1
|
Manickam S, Rajagopalan VR, Kambale R, Rajasekaran R, Kanagarajan S, Muthurajan R. Plant Metabolomics: Current Initiatives and Future Prospects. Curr Issues Mol Biol 2023; 45:8894-8906. [PMID: 37998735 PMCID: PMC10670879 DOI: 10.3390/cimb45110558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Plant metabolomics is a rapidly advancing field of plant sciences and systems biology. It involves comprehensive analyses of small molecules (metabolites) in plant tissues and cells. These metabolites include a wide range of compounds, such as sugars, amino acids, organic acids, secondary metabolites (e.g., alkaloids and flavonoids), lipids, and more. Metabolomics allows an understanding of the functional roles of specific metabolites in plants' physiology, development, and responses to biotic and abiotic stresses. It can lead to the identification of metabolites linked with specific traits or functions. Plant metabolic networks and pathways can be better understood with the help of metabolomics. Researchers can determine how plants react to environmental cues or genetic modifications by examining how metabolite profiles change under various crop stages. Metabolomics plays a major role in crop improvement and biotechnology. Integrating metabolomics data with other omics data (genomics, transcriptomics, and proteomics) provides a more comprehensive perspective of plant biology. This systems biology approach enables researchers to understand the complex interactions within organisms.
Collapse
Affiliation(s)
- Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Raghu Rajasekaran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| |
Collapse
|
2
|
Alyahya N, Taybi T. Comparative transcriptomic profiling reveals differentially expressed genes and important related metabolic pathways in shoots and roots of a Saudi wheat cultivar (Najran) under salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1225541. [PMID: 37588415 PMCID: PMC10425591 DOI: 10.3389/fpls.2023.1225541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023]
Abstract
High salinity of soil is a threatening constraint for agricultural output worldwide. The adverse effects of salt stress on plants can be revealed in different manners, from phenotypic to genetic changes. A comparative RNA-Sequencing analysis was done in roots and shoots of bread wheat, Najran cultivar between plants grown under unstressed control condition (0 mM NaCl) and salt treatment (200 mM NaCl). More than 135 million and 137 million pair-end reads were obtained from root and shoot samples, respectively. Of which, the mapped reads to Triticum aestivum genome IWGSC_V51 ranged from 83.9% to 85% in the root and 71.6% to 79% in the shoot. Interestingly, a comparison of transcriptomic profiling identified that total number of significantly differentially expressed genes (DEGs) examined in the roots was much higher than that found in the shoots under NaCl treatment, 5829 genes were differentially expressed in the roots whereas 3495 genes in the shoots. The salt-induced change in the transcriptome was confirmed by RT-qPCR using a set of randomly selected genes. KEGG enrichment analysis classified all DEGs in both roots and shoots into 25 enriched KEGG pathways from three main KEGG classes: Metabolism, organismal systems and genetic information processing. According to that, the most significantly regulated pathways in the root and shoot tissues were glutathione metabolism and biosynthesis of secondary metabolites such as phenylpropanoids and galactose metabolism suggesting that these pathways might participate in wheat salt tolerance. The findings highlight the importance of the control of oxidative stress via Glutathione and phenylpropanoids and the regulation of galactose metabolism in the roots and shoots for salt-tolerance in wheat. They open promising prospects for engineering salt-tolerance in this important crop via targeted improvement of the regulation of key genes in the production of these compounds.
