum (AA, BB 2n = 28) and diploid Triticum tauschii (DD, 2n = 14) was used to identify novel genomic regions associated in the expression of grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC) and thousand kernel weight (TKW). The RIL population was genotyped using SNPs from 35K Axiom® Wheat Breeder's Array and 34 SSRs and phenotyped in two environments. A total of nine QTLs including five for GPC (QGpc.iari_1B, QGpc.iari_4A, QGpc.iari_4B, QGpc.iari_5D, and QGpc.iari_6B), two for GFeC (QGfec.iari_5B and QGfec.iari_6B), and one each for GZnC (QGznc.iari_7A) and TKW (QTkw.iari_4B) were identified. A total of two stable and co-localized QTLs (QGpc.iari_4B and QTkw.iari_4B) were identified on the 4B chromosome between the flanking region of Xgwm149-AX-94559916. In silico analysis revealed that the key putative candidate genes such as P-loop containing nucleoside triphosphatehydrolase, Nodulin-like protein, NAC domain, Purine permease, Zinc-binding ribosomal protein, Cytochrome P450, Protein phosphatase 2A, Zinc finger CCCH-type, and Kinesin motor domain were located within the identified QTL regions and these putative genes are involved in the regulation of iron homeostasis, zinc transportation, Fe, Zn, and protein remobilization to the developing grain, regulation of grain size and shape, and increased nitrogen use efficiency. The identified novel QTLs, particularly stable and co-localized QTLs are useful for subsequent use in marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Vasudha Jadon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | - Shashi Sharma
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gopalareddy Krishnappa
- ICAR-Sugarcane Breeding Institute, Coimbatore 641007, India
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rahul Gajghate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
- National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
6
|
Boatwright JL, Sapkota S, Myers M, Kumar N, Cox A, Jordan KE, Kresovich S. Dissecting the Genetic Architecture of Carbon Partitioning in Sorghum Using Multiscale Phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:790005. [PMID: 35665170 PMCID: PMC9159972 DOI: 10.3389/fpls.2022.790005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Carbon partitioning in plants may be viewed as a dynamic process composed of the many interactions between sources and sinks. The accumulation and distribution of fixed carbon is not dictated simply by the sink strength and number but is dependent upon the source, pathways, and interactions of the system. As such, the study of carbon partitioning through perturbations to the system or through focus on individual traits may fail to produce actionable developments or a comprehensive understanding of the mechanisms underlying this complex process. Using the recently published sorghum carbon-partitioning panel, we collected both macroscale phenotypic characteristics such as plant height, above-ground biomass, and dry weight along with microscale compositional traits to deconvolute the carbon-partitioning pathways in this multipurpose crop. Multivariate analyses of traits resulted in the identification of numerous loci associated with several distinct carbon-partitioning traits, which putatively regulate sugar content, manganese homeostasis, and nitrate transportation. Using a multivariate adaptive shrinkage approach, we identified several loci associated with multiple traits suggesting that pleiotropic and/or interactive effects may positively influence multiple carbon-partitioning traits, or these overlaps may represent molecular switches mediating basal carbon allocating or partitioning networks. Conversely, we also identify a carbon tradeoff where reduced lignin content is associated with increased sugar content. The results presented here support previous studies demonstrating the convoluted nature of carbon partitioning in sorghum and emphasize the importance of taking a holistic approach to the study of carbon partitioning by utilizing multiscale phenotypes.
Collapse
Affiliation(s)
- J. Lucas Boatwright
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sirjan Sapkota
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Matthew Myers
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Neeraj Kumar
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Alex Cox
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Kathleen E. Jordan
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Stephen Kresovich
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Feed the Future Innovation Lab for Crop Improvement, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Ram H, Sardar S, Gandass N. Vacuolar Iron Transporter (Like) proteins: Regulators of cellular iron accumulation in plants. PHYSIOLOGIA PLANTARUM 2021; 171:823-832. [PMID: 33580885 DOI: 10.1111/ppl.13363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Iron is not only important for plant physiology, but also a very important micronutrient in human diets. The vacuole is the main site for accumulation of excess amounts of various nutrients and toxic substances in plant cells. During the past decade, many Vacuolar Iron Transporter (VIT) and VIT-Like (VTL) genes have been identified and shown to play important roles in iron homeostasis in different plants. Furthermore, recent reports identified novel roles of these transporter genes in symbiotic nitrogen fixation (SNF) in legume crops as well as in the blue coloration of petals in flowers. The literature indicates their universal role in Fe transport across different tissues (grains, nodules, flowers) to different biological processes (cellular iron homeostasis, SNF, petal coloration) in different plants. Here, we have systematically reviewed different aspects, such as structure, molecular evolution, expression, and function of VIT/VTL proteins. This will help future studies aimed at functional analysis of VIT/VTL genes in other plant species, vacuolar transportation mechanisms, and iron biofortification at large.
Collapse
Affiliation(s)
- Hasthi Ram
- National Institute of Plant Genome Research, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Nishu Gandass
- National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
8
|
Barzana G, Rios JJ, Lopez-Zaplana A, Nicolas-Espinosa J, Yepes-Molina L, Garcia-Ibañez P, Carvajal M. Interrelations of nutrient and water transporters in plants under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 171:595-619. [PMID: 32909634 DOI: 10.1111/ppl.13206] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/12/2023]
Abstract
Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.
