1
|
Urbański M, Yiğit BM, Ekner-Grzyb A, Chmielowska-Bąk J. Physiological and oxidative status of soybean seedlings exposed to short term treatment with polystyrene nanoparticles. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:241-247. [PMID: 39562398 PMCID: PMC11835988 DOI: 10.1007/s10646-024-02833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Plastic is widely used worldwide due to its durability and relatively low production costs. However, its durability also has significant drawbacks - plastic is a slowly degrading material and greatly contributes to the environmental pollution. Increasing body of evidence shows that contamination of the environment with plastic negatively affects plants and other living organisms. The aim of present research was to determine whether short-term exposure to polystyrene nanoparticles (PSNP) has toxic effect on soybean seedlings (Glycine max L). In the first stage of the research, the effect of two hour long incubation in PSNP solutions (10 and 100 mgl-1) on the germination of soybean seeds was determined. In the second part of the study, the potential cytotoxic effect of PSNP on young seedlings was measured. The results indicate that incubation in PSNP solutions inhibits the germination of soybean seeds by approx. 10% (at p = 0.05). However, this effect was only observed after 48 and 72 h of germination and by lower PSNP concentrations, 10 mgl-1. In turn, in young soybean seedlings exposure to PSNP had no effect on growth, cell viability or oxidative status by p = 0.05. The results indicate that germination is a PSNP-sensitive process. In turn, already germinated seedlings are relatively resistant to the short-term exposure to this stressor.
Collapse
Affiliation(s)
- Michał Urbański
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Burak Mete Yiğit
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Anna Ekner-Grzyb
- Department of Cell Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
2
|
Nazari M, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109523. [PMID: 39827703 DOI: 10.1016/j.plaphy.2025.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study explored morphological, physiological, molecular, and epigenetic responses of tomatoes (Solanum lycopersicum) to soil contamination with polyethylene nanoplastics (PENP; 0.01, 0.1, and 1 gkg-1 soil). The PENP pollution led to severe changes in plant morphogenesis. The PENP treatments were associated with decreased plant biomass, reduced internode length, delayed flowering, and prolonged fruit ripening. Abnormal inflorescences, flowers, and fruits observed in the PENP-exposed seedlings support genetic changes and meristem dysfunction. Exposure of seedlings to PENP increased H2O2 accumulation and damaged membranes, implying oxidative stress. The PENP treatments induced activities of catalase (EC1.11.1.6), peroxidase (EC1.11.1.7), and phenylalanine ammonia-lyase (EC4.3.1.24) enzymes. Soil contamination with PENP also decreased the net photosynthesis, maximum photosystem efficiency, stomatal conductance, and transpiration rate. The nano-pollutant upregulated the expression of the histone deacetylase (HDA3) gene and R2R3MYB transcription factor. However, the AP2a gene was down-regulated in response to the PENP treatment. Besides, EPNP epigenetically contributed to changes in DNA methylation. The concentrations of proline, soluble phenols, and flavonoids also displayed an upward trend in response to the applied PENP treatments. The long-term exposure of seedlings to PENP influenced fruit biomass, firmness, ascorbate, lycopene, and flavonoid content. These findings raise concerns about the hazardous aspects of PENP to agricultural ecosystems and food security.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
3
|
Tripathi M, Singh P, Pathak S, Manimekalai R, Garg D, Dashora K. Strategies for the Remediation of Micro- and Nanoplastics from Contaminated Food and Water: Advancements and Challenges. J Xenobiot 2025; 15:30. [PMID: 39997373 PMCID: PMC11856478 DOI: 10.3390/jox15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Micro- and nanoplastic (MNP) pollution is a significant concern for ecosystems worldwide. The continuous generation and extensive utilization of synthetic plastics have led to the widespread contamination of water and food resources with MNPs. These pollutants originate from daily-use products and industrial waste. Remediation of such pollutants is essential to protect ecosystems and human health since these ubiquitous contaminants pose serious biological and environmental hazards by contaminating food chains, water sources, and the air. Various remediation techniques, including physical, chemical, sophisticated filtration, microbial bioremediation, and adsorption employing novel materials, provide encouraging avenues for tackling this worldwide issue. The biotechnological approaches stand out as effective, eco-friendly, and sustainable solutions for managing these toxic pollutants. However, the complexity of MNP pollution presents significant challenges in its management and regulation. Addressing these challenges requires cross-disciplinary research efforts to develop and implement more efficient, sustainable, eco-friendly, and scalable techniques for mitigating widespread MNP pollution. This review explores the various sources of micro- and nanoplastic contamination in water and food resources, their toxic impacts, remediation strategies-including advanced biotechnological approaches-and the challenges in treating these pollutants to alleviate their effects on ecosystems and human health.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | | | - Diksha Garg
- Department of Microbiology, DAV University, Jalandhar 144012, Punjab, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, Delhi, India
| |
Collapse
|
4
|
Tang J, Eltaweil AS, Adeyemi AS, Jacobson AR, Britt DW, McLean JE, Su Y. Tracking the translocation of nanoplastics from soil to plant: Comparison of different analytical techniques. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137357. [PMID: 39889607 DOI: 10.1016/j.jhazmat.2025.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Nanoplastics (NPs) are increasingly prevalent in the environment, posing potential risks to agricultural systems and the food web. Despite this, currently it lacks comprehensive evaluation on NPs detection and quantification techniques, which is critical for quantitatively understanding the fate and transport of NPs. To address this gap, our study systematically assesses and compares advanced analytical tools for tracking different types of NPs (derived from both top-down and bottom-up approaches) from soil to plants. For identifying and quantifying NPs from environmental samples, pyrolysis - gas chromatography - mass spectrometry (Py-GC-MS) and confocal-Raman spectroscopy demonstrate promise. For laboratory study, inductively coupled plasma mass spectrometry (ICP-MS) along with metal doped NPs enables good sensitivity for tracking NPs in plant system. Our results demonstrated a substantial NPs internalization, 1.09 × 10 ¹ ¹ NPs per gram in shoots and 1.52 × 10 ¹ ¹ NPs per gram in roots, by wheat seedlings after five days of exposure, leading to a notable 77.26 % reduction in biomass. This study highlights the importance of integrating multiple techniques to overcome the limitations of each individual technique and provides quantitative insight into the detection of NPs within plant systems, contributing to the improvement of methodology for NPs related research in environmental and agricultural fields.