Collapse
Affiliation(s)
- Norah Alyahya
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Tahar Taybi
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Han X, Yang R, Zhang L, Wei Q, Zhang Y, Wang Y, Shi Y. A Review of Potato Salt Tolerance. Int J Mol Sci 2023; 24:10726. [PMID: 37445900 DOI: 10.3390/ijms241310726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Potato is the world's fourth largest food crop. Due to limited arable land and an ever-increasing demand for food from a growing population, it is critical to increase crop yields on existing acreage. Soil salinization is an increasing problem that dramatically impacts crop yields and restricts the growing area of potato. One possible solution to this problem is the development of salt-tolerant transgenic potato cultivars. In this work, we review the current potato planting distribution and the ways in which it overlaps with salinized land, in addition to covering the development and utilization of potato salt-tolerant cultivars. We also provide an overview of the current progress toward identifying potato salt tolerance genes and how they may be deployed to overcome the current challenges facing potato growers.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ruijie Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yazhi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
5
|
Chatzigianni M, Savvas D, Papadopoulou EA, Aliferis KA, Ntatsi G. Combined Effect of Salt Stress and Nitrogen Level on the Primary Metabolism of Two Contrasting Hydroponically Grown Cichorium spinosum L. Ecotypes. Biomolecules 2023; 13:biom13040607. [PMID: 37189356 DOI: 10.3390/biom13040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Stamnagathi (Cichorium spinosum L.) is an indigenous plant species well-known for its health-promoting properties. Salinity is a long-term issue with devastating consequences on land and farmers. Nitrogen (N) constitutes a crucial element for plant growth and development (chlorophyll, primary metabolites, etc.). Thus, it is of paramount importance to investigate the impact of salinity and N supply on plants’ metabolism. Within this context, a study was conducted aiming to assess the impact of salinity and N stress on the primary metabolism of two contrasting ecotypes of stamnagathi (montane and seaside). Both ecotypes were exposed to three different salinity levels (0.3 mM—non-saline treatment, 20 mM—medium, and 40 mM—high salinity level) combined with two different total-N supply levels: a low-N at 4 mM and a high-N at 16 mM, respectively. The differences between the two ecotypes revealed the variable responses of the plant under the applied treatments. Fluctuations were observed at the level of TCA cycle intermediates (fumarate, malate, and succinate) of the montane ecotype, while the seaside ecotype was not affected. In addition, the results showed that proline (Pro) levels increased in both ecotypes grown under a low N-supply and high salt stress, while other osmoprotectant metabolites such as γ-aminobutyric acid (GABA) exhibited variable responses under the different N supply levels. Fatty acids such as α-linolenate and linoleate also displayed variable fluctuations following plant treatments. The carbohydrate content of the plants, as indicated by the levels of glucose, fructose, α,α-trehalose, and myo-inositol, was significantly affected by the applied treatments. These findings suggest that the different adaptation mechanisms among the two contrasting ecotypes could be strongly correlated with the observed changes in their primary metabolism. This study also suggests that the seaside ecotype may have developed unique adaptation mechanisms to cope with high N supply and salinity stress, making it a promising candidate for future breeding programs aimed at developing stress tolerant varieties of C. spinosum L.
Collapse
|
6
|
Sestili S, Platani C, Palma D, Dattoli MA, Beleggia R. Can the use of magnetized water affect the seedling development and the metabolite profiles of two different species: Lentil and durum wheat? FRONTIERS IN PLANT SCIENCE 2023; 13:1066088. [PMID: 36865947 PMCID: PMC9971934 DOI: 10.3389/fpls.2022.1066088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Seedlings of durum wheat and lentil were utilized to investigate the efficiency of magnetic water on growth and metabolic epicotyl profile. Tap water was passed through a magnetic device with a flow rate of max. 12900 - 13200 Gauss (G). Seeds and plantlets were grown on sand-free paper soaked by magnetized water, with unmagnetized tap water used in a control group. The growth parameters were collected at three time points (48, 96, and 144 hours after treatment), the same times at which metabolomic analysis was conducted on seeds, roots, and epicotyls. Although the effects varied with the species, tissues, and time point considered, compared with tap water (TW), the use of magnetized water treatment (MWT) led to higher root elongation in both genotypes. On the contrary, epicotyl length was not affected by treatment both in durum wheat and lentil. The results indicate that the use of magnetized water in agriculture can be considered a sustainable technology to promote plant development and quality with reduced and more efficient water usage, leading to cost-saving and environmental protection.
Collapse
Affiliation(s)
- Sara Sestili
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Cristiano Platani
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Daniela Palma
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Maria Assunta Dattoli
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) Research Centre for Cereals and Industrial Crops, Foggia FG, Italy
| |
Collapse
|
7
|
Sedlacko EM, Heuberger AL, Chaparro JM, Cath TY, Higgins CP. Metabolomics reveals primary response of wheat (Triticum aestivum) to irrigation with oilfield produced water. ENVIRONMENTAL RESEARCH 2022; 212:113547. [PMID: 35660401 DOI: 10.1016/j.envres.2022.113547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The reuse of oilfield produced water (PW) for agricultural irrigation has received increased attention for utility in drought-stricken regions. It was recently demonstrated that PW irrigation can affect physiological processes in food crops. However, metabolomic evaluations are important to further discern specific mechanisms of how PW may contribute as a plant-environmental stressor. Herein, the primary metabolic responses of wheat irrigated with PW and matching salinity controls were investigated. Non-targeted gas chromatography mass spectrometry (GC-MS) metabolomics was combined with multivariate analysis and revealed that PW irrigation altered the primary metabolic profiles of both wheat leaf and grain. Over 600 compounds (183 annotated metabolites) were detected that varied between controls (salinity control and tap water) and PW irrigated plants. While some of these changed metabolites are related to salinity stress, over half were found to be unique to PW. The primary metabolites exhibiting changes in abundance in leaf and grain tissues were amines/amino acids, organic acids, and saccharides. Metabolite pathway analysis revealed that amino acid metabolism, sugar metabolism, and nitrogen remobilization are all impacted by PW irrigation, independent of regular plant responses to salinity stress. These data, when combined with prior physiological studies, support a multi-faceted, physio-metabolic response of wheat to the unique stressor imposed by irrigation with PW.