Collapse
Affiliation(s)
- Gloria Barzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan J Rios
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Alvaro Lopez-Zaplana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| |
Collapse
|
9
|
Walton JH, Kontra‐Kováts G, Green RT, Domonkos Á, Horváth B, Brear EM, Franceschetti M, Kaló P, Balk J. The Medicago truncatula Vacuolar iron Transporter-Like proteins VTL4 and VTL8 deliver iron to symbiotic bacteria at different stages of the infection process. THE NEW PHYTOLOGIST 2020; 228:651-666. [PMID: 32521047 PMCID: PMC7540006 DOI: 10.1111/nph.16735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/27/2020] [Indexed: 05/28/2023]
Abstract
The symbiotic relationship between legumes and rhizobium bacteria in root nodules has a high demand for iron, and questions remain regarding which transporters are involved. Here, we characterize two nodule-specific Vacuolar iron Transporter-Like (VTL) proteins in Medicago truncatula. Localization of fluorescent fusion proteins and mutant studies were carried out to correlate with existing RNA-seq data showing differential expression of VTL4 and VTL8 during early and late infection, respectively. The vtl4 insertion lines showed decreased nitrogen fixation capacity associated with more immature nodules and less elongated bacteroids. A mutant line lacking the tandemly-arranged VTL4-VTL8 genes, named 13U, was unable to develop functional nodules and failed to fix nitrogen, which was almost fully restored by expression of VTL8 alone. Using a newly developed lux reporter to monitor iron status of the bacteroids, a moderate decrease in luminescence signal was observed in vtl4 mutant nodules and a strong decrease in 13U nodules. Iron transport capability of VTL4 and VTL8 was shown by yeast complementation. These data indicate that VTL8, the closest homologue of SEN1 in Lotus japonicus, is the main route for delivering iron to symbiotic rhizobia. We propose that a failure in iron protein maturation leads to early senescence of the bacteroids.
Collapse
Affiliation(s)
- Jennifer H. Walton
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | | | - Robert T. Green
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
| | - Ágota Domonkos
- Agricultural Biotechnology InstituteNARICGödöllő2100Hungary
| | | | - Ella M. Brear
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | | | - Péter Kaló
- Agricultural Biotechnology InstituteNARICGödöllő2100Hungary
- Institute of Plant BiologyBiological Research CentreSzeged6726Hungary
| | - Janneke Balk
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| |
Collapse
|
10
|
Brear EM, Bedon F, Gavrin A, Kryvoruchko IS, Torres-Jerez I, Udvardi MK, Day DA, Smith PMC. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. THE NEW PHYTOLOGIST 2020; 228:667-681. [PMID: 32533710 DOI: 10.1111/nph.16734] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/27/2020] [Indexed: 05/07/2023]
Abstract
Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Ella M Brear
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Bedon
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aleksandr Gavrin
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, 2006, Australia
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Igor S Kryvoruchko
- Noble Research Institute, Ardmore, OK, 73401, USA
- Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | | | | | - David A Day
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Penelope M C Smith
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
11
|
Species-Specific Duplication Event Associated with Elevated Levels of Nonstructural Carbohydrates in Sorghum bicolor. G3-GENES GENOMES GENETICS 2020; 10:1511-1520. [PMID: 32132167 PMCID: PMC7202026 DOI: 10.1534/g3.119.400921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Simple sugars are the essential foundation to plant life, and thus, their production, utilization, and storage are highly regulated processes with many complex genetic controls. Despite their importance, many of the genetic and biochemical mechanisms remain unknown or uncharacterized. Sorghum, a highly productive, diverse C4 grass important for both industrial and subsistence agricultural systems, has considerable phenotypic diversity in the accumulation of nonstructural sugars in the stem. We use this crop species to examine the genetic controls of high levels of sugar accumulation, identify genetic mechanisms for the accumulation of nonstructural sugars, and link carbon allocation with iron transport. We identify a species-specific tandem duplication event controlling sugar accumulation using genome-wide association analysis, characterize multiple allelic variants causing increased sugar content, and provide further evidence of a putative neofunctionalization event conferring adaptability in Sorghum bicolor. Comparative genomics indicate that this event is unique to sorghum which may further elucidate evolutionary mechanisms for adaptation and divergence within the Poaceae. Furthermore, the identification and characterization of this event was only possible with the continued advancement and improvement of the reference genome. The characterization of this region and the process in which it was discovered serve as a reminder that any reference genome is imperfect and is in need of continual improvement.
Collapse
|
12
|
Sharma S, Kaur G, Kumar A, Meena V, Ram H, Kaur J, Pandey AK. Gene Expression Pattern of Vacuolar-Iron Transporter-Like (VTL) Genes in Hexaploid Wheat during Metal Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E229. [PMID: 32053953 PMCID: PMC7076494 DOI: 10.3390/plants9020229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022]
Abstract
Iron is one of the important micronutrients that is required for crop productivity and yield-related traits. To address the Fe homeostasis in crop plants, multiple transporters belonging to the category of major facilitator superfamily are being explored. In this direction, earlier vacuolar iron transporters (VITs) have been reported and characterized functionally to address biofortification in cereal crops. In the present study, the identification and characterization of new members of vacuolar iron transporter-like proteins (VTL) was performed in wheat. Phylogenetic distribution demonstrated distinct clustering of the identified VTL genes from the previously known VIT genes. Our analysis identifies multiple VTL genes from hexaploid wheat with the highest number genes localized on chromosome 2. Quantitative expression analysis suggests that most of the VTL genes are induced mostly during the Fe surplus condition, thereby reinforcing their role in metal homeostasis. Interestingly, most of the wheat VTL genes were also significantly up-regulated in a tissue-specific manner under Zn, Mn and Cu deficiency. Although, no significant changes in expression of wheat VTL genes were observed in roots under heavy metals, but TaVTL2, TaVTL3 and TaVTL5 were upregulated in the presence of cobalt stress. Overall, this work deals with the detailed characterization of wheat VTL genes that could provide an important genetic framework for addressing metal homeostasis in bread wheat.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Knowledge City, Mohali, Punjab 140306, India; (S.S.); (G.K.); (A.K.); (V.M.); (H.R.)
