1
|
Zhang J, Gao F, Xie J, Li J, Wang C, Zhang X, Han K. Zinc oxide nanoparticles reduce cadmium accumulation in hydroponic lettuce (Lactuca sativa L.) by increasing photosynthetic capacity and regulating phenylpropane metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117033. [PMID: 39278000 DOI: 10.1016/j.ecoenv.2024.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Due to the continuous production of industrial wastes and the excessive use of chemical fertilizers and pesticides, severe cadmium (Cd) pollution in soil has occurred globally. This study investigated the impacts of incorporating zinc oxide nanoparticles (ZnONPs) into hydroponically grown lettuce (Lactuca sativa) under cadmium stress conditions, to seek effective methods to minimize Cd buildup in green leafy vegetables. The results showed that 1 mg/L of Cd significantly inhibited lettuce growth, decreasing in leaves (29 %) and roots (33 %) biomass. However, when lettuce was exposed to 2.5 mg/L ZnONPs under cadmium stress, the growth, chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), actual photochemical efficiency of PSII (φPSII), and activity of key enzymes in photosynthesis were all significantly enhanced. Furthermore, ZnONPs significantly decreased the accumulation of Cd in lettuce leaves (36 %) and roots (13 %). They altered the subcellular distribution and chemical morphology of Cd in lettuce by modifying the composition of cell walls (such as pectin content) and the levels of phenolic compounds, resulting in a reduction of 27 % in Cd translocation from roots to leaves. RNA sequencing yielded 45.9 × 107 and 53.4 × 107 clean reads from plant leaves and roots in control (T0), Cd (T1), Cd+ZnONPs (T2), and ZnONPs (T3) treatment groups respectively, and 3614 and 1873 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified photosynthesis, carbon fixation, and phenylpropanoid metabolism as the main causes of ZnONPs-mediated alleviation of Cd stress in lettuce. Specifically, the DEGs identified included 12 associated with photosystem I, 13 with photosystem II and 23 DEGs with the carbon fixation pathway of photosynthesis. Additionally, DEGs related to phenylalanine ammonia-lyase, caffeoyl CoA 3-O-methyltransferase, peroxidase, 4-coumarate-CoA ligase, hydroxycinnamoyl transferase, and cytochrome P450 proteins were also identified. Therefore, further research is recommended to elucidate the molecular mechanisms by which ZnONPs reduce Cd absorption in lettuce through phenolic acid components in the phenylpropanoid metabolism pathway. Overall, treatments with ZnONPs are recommended to effectively reduce Cd accumulation in the edible portion of lettuce.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Feng Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Kangning Han
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
2
|
Wang W, Kang W, Shi S, Liu L. Physiological and metabolomic analyses reveal the mechanism by which exogenous spermine improves drought resistance in alfalfa leaves ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1466493. [PMID: 39445141 PMCID: PMC11496139 DOI: 10.3389/fpls.2024.1466493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Introduction Alfalfa (Medicago sativa L.) is a globally important legume crop with high nutritional and ecological value. Drought poses a serious threat to alfalfa acreage and yields. Spermine (Spm) has been shown to protect plants from drought damage. The aim of this study was to clarify the mechanism of exogenous Spm to improve drought resistance of alfalfa. Methods In this study, we root applied 0.1, 0.5, and 1 mM Spm to Gannong No. 3 (G3) alfalfa under drought stress, and then determined their physiological and metabolic changes. Results The results showed that exogenous Spm increased chlorophyll content, chlorophyll fluorescence parameters and gas exchange parameters, enhanced antioxidant enzymes activity, improved ascorbic acid-glutathione (AsA-GSH) cycle, increased osmoregulatory substances content, reduced hydrogen peroxide and superoxide anion levels, and inhibited malondialdehyde accumulation in alfalfa under drought stress, thereby increasing plant height and leaf relative water content and enhancing drought tolerance of alfalfa. The redundancy analysis of the above physiological indicators showed that the addition of the optimal Spm to improve drought tolerance of alfalfa under drought stress was mainly achieved by increasing catalase activity and improving the ASA-GSH cycle. In addition, metabolomics analysis revealed that exogenous Spm increased the content of oxobutanedioic acid, citric acid, fumaric acid and malic acid to enhance the tricarboxylic acid cycle. Meanwhile, exogenous Spm increased endogenous Spm and proline (Pro) content to resist drought stress by enhancing Spm and Pro metabolism. Moreover, exogenous Spm increased the accumulation of the signaling substance abscisic acid. Discussion In conclusion, exogenous Spm enhanced drought resistance of alfalfa leaves under drought stress.
Collapse
Affiliation(s)
| | - Wenjuan Kang
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, China
| | | |
Collapse
|
3
|
Anam S, Hilal B, Fariduddin Q. Polyamines and hydrogen peroxide: Allies in plant resilience against abiotic stress. CHEMOSPHERE 2024; 366:143438. [PMID: 39369751 DOI: 10.1016/j.chemosphere.2024.143438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
The increasing prevalence and severity of abiotic stresses on plants due to climate change is among the crucial issues of decreased crop productivity worldwide. These stresses affect crop productivity and pose a challenge to food security. Polyamines (Pas) and hydrogen peroxide (H₂O₂) could play a vital role to minimize the impact of several abiotic stresses on the plants. Pas are small molecules that regulate various physiological and developmental processes in plants and confer stress tolerance and protection against dehydration and cellular damage. Pas also interact with plant growth regulators and participate in various signaling routes that can mediate stress response. H₂O₂ on the other hand, acts as a signaling agent and plays a pivotal part in controlling crop growth and productivity. It can trigger oxidative damage at high levels but acts as a stress transducer and regulator at low concentrations. H₂O₂ is involved in stress defense mechanisms and the activation of genes involved in conferring tolerance. Therefore, the main focus of this paper is to explore roles of Pas and H₂O₂ in plant responses to various abiotic stress, highlighting their involvement in stress retaliation and signaling routes. Emphasis has been placed on understanding how Pas and H₂O₂ function and interact with other signaling molecules. Also, interaction of Pas and H₂O₂ with calcium ions, abscisic acid and nitrogen has been discussed, along with activation of MAPK cascade. This additive understanding could contribute to adopt strategies to improve crop productivity and enhance plant resilience to environmental challenges.
Collapse
Affiliation(s)
- Sadiya Anam
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Bisma Hilal
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Tabur S, Ozmen S, Oney-Birol S. Promoter role of putrescine for molecular and biochemical processes under drought stress in barley. Sci Rep 2024; 14:19202. [PMID: 39160181 PMCID: PMC11333763 DOI: 10.1038/s41598-024-70137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.
Collapse
Affiliation(s)
- Selma Tabur
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Serkan Ozmen
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Signem Oney-Birol
- Department of Moleculer Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
| |
Collapse
|
5
|
Hussain I, Shehzad MA, Akhtar G, Shafique Ahmad K, Mubeen K, Hassan W, Faried HN, Ahmad S, Aziz M, Yasin S, Al-Abbadi GA, El-Sheikh MA, Elansary HO, Ullah F. Supplemental Sodium Nitroprusside and Spermidine Regulate Water Balance and Chlorophyll Pigments to Improve Sunflower Yield under Terminal Drought. ACS OMEGA 2024; 9:30478-30491. [PMID: 39035905 PMCID: PMC11256320 DOI: 10.1021/acsomega.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
Drought is an inevitable environmental stress that drastically hampers the growth, productivity, and quality of food crops. Exogenous sodium nitroprusside and spermidine have decisive functions in the growth enhancement of plants; nevertheless, their specific role in mediating stress responses to improve drought tolerance in sunflowers at the reproductive stage (terminal drought) remains largely unknown. In the present study, we explored the positive effects of sodium nitroprusside and spermidine on physiological responses to increase in sunflower yield during periods of terminal drought. Initially, various doses (50, 100, 150, 200, 400 μM) for each sodium nitroprusside or spermidine were foliar sprayed to improve water content, chlorophylls, and biomass accumulation in sunflower seedlings under control (100% FC) and drought (60% FC) conditions. Optimized rates (100 μM for sodium nitroprusside) and (100 μM for spermidine) were further tested alone and in combination to assess drought tolerance potential and their ultimate impact on yield under drought stress. Drought exposure caused a marked reduction in relative water content (26%) and chlorophyll a (31%) and b (35%) contents; however, sodium nitroprusside and spermidine at 100 μM significantly improved the growth of sunflower (13%). Furthermore, combined use of sodium nitroprusside and spermidine at 100 + 100 μM markedly improved the achenes per head (16%), 1000-achene weight (14%), and ultimately grain (28%) and oil (21%) yields of sunflowers under drought stress. A strong association was found between the 1000-achene weight and the achene yield of sunflower. Hence, combined sodium nitroprusside and spermidine upregulate water balance and chlorophyll contents to increase sunflower yield under terminal drought.
Collapse
Affiliation(s)
- Israr Hussain
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Muhammad Asif Shehzad
- Institute
of Plant Breeding and Biotechnology, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Gulzar Akhtar
- Department
of Horticulture, Muhammad Nawaz Shareef
University of Agriculture, Multan 66000, Pakistan
| | - Khawaja Shafique Ahmad
- Department
of Botany, University of Poonch Rawalakot
(UPR), Rawalakot 12350, Azad Jammu and Kashmir, Pakistan
| | - Khuram Mubeen
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Waseem Hassan
- Department
of Soil and Environmental Sciences, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Hafiz Nazar Faried
- Department
of Horticulture, Muhammad Nawaz Shareef
University of Agriculture, Multan 66000, Pakistan
| | - Shabbir Ahmad
- Department
of Food Science and Technology, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Mudassir Aziz
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Sanaullah Yasin
- Department
of Soil and Environmental Sciences, Ghazi
University, Dera Ghazi
Khan 32200, Pakistan
| | - Ghanim A. Al-Abbadi
- Department
of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 12037, Kuwait
| | - Mohamed A. El-Sheikh
- Botany
and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam O. Elansary
- Plant
Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fazal Ullah
- State
Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Li Z, Han Y, Li X, Zhao J, Wang N, Wen Y, Li T, Su H, Gao L, Xia T, Liu Y. The phosphorylation of a WD40-repeat protein negatively regulates flavonoid biosynthesis in Camellia sinensis under drought stress. HORTICULTURE RESEARCH 2024; 11:uhae136. [PMID: 38994448 PMCID: PMC11237189 DOI: 10.1093/hr/uhae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Indexed: 07/13/2024]
Abstract
Flavonoids constitute the main nutraceuticals in the leaves of tea plants (Camellia sinensis). To date, although it is known that drought stress can negatively impact the biosynthesis of flavonoids in tea leaves, the mechanism behind this phenomenon is unclear. Herein, we report a protein phosphorylation mechanism that negatively regulates the biosynthesis of flavonoids in tea leaves in drought conditions. Transcriptional analysis revealed the downregulation of gene expression of flavonoid biosynthesis and the upregulation of CsMPK4a encoding a mitogen-activated protein kinase in leaves. Luciferase complementation and yeast two-hybrid assays disclosed that CsMPK4a interacted with CsWD40. Phosphorylation assay in vitro, specific protein immunity, and analysis of protein mass spectrometry indicated that Ser-216, Thr-221, and Ser-253 of CsWD40 were potential phosphorylation sites of CsMPK4a. Besides, the protein immunity analysis uncovered an increased phosphorylation level of CsWD40 in tea leaves under drought conditions. Mutation of the three phosphorylation sites generated dephosphorylated CsWD403A and phosphorylated CsWD403D variants, which were introduced into the Arabidopsis ttg1 mutant. Metabolic analysis showed that the anthocyanin and proanthocyanidin content was lower in ttg1:CsWD403D transgenic plants than ttg1::CsWD403A transgenic and wild type plants. The transient overexpression of CsWD403D downregulated the anthocyanidin biosynthesis in tea leaves. The dual-fluorescein protein complementation experiment showed that CsWD403D did not interact with CsMYB5a and CsAN2, two key transcription factors of procyanidins and anthocyanidins biosynthesis in tea plant. These findings indicate that the phosphorylation of CsWD40 by CsMPK4a downregulates the flavonoid biosynthesis in tea plants in drought stresses.