Collapse
Affiliation(s)
- Erin M Sedlacko
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA; Analytical Resources Core - Bioanalysis and Omics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
8
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, V. VT, Sheoran S, T. RK, Longmei N, Rakshit S, Siddique KHM. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity (Edinb) 2022; 128:497-518. [DOI: 10.1038/s41437-022-00516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
|
10
|
Gohari G, Zareei E, Rostami H, Panahirad S, Kulak M, Farhadi H, Amini M, Martinez-Ballesta MDC, Fotopoulos V. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112402. [PMID: 34090105 DOI: 10.1016/j.ecoenv.2021.112402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
High levels of soil salinity can cause substantial decline in growth and productivity of crops worldwide, thus representing a major threat to global agriculture. In recent years, engineered nanoparticles (NPs) have been deemed as a promising alternative in combating abiotic stress factors, such as salinity. In this context, the present study was designed to explore the potential of cerium oxide nanoparticles (CeO2NPs) in alleviating salt stress in grapevine (Vitis vinifera L. cv. Flame Seedless) cuttings. Specifically, the interaction between CeO2 NPs (25, 50 and 100 mg L-1) and salinity (25 and 75 mM NaCl) was evaluated by assaying an array of agronomic, physiological, analytical and biochemical parameters. Treatments with CeO2 NPs, in general, alleviated the adverse impacts of salt stress (75 mM NaCl) significantly improving relevant agronomic traits of grapevine. CeO2 NPs significantly ameliorated chlorophyll damage under high levels of salinity. Furthermore, the presence of CeO2 NPs attenuated salinity-induced damages in grapevine as indicated by lower levels of proline, MDA and EL; however, H2O2 content was not ameliorated by the presence of CeO2 NPs under salt stress. Additionally, salinity caused substantial increases in enzymatic activities of GP, APX and SOD, compared with control plants. Similar to stress conditions, all concentrations of CeO2 NPs triggered APX activity, while the highest concentration of CeO2 NPs significantly increased GP activity. However, CeO2 NPs did not significantly modify SOD activity. Considering mineral nutrient profile, salinity increased Na and Cl content as well as Na/K ratio, while it decreased K, P and Ca contents. Nevertheless, the presence of CeO2 NPs did not lead to significant alterations in Na, K and P content of salt-stressed plants. Taken together, current findings suggest that CeO2 NPs could be employed as promising salt-stress alleviating agents in grapevine.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Elnaz Zareei
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Havzhin Rostami
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Turkey
| | - Habib Farhadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mojtaba Amini
- Department of Chemistry, Faculty of Sciences, University of Maragheh, Maragheh, Iran; Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
11
|
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int J Mol Sci 2021; 22:ijms22179326. [PMID: 34502233 PMCID: PMC8430727 DOI: 10.3390/ijms22179326] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
- Correspondence: (M.H.); (M.F.)
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Khussboo Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
12
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
13
|
Quitadamo F, De Simone V, Beleggia R, Trono D. Chitosan-Induced Activation of the Antioxidant Defense System Counteracts the Adverse Effects of Salinity in Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:1365. [PMID: 34371568 PMCID: PMC8309458 DOI: 10.3390/plants10071365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
The present study was carried out with the aim of (i) evaluating the effect of chitosan (CTS) on the growth of durum wheat under salinity and (ii) examining CTS-regulated mechanisms of salinity tolerance associated with the antioxidant defense system. To achieve these goals, durum wheat seedlings were treated with CTS at different molecular weight, low (L-CTS, 50-190 kDa), medium (M-CTS, 190-310 kDa) and high (H-CTS, 310-375 kDa). The results obtained show that exposure to 200 mM NaCl reduced the shoot and the root dried biomass by 38% and 59%, respectively. The growth impairment induced by salinity was strongly correlated with an increase in the superoxide anion production (5-fold), hydrogen peroxide content (2-fold) and malondialdehyde (MDA) content (4-fold). Seedlings responded to the oxidative stress triggered by salinity with an increase in the total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant activity (TAA) by 67%, 51% and 32%, respectively. A salt-induced increase in the activity of the antioxidant enzymes superoxide dismutase and catalase (CAT) of 89% and 86%, respectively, was also observed. Treatment of salt-stressed seedlings with exogenous CTS significantly promoted seedling growth, with the strongest effects observed for L-CTS and M-CTS, which increased the shoot biomass of stressed seedlings by 32% and 44%, respectively, whereas the root dried biomass increased by 87% and 64%, respectively. L-CTS and M-CTS treatments also decreased the superoxide anion production (57% and 59%, respectively), the hydrogen peroxide content (35% and 38%, respectively) and the MDA content (48% and 56%, respectively) and increased the TPC (23% and 14%, respectively), the TFC (19% and 10%, respectively), the TAA (up to 10% and 7%, respectively) and the CAT activity (29% and 20%, respectively). Overall, our findings indicate that CTS exerts its protective role against the oxidative damages induced by salinity by enhancing the antioxidant defense system. L-CTS and M-CTS were the most effective in alleviating the adverse effect of NaCl, thus demonstrating that the CTS action is strictly related to its molecular weight.