- University Institute of Engineering and Technology, Sector 25, Panjab University, Chandigarh, Punjab 160015, India;
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Knowledge City, Mohali, Punjab 140306, India; (S.S.); (G.K.); (A.K.); (V.M.); (H.R.)
| | - Anil Kumar
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Knowledge City, Mohali, Punjab 140306, India; (S.S.); (G.K.); (A.K.); (V.M.); (H.R.)
| | - Varsha Meena
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Knowledge City, Mohali, Punjab 140306, India; (S.S.); (G.K.); (A.K.); (V.M.); (H.R.)
| | - Hasthi Ram
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Knowledge City, Mohali, Punjab 140306, India; (S.S.); (G.K.); (A.K.); (V.M.); (H.R.)
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Sector 25, Panjab University, Chandigarh, Punjab 160015, India;
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Knowledge City, Mohali, Punjab 140306, India; (S.S.); (G.K.); (A.K.); (V.M.); (H.R.)
| |
Collapse
|
13
|
Laranjeira-Silva MF, Hamza I, Pérez-Victoria JM. Iron and Heme Metabolism at the Leishmania-Host Interface. Trends Parasitol 2020; 36:279-289. [PMID: 32005611 DOI: 10.1016/j.pt.2019.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Species of the protozoan Leishmania are causative agents of human leishmaniasis, a disease that results in significant death, disability, and disfigurement around the world. The parasite is transmitted to a mammalian host by a sand fly vector where it develops as an intracellular parasite within macrophages. This process requires the acquisition of nutritional iron and heme from the host as Leishmania lacks the capacity for de novo heme synthesis and does not contain cytosolic iron-storage proteins. Proteins involved in Leishmania iron and heme transport and metabolism have been identified and shown to be crucial for the parasite's growth and replication within the host. Consequently, a detailed understanding of how these parasites harness host pathways for survival may lay the foundation for promising new therapeutic intervention against leishmaniasis.
Collapse
Affiliation(s)
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| |
Collapse
|
14
|
Tissot N, Robe K, Gao F, Grant-Grant S, Boucherez J, Bellegarde F, Maghiaoui A, Marcelin R, Izquierdo E, Benhamed M, Martin A, Vignols F, Roschzttardtz H, Gaymard F, Briat JF, Dubos C. Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. THE NEW PHYTOLOGIST 2019; 223:1433-1446. [PMID: 30773647 DOI: 10.1111/nph.15753] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/12/2019] [Indexed: 05/21/2023]
Abstract
Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency and to excess is still to be determined. In this study, molecular, genetic and biochemical approaches were used to investigate transcriptional responses to both Fe deficiency and excess. A transcriptional activator of responses to Fe shortage in Arabidopsis, called bHLH105/ILR3, was found to also negatively regulate the expression of ferritin genes, which are markers of the plant's response to Fe excess. Further investigations revealed that ILR3 repressed the expression of several structural genes that function in the control of Fe homeostasis. ILR3 interacts directly with the promoter of its target genes, and repressive activity was conferred by its dimerisation with bHLH47/PYE. Last, this study highlighted that important facets of plant growth in response to Fe deficiency or excess rely on ILR3 activity. Altogether, the data presented herein support that ILR3 is at the centre of the transcriptional regulatory network that controls Fe homeostasis in Arabidopsis, in which it acts as both transcriptional activator and repressor.
Collapse
Affiliation(s)
- Nicolas Tissot
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Kevin Robe
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Fei Gao
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Susana Grant-Grant
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Jossia Boucherez
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Fanny Bellegarde
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Amel Maghiaoui
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Romain Marcelin
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Esther Izquierdo
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Moussa Benhamed
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Antoine Martin
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Florence Vignols
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Frédéric Gaymard
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | | | - Christian Dubos
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| |
Collapse
|
15
|
Chen HM, Wang YM, Yang HL, Zeng QY, Liu YJ. NRAMP1 promotes iron uptake at the late stage of iron deficiency in poplars. TREE PHYSIOLOGY 2019; 39:1235-1250. [PMID: 31115467 DOI: 10.1093/treephys/tpz055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant survival and proliferation. Plants have evolved complex mechanisms to maintain Fe homeostasis in response to Fe deficiency. In this study, we evaluated the physiological, biochemical and transcriptomic differences between poplars grown under Fe-sufficient and Fe-deficient conditions to elucidate the mechanistic responses of poplars to Fe deficiency. Our results revealed that chlorophyll synthesis and photosynthesis were inhibited under Fe-deficient conditions. The inhibition of these pathways caused chlorosis and reduced shoot growth. Although both photosynthetic systems (PSI and PSII) were inhibited under Fe limitation, PSI was affected more severely and earlier than PSII. Fe deficiency also promoted root growth and increased the accumulation of divalent metal ions in roots. IRT1 and NRAMP1 are both Fe2+ transporters for iron uptake in Arabidopsis. In this study, however, only NRAMP1 was induced to promote Fe2+ uptake in roots at the late stage of Fe deficiency response. It indicated that NRAMP1, rather than the more well-known IRT1, might be a major Fe2+ transporter at the late stage of Fe-deficiency in poplars.