Collapse
Affiliation(s)
- Zhu Li
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yunyun Han
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xin Li
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jingjuan Zhao
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Nana Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yangyang Wen
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Tongtong Li
- State Key Laboratory of Tea Plant Biology and Utilization / Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture / Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Huangqiang Su
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization / Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture / Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tao Xia
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization / Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture / Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization / Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture / Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
7
|
Abbas S, Tanwir K, Hussaan M, Masood S, Ali Q, Raza A, Shahid M, Chaudhary HJ, Mushtaq S, Javed MT. In vitro exploration of Acinetobacter strain (SG-5) for antioxidative potential and phytohormone biosynthesis in maize (Zea mays L.) cultivars differing in cadmium tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45465-45484. [PMID: 38965111 DOI: 10.1007/s11356-024-34181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Cadmium (Cd) poses serious threats to plant growth and development, whereas the use of plant growth-promoting rhizobacteria (PGPR) has emerged a promising approach to diminish Cd retention in crops. A pot experiment was conducted to evaluate the effect of Cd tolerant strain Acinetobacter sp. SG-5 on growth, phytohormonal response, and Cd uptake of two maize cultivars (3062 and 31P41) under various Cd stress levels (0, 5, 12, 18, 26, and 30 μM CdCl2). The results revealed that CdCl2 treatment significantly suppressed the seed germination and growth together with higher Cd retention in maize cultivars in a dose-dependent and cultivar-specific manner with pronounced negative effect in 31P41. However, SG-5 strain exerted positive impact by up-regulating seed germination traits, plant biomass, photosynthetic pigments, enzymatic and non-enzymatic antioxidants, endogenous hormone level indole-3-acetic acid (IAA), abscisic acid (ABA), and sustained optimal nutrient's levels in both cultivars but predominantly in Cd-sensitive one (31P41). Further, Cd-resistant PGPR decreased the formation of reactive oxygen species in terms of malondialdehyde (MDA) and hydrogen peroxide (H2O2) verified through 3, 3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) analysis in conjunction with reduced Cd uptake and translocation in maize root and shoots in comparison to controls, advocating its sufficiency for bacterial-assisted Cd bioremediation. In conclusion, both SG-5 inoculated cultivars exhibited maximum Cd tolerance but substantial Cd tolerance was acquired by Cd susceptible cultivar-31P41 than Cd-tolerant one (3062). Current work recommended SG-5 strain as a promising candidate for plant growth promotion and bacterial-assisted phytomanagement of metal-polluted agricultural soils.
Collapse
Affiliation(s)
- Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Hussaan
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Sajid Masood
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Qasim Ali
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mushtaq
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
8
|
Qiao M, Hong C, Jiao Y, Hou S, Gao H. Impacts of Drought on Photosynthesis in Major Food Crops and the Related Mechanisms of Plant Responses to Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:1808. [PMID: 38999648 PMCID: PMC11243883 DOI: 10.3390/plants13131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024]
Abstract
Drought stress is one of the most critical threats to crop productivity and global food security. This review addresses the multiple effects of drought on the process of photosynthesis in major food crops. Affecting both light-dependent and light-independent reactions, drought leads to severe damage to photosystems and blocks the electron transport chain. Plants face a CO2 shortage provoked by stomatal closure, which triggers photorespiration; not only does it reduce carbon fixation efficiency, but it also causes lower overall photosynthetic output. Drought-induced oxidative stress generates reactive oxygen species (ROS) that damage cellular structures, including chloroplasts, further impairing photosynthetic productivity. Plants have evolved a variety of adaptive strategies to alleviate these effects. Non-photochemical quenching (NPQ) mechanisms help dissipate excess light energy as heat, protecting the photosynthetic apparatus under drought conditions. Alternative electron pathways, such as cyclical electron transmission and chloroplast respiration, maintain energy balance and prevent over-reduction of the electron transport chain. Hormones, especially abscisic acid (ABA), ethylene, and cytokinin, modulate stomatal conductance, chlorophyll content, and osmotic adjustment, further increasing the tolerance to drought. Structural adjustments, such as leaf reordering and altered root architecture, also strengthen tolerance. Understanding these complex interactions and adaptive strategies is essential for developing drought-resistant crop varieties and ensuring agricultural sustainability.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- National Engineering Research Center for Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.Q.)
| |
Collapse
|
9
|
Liu X, Wu L, Si Y, Zhai Y, Niu M, Han M, Su T. Regulating Effect of Exogenous α-Ketoglutarate on Ammonium Assimilation in Poplar. Molecules 2024; 29:1425. [PMID: 38611705 PMCID: PMC11012726 DOI: 10.3390/molecules29071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Extensive industrial activities and anthropogenic agricultural practices have led to substantial ammonia release to the environment. Although croplands can act as ammonia sinks, reduced crop production under high concentrations of ammonium has been documented. Alpha-ketoglutarate (AKG) is a critical carbon source, displaying pleiotropic physiological functions. The objective of the present study is to disclose the potential of AKG to enhance ammonium assimilation in poplars. It showed that AKG application substantially boosted the height, biomass, and photosynthesis activity of poplars exposed to excessive ammonium. AKG also enhanced the activities of key enzymes involved in nitrogen assimilation: glutamine synthetase (GS) and glutamate synthase (GOGAT), elevating the content of amino acids, sucrose, and the tricarboxylic acid cycle (TCA) metabolites. Furthermore, AKG positively modulated key genes tied to glucose metabolism and ATP synthesis, while suppressing ATP-depleting genes. Correspondingly, both H+-ATPase activity and ATP content increased. These findings demonstrate that exogenously applying AKG improves poplar growth under a high level of ammonium treatment. AKG might function through sufficient carbon investment, which enhances the carbon-nitrogen balance and energy stability in poplars, promoting ammonium assimilation at high doses of ammonium. Our study provides novel insight into AKG's role in improving poplar growth in response to excess ammonia exposure.
Collapse
Affiliation(s)
- Xiaoning Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Yujia Si
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Yujie Zhai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Mingyi Niu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Li J, Li Q, Guo N, Xian Q, Lan B, Nangia V, Mo F, Liu Y. Polyamines mediate the inhibitory effect of drought stress on nitrogen reallocation and utilization to regulate grain number in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1016-1035. [PMID: 37813095 DOI: 10.1093/jxb/erad393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Drought stress poses a serious threat to grain formation in wheat. Nitrogen (N) plays crucial roles in plant organ development; however, the physiological mechanisms by which drought stress affects plant N availability and mediates the formation of grains in spikes of winter wheat are still unclear. In this study, we determined that pre-reproductive drought stress significantly reduced the number of fertile florets and the number of grains formed. Transcriptome analysis demonstrated that this was related to N metabolism, and in particular, the metabolism pathways of arginine (the main precursor for synthesis of polyamine) and proline. Continuous drought stress restricted plant N accumulation and reallocation rates, and plants preferentially allocated more N to spike development. As the activities of amino acid biosynthesis enzymes and catabolic enzymes were inhibited, more free amino acids accumulated in young spikes. The expression of polyamine synthase genes was down-regulated under drought stress, whilst expression of genes encoding catabolic enzymes was enhanced, resulting in reductions in endogenous spermidine and putrescine. Treatment with exogenous spermidine optimized N allocation in young spikes and leaves, which greatly alleviated the drought-induced reduction in the number of grains per spike. Overall, our results show that pre-reproductive drought stress affects wheat grain numbers by regulating N redistribution and polyamine metabolism.
Collapse
Affiliation(s)
- Juan Li
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Qi Li
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Nian Guo
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Qinglin Xian
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Bing Lan
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Vinay Nangia
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299-10112, Rabat, Morocco
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
11
|
He M, Geng G, Mei S, Wang G, Yu L, Xu Y, Wang Y. Melatonin modulates the tolerance of plants to water stress: morphological response of the molecular mechanism. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23199. [PMID: 38354692 DOI: 10.1071/fp23199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Water stress (drought and waterlogging) leads to an imbalance in plant water distribution, disrupts cell homeostasis, and severely inhibits plant growth. Melatonin is a growth hormone that plants synthesise and has been shown to resist adversity in many plants. This review discusses the biosynthesis and metabolism of melatonin, as well as the changes in plant morphology and physiological mechanisms caused by the molecular defence process. Melatonin induces the expression of related genes in the process of plant photosynthesis under stress and protects the structural integrity of chloroplasts. Exogenous melatonin can maintain the dynamic balance of root ion exchange under waterlogging stress. Melatonin can repair mitochondria and alleviate damage caused by reactive oxygen species and reactive nitrogen species; and has a wide range of uses in the regulation of stress-specific genes and the activation of antioxidant enzyme genes. Melatonin improves the stability of membrane lipids in plant cells and maintains osmotic balance by regulating water channels. There is crosstalk between melatonin and other hormones, which jointly improve the ability of the root system to absorb water and breathe and promote plant growth. Briefly, as a multifunctional molecule, melatonin improves the tolerance of plants under water stress and promotes plant growth and development.
Collapse
Affiliation(s)
- Minmin He
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Shuyang Mei
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yao Xu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
12
|
Zhao W, Wu Z, Amde M, Zhu G, Wei Y, Zhou P, Zhang Q, Song M, Tan Z, Zhang P, Rui Y, Lynch I. Nanoenabled Enhancement of Plant Tolerance to Heat and Drought Stress on Molecular Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20405-20418. [PMID: 38032362 DOI: 10.1021/acs.jafc.3c04838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Global warming has posed significant pressure on agricultural productivity. The resulting abiotic stresses from high temperatures and drought have become serious threats to plants and subsequent global food security. Applying nanomaterials in agriculture can balance the plant's oxidant level and can also regulate phytohormone levels and thus maintain normal plant growth under heat and drought stresses. Nanomaterials can activate and regulate specific stress-related genes, which in turn increase the activity of heat shock protein and aquaporin to enable plants' resistance against abiotic stresses. This review aims to provide a current understanding of nanotechnology-enhanced plant tolerance to heat and drought stress. Molecular mechanisms are explored to see how nanomaterials can alleviate abiotic stresses on plants. In comparison with organic molecules, nanomaterials offer the advantages of targeted transportation and slow release. These advantages help the nanomaterials in mitigating drought and heat stress in plants.