Collapse
Affiliation(s)
| | | | | | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e, Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (F.Q.); (V.D.S.); (R.B.)
| |
Collapse
|
14
|
Saia S, Corrado G, Vitaglione P, Colla G, Bonini P, Giordano M, Stasio ED, Raimondi G, Sacchi R, Rouphael Y. An Endophytic Fungi-Based Biostimulant Modulates Volatile and Non-Volatile Secondary Metabolites and Yield of Greenhouse Basil ( Ocimum basilicum L.) through Variable Mechanisms Dependent on Salinity Stress Level. Pathogens 2021; 10:797. [PMID: 34201640 PMCID: PMC8308794 DOI: 10.3390/pathogens10070797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023] Open
Abstract
Salinity in water and soil is one of the major environmental factors limiting the productivity of agronomic and horticultural crops. In basil (Ocimum basilicum L., Lamiaceae) and other Ocimum species, information on the plant response to mild salinity levels, often induced by the irrigation or fertigation systems, is scarce. In the present work, we tested the effectiveness of a microbial-based biostimulant containing two strains of arbuscular mycorrhiza fungi (AMF) and Trichoderma koningii in sustaining greenhouse basil yield traits, subjected to two mild salinity stresses (25 mM [low] and 50 mM [high] modulated by augmenting the fertigation osmotic potential with NaCl) compared to a non-stressed control. The impact of salinity stress was further appraised in terms of plant physiology, morphological ontogenesis and composition in polyphenols and volatile organic compounds (VOC). As expected, increasing the salinity of the solution strongly depressed the plant yield, nutrient uptake and concentration, reduced photosynthetic activity and leaf water potential, increased the Na and Cl and induced the accumulation of polyphenols. In addition, it decreased the concentration of Eucalyptol and β-Linalool, two of its main essential oil constituents. Irrespective of the salinity stress level, the multispecies inoculum strongly benefited plant growth, leaf number and area, and the accumulation of Ca, Mg, B, p-coumaric and chicoric acids, while it reduced nitrate and Cl concentrations in the shoots and affected the concentration of some minor VOC constituents. The benefits derived from the inoculum in term of yield and quality harnessed different mechanisms depending on the degree of stress. under low-stress conditions, the inoculum directly stimulated the photosynthetic activity after an increase of the Fe and Mn availability for the plants and induced the accumulation of caffeic and rosmarinic acids. under high stress conditions, the inoculum mostly acted directly on the sequestration of Na and the increase of P availability for the plant, moreover it stimulated the accumulation of polyphenols, especially of ferulic and chicoric acids and quercetin-rutinoside in the shoots. Notably, the inoculum did not affect the VOC composition, thus suggesting that its activity did not interact with the essential oil biosynthesis. These results clearly indicate that beneficial inocula constitute a valuable tool for sustaining yield and improving or sustaining quality under suboptimal water quality conditions imposing low salinity stress on horticultural crops.