Collapse
Affiliation(s)
- Hui-Min Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai-Ling Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
16
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|
17
|
Intracellular iron availability modulates the requirement for Leishmania Iron Regulator 1 (LIR1) during macrophage infections. Int J Parasitol 2019; 49:423-427. [PMID: 30910463 DOI: 10.1016/j.ijpara.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 01/30/2023]
Abstract
The Leishmania plasma membrane transporter Leishmania Iron Regulator 1 (LIR1) facilitates iron export and is required for parasite virulence. By modulating macrophage iron content, we investigated the host site where LIR1 regulates Leishmania amazonensis infectivity. In bone marrow-derived macrophages, LIR1 null mutants demonstrated a paradoxical increase in virulence during infections in heme-depleted media, while wild-type growth was inhibited under the same conditions. Loading the endocytic pathway of macrophages with cationized ferritin prior to infection reversed the effect of heme depletion on both strains. Thus, LIR1 contributes to Leishmania virulence by protecting the parasites from toxicity resulting from iron accumulation inside parasitophorous vacuoles.
Collapse
|
18
|
McCabe CE, Cianzio SR, O'Rourke JA, Graham MA. Leveraging RNA-Seq to Characterize Resistance to Brown Stem Rot and the Rbs3 Locus in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1083-1094. [PMID: 30004290 DOI: 10.1094/mpmi-01-18-0009-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brown stem rot, caused by the fungus Phialophora gregata, reduces soybean yield by up to 38%. Although three dominant resistance loci have been identified (Rbs1 to Rbs3), the gene networks responsible for pathogen recognition and defense remain unknown. Further, identification and characterization of resistant and susceptible germplasm remains difficult. We conducted RNA-Seq of infected and mock-infected leaf, stem, and root tissues of a resistant (PI 437970, Rbs3) and susceptible (Corsoy 79) genotype. Combining historical mapping data with genotype expression differences allowed us to identify a cluster of receptor-like proteins that are candidates for the Rbs3 resistance gene. Reads mapping to the Rbs3 locus were used to identify potential novel single-nucleotide polymorphisms within candidate genes that could improve phenotyping and breeding efficiency. Comparing responses to infection revealed little overlap in differential gene expression between genotypes or tissues. Gene networks associated with defense, DNA replication, and iron homeostasis are hallmarks of resistance to P. gregata. This novel research demonstrates the utility of combining contrasting genotypes, gene expression, and classical genetic studies to characterize complex disease resistance loci.
Collapse
Affiliation(s)
- Chantal E McCabe
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| | | | - Jamie A O'Rourke
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| | - Michelle A Graham
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| |
Collapse
|
19
|
Laranjeira-Silva MF, Wang W, Samuel TK, Maeda FY, Michailowsky V, Hamza I, Liu Z, Andrews NW. A MFS-like plasma membrane transporter required for Leishmania virulence protects the parasites from iron toxicity. PLoS Pathog 2018; 14:e1007140. [PMID: 29906288 PMCID: PMC6021107 DOI: 10.1371/journal.ppat.1007140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/27/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
Iron is essential for many cellular processes, but can generate highly toxic hydroxyl radicals in the presence of oxygen. Therefore, intracellular iron accumulation must be tightly regulated, by balancing uptake with storage or export. Iron uptake in Leishmania is mediated by the coordinated action of two plasma membrane proteins, the ferric iron reductase LFR1 and the ferrous iron transporter LIT1. However, how these parasites regulate their cytosolic iron concentration to prevent toxicity remains unknown. Here we characterize Leishmania Iron Regulator 1 (LIR1), an iron responsive protein with similarity to membrane transporters of the major facilitator superfamily (MFS) and plant nodulin-like proteins. LIR1 localizes on the plasma membrane of L. amazonensis promastigotes and intracellular amastigotes. After heterologous expression in Arabidopsis thaliana, LIR1 decreases the iron content of leaves and worsens the chlorotic phenotype of plants lacking the iron importer IRT1. Consistent with a role in iron efflux, LIR1 deficiency does not affect iron uptake by L. amazonensis but significantly increases the amount of iron retained intracellularly in the parasites. LIR1 null parasites are more sensitive to iron toxicity and have drastically impaired infectivity, phenotypes that are reversed by LIR1 complementation. We conclude that LIR1 functions as a plasma membrane iron exporter with a critical role in maintaining iron homeostasis and promoting infectivity in L. amazonensis.
Collapse
Affiliation(s)
| | - Wanpeng Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Tamika K. Samuel
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Fernando Y. Maeda
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir Michailowsky
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Faculdade de Medicina, Setor Parasitologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
20
|
Labarbuta P, Duckett K, Botting CH, Chahrour O, Malone J, Dalton JP, Law CJ. Recombinant vacuolar iron transporter family homologue PfVIT from human malaria-causing Plasmodium falciparum is a Fe 2+/H +exchanger. Sci Rep 2017; 7:42850. [PMID: 28198449 PMCID: PMC5309874 DOI: 10.1038/srep42850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023] Open
Abstract
Vacuolar iron transporters (VITs) are a poorly understood family of integral membrane proteins that can function in iron homeostasis via sequestration of labile Fe2+ into vacuolar compartments. Here we report on the heterologous overexpression and purification of PfVIT, a vacuolar iron transporter homologue from the human malaria-causing parasite Plasmodium falciparum. Use of synthetic, codon-optimised DNA enabled overexpression of functional PfVIT in the inner membrane of Escherichia coli which, in turn, conferred iron tolerance to the bacterial cells. Cells that expressed PfVIT had decreased levels of total cellular iron compared with cells that did not express the protein. Qualitative transport assays performed on inverted vesicles enriched with PfVIT revealed that the transporter catalysed Fe2+/H+ exchange driven by the proton electrochemical gradient. Furthermore, the PfVIT transport function in this system did not require the presence of any Plasmodium-specific factor such as post-translational phosphorylation. PfVIT purified as a monomer and, as measured by intrinsic protein fluorescence quenching, bound Fe2+ in detergent solution with low micromolar affinity. This study of PfVIT provides material for future detailed biochemical, biophysical and structural studies to advance understanding of the vacuolar iron transporter family of membrane proteins from important human pathogens.