Collapse
Affiliation(s)
- Junjie Tang
- Utah Water Research Laboratory, Utah State University, Logan, UT 84322, United States
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Adeleye S Adeyemi
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027-6623, United States
| | - Astrid R Jacobson
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT 84322, United States
| | - David W Britt
- Department of Biological Engineering, Utah State University, Logan, UT 84322, United States
| | - Joan E McLean
- Utah Water Research Laboratory, Utah State University, Logan, UT 84322, United States
| | - Yiming Su
- Utah Water Research Laboratory, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
5
|
Yang Z, Xiao X, Liu T, Wang H, Luo X. Metabolomics reveals the size effect of microplastics impeding membrane synthesis in rice cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117378. [PMID: 39579448 DOI: 10.1016/j.ecoenv.2024.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The global-scale production of plastics has led to a significant accumulation in the environment, and it has become a major stressor to environmental sustainability, agricultural crops, and human health. Here we report the particle size effect of polystyrene (PS, typically microplastic) on the impact on rice suspension cells. This study used PS of different particle sizes (30 nm, 200 nm, and 2 μm) in a three-day co-culture experiment, the results showed that 30 nm, 200 nm, and 2 μm PS at the same concentration (100 μg/mL) caused 4.6 %, 55.8 %, and 66.4 % decrease in rice suspension cell viability, respectively. Furthermore, a substantial reduction in protein content, amounting to 26.53 % and 48.47 %, was observed in cells treated with 200 nm and 2 μm PS, and the DNA and RNA content of rice suspension cells also decreased substantially at 100 μg/mL PS. Non-targeted metabolomics analyses showed that PS disrupted fatty acid biosynthesis with a clear size effect, wherein 2 μm PS caused a decrease of 64.9 % in hexadecanoic acid content. Consequently, this finding provides valuable perspectives on the potential ecotoxicity of microplastics at the single-cell level of rice and will facilitate the formulation of an environmental management program specifically tailored for addressing the challenges posed by microplastics.
Collapse
Affiliation(s)
- Zhenlong Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Haodong Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Jiangxi Province for agricultural environmental pollution prevention and control in red soil hilly region, School of life sciences, Jinggangshan University, Ji'an 343009, China
| |
Collapse
|
6
|
Virachabadoss VRA, Appavoo MS, Paramasivam KS, Karthikeyan SV, Govindan D. The addition of humic acid into soil contaminated with microplastics enhanced the growth of black gram (Vigna mungo L. Hepper) and modified the rhizosphere microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63343-63359. [PMID: 39482414 DOI: 10.1007/s11356-024-35441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
Microplastics have polluted agricultural soils, posing a substantial risk to crop productivity. Moreover, the presence of microplastic pollution has caused a disturbance in the composition of the microbial community in the soil surrounding plant roots, therefore impacting the growth of beneficial bacteria. A study was conducted to examine if humic acid (HA) can counteract the harmful effects of microplastics (MPs) on the growth of black gram crops and the composition of the rhizosphere soil microbial community, to reduce the negative impacts of microplastics on these microorganisms and crops. The research was carried out using mud pots and the plastic utilized for the experiment consisted of 60% high-density polyethylene (HDPE) and 40% polypropylene (PP). The soil was enriched with lignite-based potassium humate, which had a pH range of 8.0-9.5 and with 65% humic acid. The experiment consisted of six treatments: T1, which served as the control without HA and MP; T2, which involved the use of HA at a concentration of 0.15% w/w; T3, which involved the use of MP at a concentration of 0.2% w/w; T4, which involved the use of MP at a concentration of 0.4% w/w; T5, which involved the combination of HA at a concentration of 0.15% w/w and MP at a concentration of 0.2% w/w; and T6, which involved the combination of HA at a concentration of 0.15% w/w and MP at a concentration of 0.4% w/w. The plant growth characteristics, including germination percentage, nodule number, and chlorophyll content, were measured. In addition, the DNA obtained from the rhizosphere soil was analyzed using metagenomics techniques to investigate the organization of the microbial population. Seedlings in soil polluted with MP exhibited delayed germination compared to seedlings in uncontaminated soil. Following 60 days of growth, the soil samples treated with T5 (0.2% MP and 0.15% HA w/w) had the highest population of bacteria and rhizobium, with counts 5.58 ± 0.02 and 4.90 ± 0.02 CFU g-1 soil. The plants cultivated in T5 had the most elevated chlorophyll-a concentration (1.340 ± 0.06 mg g-1), and chlorophyll-b concentration (0.62 ± 0.02 mg g-1) while those cultivated in T3 displayed the lowest concentration of chlorophyll-a (0.59 ± 0.02 mg g-1) and chlorophyll-b (0.21 ± 0.04 mg g-1). Within the phylum, Proteobacteria had the highest prevalence in all treatments. However, when the soil was polluted with MPs, its relative abundance was reduced by 8.4% compared to the control treatment (T1). Conversely, treatment T5 had a 3.76% rise in relative abundance when compared to treatment T3. The predominant taxa found in soil polluted with MP were Sphingomonas and Bacillus, accounting for 19.3% of the total. Sphingomonas was the predominant genus (21.2%) in soil polluted with MP and supplemented with humic acid. Humic acid can be used as a soil amendment to mitigate the negative effects of MPs and enhance their positive advantages. Research has demonstrated that incorporating humic acid into soil is a viable method for maintaining the long-term integrity of soil's physical, chemical, and biological characteristics.