Collapse
Affiliation(s)
- Sergio Saia
- Department Veterinary Sciences, University of Pisa, via delle Piagge 2, 56129 Pisa, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Paolo Bonini
- NGAlab, La Riera de Gaia, 43762 Tarragona, Spain
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Raffaele Sacchi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
15
|
Li H, Yue H, Li L, Liu Y, Zhang H, Wang J, Jiang X. Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express 2021; 11:74. [PMID: 34032933 PMCID: PMC8149540 DOI: 10.1186/s13568-021-01237-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022] Open
Abstract
Crop performance is seriously affected by high salt concentrations in soils. To develop improved seed pre-sowing treatment technologies, it is crucial to improve the salt tolerance of seed germination. Here, we isolated and identified the strain Bacillus sp. MGW9 and developed the seed biostimulant MGW9. The effects of seed biopriming with the seed biostimulant MGW9 in maize (Zea mays L.) under saline conditions were studied. The results show that the strain Bacillus sp. MGW9 has characteristics such as salt tolerance, nitrogen fixation, phosphorus dissolution, and indole-3-acetic acid production. Seed biopriming with the seed biostimulant MGW9 enhanced the performance of maize during seed germination under salinity stress, improving the germination energy, germination percentage, shoot/seedling length, primary root length, shoot/seedling fresh weight, shoot/seedling dry weight, root fresh weight and root dry weight. Seed biostimulant MGW9 biopriming also alleviated the salinity damage to maize by improving the relative water content, chlorophyll content, proline content, soluble sugar content, root activity, and activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, while decreasing the malondialdehyde content. In particular, the field seedling emergence of maize seeds in saline-alkali soil can be improved by biopriming with the seed biostimulant MGW9. Therefore, maize seed biopriming with the seed biostimulant MGW9 could be an effective approach to overcoming the inhibitory effects of salinity stress and promoting seed germination and seedling growth.
Collapse
|
16
|
Abstract
Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.
Collapse
|
17
|
Dos Santos Araújo G, de Oliveira Paula-Marinho S, de Paiva Pinheiro SK, de Castro Miguel E, de Sousa Lopes L, Camelo Marques E, de Carvalho HH, Gomes-Filho E. H 2O 2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110774. [PMID: 33487358 DOI: 10.1016/j.plantsci.2020.110774] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 05/21/2023]
Abstract
Hydrogen peroxide priming has emerged as a powerful strategy to trigger multiple responses involved in plant acclimation that reinforce tolerance to abiotic stresses, including salt stress. Thus, this study aimed to investigate the impact of foliar H2O2 priming on the physiological, biochemical, and ultrastructural traits related to photosynthesis of salt-stressed plants. Besides, we provided comparative leaf metabolomic profiles of Zea mays plants under such conditions. For this, H2O or H2O2 pretreated plants were grown under saline conditions for 12-days. Salinity drastically affected photosynthetic parameters and structural chloroplasts integrity, also increased reactive oxygen species contents promoting disturbance in the plant metabolism when compared to non-saline conditions. Our results suggest that H2O2-pretreated plants improved photosynthetic performance avoiding salinity-induced energy excess and ultrastructural damage by preserving stacking thylakoids. It displayed modulation of some metabolites, as arabitol, glucose, asparagine, and tyrosine, which may contribute to the maintenance of osmotic balance and reduced oxidative stress. Hence, our study brings new insights into an understanding of plant acclimation to salinity by H2O2 priming based on photosynthesis maintenance and metabolite modulation.
Collapse
Affiliation(s)
| | | | | | - Emílio de Castro Miguel
- Department of Metallurgical and Materials Engineering and Analytical Center, Federal University of Ceará, Fortaleza, Brazil.
| | | | - Elton Camelo Marques
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil.
| | | | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology and National Institute of Science and Technology in Salinity (INCTSal/CNPq), Federal University of Ceará, Pici Campus St., 60455-760, Fortaleza, CE, Brazil.
| |
Collapse
|
18
|
Hamooh BT, Sattar FA, Wellman G, Mousa MAA. Metabolomic and Biochemical Analysis of Two Potato ( Solanum tuberosum L.) Cultivars Exposed to In Vitro Osmotic and Salt Stresses. PLANTS 2021; 10:plants10010098. [PMID: 33418964 PMCID: PMC7825055 DOI: 10.3390/plants10010098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
Globally, many crop production areas are threatened by drought and salinity. Potato (Solanum tuberosum L.) is susceptible to these challenging environmental conditions. In this study, an in vitro approach was employed to compare the tolerance of potato cultivars ‘BARI-401’ (red skin) and ‘Spunta’ (yellow skin). To simulate ionic and osmotic stress, MS media was supplemented with lithium chloride (LiCl 20 mM) and mannitol (150 mM). GC-MS and spectrophotometry techniques were used to determine metabolite accumulation. Other biochemical properties, such as total phenols concentration (TPC), total flavonoids concentration (TFC), antioxidant capacity (DPPH free radical scavenging capacity), polyphenol oxidase (PPO), and peroxidase (POD) activities, were also measured. The two cultivars respond differently to ionic and osmotic stress treatments, with Spunta accumulating more defensive metabolites in response, indicating a higher level of tolerance. While further investigation of the physiological and biochemical responses of these varieties to drought and salinity is required, the approach taken in this paper provides useful information prior to open field evaluation.