Collapse
Affiliation(s)
- Paola Labarbuta
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Katie Duckett
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Catherine H Botting
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Osama Chahrour
- Spectroscopy Group, Analytical Services, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| | - John Malone
- Spectroscopy Group, Analytical Services, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Christopher J Law
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
21
|
Vannozzi A, Donnini S, Vigani G, Corso M, Valle G, Vitulo N, Bonghi C, Zocchi G, Lucchin M. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions. FRONTIERS IN PLANT SCIENCE 2017; 7:1994. [PMID: 28105035 PMCID: PMC5214570 DOI: 10.3389/fpls.2016.01994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/16/2016] [Indexed: 05/06/2023]
Abstract
Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as "Strategy I," characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis "ferrome" were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the "strategy I" mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed.
Collapse
Affiliation(s)
- Alessandro Vannozzi
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Silvia Donnini
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Massimiliano Corso
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Giorgio Valle
- Centro di Ricerca Interdipartimentale per le Biotecnologie InnovativePadova, Italy
| | - Nicola Vitulo
- Centro di Ricerca Interdipartimentale per le Biotecnologie InnovativePadova, Italy
| | - Claudio Bonghi
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Margherita Lucchin
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| |
Collapse
|
22
|
Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level. PLoS One 2015; 10:e0141398. [PMID: 26536247 PMCID: PMC4633283 DOI: 10.1371/journal.pone.0141398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments, indicating metal-affinity shifts among isoforms of metal transporters. Most important, we found the zinc treatment to impair both photosynthesis and respiration. A wide range of transcriptional changes including stress-related genes and negative feedback loops emphasize the importance to withhold mineral contents below certain cellular levels which otherwise might lead to agronomical impeding side-effects. By illustrating new mechanisms, genes, and transcripts, this report provides a solid platform towards understanding the complex network of plant mineral homeostasis.
Collapse
|
23
|
Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis. PLoS One 2014; 9:e110468. [PMID: 25360591 PMCID: PMC4215979 DOI: 10.1371/journal.pone.0110468] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/13/2014] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency is a nutritional problem in plants and reduces crop productivity, quality and yield. With the goal of improving the iron (Fe) storage properties of plants, we have investigated the function of three Arabidopsis proteins with homology to Vacuolar Iron Transporter1 (AtVIT1). Heterologous expression of Vacuolar Iron Transporter-Like1 (AtVTL1; At1g21140), AtVTL2 (At1g76800) or AtVTL5 (At3g25190) in the yeast vacuolar Fe transport mutant, Δccc1, restored growth in the presence of 4 mM Fe. Isolated vacuoles from yeast expressing either of the VTL genes in the Δccc1 background had a three- to four-fold increase in Fe concentration compared to vacuoles isolated from the untransformed mutant. Transiently expressed GFP-tagged AtVTL1 was localized exclusively and AtVTL2 was localized primarily to the vacuolar membrane of onion epidermis cells. Seedling root growth of the Arabidopsis nramp3/nramp4 and vit1-1 mutants was decreased compared to the wild type when seedlings were grown under Fe deficiency. When expressed under the 35S promoter in the nramp3/nramp4 or vit1-1 backgrounds, AtVTL1, AtVTL2 or AtVTL5 restored root growth in both mutants. The seed Fe concentration in the nramp3/nramp4 mutant overexpressing AtVTL1, AtVTL2 or AtVTL5 was between 50 and 60% higher than in non-transformed double mutants or wild-type plants. We conclude that the VTL proteins catalyze Fe transport into vacuoles and thus contribute to the regulation of Fe homeostasis in planta.
Collapse
|
24
|
Waters BM, McInturf SA, Amundsen K. Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron-copper crosstalk. THE NEW PHYTOLOGIST 2014; 203:1128-1145. [PMID: 24975482 PMCID: PMC4117724 DOI: 10.1111/nph.12911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/09/2014] [Indexed: 05/08/2023]
Abstract
Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu-regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe-uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild-type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe-regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu-deficient plants was independent of the normal Fe-uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe-regulated, and one was Cu-regulated. Simultaneous Fe and Cu deficiency synergistically up-regulated Fe-uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe-Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, and thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants.
Collapse
Affiliation(s)
- Brian M Waters
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE , 68583-0915, USA
| | - Samuel A McInturf
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE , 68583-0915, USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE , 68583-0915, USA
| |
Collapse
|
25
|
Denancé N, Szurek B, Noël LD. Emerging functions of nodulin-like proteins in non-nodulating plant species. PLANT & CELL PHYSIOLOGY 2014; 55:469-74. [PMID: 24470637 DOI: 10.1093/pcp/pct198] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant genes whose expression is induced in legumes by Rhizobium bacteria upon nodulation were initially referred to as nodulins. Several of them play a key role in the establishment of symbiosis. Yet, nodulin-like proteins are also found in non-nodulating plant species such as Arabidopsis, rice, maize or poplar. For instance, 132 are predicted in the Arabidopsis thaliana Col-0 genome. Recent studies now highlight the importance of nodulin-like proteins for the transport of nutrients, solutes, amino acids or hormones and for major aspects of plant development. Interestingly, nodulin-like activities at the plant-microbe interface are also important for pathogens to enhance their fitness during host colonization. This work presents a genomic and functional overview of nodulin-like proteins in non-leguminous plant species, with a particular focus on Arabidopsis and rice.