Collapse
Affiliation(s)
| | - Merline Sheela Appavoo
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India.
| | - Kumara Sashidara Paramasivam
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Sri Vishnu Karthikeyan
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Dhinagaran Govindan
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| |
Collapse
|
7
|
Yin J, Zhu T, Li X, Yin X, Xu J, Xu G. Polystyrene nanoplastics induce cell type-dependent secondary wall reinforcement in rice (Oryza sativa) roots and reduce root hydraulic conductivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135309. [PMID: 39053057 DOI: 10.1016/j.jhazmat.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs) have been demonstrated the ability to penetrate plant roots and cause stress. However, the extent of NPs penetration into various root tissues and the corresponding plant defense mechanisms remain unclear. This study examined the penetration and accumulation patterns of polystyrene nanoplastics (PS-NPs) in different cell types within rice roots, and explored how the roots quickly modify their cell wall structure in response. The findings showed that fully developed sclerenchyma cells in rice roots effectively prevented the invasion of PS-NPs. Meanwhile, PS-NPs triggered the accumulation of lignin and suberin in specific cells such as the exodermis, sclerenchyma, and xylem vessels. PS-NPs at a concentration of 50 mg L-1 increased cell wall thickness by 18.6 %, 21.1 %, and 22.4 % in epidermis, exodermis, and sclerenchyma cells, respectively, and decreased root hydraulic conductivity by 14.8 %. qPCR analysis revealed that PS-NPs influenced the cell wall synthesis pathway, promoting the deposition of lignin and suberin monomers on the secondary wall through the up-regulation of genes such as OsLAC and OsABCG. These results demonstrate that PS-NPs can induce cell type-specific strengthening of secondary walls and barrier formation in rice roots, suggesting the potential role of plant secondary wall development in mitigating NPs contamination risks in crops.
Collapse
Affiliation(s)
- Jingjing Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Tongshan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250100, PR China
| | - Xiaozun Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Xiao Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Guoxin Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China.
| |
Collapse
|
8
|
Bottega S, Fontanini D, Ruffini Castiglione M, Spanò C. The impact of polystyrene nanoplastics on plants in the scenario of increasing temperatures: The case of Azolla filiculoides Lam. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108946. [PMID: 39032448 DOI: 10.1016/j.plaphy.2024.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
There are great concerns for the accumulation in the environment of small dimension plastics, such as micro- and nanoplastics. Due to their small size, which facilitates their uptake by organisms, nanoplastics are of particular concern. The toxic effects of nanoplastics on plants are already reported in the literature, however nothing is known, to date, about the possible effects of climate change, in particular of increasing temperatures, on their toxicity for plants. To address this issue, plants of the water fern Azolla filiculoides were grown at optimal (25 °C) or high (35 °C) temperature, with or without polystyrene nanoplastics, and the effects of these stressors were assessed using a multidisciplinary approach. Green fluorescent polystyrene nanoplastics were used to track their possible uptake by A. filiculoides. The development and physiology of our model plant was adversely affected by both nanoplastics and high temperatures. Overall, histological, morphological, and photosynthetic parameters worsened under co-treatment, in accordance with the increased uptake of nanoplastics under higher temperature, as observed by fluorescence images. Based on our findings, the concern regarding the potential for increased toxicity of pollutants, specifically nanoplastics, at high temperatures is well-founded and warrants attention as a potential negative consequence of climate change. Additionally, there is cause for concern regarding the increase in nanoplastic uptake at high temperatures, particularly if this phenomenon extends to food and feed crops, which could lead to greater entry into the food chain.
Collapse
Affiliation(s)
- Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy
| | - Debora Fontanini
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy.