Collapse
Affiliation(s)
- Weichen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangguo Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Oromia 103, Ethiopia
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yujing Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Pingfan Zhou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
13
|
Ozmen S, Tabur S, Oney-Birol S. Alleviation role of exogenous cadaverine on cell cycle, endogenous polyamines amounts and biochemical enzyme changes in barley seedlings under drought stress. Sci Rep 2023; 13:17488. [PMID: 37840053 PMCID: PMC10577135 DOI: 10.1038/s41598-023-44795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
Cadaverine (Cad), which has an independent synthesis pathway compared to other polyamine (PA) types, contributes to the health of plants by regulating plant growth and development, abiotic stress tolerance and antioxidant defense mechanisms. In this work, experiments were carried out to understand the effects of exogenous Cad (10 µM) application under drought stress (%22 PEG 6000) and without stress on cell cycle, total protein content, endogenous PA levels, and biochemical enzyme activities in barley (Hordeum vulgare cv. Burakbey) considering the potential of Cad to stimulate the drought-related tolerance system. Cad application in a stress-free environment showed an effect almost like low-impact drought stress, causing changes in all parameters examined compared to samples grown in distilled water environment (Control). The results clearly show that Cad applied against the negative effects of drought stress on all parameters creates a drought resistance mechanism of the plant. Accordingly, Cad applied together with drought stress increased the density of cells in the cell cycle (G1-S and S-G2 phases) and the amount of endogenous (spermidine 10% and spermine 40%) PAs. In addition, while superoxide dismutase (SOD) (5%), (CAT) (55%) and ascorbate peroxidase (APX) (18%) enzyme levels increased, a stress response mechanism occurred due to the decrease in total protein content (20%) and malondialdehyde (MDA) (80%). As a result, exogenous application of 10 µM Cad showed that it reduced the negative effects of drought stress on endogenous PA amounts, cell division and biochemical activities in barley.
Collapse
Affiliation(s)
- Serkan Ozmen
- Department of Biology, Faculty of Arts and Sciences, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Selma Tabur
- Department of Biology, Faculty of Arts and Sciences, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Signem Oney-Birol
- Department of Moleculer Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
| |
Collapse
|
14
|
Lu X, Wu Q, Nie K, Wu H, Chen G, Wang J, Ma Z. Exogenous phthalanilic acid induces resistance to drought stress in pepper seedlings ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1156276. [PMID: 37828921 PMCID: PMC10565039 DOI: 10.3389/fpls.2023.1156276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
Drought stress (DS) is one of the main abiotic negative factors for plants. Phthalanilic acid (PPA), as a plant growth regulator, can promote the growth and development of crops. In order to evaluate the ideal application concentration and frequency of PPA-induced drought resistance in pepper (Capsicum annuum) seedlings, the concentration of PPA was 133.3 mg·L-1; 200.0 mg·L-1; 266.7 mg·L-1, and some key indicators were investigated, including leaf wilting index (LWI), relative water content (RWC), and malondialdehyde (MDA). We found that the LWI and RWC in the PPA-applied pepper leaves under light drought stress (LDS) and moderate drought stress (MDS) were all elevated, while MDA contents were decreased. To better understand how PPA makes pepper drought resistant, we examined the photosynthetic characteristics, growth parameters, antioxidant activities, and osmotic substances in pepper seedlings treated twice with PPA at a concentration of 133.3 mg·L-1 under LDS, MDS, and severe drought stress (SDS). Results showed that PPA increased the chlorophyll, plant height, stem diameter, root-shoot ratio, and seedling index of pepper leaves under LDS, MDS, and SDS. The net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rates (Tr), and water-use efficiency (WUE) in the PPA-treated pepper leaves under LDS and MDS were improved, while their stomatal limitation (Ls) were reduced. PPA also boosted the activities of enzymatic antioxidants (superoxide dismutase, catalase, and peroxidase), as well as enhanced the accumulation of osmotic substances such as soluble sugar, soluble protein, and free proline in pepper leaves under LDS, MDS, and SDS. Thus, PPA can alleviate the growth inhibition and damage to pepper seedlings caused by DS, and the PPA-mediated efficacy may be associated with the improvement in PPA-mediated antioxidant activities, Pn, and accumulation of osmotic substances.
Collapse
Affiliation(s)
- Xiaopeng Lu
- College of Plant Protection, Northwest A & F University, Yangling, China
| | - Qiong Wu
- College of Plant Protection, Northwest A & F University, Yangling, China
| | - Keyi Nie
- College of Plant Protection, Northwest A & F University, Yangling, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi, China
| | - Guangyou Chen
- College of Plant Protection, Northwest A & F University, Yangling, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi, China
| | - Jun Wang
- Institute of Water Conservancy and Soil Fertilizer, Xinjiang Academy of Agricultural Sciences/Northwest Oasis Water-saving Agriculture Key Laboratory, Ministry of Agriculture and Rural Affairs, Shihezi, Xinjiang, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Shehzad MA, Hussain I, Akhtar G, Ahmad KS, Nawaz F, Faried HN, Mehmood A. Insights into physiological and metabolic modulations instigated by exogenous sodium nitroprusside and spermidine reveals drought tolerance in Helianthus annuus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107935. [PMID: 37579683 DOI: 10.1016/j.plaphy.2023.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Drought is the most critical climatic factor instigating severe threats to crop production worldwide. As stress ameliorants, exogenous sodium nitroprusside (SNP) or spermidine (Spd) supply has positive responses in alleviating the drought adversities in crops, however, reports regarding their combined effects is still elusive. Here, the protective role of SNP and Spd to confer drought resistance in sunflower (Helianthus annuus L.) through up-regulation of physiological and metabolic processes was investigated. Plants were foliar sprayed with individual or combined SNP (100 μM) or Spd (100 μM). Drought was induced by keeping the soil at 100% (normal) and 60% (drought stress) field capacity levels. Drought exposure caused a marked decline in relative water content (RWC), excised leaf water retention (ELWR), net photosynthesis (PN), transpiration rate (E), stomatal conductance (gs), and sub-stomatal conductance (Ci) with substantial increase in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX). SNP plus Spd exhibited a considerable increase in CAT, SOD, and POX activities under drought, and helped the plants to retain optimum water status and gas exchange attributes. Similarly, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were increased significantly to drought; however, a notable decline was recorded in drought prone plants treated with exogenous SNP plus Spd. Moreover, addition of SNP plus Spd under drought caused a remarkable increase in chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll total (Chl t), carotenoids (Car), and growth traits like shoot length (SL), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW). Combined SNP and Spd application could potentially alleviate the drought-induced damages in sunflower through increased water status (8-10%), antioxidant enzymes (17-28%), chlorophyll pigments (14-21%), and growth performance (12-22%) under drought stress.
Collapse
Affiliation(s)
- Muhammad Asif Shehzad
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan.
| | - Israr Hussain
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Gulzar Akhtar
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot (UPR), 12350, Azad Jammu and Kashmir, Pakistan.
| | - Fahim Nawaz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hafiz Nazar Faried
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot (UPR), 12350, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
16
|
Hao Y, Yu Y, Sun G, Gong X, Jiang Y, Lv G, Zhang Y, Li L, Zhao Y, Sun D, Gu W, Qian C. Effects of Multi-Walled Carbon Nanotubes and Nano-Silica on Root Development, Leaf Photosynthesis, Active Oxygen and Nitrogen Metabolism in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1604. [PMID: 37111828 PMCID: PMC10142641 DOI: 10.3390/plants12081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Carbon nanotubes (MWCNTs) and nano-silica (nano-SiO2) are widely used in the field of life science because of their special physical and chemical properties. In this study, the effects of different concentrations of MWCNTs (0 mg·L-1, 200 mg·L-1, 400 mg·L-1, 800 mg·L-1 and 1200 mg·L-1) and nano-SiO2 (0 mg·L-1, 150 mg·L-1, 800 mg·L-1, 1500 mg·L-1 and 2500 mg·L-1) on maize seedling growth and relative mechanisms were explored. The main results are as follows: MWCNTs and nano-SiO2 can promote the growth of maize seedlings, and promote plant height, root length, the dry and fresh weight of seedlings, root-shoot ratio and so on. The ability to accumulate dry matter increased, the relative water content of leaves increased, the electrical conductivity of leaves decreased, the stability of cell membranes improved and the water metabolism ability of maize seedlings increased. The treatment of MWCNTs with 800 mg·L-1 and nano-SiO2 with 1500 mg·L-1 had the best effect on seedling growth. MWCNTs and nano-SiO2 can promote the development of root morphology, increase root length, root surface area, average diameter, root volume and total root tip number and improve root activity, so as to improve the absorption capacity of roots to water and nutrition. After MWCNT and nano-SiO2 treatment, compared with the control, the contents of O2·- and H2O2 decreased, and the damage of reactive oxygen free radicals to cells decreased. MWCNTs and nano-SiO2 can promote the clearance of reactive oxygen species and maintain the complete structure of cells, so as to slow down plant aging. The promoting effect of MWCNTs treated with 800 mg·L-1 and nano-SiO2 treated with 1500 mg·L-1 had the best effect. After treatment with MWCNTs and nano-SiO2, the activities of key photosynthesis enzymes PEPC, Rubisco, NADP-ME, NADP-MDH and PPDK of maize seedlings increased, which promoted the opening of stomata, improved the fixation efficiency of CO2, improved the photosynthetic process of maize plants and promoted plant growth. The promoting effect was the best when the concentration of MWCNTs was 800 mg·L-1 and the concentration of nano-SiO2 was 1500 mg·L-1. MWCNTs and nano-SiO2 can increase the activities of the enzymes GS, GOGAT, GAD and GDH related to nitrogen metabolism in maize leaves and roots, and can increase the content of pyruvate, so as to promote the synthesis of carbohydrates and the utilization of nitrogen and promote plant growth.
Collapse
Affiliation(s)
- Yubo Hao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yang Yu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Guangyan Sun
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Gong
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yubo Jiang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Guoyi Lv
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yiteng Zhang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Liang Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yang Zhao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Dan Sun
- Institute of Crop Resource, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Chunrong Qian
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| |
Collapse
|
17
|
Li Y, Cheng X, Feng C, Huang X. Interaction of Lead and Cadmium Reduced Cadmium Toxicity in Ficus parvifolia Seedlings. TOXICS 2023; 11:toxics11030271. [PMID: 36977036 PMCID: PMC10054560 DOI: 10.3390/toxics11030271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
Potentially toxic elements (PTEs) pollution occurs widely in soils due to various anthropogenic activities. Lead (Pb) and cadmium (Cd) coexist in soil frequently, threatening plant growth. To explore the interaction effect between Pb and Cd in Ficus parvifolia and the response of plant physiological characteristics to Pb and Cd stress, we designed a soil culture experiment. The experiment demonstrated that Pb stress improved leaf photosynthesis ability, while Cd stress inhibited it. Furthermore, Pb or Cd stress increased malonaldehyde (MDA) content, but plants were able to reduce it by increasing antioxidant enzyme activities. The presence of Pb could alleviate Cd phytotoxicity in plants by inhibiting Cd uptake and accumulation as well as increasing leaf photosynthesis and antioxidant ability. Pearson correlation analysis illustrated that the variability of Cd uptake and accumulation between Pb and Cd stress was related to plant biomass and antioxidant enzyme activities. This research will offer a new perspective on alleviating Cd phytotoxicity in plants.