Collapse
Affiliation(s)
- Nicolas Denancé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR 441, F-31326 Castanet-Tolosan, France
| | | | | |
Collapse
|
26
|
Socha AL, Guerinot ML. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:106. [PMID: 24744764 PMCID: PMC3978347 DOI: 10.3389/fpls.2014.00106] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis.
Collapse
Affiliation(s)
- Amanda L. Socha
- *Correspondence: Amanda L. Socha, Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03766, USA e-mail:
| | | |
Collapse
|
27
|
Pan IC, Schmidt W. Functional implications of K63-linked ubiquitination in the iron deficiency response of Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2014; 4:542. [PMID: 24427162 PMCID: PMC3877749 DOI: 10.3389/fpls.2013.00542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/12/2013] [Indexed: 05/02/2023]
Abstract
Iron is an essential micronutrient that plays important roles as a redox cofactor in a variety of processes, many of which are related to DNA metabolism. The E2 ubiquitin conjugase UBC13, the only E2 protein that is capable of catalyzing the formation of non-canonical K63-linked ubiquitin chains, has been associated with the DNA damage tolerance pathway in eukaryotes, critical for maintenance of genome stability and integrity. We previously showed that UBC13 and an interacting E3 ubiquitin ligase, RGLG, affect the differentiation of root epidermal cells in Arabidopsis. When grown on iron-free media, Arabidopsis plants develops root hairs that are branched at their base, a response that has been interpreted as an adaption to reduced iron availability. Mutations in UBC13A abolished the branched root hair phenotype. Unexpectedly, mutations in RGLG genes caused constitutive root hair branching. Based on recent results that link endocytotic turnover of plasma membrane-bound PIN transporters to K63-linked ubiquitination, we reinterpreted our results in a context that classifies the root hair phenotype of iron-deficient plants as a consequence of altered auxin distribution. We show here that UBC13A/B and RGLG1/2 are involved in DNA damage repair and hypothesize that UBC13 protein becomes limited under iron-deficient conditions to prioritize DNA metabolism. The data suggest that genes involved in combating detrimental effects on genome stability may represent essential components in the plant's stress response.
Collapse
Affiliation(s)
- I-Chun Pan
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
- Biotechnology Center, National Chung-Hsing UniversityTaichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan UniversityTaipei, Taiwan
- *Correspondence: Wolfgang Schmidt, Institute of Plant and Microbial Biology, Academia Sinica, Academia Road 128, Taipei 11529, Taiwan e-mail:
| |
Collapse
|
28
|
Brear EM, Day DA, Smith PMC. Iron: an essential micronutrient for the legume-rhizobium symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:359. [PMID: 24062758 PMCID: PMC3772312 DOI: 10.3389/fpls.2013.00359] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 05/19/2023]
Abstract
Legumes, which develop a symbiosis with nitrogen-fixing bacteria, have an increased demand for iron. Iron is required for the synthesis of iron-containing proteins in the host, including the highly abundant leghemoglobin, and in bacteroids for nitrogenase and cytochromes of the electron transport chain. Deficiencies in iron can affect initiation and development of the nodule. Within root cells, iron is chelated with organic acids such as citrate and nicotianamine and distributed to other parts of the plant. Transport to the nitrogen-fixing bacteroids in infected cells of nodules is more complicated. Formation of the symbiosis results in bacteroids internalized within root cortical cells of the legume where they are surrounded by a plant-derived membrane termed the symbiosome membrane (SM). This membrane forms an interface that regulates nutrient supply to the bacteroid. Consequently, iron must cross this membrane before being supplied to the bacteroid. Iron is transported across the SM as both ferric and ferrous iron. However, uptake of Fe(II) by both the symbiosome and bacteroid is faster than Fe(III) uptake. Members of more than one protein family may be responsible for Fe(II) transport across the SM. The only Fe(II) transporter in nodules characterized to date is GmDMT1 (Glycine max divalent metal transporter 1), which is located on the SM in soybean. Like the root plasma membrane, the SM has ferric iron reductase activity. The protein responsible has not been identified but is predicted to reduce ferric iron accumulated in the symbiosome space prior to uptake by the bacteroid. With the recent publication of a number of legume genomes including Medicago truncatula and G. max, a large number of additional candidate transport proteins have been identified. Members of the NRAMP (natural resistance-associated macrophage protein), YSL (yellow stripe-like), VIT (vacuolar iron transporter), and ZIP (Zrt-, Irt-like protein) transport families show enhanced expression in nodules and are expected to play a role in the transport of iron and other metals across symbiotic membranes.
Collapse
Affiliation(s)
- Ella M. Brear
- School of Biological Sciences, The University of SydneySydney, NSW, Australia
| | - David A. Day
- School of Biological Sciences, Flinders UniversityBedford Park, Adelaide, SA, Australia
| | | |
Collapse
|
29
|
Thomine S, Vert G. Iron transport in plants: better be safe than sorry. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:322-7. [PMID: 23415557 DOI: 10.1016/j.pbi.2013.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 05/03/2023]
Abstract
Iron is essential for plant cell function and more specifically for photosynthesis. Plants have evolved highly efficient systems to take up iron from the soil. However, activating iron uptake is a double jeopardy: not only iron itself is toxic but iron uptake systems are poorly selective and allow the entry of other potentially toxic metals. Plants therefore tightly control iron uptake at the transcriptional and post-translational level and have evolved mechanisms to cope with the concomitant entry of toxic metals. In plant cells, iron has to be distributed to chloroplasts and mitochondria or may be stored safely in vacuole. Distinct transcriptional networks regulating uptake and intracellular distribution are being uncovered, while iron sensing mechanisms remain elusive.