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| |
Collapse
|
9
|
Li X, Du X, Zhou R, Lian J, Guo X, Tang Z. Effect of cadmium and polystyrene nanoplastics on the growth, antioxidant content, ionome, and metabolism of dandelion seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124188. [PMID: 38776992 DOI: 10.1016/j.envpol.2024.124188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Cadmium is the most prevalent heavy metal pollutant in the environment and can be readily combined with micro/nanoplastics (M/NPs) to change their bioavailability. In the present study, we comprehensively investigated the effect of polystyrene (PS) NPs on dandelion plants grown under Cd stress. Cd exposure significantly inhibited the growth of dandelion seedlings, resulting in a decrease in seedling elongation from 26.47% to 28.83%, a reduction in biomass from 29.76% to 54.14%, and an exacerbation of lipid peroxidation and oxidative stress. The interaction between PS NPs and Cd resulted in the formation of larger aggregates, with the Cd bioavailability reduced by 12.56%. PS NPs affect ion absorption by regulating reactive oxygen production and increasing superoxide dismutase activity, thereby mitigating the adverse effects of Cd. PSCd aggregates induced significant changes in the metabolic profiles of dandelions, affecting various carbohydrates related to alcohols, organic acids, sugar metabolism, and bioactive components related to flavonoids and phenolic acids. Furthermore, based on a structural equation model, exposure to PSCd activated oxidative stress and nutrient absorption, thereby affecting plant growth and Cd accumulation. Overall, our study provides valuable insights into the effects of PS NPs on Cd bioavailability, accumulation, and plant growth, which are crucial for understanding the food safety of medicinal plants in a coexistence environment.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Xinyi Du
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ranran Zhou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
10
|
Kumar D, Biswas JK, Mulla SI, Singh R, Shukla R, Ahanger MA, Shekhawat GS, Verma KK, Siddiqui MW, Seth CS. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108795. [PMID: 38878390 DOI: 10.1016/j.plaphy.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Botany, University of Delhi, New Delhi-110007, Delhi, India
| | - Jayanta Kumar Biswas
- International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia- 741235, West Bengal, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore- 560064, Karnataka, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida- 201308, India
| | - Ravindra Shukla
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak- 484887, Madhya Pradesh, India
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Gyan Singh Shekhawat
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342005, Rajasthan, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning-530007, China
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour-813210, Bhagalpur, Bihar, India
| | | |
Collapse
|
11
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
12
|
Li J, Zhang Y, Zhou Y, Liu W, Maryam B, Cui J, Liu M, Liu X. Polystyrene nanoplastics distinctly impact cadmium uptake and toxicity in Arabidopsis thaliana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124373. [PMID: 38897273 DOI: 10.1016/j.envpol.2024.124373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The ubiquitous presence of micro- and nanoplastics (MNPs) in soil has raised concerns regarding their potential effects on terrestrial plants. The coexistence and interactions between MNPs and heavy metals altering their phytotoxicity deserves further investigation. In this study, we explored the impacts of various concentrations of polystyrene nanoplastics (PS-NPs) and cadmium (Cd) alone or in combination on the growth and development of Arabidopsis thaliana. Additionally, we examined the effects of combined stress on the uptake and translocation of Cd within Arabidopsis thaliana. Our findings revealed several key insights: PS-NPs exhibited the capability to internalize in the maturation zone of Arabidopsis roots; the presence of Cd changed the particle size and zeta potential of PS-NPs; the presence of PS-NPs heightened Cd accumulation in the underground parts of Arabidopsis seedlings, leading to a stronger oxidative stress response in these regions; the composite stress exerted a more pronounced effect on the growth and development of Arabidopsis compared to individual stresses. Interestingly, while higher PS-NPs concentrations hindered Cd migration from roots to leaves, they also acted as carriers for Cd uptake in Arabidopsis roots. These findings shed light on the combined impacts of MNPs and heavy metals on plant physiology, offering theoretical insights to guide risk assessment strategies for MNPs and heavy metals in terrestrial ecosystems.
Collapse
Affiliation(s)
- Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Yu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Wanxin Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Jinran Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Miao Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
13
|
Zhang C, Lin Y, Xue Q, Mo X, He M, Liu J. Nitrogen supply neutralizes the nanoplastic-plant interaction in a coastal wetland. ENVIRONMENTAL RESEARCH 2024; 251:118572. [PMID: 38437902 DOI: 10.1016/j.envres.2024.118572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
The presence of nanoplastics posed a potential threat to coastal saline-alkaline wetlands where nitrogen (N) fertilizer is being implemented as an important ecological restoration measure. Notwithstanding, the effects of N inputs on plant community in polypropylene-nanoplastics (PP-NPs) coexistence environments are largely unknown. To address this, we investigated the effects of PP-NPs addition alone or combined N supply on community aboveground biomass, morphological traits, diversity, composition, niche differentiation, interspecific interactions, and assembly. Our results showed that the PP-NPs addition alone reduced community aboveground biomass and morphological traits. However, the addition of high concentration (0.5%) PP-NPs alone favored community α-diversity and reduced community stability, which could be weakened through combined N supply. Overall, the effect of PP-NPs addition alone on plant community composition was greater than that of combined N supply. We also demonstrated PP-NPs addition alone and combined N supply reduced the niche breadth of the plant community and affected the niche overlap of dominant species. In the assembly of plant communities, stochastic processes played a dominant role. We conclude that N fertilization can amend the terrestrial nanoplastics pollution, thus mitigating the effects of PP-NPs on the plant community.
Collapse
Affiliation(s)
- Chunping Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yingchao Lin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qing Xue
- School of Geographic and Environmental Science, Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, China.