Collapse
|
18
|
Napieraj N, Janicka M, Reda M. Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1159. [PMID: 36904019 PMCID: PMC10005635 DOI: 10.3390/plants12051159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Numerous environmental conditions negatively affect plant production. Abiotic stresses, such as salinity, drought, temperature, and heavy metals, cause damage at the physiological, biochemical, and molecular level, and limit plant growth, development, and survival. Studies have indicated that small amine compounds, polyamines (PAs), play a key role in plant tolerance to various abiotic stresses. Pharmacological and molecular studies, as well as research using genetic and transgenic approaches, have revealed the favorable effects of PAs on growth, ion homeostasis, water maintenance, photosynthesis, reactive oxygen species (ROS) accumulation, and antioxidant systems in many plant species under abiotic stress. PAs display a multitrack action: regulating the expression of stress response genes and the activity of ion channels; improving the stability of membranes, DNA, and other biomolecules; and interacting with signaling molecules and plant hormones. In recent years the number of reports indicating crosstalk between PAs and phytohormones in plant response to abiotic stresses has increased. Interestingly, some plant hormones, previously known as plant growth regulators, can also participate in plant response to abiotic stresses. Therefore, the main goal of this review is to summarize the most significant results that represent the interactions between PAs and plant hormones, such as abscisic acid, brassinosteroids, ethylene, jasmonates, and gibberellins, in plants under abiotic stress. The future perspectives for research focusing on the crosstalk between PAs and plant hormones were also discussed.
Collapse
Affiliation(s)
| | | | - Małgorzata Reda
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wroclaw, Poland
| |
Collapse
|
19
|
Ramazan S, Nazir I, Yousuf W, John R. Environmental stress tolerance in maize ( Zea mays): role of polyamine metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:85-96. [PMID: 35300784 DOI: 10.1071/fp21324] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 05/21/2023]
Abstract
Maize (Zea mays L.), a major multipurpose crop for food, feed and energy is extremely susceptible to environmental perturbations and setting off the major factors for limiting maize yield. Generally, plant yields are reduced and significantly lost to adverse environments and biotic strains. To ensure the safety of living cells under unfavourable circumstances, polyamines (PAs) play an important role in regulating the response under both abiotic and biotic stresses. It is the relative abundance of higher PAs (spermidine, Spd; spermine, Spm) vis-à-vis the diamine putrescine (Put) and PA catabolism that determines the stress tolerance in plants. Climate changes and increasing demands for production of maize have made it pressing to improve the stress tolerance strategies in this plant and it is imperative to understand the role of PAs in response to various environmental perturbations. Here, we critically review and summarise the recent literature on role of PAs in conferring stress tolerance in the golden crop. The responses in terms of PA accumulation, their mechanism of action and all the recent genetic manipulation studies carried out in PA metabolism pathway, ameliorating range of abiotic and biotic stresses have been discussed. As PA metabolism under stress conditions does not operate singly within cells and is always linked to other metabolic pathways in maize, its complex connections and role as a signalling molecule have also been discussed in this review.
Collapse
Affiliation(s)
- Salika Ramazan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ifra Nazir
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Waseem Yousuf
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Riffat John
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| |
Collapse
|
20
|
Xie X, Gu Y, Wang W, Abbas F, Qin S, Fu S, Mei J, Wang J, Ma D, Wen G, Yang Y, Sharma A, Wang X, Yan D, Zheng B, He Y, Yuan H. Exogenous spermidine improved drought tolerance in Ilex verticillata seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1065208. [PMID: 36743484 PMCID: PMC9895825 DOI: 10.3389/fpls.2023.1065208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Winterberry (Ilex verticillata (L.) A. Gray) is a recently introduced ornamental tree species in China that has not been closely investigated for its drought resistance. In this study, we used two-year-old cuttings from I. verticillata (L.) A. Gray and two representative varieties derived from it, I. verticillata 'Oosterwijk' and I. verticillata 'Jim Dandy', as materials to investigate how this plant responds to drought stress and whether exogenous spermidine (SPD) can alleviate the negative effects caused by drought stress. The results showed that as the degree of drought stress increased, the leaves of winterberry seedlings became chlorotic, and their edges became dry. Similarly, the relative water content, specific leaf weight, chlorophyll content, leaf nitrogen content, net photosynthetic rate, stomatal conductance and transpiration rate were significantly reduced, whereas the content of malondialdehyde continuously increased with the degree of drought stress. The activities of superoxide dismutase, peroxidase, and catalase increased under moderate drought stress and then decreased under severe drought stress. The levels of soluble sugar and abscisic acid continued to increase, while those of auxin and gibberellic acid decreased. When compared with individual drought stress, an increase in the amount of external SPD clearly alleviated the effect of drought stress on winterberry seedlings. The combined phenotypes and physiological indices of the winterberry leaves under drought stress conditions revealed that the drought resistance of the native species was significantly higher than its two varieties. This finding serves as an important theoretical foundation for the popularization and application of I. verticillata (L.) A. Gray and the two varieties.
Collapse
Affiliation(s)
- Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yujie Gu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Weili Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Farhat Abbas
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Sini Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Siyi Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jiaqi Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jiayan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Dexuan Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Guangchao Wen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
21
|
Li G, Li Y, Zhu Y, Zheng W, Li M, Hu J, Fei Y, Zhu S. Exogenous application of melatonin to mitigate drought stress-induced oxidative damage in Phoebe sheareri seedlings. PeerJ 2023; 11:e15159. [PMID: 37090109 PMCID: PMC10117382 DOI: 10.7717/peerj.15159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background Drought stress is a major prevalent environmental factor impairing growth. Melatonin mitigates the impacts of drought stress on plants. However, melatonin's role in Phoebe sheareri (Hemsl.) Gamble (P. sheareri) is unknown. We aimed to reveal the protective effects of melatonin on P. sheareri seedlings under drought conditions. Methods Melatonin was sprayed under drought or normal water conditions. The parameters, including growth, physiological factors, and phytohormones of P. sheareri, were examined. Results Compared to the normal control group, drought stress inhibited the growth of seedlings and significantly reduced the content of carotenoids, SOD, POD, APX, PPO, CAT, GR, and soluble sugars, and increased the contents of MDA, O2 •-, proline, soluble proteins, ABA, and JA-Me in P. sheareri seedlings. However, melatonin treatment significantly reversed the adverse drought-induced responses and promoted the P. sheareri seedling's growth. Moreover, the heatmap and principal component analysis suggested a high similarity in the behavior patterns of the six measured antioxidant enzymes in P. sheareri seedlings. Conclusion Our study reported for the first time that melatonin has a protective role in P. sheareri seedlings under drought-stress conditions. This role is related to ROS scavenging, activation of antioxidant enzymes, and crosstalk of phytohormones. This study provided a theoretical basis for improving the ability of P. sheareri adapted to arid environments.
Collapse
Affiliation(s)
- Guifang Li
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Yanzhen Li
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Yuzi Zhu
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Wenjun Zheng
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Mengxi Li
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Jinlong Hu
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Yongjun Fei
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Sijia Zhu
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| |
Collapse
|
22
|
Li Y, Yu X, Ma K. Physiological effects of γ-aminobutyric acid application on cold tolerance in Medicago ruthenica. FRONTIERS IN PLANT SCIENCE 2022; 13:958029. [PMID: 36420039 PMCID: PMC9676939 DOI: 10.3389/fpls.2022.958029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Low temperatures in the seedling stage during early spring limit Medicago ruthenica germination and seedling growth. Elucidating the physiological mechanism of γ-aminobutyric acid (GABA)-regulated cold tolerance in M. ruthenica could provide a reference for alleviating the harmful effects of low temperatures on legumes in alpine meadows. The regulatory effects of GABA on M. ruthenica physiological parameters were explored by simulating the ground temperatures in the alpine meadow area of Tianzhu, China, in early May (2 h at 7°C; 6 h at 15°C; 4 h at 12°C; 2 h at 7°C; 10 h at 3°C). Our results showed that 15 mmol/l GABA was the optimal spray concentration to promote growth in the aboveground and belowground parts and increase the fresh and dry weights of seedlings. At this concentration, GABA enhanced the activities of catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase; increased the osmotic balance; and inhibited the production of harmful substances in the cells under low-temperature conditions. GABA also regulated the tissue structure of leaves, increased the cell tense ratio, maintained photochemical activity, increased the amount of light energy to the photochemical reaction center, and improved the photosynthetic rate. Furthermore, exogenous GABA application increased the endogenous GABA content by promoting GABA synthesis in the early stages of low-temperature stress but mainly participated in low-temperature stress mitigation via GABA degradation in the late stages. Our results show that GABA can improve the cold tolerance of M. ruthenica by promoting endogenous GABA metabolism, protecting the membrane system, and improving the leaf structure.
Collapse
|
23
|
Mohapatra S, Sirhindi G, Dogra V. Seed priming with brassinolides improves growth and reinforces antioxidative defenses under normal and heat stress conditions in seedlings of Brassica juncea. PHYSIOLOGIA PLANTARUM 2022; 174:e13814. [PMID: 36326060 DOI: 10.1111/ppl.13814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Environmental stresses pose a major challenge for plant researchers to fulfill increasing food demand. Researchers are trying to generate high-yielding and stress-tolerant or resistant varieties using classical genetics and modern gene-editing tools; however, both approaches have limitations. Chemical treatments emerged as an alternative to improve yield and impart stress resilience. Brassinosteroids (BRs) are a group of phytohormones that regulate various biological processes, including stress management. With foliar spray methods, BR treatments showed promising results but are not economically feasible. We hypothesize that priming of seeds, which requires lesser amounts of BRs, could be equally effective in promoting growth and stress tolerance. Owing to this notion, we analyzed the impact of priming seeds with selected BRs, namely, 24-epibrassinolide (EBL) and 28-homobrassinolide (HBL), in Brassica juncea under normal and heat shock stress conditions. Seeds primed with BRs and grown until seedlings stage at normal conditions (20°C) were subjected to a heat shock (35°C) for a few hours, relating to what plants experience in natural conditions. Heat shock reduced the growth and biomass with an increased accumulation of reactive oxygen species. As anticipated, BRs treatments significantly improved the growth and physiological parameters with an enhanced antioxidant defense under both conditions. Transcriptional analyses revealed that BRs concomitantly induce growth and oxidative stress-responsive gene expression via the canonical BR-signaling pathway. Transfer of unstressed and heat-shock-treated seedlings to field conditions demonstrated the long-term effectivity of BR-priming. Our results showed seed priming with BRs could improve growth and resilience against heat shock; hence, it appears to be a viable strategy to enhance crop yields and stress tolerance.