Collapse
Affiliation(s)
- Sébastien Thomine
- Institut des Sciences du Végétal, CNRS Unité Propre de Recherche 2355, Avenue de la Terrasse Bâtiment 23, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
30
|
Takehisa H, Sato Y, Antonio BA, Nagamura Y. Global transcriptome profile of rice root in response to essential macronutrient deficiency. PLANT SIGNALING & BEHAVIOR 2013; 8:e24409. [PMID: 23603969 PMCID: PMC3907390 DOI: 10.4161/psb.24409] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
Deficiency of the three essential macronutrients, nitrogen, phosphorus and potassium, leads to large reduction in crop growth and yield. To characterize the molecular genetic basis of adaptation to macronutrient deprivation, we performed microarray analysis of rice root at 6 and 24 h after nitrogen, phosphorus and potassium deficiency treatments. The transcriptome response to nitrogen depletion occurred more rapidly than corresponding responses to phosphorus and potassium deprivation. We identified several genes important for response and adaptation to each nutrient deficiency. Furthermore, we found that signaling via reactive oxygen species is a common feature in response to macronutrient deficiency and signaling via jasmonic acid is associated with potassium depletion response. These results will facilitate deeper understanding of nutrient utilization of plants.
Collapse
|
31
|
Compensatory mutations in predicted metal transporters modulate auxin conjugate responsiveness in Arabidopsis. G3-GENES GENOMES GENETICS 2013; 3:131-41. [PMID: 23316445 PMCID: PMC3538338 DOI: 10.1534/g3.112.004655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022]
Abstract
Levels of the phytohormone indole-3-acetic acid (IAA) can be altered by the formation and hydrolysis of IAA conjugates. The isolation and characterization of Arabidopsis thaliana mutants with reduced IAA-conjugate sensitivity and wild-type IAA responses is advancing the understanding of auxin homeostasis by uncovering the factors needed for conjugate metabolism. For example, the discovery that the IAA-Ala-resistant mutant iar1 is defective in a protein in the ZIP family of metal transporters uncovered a link between metal homeostasis and IAA-conjugate sensitivity. To uncover additional factors impacting auxin conjugate metabolism, we conducted a genetic modifier screen and isolated extragenic mutations that restored IAA-amino acid conjugate sensitivity to the iar1 mutant. One of these suppressor mutants is defective in a putative cation diffusion facilitator, MTP5 (At3g12100; formerly known as MTPc2). Loss of MTP5 function restored IAA conjugate sensitivity to iar1 but not to mutants defective in IAA-amino acid conjugate amidohydrolases. Our results are consistent with a model in which MTP5 and IAR1 transport metals in an antagonistic fashion to regulate metal homeostasis within the subcellular compartment in which the IAA-conjugate amidohydrolases reside, and support previous suggestions that the ion composition in this compartment influences hydrolase activity.
Collapse
|
32
|
Markakis MN, De Cnodder T, Lewandowski M, Simon D, Boron A, Balcerowicz D, Doubbo T, Taconnat L, Renou JP, Höfte H, Verbelen JP, Vissenberg K. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2012; 12:208. [PMID: 23134674 PMCID: PMC3502322 DOI: 10.1186/1471-2229-12-208] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/18/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone). Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. RESULTS Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. CONCLUSIONS ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream signaling cascade, these are converged to a 'common pathway'. Furthermore, several potential keyplayers, such as transcription factors and auxin-responsive genes, were identified by the microarray analysis. They await further analysis to reveal their exact role in the control of cell elongation.
Collapse
Affiliation(s)
- Marios Nektarios Markakis
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Tinne De Cnodder
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Michal Lewandowski
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Damien Simon
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Agnieszka Boron
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Daria Balcerowicz
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Thanaa Doubbo
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Ludivine Taconnat
- Unité Mixte de Recherche de Genomique Végétale, Institut National pour la Recherche Agronomique/Centre National pour la Recherche Scientifique, 2 rue Gaston Crémieux-CP 5708. F–91057, Evry Cedex, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences UMR1345 (INRA/Agrocampus-ouest/Université d’Angers), Centre Angers-Nantes/INRA-IRHS batiment B, 42 rue Georges Morel – BP 60057 49071, Beaucouzé cedex, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), F–78026, Versailles Cedex, France
| | - Jean-Pierre Verbelen
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Kris Vissenberg
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| |
Collapse
|
33
|
Lee HJ, Mochizuki N, Masuda T, Buckhout TJ. Disrupting the bimolecular binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to oxidative stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5967-78. [PMID: 22991161 PMCID: PMC3467301 DOI: 10.1093/jxb/ers242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana L. SOUL/haem-binding proteins, AtHBPs belong to a family of five members. The Arabidopsis cytosolic AtHBP1 (At1g17100) and AtHBP2 (At2g37970) have been shown to bind porphyrins and metalloporphyrins including haem. In contrast to the cytosolic localization of these haem-binding proteins, AtHBP5 (At5g20140) encodes a protein with an N-terminal transit peptide that probably directs targeting to the chloroplast. In this report, it is shown that AtHBP5 binds haem and interacts with the haem oxygenase, HY1, in both yeast two-hybrid and BiFC assays. The expression of HY1 is repressed in the athbp5 T-DNA knockdown mutant and the accumulation of H(2)O(2) is observed in athbp5 seedlings that are treated with methyl jasmonate (MeJA), a ROS-producing stress hormone. In contrast, AtHBP5 over-expressing plants show a decreased accumulation of H(2)O(2) after MeJA treatment compared with the controls. It is proposed that the interaction between the HY1 and AtHBP5 proteins participate in an antioxidant pathway that might be mediated by reaction products of haem catabolism.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Applied Botany, Institute of Biology, Humboldt University