Collapse
Affiliation(s)
- Bahget Talat Hamooh
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Farooq Abdul Sattar
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: or (F.A.S.); (M.A.A.M.)
| | - Gordon Wellman
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;
| | - Magdi Ali Ahmed Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Vegetables, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
- Correspondence: or (F.A.S.); (M.A.A.M.)
| |
Collapse
|
19
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
20
|
First Evidence of a Protective Effect of Plant Bioactive Compounds against H 2O 2-Induced Aconitase Damage in Durum Wheat Mitochondria. Antioxidants (Basel) 2020; 9:antiox9121256. [PMID: 33321766 PMCID: PMC7763331 DOI: 10.3390/antiox9121256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
In order to contribute to the understanding of the antioxidant behavior of plant bioactive compounds with respect to specific subcellular targets, in this study, their capability to protect aconitase activity from oxidative-mediated dysfunction was evaluated for the first time in plant mitochondria. Interest was focused on the Krebs cycle enzyme catalyzing the citrate/isocitrate interconversion via cis-aconitate, as it possesses a [4Fe-4S]2+ cluster at the active site, making it an early and highly sensitive target of reactive oxygen species (ROS)-induced oxidative damage. In particular, the effect on the aconitase reaction of five natural phenols, including ferulic acid, apigenin, quercetin, resveratrol, and curcumin, as well as of the isothiocyanate sulforaphane, was investigated in highly purified mitochondria obtained from durum wheat (DWM). Interestingly, a short-term (10 min) DWM pre-treatment with all investigated compounds, applied at 150 µM (75 µM in the case of resveratrol), completely prevented aconitase damage induced by a 15 min exposure of mitochondria to 500 µM H2O2. Curcumin and quercetin were also found to completely recover DWM-aconitase activity when phytochemical treatment was performed after H2O2 damage. In addition, all tested phytochemicals (except ferulic) induced a significant increase of aconitase activity in undamaged mitochondria. On the contrary, a relevant protective and recovery effect of only quercetin treatment was observed in terms of the aconitase activity of a commercial purified mammalian isoform, which was used for comparison. Overall, the results obtained in this study may suggest a possible role of phytochemicals in preserving plant mitochondrial aconitase activity, as well as energy metabolism, against oxidative damage that may occur under environmental stress conditions. Further investigations are needed to elucidate the physiological role and the mechanism responsible for this short-term protective effect.
Collapse
|
21
|
The Molecular and Functional Characterization of the Durum Wheat Lipoxygenase TdLOX2 Suggests Its Role in Hyperosmotic Stress Response. PLANTS 2020; 9:plants9091233. [PMID: 32962020 PMCID: PMC7570197 DOI: 10.3390/plants9091233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022]
Abstract
In plants, lipoxygenases (LOXs) are involved in various processes, such as growth, development, and response to stress cues. In the present study, the expression pattern of six durum wheat LOX-encoding genes (TdLpx-B1.1, TdLpx-B1.2, TdLpx-A2, TdLpx-B2, TdLpx-A3 and TdLpx-B3) under hyperosmotic stress was investigated. With osmotic (0.42 M mannitol) and salt (0.21 M NaCl) stress imposed at the early stages of seedling growth, a strong induction of the TdLpx-A2 gene expression in the shoots paralleled an equally strong increase in the LOX activity. Enhanced levels of malondialdehyde (MDA) and increased rates of superoxide anion generation were also observed as a result of the stress imposition. Sequence analysis of the TdLOX2 encoded by the TdLpx-A2 gene revealed that it belonged to the type-1 9-LOX group. When overexpressed in E. coli, TdLOX2 exhibited normal enzyme activity, high sensitivity to specific LOX inhibitors, with 76% and 99% inhibition by salicylhydroxamic and propyl gallate, respectively, and a preference for linoleic acid as substrate, which was converted exclusively to its corresponding 13-hydroperoxide. This unexpected positional specificity could be related to the unusual TV/K motif that in TdLOX2 replaces the canonical TV/R motif of 9-LOXs. Treatment of seedlings with propyl gallate strongly suppressed the increase in LOX activity induced by the hyperosmotic stress; the MDA accumulation was also reduced but less markedly, whereas the rate of superoxide anion generation was even more increased. Overall, our findings suggest that the up-regulation of the TdLpx-A2 gene is a component of the durum wheat response to hyperosmotic stress and that TdLOX2 may act by counteracting the excessive generation of harmful reactive oxygen species responsible for the oxidative damages that occur in plants under stress.