Collapse
Affiliation(s)
- Sumanta Mohapatra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Angon PB, Tahjib-Ul-Arif M, Samin SI, Habiba U, Hossain MA, Brestic M. How Do Plants Respond to Combined Drought and Salinity Stress?-A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212884. [PMID: 36365335 PMCID: PMC9655390 DOI: 10.3390/plants11212884] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/12/2023]
Abstract
Plants are frequently exposed to one or more abiotic stresses, including combined salinity-drought, which significantly lowers plant growth. Many studies have been conducted to evaluate the responses of plants to combined salinity and drought stress. However, a meta-analysis-based systematic review has not been conducted yet. Therefore, this study analyzed how plants respond differently to combined salinity-drought stress compared to either stress alone. We initially retrieved 536 publications from databases and selected 30 research articles following a rigorous screening. Data on plant growth-related, physiological, and biochemical parameters were collected from these selected articles and analyzed. Overall, the combined salinity-drought stress has a greater negative impact on plant growth, photosynthesis, ionic balance, and oxidative balance than either stress alone. In some cases, salinity had a greater impact than drought stress and vice versa. Drought stress inhibited photosynthesis more than salinity, whereas salinity caused ionic imbalance more than drought stress. Single salinity and drought reduced shoot biomass equally, but salinity reduced root biomass more than drought. Plants experienced more oxidative stress under combined stress conditions because antioxidant levels did not increase in response to combined salinity-drought stress compared to individual salinity or drought stress. This study provided a comparative understanding of plants' responses to individual and combined salinity and drought stress, and identified several research gaps. More comprehensive genetic and physiological studies are needed to understand the intricate interplay between salinity and drought in plants.
Collapse
Affiliation(s)
- Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samia Islam Samin
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ummya Habiba
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M. Afzal Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marian Brestic
- Institut of Plant and Environmental Sciences, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
25
|
Qin C, Shen J, Ahanger MA. Supplementation of nitric oxide and spermidine alleviates the nickel stress-induced damage to growth, chlorophyll metabolism, and photosynthesis by upregulating ascorbate-glutathione and glyoxalase cycle functioning in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1039480. [PMID: 36388564 PMCID: PMC9646532 DOI: 10.3389/fpls.2022.1039480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Experiments were conducted to evaluate the role of exogenously applied nitric oxide (NO; 50 µM) and spermidine (Spd; 100 µM) in alleviating the damaging effects of Ni (1 mM NiSO46H2O) toxicity on the growth, chlorophyll metabolism, photosynthesis, and mineral content in tomato. Ni treatment significantly reduced the plant height, dry mass, and the contents of glutamate 1-semialdehyde, δ-amino levulinic acid, prototoporphyrin IX, Mg-prototoporphyrin IX, total chlorophyll, and carotenoids; however, the application of NO and Spd alleviated the decline considerably. Supplementation of NO and Spd mitigated the Ni-induced decline in photosynthesis, gas exchange, and chlorophyll fluorescence parameters. Ni caused oxidative damage, while the application of NO, Spd, and NO+Spd significantly reduced the oxidative stress parameters under normal and Ni toxicity. The application of NO and Spd enhanced the function of the antioxidant system and upregulated the activity of glyoxalase enzymes, reflecting significant reduction of the oxidative effects and methylglyoxal accumulation. Tolerance against Ni was further strengthened by the accumulation of proline and glycine betaine due to NO and Spd application. The decrease in the uptake of essential mineral elements such as N, P, K, and Mg was alleviated by NO and Spd. Hence, individual and combined supplementation of NO and Spd effectively alleviates the damaging effects of Ni on tomato.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Life Sciences, University of Changzhi, Changzhi, China
| | - Jie Shen
- Department of Life Sciences, University of Changzhi, Changzhi, China
| | | |
Collapse
|
26
|
Gu J, Hu C, Jia X, Ren Y, Su D, He J. Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:104-114. [PMID: 36081232 DOI: 10.1016/j.plaphy.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) pollution is a major environmental issue affecting plant production. Spermidine (Spd) is involved in plant response to abiotic stress. However, the role and associated mechanism of Spd under Cd + Pb combined stress are poorly understood. The potential protective role of Spd at different concentration on rice (Oryza sativa L.) seedlings exposed to Cd + Pb treatment was investigated by a hydroponic experiment in this study. The results showed that exogenous Spd enhanced the tolerance of rice seedlings to Cd + Pb stress, resulted in an increase in plant height, root length, fresh weight and dry weight of roots and shoots. Further, application of Spd decreased the contents of hydrogen peroxide, superoxide anion, malondialdehyde, and the accumulation of Cd and Pb, and increased the contents of mineral nutrient, carotenoids, chlorophyll, proline, soluble sugar, soluble protein, total phenol, flavonoid, anthocyanin, and antioxidant enzymes activities in roots and shoots of rice seedlings under Cd + Pb stress. Particularly, 0.5 mmol L-1 Spd was the most effective to alleviate the adverse impacts on growth and physiological metabolism of rice seedlings under Cd + Pb stress. Principal component analysis and heat map clustering established correlations between physio-biochemical parameters and further revealed Spd alleviated Cd + Pb damage in rice seedling was associated with inhibition of accumulation and translocation of Cd and Pb, increasing the contents of photosynthetic pigments and mineral nutrient and stimulation of antioxidative response and osmotic adjustment. Overall, our findings provide an important prospect for use of Spd in modulating Cd + Pb tolerance in rice plants. Spd could help to alleviate Cd + Pb damage through inhibition of accumulation and translocation of Cd and Pb and stimulation of oxidant-defense system and osmotic adjustment.
Collapse
Affiliation(s)
- Jinyu Gu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Chunmei Hu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Xiangwei Jia
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| | - Dongming Su
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| |
Collapse
|
27
|
Jasmonic Acid Boosts Physio-Biochemical Activities in Grewia asiatica L. under Drought Stress. PLANTS 2022; 11:plants11192480. [PMID: 36235345 PMCID: PMC9573089 DOI: 10.3390/plants11192480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
It has been shown that jasmonic acid (JA) can alleviate drought stress. Nevertheless, there are still many questions regarding the JA-induced physiological and biochemical mechanisms that underlie the adaptation of plants to drought stress. Hence, the aim of this study was to investigate whether JA application was beneficial for the antioxidant activity, plant performance, and growth of Grewia asiatica L. Therefore, a study was conducted on G. asiatica plants aged six months, exposing them to 100% and 60% of their field capacity. A JA application was only made when the plants were experiencing moderate drought stress (average stem water potential of 1.0 MPa, considered moderate drought stress), and physiological and biochemical measures were monitored throughout the 14-day period. In contrast to untreated plants, the JA-treated plants displayed an improvement in plant growth by 15.5% and increased CO2 assimilation (AN) by 43.9% as well as stomatal conductance (GS) by 42.7% on day 3. The ascorbate peroxidase (APX), glutathione peroxidase (GPX), and superoxide dismutase (SOD) activities of drought-stressed JA-treated plants increased by 87%, 78%, and 60%, respectively, on day 3. In addition, G. asiatica plants stressed by drought accumulated 34% more phenolics and 63% more antioxidants when exposed to JA. This study aimed to understand the mechanism by which G. asiatica survives in drought conditions by utilizing the JA system.
Collapse
|
28
|
Piao L, Wang Y, Liu X, Sun G, Zhang S, Yan J, Chen Y, Meng Y, Li M, Gu W. Exogenous Hemin alleviated cadmium stress in maize ( Zea mays L.) by enhancing leaf photosynthesis, AsA-GSH cycle and polyamine metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:993675. [PMID: 36160952 PMCID: PMC9493101 DOI: 10.3389/fpls.2022.993675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 05/30/2023]
Abstract
Cadmium (Cd) stress is one of the principal abiotic stresses that inhibit maize growth. The research was to explore (hemin chloride) Hemin (100 μmol L-1) on photosynthesis, ascorbic acid (AsA)-glutathione (GSH) cycle system, and polyamine metabolism of maize under Cd stress (85 mg L-1) using nutrient solution hydroponics, with Tiannong 9 (Cd tolerant) and Fenghe 6 (Cd sensitive) as experimental materials. The results showed that Hemin can increase leaf photosynthetic pigment content and ameliorate the ratio of Chlorophyll a/chlorophyll b (Chla/Chlb) under Cd stress. The values of ribose 1, 5-diphosphate carboxylase/oxygenase (RuBPcase) and phosphoenolpyruvate carboxylase (PEPCase), and total xanthophyll cycle pool [(violoxanthin (V), antiflavin (A) and zeaxanthin (Z)] increased, which enhancing xanthophyll cycle (DEPS) de-epoxidation, and alleviating stomatal and non-stomatal limitation of leaf photosynthesis. Hemin significantly increased net photosynthetic rate (Pn ), stomatal conductance (gs ), transpiration rate (Tr ), photochemical quenching coefficient (qP), PSII maximum photochemical efficiency (Fv/Fm ), and electron transfer rate (ETR), which contributed to the improvement of the PSII photosynthetic system. Compared with Cd stress, Hemin can reduce thiobartolic acid reactant (TBARS) content, superoxide anion radical (O2 -) production rate, hydrogen peroxide (H2O2) accumulation, and the extent of electrolyte leakage (EL); decreased the level of malondialdehyde (MDA) content and increased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); slowed the decrease in dehydroascorbic acid reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activity and the increase in glutathione reductase (GR) and ascorbate peroxidase (APX) activity in leaves; promoted the increase in AsA and GSH content, decreased dehydroascorbic acid (DHA) and oxidized glutathione (GSSG), and increased AsA/DHA and GSH/GSSG ratios under Cd stress. Hemin promoted the increase of conjugated and bound polyamine content, and the conversion process speed of free putrescine (Put) to free spermine (Spm) and spermidine (Spd) in maize; decreased polyamine oxidase (PAO) activity and increased diamine oxidase (DAO), arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) enzyme activities in leaves under Cd stress.
Collapse
Affiliation(s)
- Lin Piao
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yong Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaoming Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Guangyan Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shiyu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Junyao Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yang Chen
- Heilongjiang Kenfeng Seed Industry Co., Ltd., Harbin, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, China
| | - Ming Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
29
|
Seed Priming with Spermine Mitigates Chromium Stress in Rice by Modifying the Ion Homeostasis, Cellular Ultrastructure and Phytohormones Balance. Antioxidants (Basel) 2022; 11:antiox11091704. [PMID: 36139792 PMCID: PMC9495668 DOI: 10.3390/antiox11091704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Chromium (Cr) is an important environmental constraint effecting crop productivity. Spermine (SPM) is a polyamine compound regulating plant responses to abiotic stresses. However, SPM-mediated tolerance mechanisms against Cr stress are less commonly explored in plants. Thus, current research was conducted to explore the protective mechanisms of SPM (0.01 mM) against Cr (100 µM) toxicity in two rice cultivars, CY927 (sensitive) and YLY689 (tolerant) at the seedling stage. Our results revealed that, alone, Cr exposure significantly reduced seed germination, biomass and photosynthetic related parameters, caused nutrient and hormonal imbalance, desynchronized antioxidant enzymes, and triggered oxidative damage by over-accretion of reactive oxygen species (ROS), malondialdehyde (MDA) and electrolyte leakage in both rice varieties, with greater impairments in CY927 than YLY689. However, seed priming with SPM notably improved or reversed the above-mentioned parameters, especially in YLY689. Besides, SPM stimulated the stress-responsive genes of endogenous phytohormones, especially salicylic acid (SA), as confirmed by the pronounced transcript levels of SA-related genes (OsPR1, OsPR2 and OsNPR1). Our findings specified that SPM enhanced rice tolerance against Cr toxicity via decreasing accumulation of Cr and markers of oxidative damage (H2O2, O2•− and MDA), improving antioxidant defense enzymes, photosynthetic apparatus, nutrients and phytohormone balance.