Berlin, Invalidenstraße 42, 10115 Berlin,
Germany
| | - Nobuyoshi Mochizuki
- Department of Botany, Graduate School of Science, Kyoto
University, Kitashirakawa, Kyoto 606–8502,
Japan
| | - Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences,
University of Tokyo, Komaba 3-8-1, Tokyo,
153–8902, Japan
| | - Thomas J. Buckhout
- Applied Botany, Institute of Biology, Humboldt University
Berlin, Invalidenstraße 42, 10115 Berlin,
Germany
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
34
|
Blaby-Haas CE, Merchant SS. The ins and outs of algal metal transport. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1531-52. [PMID: 22569643 PMCID: PMC3408858 DOI: 10.1016/j.bbamcr.2012.04.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
35
|
Lan P, Li W, Wen TN, Schmidt W. Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. PLANT PHYSIOLOGY 2012; 159:403-17. [PMID: 22438062 PMCID: PMC3375974 DOI: 10.1104/pp.112.193987] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Iron (Fe) is an essential mineral nutrient for plants, but often it is not available in sufficient quantities to sustain optimal growth. To gain insights into adaptive processes to low Fe availability at the posttranslational level, we conducted a quantitative analysis of Fe deficiency-induced changes in the phosphoproteome profile of Arabidopsis (Arabidopsis thaliana) roots. Isobaric tags for relative and absolute quantitation-labeled phosphopeptides were analyzed by liquid chromatography-tandem mass spectrometry on an LTQ-Orbitrap with collision-induced dissociation and high-energy collision dissociation capabilities. Using a combination of titanium dioxide and immobilized metal affinity chromatography to enrich phosphopeptides, we extracted 849 uniquely identified phosphopeptides corresponding to 425 proteins and identified several not previously described phosphorylation motifs. A subset of 45 phosphoproteins was defined as being significantly changed in abundance upon Fe deficiency. Kinase motifs in Fe-responsive proteins matched to protein kinase A/calcium calmodulin-dependent kinase II, casein kinase II, and proline-directed kinase, indicating a possible critical function of these kinase classes in Fe homeostasis. To validate our analysis, we conducted site-directed mutagenesis on IAA-CONJUGATE-RESISTANT4 (IAR4), a protein putatively functioning in auxin homeostasis. iar4 mutants showed compromised root hair formation and developed shorter primary roots. Changing serine-296 in IAR4 to alanine resulted in a phenotype intermediate between mutant and wild type, whereas acidic substitution to aspartate to mimic phosphorylation was either lethal or caused an extreme dwarf phenotype, supporting the critical importance of this residue in Fe homeostasis. Our analyses further disclose substantial changes in the abundance of phosphoproteins involved in primary carbohydrate metabolism upon Fe deficiency, complementing the picture derived from previous proteomic and transcriptomic profiling studies.
Collapse
|
36
|
Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 2012; 13:101. [PMID: 22433273 PMCID: PMC3368770 DOI: 10.1186/1471-2164-13-101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. RESULTS A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. CONCLUSIONS The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.
Collapse
Affiliation(s)
- Anita Zamboni
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134 Verona, Italy
| | - Laura Zanin
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100 Udine, Italy
| | - Nicola Tomasi
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100 Udine, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134 Verona, Italy
| | - Roberto Pinton
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100 Udine, Italy
| | - Zeno Varanini
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134 Verona, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
37
|
Rellán-Álvarez R, El-Jendoubi H, Wohlgemuth G, Abadía A, Fiehn O, Abadía J, Álvarez-Fernández A. Metabolite profile changes in xylem sap and leaf extracts of strategy I plants in response to iron deficiency and resupply. FRONTIERS IN PLANT SCIENCE 2011; 2:66. [PMID: 22645546 PMCID: PMC3355808 DOI: 10.3389/fpls.2011.00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/04/2011] [Indexed: 05/04/2023]
Abstract
The metabolite profile changes induced by Fe deficiency in leaves and xylem sap of several Strategy I plant species have been characterized. We have confirmed that Fe deficiency causes consistent changes both in the xylem sap and leaf metabolite profiles. The main changes in the xylem sap metabolite profile in response to Fe deficiency include consistent decreases in amino acids, N-related metabolites and carbohydrates, and increases in TCA cycle metabolites. In tomato, Fe resupply causes a transitory flush of xylem sap carboxylates, but within 1 day the metabolite profile of the xylem sap from Fe-deficient plants becomes similar to that of Fe-sufficient controls. The main changes in the metabolite profile of leaf extracts in response to Fe deficiency include consistent increases in amino acids and N-related metabolites, carbohydrates and TCA cycle metabolites. In leaves, selected pairs of amino acids and TCA cycle metabolites show high correlations, with the sign depending of the Fe status. These data suggest that in low photosynthesis, C-starved Fe-deficient plants anaplerotic reactions involving amino acids can be crucial for short-term survival.
Collapse
Affiliation(s)
- Rubén Rellán-Álvarez
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
| | - Hamdi El-Jendoubi
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
| | - Gert Wohlgemuth
- Metabolomics Fiehn Lab, Genome Center, University of California DavisCA, USA
| | - Anunciación Abadía
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
| | - Oliver Fiehn
- Metabolomics Fiehn Lab, Genome Center, University of California DavisCA, USA
| | - Javier Abadía
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
- *Correspondence: Javier Abadía, Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental Station, P.O. Box 13034, Zaragoza E-50080, Spain. e-mail:
| | - Ana Álvarez-Fernández
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
| |
Collapse
|