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
14
|
Spanò C, Giorgetti L, Bottega S, Muccifora S, Ruffini Castiglione M. Titanium dioxide nanoparticles enhance the detrimental effect of polystyrene nanoplastics on cell and plant physiology of Vicia lens (L.) Coss. & Germ. seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1391751. [PMID: 38863538 PMCID: PMC11165040 DOI: 10.3389/fpls.2024.1391751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Polystyrene nanoplastics and titanium dioxide nanoparticles are widely spread in all environments, often coexisting within identical frameworks. Both these contaminants can induce negative effects on cell and plant physiology, giving concerns on their possible interaction which could increase each other's harmful effects on plants. Despite the urgency of this issue, there is very little literature addressing it. To evaluate the potential risk of this co-contamination, lentil seeds were treated for five days with polystyrene nanoplastics and titanium dioxide nanoparticles (anatase crystalline form), alone and in co-presence. Cytological analyses, and histochemical and biochemical evaluation of oxidative stress were carried out on isolated shoots and roots. TEM analysis seemed to indicate the absence of physical/chemical interactions between the two nanomaterials. Seedlings under cotreatment showed the greatest cytotoxic and genotoxic effects and high levels of oxidative stress markers associated with growth inhibition. Even if biochemical data did not evidence significant differences between materials treated with polystyrene nanoplastics alone or in co-presence with titanium dioxide nanoparticles, histochemical analysis highlighted a different pattern of oxidative markers, suggesting a synergistic effect by the two nanomaterials. In accordance, the fluorescence signal linked to nanoplastics in root and shoot was higher under cotreatment, perhaps due to the well-known ability of titanium dioxide nanoparticles to induce root tissue damage, in this way facilitating the uptake and translocation of polystyrene nanoplastics into the plant body. In the antioxidant machinery, peroxidase activity showed a significant increase in treated roots, in particular under cotreatment, probably more associated with stress-induced lignin synthesis than with hydrogen peroxide detoxification. Present results clearly indicate the worsening by metal nanoparticles of the negative effects of nanoplastics on plants, underlining the importance of research considering the impact of cotreatments with different nanomaterials, which may better reflect the complex environmental conditions.
Collapse
Affiliation(s)
- Carmelina Spanò
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | | | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Ceccanti C, Davini A, Lo Piccolo E, Lauria G, Rossi V, Ruffini Castiglione M, Spanò C, Bottega S, Guidi L, Landi M. Polyethylene microplastics alter root functionality and affect strawberry plant physiology and fruit quality traits. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134164. [PMID: 38583200 DOI: 10.1016/j.jhazmat.2024.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.
Collapse
Affiliation(s)
- C Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - A Davini
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - E Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino, Firenze, Italy.
| | - G Lauria
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - V Rossi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - M Ruffini Castiglione
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - C Spanò
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - S Bottega
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy
| | - L Guidi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy.
| |
Collapse
|
16
|
Hu M, Huang Y, Liu L, Ren L, Li C, Yang R, Zhang Y. The effects of Micro/Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133279. [PMID: 38141304 DOI: 10.1016/j.jhazmat.2023.133279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.
Collapse
Affiliation(s)
- Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
17
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
18
|
Yu H, Jia H, Shen N, Gang D, Yuan W, Yang Y, Hu C, Qu J. Can "Risk-Sharing" Mechanisms Help Clonal Aquatic Plants Mitigate the Stress of Nanoplastics? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2984-2997. [PMID: 38306608 DOI: 10.1021/acs.est.3c09436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Most aquatic plants applied to ecological restoration have demonstrated a clonal growth pattern. The risk-spreading strategy plays a crucial role in facilitating clonal plant growth under external environmental stresses via clonal integration. However, the effects of different concentrations of nanoplastics (NPs) on the growth traits of clonal aquatic plants are not well understood. Therefore, this study aimed to investigate the impact of NPs exposure on seedlings of parent plants and connected offspring ramets. A dose response experiment (0.1, 1, and 10 mg L-1) showed that the growth of Eichhornia crassipes (water hyacinth) was affected by 100 nm polystyrene nanoplastics after 28 days of exposure. Tracer analysis revealed that NPs are accumulated by parent plants and transferred to offspring ramets through stolon. Quantification analysis showed that when the parent plant was exposed to 10 mg L-1 NPs alone for 28 days, the offspring ramets contained approximately 13 ± 2 μg/g NPs. In the case of connected offspring ramets, leaf and root biomass decreased by 24%-51% and 32%-51%, respectively, when exposed to NP concentrations ranging from 0.1 to 10 mg L-1. Excessive enrichment of NPs had a detrimental effect on the photosynthetic system, decreasing the chlorophyll content and nonphotochemical quenching. An imbalance in the antioxidant defense systems, which were unable to cope with the oxidative stress caused by NP concentrations, further damaged various organs. The root system can take up NPs and then transfer them to the offspring through the stolon. Interference effects of NPs were observed in terms of root activity, metabolism, biofilm composition, and the plant's ability to purify water. However, the risk-spreading strategy employed by parent plants (interconnected offspring ramets) offered some relief from NP-induced stress, as it increased their relative growth rate by 1 to 1.38 times compared to individual plants. These findings provide substantial evidence of the high NP enrichment capacity of E. crassipes for ecological remediation. Nevertheless, we must also remain aware of the environmental risk associated with the spread of NPs within the clonal system of E. crassipes, and contaminated cloned individuals need to be precisely removed in a timely manner to maintain normal functions.