Collapse
|
30
|
Gao J, Zhuang S, Zhang Y, Qian Z. Exogenously applied spermidine alleviates hypoxia stress in Phyllostachys praecox seedlings via changes in endogenous hormones and gene expression. BMC PLANT BIOLOGY 2022; 22:200. [PMID: 35439921 PMCID: PMC9016973 DOI: 10.1186/s12870-022-03568-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/30/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Hypoxia stress is thought to be one of the major abiotic stresses that inhibits the growth and development of higher plants. Phyllostachys pracecox is sensitive to oxygen and suffers soil hypoxia during cultivation; however, the corresponding solutions to mitigate this stress are still limited in practice. In this study, Spermidine (Spd) was tested for regulating the growth of P. praecox seedlings under the hypoxia stress with flooding. RESULTS A batch experiment was carried out in seedlings treated with 1 mM and 2 mM Spd under flooding for eight days. Application of 1 mM and 2 mM Spd could alleviate plant growth inhibition and reduce oxidative damage from hypoxia stress. Exogenous Spd significantly (P < 0.05) increased proline, soluble protein content, catalase (CAT), superoxide dismutase (SOD), and S-adenosylmethionine decarboxylase (SAMDC) activity, enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) content, and reduced ethylene emission, hydrogen peroxide (H2O2), superoxide radical (O2·-) production rate, ACC oxidase (ACO) and ACC synthase (ACS) to protect membranes from lipid peroxidation under flooding. Moreover, exogenous Spd up-regulated the expression of auxin-related genes auxin responsive factor1 (ARF1), auxin1 protein (AUX1), auxin2 protein (AUX2), auxin3 protein (AUX3) and auxin4 protein (AUX4), and down-regulated the expression of ethylene-related ACO and ACS genes during flooding. CONCLUSION The results indicated that exogenous Spd altered hormone concentrations and the expression of hormone-related genes, thereby protecting the bamboo growth under flooding. Our data suggest that Spd can be used to reduce hypoxia-induced cell damage and improve the adaptability of P. praecox to flooding stress.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Yuhe Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Zhuangzhuang Qian
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| |
Collapse
|
31
|
Attia H, Alamer K, Algethami B, Zorrig W, Hessini K, Gupta K, Gupta B. Gibberellic acid interacts with salt stress on germination, growth and polyamine gene expression in fennel ( Foeniculum vulgare Mill.) seedlings. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:607-622. [PMID: 35465200 PMCID: PMC8986931 DOI: 10.1007/s12298-022-01140-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to rigorously investigate and integrate the underlying hypothesis that an enhancing effect of gibberellic acid (GA3, 3 µM) with increased growth actually leads to a modification of the physiological role of polyamines during salinity stress (NaCl, 100 mM) in fennel. These analyses concern both reserve tissues (cotyledons) and embryonic axes in growth. Physiological results indicate a restriction of germination, growth, mineral nutrition and damages to membranes of salt-treated seedlings. This was partially attenuated in seedlings treated with an interaction effect of GA3 and NaCl. Peroxidase and catalase activities showed a reduction or an augmentation according to the treatments and organs. The three main polyamines (PA): putrescine, spermidine and spermine were elevated in the salt-treated seedlings. Meanwhile, GA3 seed priming was extremely efficient in reducing PA levels in salt-stressed seedlings compared to the control. Response of PA genes to salinity was variable. Up-regulation was noted for SPMS1, ODC1, and ADC1 in hypocotyls and cotyledons (H + C) and down-regulation for SAMDC1 in the radicle. Interaction of salt/GA3 treatment showed different responses, only ODC1 in (H + C) and ADC1 in both radicle and (H + C) were overexpressed. Concerning other genes, no change in mRNA abundance was observed in both organs compared to the salt-treated seedlings. From these results, it could be inferred that the fennel seedlings were NaCl sensitive. This sensitivity was mitigated when GA3 applied for seed priming and applied in combination with NaCl, which resulted in a reduction of the PA content. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01140-4.
Collapse
Affiliation(s)
- Houneida Attia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Khalid Alamer
- Department of Biology, Science and Arts College-Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badreyah Algethami
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia
| | - Kamel Hessini
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Kamala Gupta
- Government General Degree College, Singur, West Bengal, India
| | - Bhaskar Gupta
- Government General Degree College, Singur, West Bengal, India
| |
Collapse
|
32
|
Abid G, Ouertani RN, Ghouili E, Muhovski Y, Jebara SH, Abdelkarim S, Chaieb O, Ben Redjem Y, El Ayed M, Barhoumi F, Souissi F, Jebara M. Exogenous application of spermidine mitigates the adverse effects of drought stress in faba bean ( Vicia faba L.). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:405-420. [PMID: 35209990 DOI: 10.1071/fp21125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In Tunisia, drought stress is a major environmental factor limiting crop production and causing relatively low and unstable faba bean yields. In the present study, we explored the putative role of spermidine (0.5, 1, 1.5 and 2mM) in ameliorating the effects of drought stress induced by polyethylene glycol (PEG-6000, -0.58MPa) in faba bean seedlings. Drought stress reduced photosynthetic performance, chlorophyll and relative water content in leaves of faba bean variety Badii. Moreover, drought increased proline, electrolyte leakage and malondialdehyde content by inducing reactive oxygen species (hydrogen peroxide) generation in leaves. However, applying spermidine increased the activities of catalase, superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase. The results show that the application of spermidine especially at a rate of 1.5mM effectively reduces oxidative damage and alleviates negative effects caused by drought stress. In addition, exogenous spermidine increased the expression of polyamine biosynthetic enzymes' genes (VfADC , VfSAMDC and VfSPDS ), and reduced the expression of VfSPMS suggesting that exogenous spermidine can regulate polyamines' metabolic status under drought challenge, and consequently may enhance drought stress tolerance in faba bean. Real-time quantitative polymerase chain reaction analysis revealed that some drought responsive genes (VfNAC , VfHSP , VfNCED , VfLEA , VfCAT , VfAPX , VfRD22 , VfMYB , VfDHN , VfERF , VfSOD and VfWRKY ) from various metabolic pathways were differentially expressed under drought stress. Overall, these genes were more abundantly transcribed in the spermidine-treated plants compared to untreated suggesting an important role of spermidine in modulating faba bean drought stress response and tolerance.
Collapse
Affiliation(s)
- Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Emna Ghouili
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Yordan Muhovski
- Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, BP 234, Gembloux 5030, Belgium
| | - Salwa Harzalli Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Souhir Abdelkarim
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Oumaima Chaieb
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Yosr Ben Redjem
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Mohamed El Ayed
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Fathi Barhoumi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Fatma Souissi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
33
|
Navakoudis E, Kotzabasis K. Polyamines: Α bioenergetic smart switch for plant protection and development. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153618. [PMID: 35051689 DOI: 10.1016/j.jplph.2022.153618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/27/2023]
Abstract
The present review highlights the bioenergetic role of polyamines in plant protection and development and proposes a universal model for describing polyamine-mediated stress responses. Any stress condition induces an excitation pressure on photosystem II by reforming the photosynthetic apparatus. To control this phenomenon, polyamines act directly on the molecular structure and function of the photosynthetic apparatus as well as on the components of the chemiosmotic proton-motive force (ΔpH/Δψ), thus regulating photochemical (qP) and non-photochemical quenching (NPQ) of energy. The review presents the mechanistic characteristics that underline the key role of polyamines in the structure, function, and bioenergetics of the photosynthetic apparatus upon light adaptation and/or under stress conditions. By following this mechanism, it is feasible to make stress-sensitive plants to be tolerant by simply altering their polyamine composition (especially the ratio of putrescine to spermine), either chemically or by light regulation.
Collapse
Affiliation(s)
- Eleni Navakoudis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Greece; Department of Chemical Engineering, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Greece.
| |
Collapse
|
34
|
Han M, Xu M, Wang S, Wu L, Sun S, Su T. Effects of exogenous L-Glutamine as a sole nitrogen source on physiological characteristics and nitrogen use efficiency of poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:1-13. [PMID: 35007889 DOI: 10.1016/j.plaphy.2021.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
L-Glutamine (Gln) is a proteinogenic amino acid, N transporter and NH3 carrier, engaging in diversified pathways for synthesizing many important molecules. However, the effects of exogenous Gln on plant growth and development remain largely unknown. In this study, different concentrations of Gln were supplemented in the poplar hybrid 'Nanlin895' culture medium as a sole N source. Their effects on poplar growth, photosynthesis, N metabolism-related enzymes and metabolites were elucidated. Strikingly, 0.5 mM Gln-fed poplars showed no considerable growth compromise compared to the inorganic N control (CK-N), even though their N supply level was only half that of the CK-N control. What's more, their NUE was enhanced. In addition, 0.5 mM Gln treatment significantly increased the contents of amino acids in coordination with soluble sugars in the roots, while marginal effects in the leaves were observed compared to CK-N. By contrast, applying a high level of Gln (>0.5 mM) resulted in larger accumulation of amino acids and starch, but lower level of soluble sugars, particularly in the roots, followed by adverse effects on poplar biomass, photosynthesis, enzyme activities and NUE; consequently, poplar growth was inhibited. Collectively, these findings allow us to deduce that poplar plants are competent to take up and utilize Gln as a sole N source. When applied at an appropriate level, Gln could promote a dynamic equilibrium of N and C, conferring sound growth performance and additional benefit for the environment as indicated by higher NUE, lower N input and higher biocompatible nature than the inorganic N.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Shizhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuyue Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
35
|
Castañeda-Murillo CC, Rojas-Ortiz JG, Sánchez-Reinoso AD, Chávez-Arias CC, Restrepo-Díaz H. Foliar brassinosteroid analogue (DI-31) sprays increase drought tolerance by improving plant growth and photosynthetic efficiency in lulo plants. Heliyon 2022; 8:e08977. [PMID: 35243095 PMCID: PMC8873547 DOI: 10.1016/j.heliyon.2022.e08977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 02/14/2022] [Indexed: 01/03/2023] Open
Abstract
The use of agronomic alternatives such as plant hormone sprays has been considered a tool to mitigate drought stress. This research aimed to evaluate the use of foliar brassinosteroid analogue DI-31 (BRs) sprays on plant growth, leaf exchange and chlorophyll a fluorescence parameters, and biochemical variables in lulo (Solanum quitoense L. cv. septentrionale) seedlings grown under drought stress conditions. Seedlings were grown in plastic pots (3 L) using a mix between peat and sand (1:1 v/v) as substrate. Lulo plants were subjected to drought stress by suppressing 100% of the water needs at 30–37 and 73–80 days after transplanting (DAT). Foliar BRs analogue (DI-31) sprays were carried out at four different rates (0, 1, 2, 4, or 8 mL of analogue per liter) at different times (30, 33, 44, 60, 73, and 76 DAT). Drought stress caused a reduction in the Fv/Fm ratio, leaf gas exchange properties, total biomass, and relative water content. Foliar DI-31 sprays enhanced leaf photosynthesis in well-watered (WW) (∼10.7 μmol m−2 s−1) or water-stressed plants (WS) (∼6.1 μmol m−2 s−1) when lulo plants were treated at a dose of 4 and 8 mL·L−1 compared to their respective controls (0 mL·L−1 for WW: 8.83 μmol m−2 s−1 and WS: 2.01 μmol m−2 s−1). Also, DI-31 sprays enhanced the photochemical efficiency of PSII, and plant growth. They also increased the concentration of photosynthetic pigments (TChl and Cx + c) and reduced lipid peroxidation of membranes (MDA) under drought conditions. The results allow us to suggest that the use of DI-31 at a dose of 4 or 8 mL·L−1 can be a tool for managing water stress conditions caused by low water availability in the soil in lulo-producing areas to face situations of moderate water deficit at different times of the year.