Collapse
|
22
|
de Oliveira DF, Lopes LDS, Gomes-Filho E. Metabolic changes associated with differential salt tolerance in sorghum genotypes. PLANTA 2020; 252:34. [PMID: 32761417 DOI: 10.1007/s00425-020-03437-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/29/2020] [Indexed: 05/20/2023]
Abstract
Accumulation of specific metabolites, mainly γ-aminobutyric acid, polyamines, and proline, was essential to homeostasis regulation and differential salt tolerance in sorghum genotypes. Salinity is severe abiotic stress that limits plant growth and development in arid and semi-arid regions. Survival to abiotic stresses depends on metabolic and sometimes even morphological adjustments. We measured the growth parameters, water relations, the content of ions (Na+, K+, Cl-), compatible solutes [some free amino acids (FAAs) including γ-aminobutyric acid (GABA) and proline and soluble carbohydrates) and polyamines (PAs), the activity of PAs metabolism enzymes, and metabolomic profile in plants after 14 days of salt stress treatment. These analyses were to evaluate the influence of metabolomic responses of sorghum genotypes exhibiting sensitivity (CSF18) or tolerance (CSF20) to salinity on plant growth. The salinity promoted growth reductions and induced increases in Na+ and Cl- content and decreases in K+ content. The water status and osmotic potential (Ψo) were reduced by salt stress, but to minimize damage, especially in the CSF20, the osmolytes and PAs contributed to the osmotic adjustment. The results showed that salinity induced an increase in putrescine (Put) in the sensitive genotype. However, it raised spermidine (Spd), spermine (Spm), and cadaverine (Cad) in the tolerant genotype. In addition, the regulation of polyamine oxidase can be related to Spm and GABA biosynthesis. Differential metabolic changes to salt tolerance include metabolites associated with tricarboxylic acid (TCA) cycle intermediates and the metabolisms of sugars, FAAs, and PAs.
Collapse
Affiliation(s)
- Daniel Farias de Oliveira
- Department of Biochemistry and Molecular Biology, National Institute of Science and Technology in Salinity (INCTSal/CNPq), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lineker de Sousa Lopes
- Department of Biochemistry and Molecular Biology, National Institute of Science and Technology in Salinity (INCTSal/CNPq), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, National Institute of Science and Technology in Salinity (INCTSal/CNPq), Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
23
|
Gou T, Yang L, Hu W, Chen X, Zhu Y, Guo J, Gong H. Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:53-61. [PMID: 32388420 DOI: 10.1016/j.plaphy.2020.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 05/04/2023]
Abstract
Silicon (Si) can increase salt tolerance of plants, and previous studies have focused on NaCl stress; whereas in protected facilities, nitrate (but not NaCl) accumulation is one of the major causes of secondary soil salinization. However, information on Si's effect on plant growth under nitrate stress is very limited, and the underlying mechanism is unknown. Here, we investigated Si's effect on plant growth, nitrogen assimilation and chlorophyll synthesis in cucumber. Cucumber seedlings ('Jinyou 1') were subjected to 200 mM nitrate stress without or with addition of 2 mM Si. The results showed that root application, but not foliar application of Si, could improve cucumber growth under nitrate stress. Root addition of Si increased photosynthetic rate and decreased oxidative damage of stressed plants. Under nitrate stress, Si addition decreased the accumulation of nitrate, nitrite and ammonium, and promoted the activities of nitrate reductase, nitrite reductase, glutamine synthase, glutamine-2-oxoglutarate aminotransferase and glutamate dehydrogenase in leaves. The concentrations of glutamic acid, 5-aminolevulinic acid, porphobilinogen and uroporphyrinogen Ⅲ were increased under nitrate stress, while these were decreased by added Si. Added Si increased the levels of chlorophyll and its precursors (protoporphyrin Ⅸ, Mg-protoporphyrin Ⅸ and protochlorophyllide), and expressions of genes encoding enzymes in chlorophyll synthesis (CHLH, POR and CAO) under nitrate stress. These results suggest that Si could improve cucumber growth under nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis, and imply an application of Si fertilizer in solving secondary soil salinization in protected facilities.