Collapse
Affiliation(s)
- Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huawei Jia
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Shen
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Diga Gang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Li Y, Zhao L, An Y, Qin L, Qiao Z, Chen D, Li Y, Geng H, Yang Y. Bibliometric analysis and systematic review of the adherence, uptake, translocation, and reduction of micro/nanoplastics in terrestrial plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167786. [PMID: 37848143 DOI: 10.1016/j.scitotenv.2023.167786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Micro/nanoplastics are emerging agricultural pollutants globally. Micro/nanoplastics can adhere to terrestrial plant surfaces, be absorbed and transported by plants, and accumulate in the edible parts of plants, leading to the possibility of enrichment and transmission through the food chain and threatening human health. However, the underlying mechanism remains unclear. With increased studies on the internalization of micro/nanoplastics in terrestrial plants, a comprehensive and systematic review summarizing the current research trends and progress is warranted to provide a reference for further relevant research. Based on bibliometric analysis, this study focused on the mechanisms, study methods, and reduction techniques of micro/nanoplastics adherence, uptake, and translocation by terrestrial plants. The results showed that micro/nanoplastics can adhere to the surfaces of plant tissues such as seeds, roots, and leaves. Root uptake (root-to-leaf translocation) and foliar uptake (leaf-to-root translocation) are the two simultaneous internalization pathways of MNPs in plants. The observation methods included scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and inductively coupled plasma-mass spectrometry (ICP-MS). We highlighted the necessity and urgency of reducing the uptake and translocation of MNPs by plants and found that the application of silicon may be a promising approach for reducing internalization. This study identifies current knowledge gaps and proposes possible future needs.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhi Qiao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
20
|
Adamczyk S, Chojak-Koźniewska J, Oleszczuk S, Michalski K, Velmala S, Zantis LJ, Bosker T, Zimny J, Adamczyk B, Sowa S. Polystyrene nanoparticles induce concerted response of plant defense mechanisms in plant cells. Sci Rep 2023; 13:22423. [PMID: 38104206 PMCID: PMC10725457 DOI: 10.1038/s41598-023-50104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023] Open
Abstract
Recent advances in knowledge suggest that micro- and nanoplastics pose a threat to plant health, however, the responses of plants to this stressor are not well-known. Here we examined the response of plant cell defence mechanisms to nanoparticles of commonly used plastic, polystyrene. We used plant cell cultures of widely cultivated plants, the monocots wheat and barley (Triticum aestivum L., Hordeum vulgare L.) and the dicots carrot and tomato (Daucus carota L., Solanum lycopersicum L.). We measured the activities of enzymes involved in the scavenging of reactive oxygen species and nonenzymatic antioxidants and we estimated potential damages in plant cell structures and functioning via lipid peroxidation and DNA methylation levels. Our results demonstrate that the mode of action of polystyrene nanoparticles on plant cells involves oxidative stress. However, the changes in plant defence mechanisms are dependent on plant species, exposure time and nanoplastic concentrations. In general, both monocots showed similar responses to nanoplastics, but the carrot followed more the response of monocots than a second dicot, a tomato. Higher H2O2, lipid peroxidation and lower enzyme activities scavenging H2O2 suggest that tomato cells may be more susceptible to polystyrene-induced stress. In conclusion, polystyrene nanoplastics induce oxidative stress and the response of the plant defense mechanisms involving several chain reactions leading to oxidoreductive homeostasis.
Collapse
Affiliation(s)
- Sylwia Adamczyk
- Natural Resources Institut Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland.
| | - Joanna Chojak-Koźniewska
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Sylwia Oleszczuk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Krzysztof Michalski
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Sannakajsa Velmala
- Natural Resources Institut Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands
- Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, The Netherlands
| | - Janusz Zimny
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Bartosz Adamczyk
- Natural Resources Institut Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Slawomir Sowa
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| |
Collapse
|
21
|
Liu Y, Ben Y, Che R, Peng C, Li J, Wang F. Uptake, transport and accumulation of micro- and nano-plastics in terrestrial plants and health risk associated with their transfer to food chain - A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166045. [PMID: 37544454 DOI: 10.1016/j.scitotenv.2023.166045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Waste plastics enter the environment (water, soil, and atmosphere) and degrade into micro- and nano-plastics (MNPs) through physical, chemical, or biological processes. MNPs are ubiquitous in the environment and inevitably interact with terrestrial plants. Terrestrial plants have become important potential sinks, and subsequently, the sources of MNPs. At present, many studies have reported the effects of MNPs on plant physiology, biochemistry, and their phototoxicity. However, the source, detection method, and the absorption process of MNPs in terrestrial plants have not been systematically studied. In order to better understand the continuous process of MNPs entering terrestrial plants, this review introduces the sources and analysis methods of MNPs in terrestrial plants. The uptake pathways of MNPs in terrestrial plants and their influencing factors were systematically summarized. Meanwhile, the transport pathways and the accumulation of MNPs in different plant organs (roots, stems, leaves, calyxes, and fruits) were explored. Finally, the transfer of MNPs through food chains to humans and their health risks were discussed. The aim of this work is to provide significant theoretical knowledge to understand the uptake, transport, and accumulation of MNPs in terrestrial plants and the potential health risks associated with their transfer to humans through food chain.