Collapse
|
36
|
Zhang H, Sun X, Dai M. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100228. [PMID: 35059626 PMCID: PMC8760038 DOI: 10.1016/j.xplc.2021.100228] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
Drought is one of the main abiotic stresses that cause crop yield loss. Improving crop yield under drought stress is a major goal of crop breeding, as it is critical to food security. The mechanism of plant drought resistance has been well studied, and diverse drought resistance genes have been identified in recent years, but transferring this knowledge from the laboratory to field production remains a significant challenge. Recently, some new strategies have become research frontiers owing to their advantages of low cost, convenience, strong field operability, and/or environmental friendliness. Exogenous plant growth regulator (PGR) treatment and microbe-based plant biotechnology have been used to effectively improve crop drought tolerance and preserve yield under drought stress. However, our understanding of the mechanisms by which PGRs regulate plant drought resistance and of plant-microbiome interactions under drought is still incomplete. In this review, we summarize these two strategies reported in recent studies, focusing on the mechanisms by which these exogenous treatments regulate crop drought resistance. Finally, future challenges and directions in crop drought resistance breeding are discussed.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Na C, Ziwen Z, Yeyun L, Xianchen Z. Exogenously applied Spd and Spm enhance drought tolerance in tea plants by increasing fatty acid desaturation and plasma membrane H +-ATPase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:225-233. [PMID: 34915283 DOI: 10.1016/j.plaphy.2021.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/29/2023]
Abstract
Polyamines, due to their positive charges, bind to ROS Reactive oxygen species (ROS) thereby stabilizing the plasma membrane (PM). Drought is one of the main limiting factors affecting tea plant yield and quality. However, the effect of Spermidine (Spd) or Spermine (Spm) on membrane stability and fluidity in tea plants under drought stress is poorly understood. In this investigation, an exogenous supply of 1 mM Spd or Spm did not mitigate drought stress-induced damage, however, an exogenous supply of 0.2 mM Spd or Spm application significantly alleviated drought-induced damage in tea plants. To further illustrate the role of 0.2 mM Spd or Spm in maintaining membrane integrity and fluidity, the fatty acid percentage and PM H+-ATPase activity were analyzed. Spd and Spm application significantly increased PM H+-ATPase activity by 43.79% compared with that without the addition of polyamine under drought stress. In addition, exogenous application of Spd and Spm also significantly increased C18:3 by approximately 10%, hence alleviating drought-reduced fatty acid unsaturation. In contrast, Spd and Spm metabolic inhibitors dicyclohexylamine (DCHA) further impaired PM H+-ATPase activity and fatty acid desaturation under the drought + DCHA treatment compared with the drought treatment, respectively. Taken together, 0.2 mM Spd and Spm application significantly enhanced drought tolerance by increasing fatty acid unsaturation and maintaining PM H+-ATPase activity in tea plants. Therefore, foliar application of 0.2 mM Spd or Spm can be a potential foliar-spraying substances for improving tea drought tolerance.
Collapse
Affiliation(s)
- Chang Na
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zhou Ziwen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Li Yeyun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zhang Xianchen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
38
|
The effect of exogenous spermine application on some biochemichal and molecular properties in hordeum vulgare l. under both normal and drought stress. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
|
40
|
Kaur H, Kohli SK, Khanna K, Bhardwaj R. Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. PHYSIOLOGIA PLANTARUM 2021; 172:935-962. [PMID: 33686690 DOI: 10.1111/ppl.13389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Suboptimal availability of water limits plant growth, development, and performance. Drought is one of the leading factors responsible for worldwide crop yield reduction. In the future, owing to climate changes, more agricultural land will be affected by prolonged periods of water deficit. Thus, understanding the fundamental mechanism of drought response is a major scientific concern for improvement of crop production. To combat drought stress, plants deploy varied mechanistic strategies and alter their morphological, physiochemical, and molecular attributes. This helps plant to enhance water uptake and storage, reduce water loss and avoid wilting. Induction of several transcription factors and drought responsive genes leads to synthesis of stress proteins, regulation of water channels i.e. aquaporins and production of osmolytes that are essential for maintenance of osmotic balance at the cellular level. Self- and hormone-regulated signaling pathways are often stimulated by plants after receiving drought stress signals via secondary messengers, mitogen-activated protein kinases, and stress hormones. These signaling cascades often leads to stomatal closure and reduction in transpiration rates. Reduced carbon dioxide diffusion in chloroplast, lowered efficacy of photosystems, and other metabolic constraints limits the key regulatory photosynthetic process during water deficit. The impact of these stomatal and nonstomatal limitations varies with stress intensity, superimposed stresses and plant species. A clear understanding of the drought resistance process is thus important before adopting strategies for imparting drought tolerance in plants. These management practices at present include exogenous hormone application, breeding, and genetic engineering techniques for combating the water deficit issues.
Collapse
Affiliation(s)
- Harsimran Kaur
- PG Department of Agriculture, Plant Protection Division, Khalsa College, Amritsar, Punjab, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhmeen Kaur Kohli
- PG Department of Agriculture, Plant Protection Division, Khalsa College, Amritsar, Punjab, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
41
|
Abdel Razik ES, Alharbi BM, Pirzadah TB, Alnusairi GSH, Soliman MH, Hakeem KR. γ-Aminobutyric acid (GABA) mitigates drought and heat stress in sunflower (Helianthus annuus L.) by regulating its physiological, biochemical and molecular pathways. PHYSIOLOGIA PLANTARUM 2021; 172:505-527. [PMID: 32979274 DOI: 10.1111/ppl.13216] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 05/22/2023]
Abstract
Drought and heat stress are two dominant abiotic stress factors that often occur simultaneously in nature causing oxidative damage in plants and thus decline in yield. The present study was conducted to examine the γ-aminobutyric acid (GABA)-induced heat and drought tolerance in sunflower through physiological, biochemical and molecular analysis. The results showed that drought and heat stress triggered oxidative stress as revealed by enhanced level in hydrogen peroxide, malondialdehyde and electrolyte leakage. Moreover, the photosynthetic attributes such as photosynthetic rate, stomatal conductance and quantum efficiency declined when subjected to drought and heat stress. In this study, GABA treatment effectively alleviated the drought and heat-induced stress as reflected by significantly higher levels of proline, soluble sugar and total protein content. Besides, the data also revealed the direct relationship between antioxidant enzyme activities (superoxide dismutase, peroxidase, glutathione reductase, monodehydroascorbate peroxidase, ascorbate peroxidase) and the relative expression of genes (Heat Shock Proteins, Dehydrin, Osmotin, Aquaporin, Leaf Embryogenesis Protein), under drought and heat stress. Moreover, a significant increase in gene expression was observed upon GABA treatment with respect to control. This data suggest that GABA-induced drought and heat tolerance in sunflower could involve the improvement in osmolyte metabolism, gene expression and antioxidant enzyme activities and thus a rise in the GABA shunt which in turn provides intermediates during long-term drought and heat stress, thus maintaining homeostasis.
Collapse
Affiliation(s)
- Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, Alexandria, 21934, Egypt
| | - Basmah M Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Tanveer Bilal Pirzadah
- University Centre for Research and Development (UCRD), Chandigarh University, Mohali, 140301, India
| | - Ghalia S H Alnusairi
- Department of Biology, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21577, Saudi Arabia
| |
Collapse
|
42
|
Dong T, Xi L, Xiong B, Qiu X, Huang S, Xu W, Wang J, Wang B, Yao Y, Duan C, Tang X, Sun G, Wang X, Deng H, Wang Z. Drought resistance in Harumi tangor seedlings grafted onto different rootstocks. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:529-541. [PMID: 33516276 DOI: 10.1071/fp20242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In this study we analysed the influence of drought stress on the leaf morphological characteristics, osmotic adjustment substances, antioxidant enzymes, and resistance-related photosynthetic physiological indices of Harumi tangor plants grafted onto Poncirus trifoliata (Pt), Citrus junos (Cj), and Citrus tangerine (Ct). The leaf relative water content and leaf area of the three rootstocks decreased with increasing drought stress, with the smallest decrease in Cj. The relative conductivity and malondialdehyde content increased with increasing drought stress. Proline, total soluble sugar, soluble protein, and activities of superoxide dismutase, ascorbate peroxidase, and catalase increased with drought stress but decreased under severe drought stress, with Cj exhibiting the greatest increase in enzyme activity. The net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll a and b content were all lower than those of the control, whereas intercellular CO2 concentration increased with increasing drought stress. The initial fluorescence and maximal quantum yield of PSII were approximately equal for all rootstocks but increased with increasing drought stress severity. The combined analysis of physiological indicators, membership function, and principal components indicated that the drought resistance of grafted H. tangor decreased in the order Cj > Ct > Pt.
Collapse
Affiliation(s)
- Tiantian Dong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lijuan Xi
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xia Qiu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shengjia Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wenxin Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiaqi Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bozhi Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuan Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Changwen Duan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoyu Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; and Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; and Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; and Corresponding author.
| |
Collapse
|
43
|
An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.plgene.2020.100264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Jiménez-Arias D, García-Machado FJ, Morales-Sierra S, García-García AL, Herrera AJ, Valdés F, Luis JC, Borges AA. A Beginner's Guide to Osmoprotection by Biostimulants. PLANTS (BASEL, SWITZERLAND) 2021; 10:363. [PMID: 33668668 PMCID: PMC7917748 DOI: 10.3390/plants10020363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Water is indispensable for the life of any organism on Earth. Consequently, osmotic stress due to salinity and drought is the greatest threat to crop productivity. Ongoing climate change includes rising temperatures and less precipitation over large areas of the planet. This is leading to increased vulnerability to the drought conditions that habitually threaten food security in many countries. Such a scenario poses a daunting challenge for scientists: the search for innovative solutions to save water and cultivate under water deficit. A search for formulations including biostimulants capable of improving tolerance to this stress is a promising specific approach. This review updates the most recent state of the art in the field.
Collapse
Affiliation(s)
- David Jiménez-Arias
- Chemical Plant Defence Activators Group, Department of Agrobiology, IPNA-CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain; (F.J.G.-M.); (A.L.G.-G.); (A.J.H.)
| | - Francisco J. García-Machado
- Chemical Plant Defence Activators Group, Department of Agrobiology, IPNA-CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain; (F.J.G.-M.); (A.L.G.-G.); (A.J.H.)