Collapse
Affiliation(s)
- Tianyun Gou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wanxing Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinhang Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Jia Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haijun Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Tanveer M, Shabala S. Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. NEUROTRANSMITTERS IN PLANT SIGNALING AND COMMUNICATION 2020. [DOI: 10.1007/978-3-030-54478-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019; 9:E303. [PMID: 31847393 PMCID: PMC6969922 DOI: 10.3390/metabo9120303] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is an emerging branch of "omics" and it involves identification and quantification of metabolites and chemical footprints of cellular regulatory processes in different biological species. The metabolome is the total metabolite pool in an organism, which can be measured to characterize genetic or environmental variations. Metabolomics plays a significant role in exploring environment-gene interactions, mutant characterization, phenotyping, identification of biomarkers, and drug discovery. Metabolomics is a promising approach to decipher various metabolic networks that are linked with biotic and abiotic stress tolerance in plants. In this context, metabolomics-assisted breeding enables efficient screening for yield and stress tolerance of crops at the metabolic level. Advanced metabolomics analytical tools, like non-destructive nuclear magnetic resonance spectroscopy (NMR), liquid chromatography mass-spectroscopy (LC-MS), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), and direct flow injection (DFI) mass spectrometry, have sped up metabolic profiling. Presently, integrating metabolomics with post-genomics tools has enabled efficient dissection of genetic and phenotypic association in crop plants. This review provides insight into the state-of-the-art plant metabolomics tools for crop improvement. Here, we describe the workflow of plant metabolomics research focusing on the elucidation of biotic and abiotic stress tolerance mechanisms in plants. Furthermore, the potential of metabolomics-assisted breeding for crop improvement and its future applications in speed breeding are also discussed. Mention has also been made of possible bottlenecks and future prospects of plant metabolomics.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Ali Raza
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| |
Collapse
|
26
|
Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T, Chaudhary HJ. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:569-577. [PMID: 31029030 DOI: 10.1016/j.plaphy.2019.03.041] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
Plant growth-promoting endophytes (PGPEs) can colonize the internal tissues of plants and are capable of promoting plant growth. These bacteria can improve plant tolerance against various biotic and abiotic stresses via the expression of antioxidant enzymes and the production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Two salt-tolerant PGPEs, Kocuria rhizophila: KF875448 (14ASP) and Cronobacter sakazakii: KM042090 (OF115), with ACC deaminase activity were investigated for their potential to ameliorate plant salinity stress. The wheat varieties Pasban 90 and Khirman were subjected to two levels of salt stress (80 and 160 mM NaCl) under greenhouse conditions by using a completely randomized design. Analyses of plant growth parameters, antioxidant enzyme activities, chlorophyll and plant mineral contents were conducted to investigate the stress tolerance induced by the PGPEs. The ACC utilization by the PGPEs directly relates to the promotion of plant growth due to the lowering of excess ethylene production under salt stress. High levels of NaCl exhibited negative effects in both varieties. However, inoculation with PGPEs increased the morphological traits and antioxidant activities of the plants while decreasing the Na+ contents in all treatments compared to uninoculated treatment. Wheat variety Pasban 90 was more tolerant than Khirman in to salt stress in all the measured morphological and biochemical parameters, while the bacterial strain OF115 performed significantly better in all morphological and biochemical parameters, such as fresh dry weight, root shoot length, proline and chlorophyll contents, compared to strain 14ASP. The K+/Na+ ratio in the tissues of bacterial treated plants was higher than the control, probably in order to maintain the nutrient balance. The results of our study revealed that the inoculation of plants by ACC deaminase-producing PGPEs is a potential tool for the enhancement of plant growth and stress tolerance. Moreover, endophytic bacteria allied with host plants are capable of enduring high saline conditions and can interact with plants in a very efficient way.
Collapse
Affiliation(s)
| | - Tariq Mahmood
- Department of Genetics, Hazara University Mansehra, Pakistan
| | - Abdul Salam
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tehmeena Mukhtar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zobia Khatoon
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Bibi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, 38000, Faisalabad, Pakistan
| | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | | |
Collapse
|
27
|
Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3069-3085. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metabolomics is increasingly being applied in various fields offering a highly informative tool for high-throughput diagnostics. However, in plant sciences, metabolomics is underused, even though plant studies are relatively easy and cheap when compared to those on humans and animals. Despite their importance for human nutrition, cereals, and especially wheat, remain understudied from a metabolomics point of view. The metabolomics of durum wheat has been essentially neglected, although its genetic structure allows the inference of common mechanisms that can be extended to other wheat and cereal species. This review covers the present achievements in durum wheat metabolomics highlighting the connections with the metabolomics of other cereal species (especially bread wheat). We discuss the metabolomics data from various studies and their relationships to other "-omics" sciences, in terms of wheat genetics, abiotic and biotic stresses, beneficial microbes, and the characterization and use of durum wheat as feed, food, and food ingredient.
Collapse
Affiliation(s)
- Sergio Saia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 11 per Torino , Km 2,5, 13100 Vercelli , Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| |
Collapse
|