Collapse
Affiliation(s)
- Yongqiang Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Yue Ben
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, 261325, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Chunqing Peng
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
22
|
Sahasa RGK, Dhevagi P, Poornima R, Ramya A, Karthikeyan S, Priyatharshini S. Dose-dependent toxicity of polyethylene microplastics (PE-MPs) on physiological and biochemical response of blackgram and its associated rhizospheric soil properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119168-119186. [PMID: 37919496 DOI: 10.1007/s11356-023-30550-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Microplastic contamination in terrestrial ecosystem is emerging as a global threat due to rapid production of plastic waste and its mismanagement. It affects all living organisms including plants. Hence, the current study aims at understanding the effect of polyethylene microplastics (PE-MPs) at different concentrations (0, 0.25, 0.50, 0.75, and 1.00% w/w) on the plant growth and yield attributes. With blackgram as a test crop, results revealed that a maximum reduction in physiological traits like photosynthetic rate; chlorophyll a, b; and total chlorophyll by 5, 14, 10, and 13% at flowering stage; and an increase in biochemical traits like ascorbic acid, malondialdehyde, proline, superoxide dismutase, and catalase by 11, 29.7, 16, 22, and 30% during vegetative stage was observed with 1% PE-MP application. Moreover, a reduction in growth and yield attributes was also observed with increasing concentration of microplastics. Additionally, application of 1% PE-MPs decreased the soil bulk density, available phosphorus, and potassium, whereas the EC, organic carbon, microbial biomass carbon, NO3-N, and NH4-N significantly increased. Moreover, the presence of PE-MPs in soil also had a significant influence on the soil enzyme activities. Metagenomic analysis (16 s) reveals that at genus level, Bacillus (19%) was predominant in control, while in 1% PE-MPs, Rubrobacter (28%) genus was dominant. Microvirga was found exclusively in T5, while the relative abundance of Gemmatimonas declined from T1 to T5. This study thus confirms that microplastics exert a dose-dependent effect on soil and plant characteristics.
Collapse
Affiliation(s)
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 641 003.
| | - Ramesh Poornima
- Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu, India, 642 103
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan, 11529
| | - Subburamu Karthikeyan
- Centre for Post Harvest Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 641 003
| | - Sengottaiyan Priyatharshini
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 641 003
| |
Collapse
|
23
|
Osman DM, Yuan W, Shabaka S, Nyaga MP, Geng J, Yu Y, Yang Y. The threat of micro/nanoplastic to aquatic plants: current knowledge, gaps, and future perspectives. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106771. [PMID: 38000132 DOI: 10.1016/j.aquatox.2023.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Plastics have been recognized as an emerging pollutant and have raised global concerns due to their widespread distribution in the environment and potential harm to living systems. However, research on the threat of micro/nanoplastics (MPs/NPs) to the unique group of aquatic plants is far behind, necessitating a comprehensive review to summarize current research progress and identify future research needs. This review explores the sources and distribution patterns of MPs/NPs in aquatic environments, highlighting their uptake by aquatic plants through roots and leaves, and subsequent translocation via the vascular system facilitated by the transpiration stream. Exposure to MPs/NPs elicits diverse effects on the growth, physiology, and ecological interactions of aquatic plants, with variations influenced by plastic properties, plant species, and experimental conditions. Furthermore, the presence of MPs/NPs can impact the toxicity and bioavailability of other associated toxicants to aquatic plants. This review shows critical knowledge gaps and emphasizes the need for future research to bridge the current understanding of the limitations and challenges posed by MPs/NPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Donia M Osman
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Soha Shabaka
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Muthii Patrick Nyaga
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Geng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxiang Yu
- Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Kurniawan TA, Haider A, Mohyuddin A, Fatima R, Salman M, Shaheen A, Ahmad HM, Al-Hazmi HE, Othman MHD, Aziz F, Anouzla A, Ali I. Tackling microplastics pollution in global environment through integration of applied technology, policy instruments, and legislation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118971. [PMID: 37729832 DOI: 10.1016/j.jenvman.2023.118971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Microplastic pollution is a serious environmental problem that affects both aquatic and terrestrial ecosystems. Small particles with size of less than 5 mm, known as microplastics (MPs), persist in the environment and pose serious threats to various species from micro-organisms to humans. However, terrestrial environment has received less attention than the aquatic environment, despite being a major source of MPs that eventually reaches water body. To reflect its novelty, this work aims at providing a comprehensive overview of the current state of MPs pollution in the global environment and various solutions to address MP pollution by integrating applied technology, policy instruments, and legislation. This review critically evaluates and compares the existing technologies for MPs detection, removal, and degradation, and a variety of policy instruments and legislation that can support the prevention and management of MPs pollution scientifically. Furthermore, this review identifies the gaps and challenges in addressing the complex and diverse nature of MPs and calls for joint actions and collaboration from stakeholders to contain MPs. As water pollution by MPs is complex, managing it effectively requires their responses through the utilization of technology, policy instruments, and legislation. It is evident from a literature survey of 228 published articles (1961-2023) that existing water technologies are promising to remove MPs pollution. Membrane bioreactors and ultrafiltration achieved 90% of MPs removal, while magnetic separation was effective at extracting 88% of target MPs from wastewater. In biological process, one kg of wax worms could consume about 80 g of plastic/day. This means that 100 kg of wax worms can eat about 8 kg of plastic daily, or about 2.9 tons of plastic annually. Overall, the integration of technology, policy instrument, and legislation is crucial to deal with the MPs issues.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Rida Fatima
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Salman
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Anila Shaheen
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
25
|
Dhevagi P, Keerthi Sahasa RG, Poornima R, Ramya A. Unveiling the effect of microplastics on agricultural crops - a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:793-815. [PMID: 37941363 DOI: 10.1080/15226514.2023.2275152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microplastics (MPs), ever since they were identified as a potential and widely distributed persistent contaminant, the number of studies highlighting their impacts on various terrestrial ecosystems have been increasing. Recently, the effect of MPs on the agricultural ecosystem has gained momentum. Hence, the present review examines the impact of microplastics on agricultural crop systems and the mechanism underlying its toxicity. The current review revealed that most of the studies were conducted at a laboratory scale and under controlled conditions. Additionally, it was observed that polystyrene (PS) followed by polyethylene (PE) are the most studied polymer type, while the most studied plants are wheat and maize. Hitherto, literature studies suggest that the microplastics' influence on plant growth can be negative or sometimes neutral; while in some cases it exerts a hormetic effect which depends on other factors determining plant growth. Notably, the main mechanisms through which microplastics influence plant growth are mechanical damage, alteration of soil properties, or by leaching of additives. Overall, with burgeoning research interest in this aspect, the current review has significant implications for the toxicity of MPs on plants and throws light on the need to develop novel guidelines toward the sustainable use of plastics in agricultural sector. However, realistic field-level studies and estimating the MPs concentration at various region are essential to develop remediation approaches. Future studies should also focus on translocation and accumulation of micron sized MPs in edible portion of crops and their effect on food safety.