- Applied Plant Biology Group (GBVA), Department of Botany, Ecology and Plant Physiology–Faculty of Pharmacy, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Tenerife, Canary Islands, Spain; (S.M.-S.); (F.V.); (J.C.L.)
| | - Sarai Morales-Sierra
- Applied Plant Biology Group (GBVA), Department of Botany, Ecology and Plant Physiology–Faculty of Pharmacy, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Tenerife, Canary Islands, Spain; (S.M.-S.); (F.V.); (J.C.L.)
| | - Ana L. García-García
- Chemical Plant Defence Activators Group, Department of Agrobiology, IPNA-CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain; (F.J.G.-M.); (A.L.G.-G.); (A.J.H.)
- Applied Plant Biology Group (GBVA), Department of Botany, Ecology and Plant Physiology–Faculty of Pharmacy, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Tenerife, Canary Islands, Spain; (S.M.-S.); (F.V.); (J.C.L.)
| | - Antonio J. Herrera
- Chemical Plant Defence Activators Group, Department of Agrobiology, IPNA-CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain; (F.J.G.-M.); (A.L.G.-G.); (A.J.H.)
| | - Francisco Valdés
- Applied Plant Biology Group (GBVA), Department of Botany, Ecology and Plant Physiology–Faculty of Pharmacy, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Tenerife, Canary Islands, Spain; (S.M.-S.); (F.V.); (J.C.L.)
| | - Juan C. Luis
- Applied Plant Biology Group (GBVA), Department of Botany, Ecology and Plant Physiology–Faculty of Pharmacy, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Tenerife, Canary Islands, Spain; (S.M.-S.); (F.V.); (J.C.L.)
| | - Andrés A. Borges
- Chemical Plant Defence Activators Group, Department of Agrobiology, IPNA-CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain; (F.J.G.-M.); (A.L.G.-G.); (A.J.H.)
| |
Collapse
|
45
|
Naz R, Sarfraz A, Anwar Z, Yasmin H, Nosheen A, Keyani R, Roberts TH. Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:285-300. [PMID: 33418188 DOI: 10.1016/j.plaphy.2020.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/19/2020] [Indexed: 05/27/2023]
Abstract
Application of the growth regulator salicylic acid (SA) and the polyamine spermidine (Spd) can be used to manage various plant abiotic stresses. We aimed to evaluate the sole and combined effects of SA and Spd on maize (Zea mays) under individual and combined drought and chromium (Cr) stress. Drought, Cr, and drought + Cr treatments caused oxidative stress by inducing higher production of reactive oxygen species (H2O2, O2-), enhanced malondialdehyde content and increased relative membrane permeability. Increased oxidative stress and higher Cr uptake in the host plant reduced the content of carotenoids, other photosynthetic pigments and protein, and changed carbohydrate metabolism. Combined drought + Cr stress was more damaging for the growth of maize plants than the individual stresses. Exogenous treatments of SA and Spd alleviated the adverse effects of drought and Cr toxicity, reflected by accumulations of osmolytes, antioxidants and endogenous polyamines. Single applications of Spd (0.1 mM) increased plant height, shoot fresh weight, leaf area, above-ground dry matter accumulation and polyamine content under drought, Cr, and drought + Cr stress conditions. However, the combined treatment SA + Spd (0.25 mM + 0.05 mM) was more effective in increasing protein and water contents, photosynthetic pigments, and carotenoids. The same treatment increased Cr tolerance in the maize plants by decreasing uptake of this heavy metal from root to shoot. The SA + Spd treatment also decreased oxidative stress by promoting antioxidant enzyme activities, and enhanced levels of proline, soluble sugars, and carbohydrate contents under individual and combined stress conditions. Results indicate that the combined half-dose application of SA + Spd may be utilized to boost the tolerance in maize under individual as well as combined drought and Cr stress conditions.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Pakistan.
| | - Amina Sarfraz
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Zahid Anwar
- Department of Computer Science, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Thomas H Roberts
- Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
46
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O, Zepeda-Jazo I, Shabala S. Modulation of Ion Transport Across Plant Membranes by Polyamines: Understanding Specific Modes of Action Under Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:616077. [PMID: 33574826 PMCID: PMC7870501 DOI: 10.3389/fpls.2020.616077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
This work critically discusses the direct and indirect effects of natural polyamines and their catabolites such as reactive oxygen species and γ-aminobutyric acid on the activity of key plant ion-transporting proteins such as plasma membrane H+ and Ca2+ ATPases and K+-selective and cation channels in the plasma membrane and tonoplast, in the context of their involvement in stress responses. Docking analysis predicts a distinct binding for putrescine and longer polyamines within the pore of the vacuolar TPC1/SV channel, one of the key determinants of the cell ionic homeostasis and signaling under stress conditions, and an additional site for spermine, which overlaps with the cytosolic regulatory Ca2+-binding site. Several unresolved problems are summarized, including the correct estimates of the subcellular levels of polyamines and their catabolites, their unexplored effects on nucleotide-gated and glutamate receptor channels of cell membranes and Ca2+-permeable and K+-selective channels in the membranes of plant mitochondria and chloroplasts, and pleiotropic mechanisms of polyamines' action on H+ and Ca2+ pumps.
Collapse
Affiliation(s)
- Igor Pottosin
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Biomedical Center, University of Colima, Colima, Mexico
| | | | | | - Isaac Zepeda-Jazo
- Food Genomics Department, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
47
|
Zulfiqar F, Ashraf M. Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. PLANT MOLECULAR BIOLOGY 2021; 105:11-41. [PMID: 32990920 DOI: 10.1007/s11103-020-01077-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change. Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant's antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | | |
Collapse
|
48
|
Chávez-Arias CC, Ligarreto-Moreno GA, Ramírez-Godoy A, Restrepo-Díaz H. Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View. FRONTIERS IN PLANT SCIENCE 2021; 12:702841. [PMID: 34367221 PMCID: PMC8341156 DOI: 10.3389/fpls.2021.702841] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 05/10/2023]
Abstract
Maize (Zea mays L.) is one of the main cereals grown around the world. It is used for human and animal nutrition and also as biofuel. However, as a direct consequence of global climate change, increased abiotic and biotic stress events have been reported in different regions of the world, which have become a threat to world maize yields. Drought and heat are environmental stresses that influence the growth, development, and yield processes of maize crops. Plants have developed dynamic responses at the physiological, biochemical, and molecular levels that allow them to escape, avoid and/or tolerate unfavorable environmental conditions. Arthropod herbivory can generate resistance or tolerance responses in plants that are associated with inducible and constitutive defenses. Increases in the frequency and severity of abiotic stress events (drought and heat), as a consequence of climate change, can generate critical variations in plant-insect interactions. However, the behavior of herbivorous arthropods under drought scenarios is not well understood, and this kind of stress may have some positive and negative effects on arthropod populations. The simultaneous appearance of different environmental stresses and biotic factors results in very complex plant responses. In this review, recent information is provided on the physiological, biochemical, and molecular responses of plants to the combination of drought, heat stress, and the effect on some arthropod pests of interest in the maize crop.
Collapse
|
49
|
Szuba A, Marczak Ł, Ratajczak I. Metabolome adjustments in ectomycorrhizal Populus × canescens associated with strong promotion of plant growth by Paxillus involutus despite a very low root colonization rate. TREE PHYSIOLOGY 2020; 40:1726-1743. [PMID: 32761190 DOI: 10.1093/treephys/tpaa100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/13/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
It is believed that resource exchange, which is responsible for intensified growth of ectomycorrhizal plants, occurs in the fungus-plant interface. However, increasing evidence indicates that such intensified plant growth, especially root growth promotion, may be independent of root colonization. Nevertheless, the molecular adjustments in low-colonized plants remain poorly understood. Here, we analysed the metabolome of Populus × canescens microcuttings characterized by significantly increased growth triggered by inoculation with Paxillus involutus, which successfully colonized only 2.1 ± 0.3% of root tips. High-throughput metabolomic analyses of leaves, stems and roots of Populus × canescens microcuttings supplemented with leaf proteome data were performed to determine ectomycorrhiza-triggered changes in N-, P- and C-compounds. The molecular adjustments were relatively low in low-colonized (M) plants. Nevertheless, the levels of foliar phenolic compounds were significantly increased in M plants. Increases of total soluble carbohydrates, starch as well as P concentrations were also observed in M leaves along with the increased abundance of the majority of glycerophosphocholines detected in M roots. However, compared with the leaves of the non-inoculated controls, M leaves presented lower concentrations of both N and most photosynthesis-related proteins and all individual mono- and disaccharides. In M stems, only a few compounds with different abundances were detected, including a decrease in carbohydrates, which was also detected in M roots. Thus, these results suggest that the growth improvement of low-colonized poplar trees is independent of an increased photosynthesis rate, massively increased resource (C:N) exchange and delivery of most nutrients to leaves. The mechanism responsible for poplar growth promotion remains unknown but may be related to increased P uptake, subtle leaf pigment changes, the abundance of certain photosynthetic proteins, slight increases in stem and root amino acid levels and the increase in flavonoids (increasing the antioxidant capacity in poplar), all of which improve the fitness of low-colonized poplars.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62035 Kórnik, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14 PL-61704 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, PL-60625 Poznan, Poland
| |
Collapse
|
50
|
Li Z, Cheng B, Peng Y, Zhang Y. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:185-194. [PMID: 33120110 DOI: 10.1016/j.plaphy.2020.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/17/2020] [Indexed: 05/20/2023]
Abstract
The frequency and severity of global abiotic stresses such as heat, drought, and salt stress are increasing due to climate changes. Objectives of this study were to investigate effects of γ-aminobutyric acid (GABA) priming on inducing plants' acclimation to abiotic stress associated with alterations of endogenous polyamines (PAs), amino acids, and sugars in creeping bentgrass (Agrostis stolonifera). The pretreatment with GABA fertigation significantly alleviated heat-, drought-, and salt-induced declines in leaf relative water content, chlorophyll content, cell membrane stability, photochemical efficiency (Fv/Fm), and performance index on absorption basis (PIABS), and also further decreased stress-caused decline in osmotic potential in leaves. The GABA priming uniformly increased total PAs, spermidine, amino acids involved in GABA shunt (GABA, glutamic acid, and alanine), and other amino acids (phenylalanine, aspartic acid, and glycine) accumulation under heat, drought, and salt stress. The GABA priming also significantly improved methionine content under heat and drought stress, maltose, galactose, and talose content under heat and salt stress, or cysteine, serine, and threonine content under drought and salt stress. Interestingly, the GABA priming uniquely led to significant accumulation of spermine, fructose, and glucose under heat stress, putrescine, proline, and mannose under drought stress, or arginine, trehalose and xylose under salt stress, respectively. These particular PAs, sugars, and amino acids differentially or commonly regulated by GABA could play critical roles in osmotic adjustment, osmoprotection, antioxidant, energy source, and signal molecular for creeping bentgrass to acclimate diverse abiotic stresses.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|