Collapse
Affiliation(s)
- Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Azeem I, Shakoor N, Chaudhary S, Adeel M, Zain M, Ahmad MA, Li Y, Zhu G, Shah SAA, Khan K, Khan AA, Xu M, Rui Y. Analytical challenges in detecting microplastics and nanoplastics in soil-plant systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108132. [PMID: 37918078 DOI: 10.1016/j.plaphy.2023.108132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microplastics (MPx) and nanoplastics (NPx) are increasingly accumulating in terrestrial ecosystems, heightening concerns about their potential adverse effects on human health via the food chain. Techniques aimed at recovering the most challenging colloidal fractions of MPx and NPx, especially for analytical purposes, are limited. This systematic review emphasises the absence of a universal, efficient, and cost-effective analytical method as the primary hindrance to studying MPx and NPx in soil and plant samples. The study reveals that several methods, including density separation, organic matter removal, and filtration, are utilized to detect MPx or NPx in soil through vibrational spectroscopy and visual identification. Instruments such as Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, and fluorescence microscopy are employed to identify MPx and NPx in plant tissue. In extraction procedures, organic solvents and sonication are used to isolate NPx from plant tissues, while Pyrolysis GC-MS quantifies the plastics. SEM and TEM serve to observe and characterize NPx within plant tissues. Additionally, FTIR and fluorescence microscopy are utilized to identify polymers of MPx and NPx based on their spectral characteristics and fluorescence signals. The findings from this review clarify the identification and quantification methods for MPx and NPx in soil and plant systems and provide a comprehensive methodology for assessing MPx/NPx in the environment.
Collapse
Affiliation(s)
- Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China.
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, PR China
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Syed Aizaz Ali Shah
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
| | - Kashif Khan
- College of Harbin, Northeast Forestry University, Harbin, PR China
| | - Adnan Anwar Khan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ming Xu
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
27
|
Li X, Wang R, Dai W, Luan Y, Li J. Impacts of Micro(nano)plastics on Terrestrial Plants: Germination, Growth, and Litter. PLANTS (BASEL, SWITZERLAND) 2023; 12:3554. [PMID: 37896018 PMCID: PMC10609671 DOI: 10.3390/plants12203554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Micro(nano)plastics (MNP) are pervasive in various environmental media and pose a global environmental pollution issue, particularly in terrestrial ecosystems, where they exert a significant impact on plant growth and development. This paper builds upon prior research to analyze and consolidate the effects of MNP on soil properties, seed germination, plant growth, and litter decomposition. The objective is to elucidate the environmental behavior of MNP and their mechanisms of influence on the plant life cycle. The unique physicochemical and electrical properties of MNP enable them to modify soil structure, water retention capacity, and pH. They can potentially act as "electron shuttles" or disrupt natural "electron shuttles" in litter decomposition, thereby interfering with nutrient transport and availability in the soil. Furthermore, MNP can physically obstruct nutrient and water channels within plants, impacting nutrient and water absorption. Once infiltrating plant tissues, MNP can form eco-coronas with plant proteins. Together with MNP adsorbed on the plant's surface and within its tissues, they disrupt normal physiological processes, leading to changes in photosynthesis, biomass, cellular toxicity, genetics, nutrient uptake, and gene expression. These changes, in turn, influence seed germination and plant growth and development. As a burgeoning research field, future studies should delve deeper into various aspects of these changes, such as elucidating the pathways and mechanisms through which MNP enter plant tissues, assessing their intensity and mechanisms of toxicity on different plant species, and exploring the relationship between micro(nano)plastics and "electron shuttles". These endeavors will contribute to establishing a more comprehensive theoretical framework for understanding the environmental behavior of MNP and their impact on plants.
Collapse
Affiliation(s)
- Xiaodong Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.L.); (R.W.); (W.D.)
| | - Rongyu Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.L.); (R.W.); (W.D.)
| | - Wei Dai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.L.); (R.W.); (W.D.)
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.L.); (R.W.); (W.D.)
| | - Jing Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Wang J, Zhang X, Li X, Wang Z. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132269. [PMID: 37607458 DOI: 10.1016/j.jhazmat.2023.132269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Micro/nanoplastics (MPs/NPs) pollution may adversely impact agricultural ecosystems, threatening the sustainability and security of agricultural production. This drives an urgent need to comprehensively understand the environmental behavior and effects of MPs/NPs in soil and atmosphere in agricultural regions, and to seek relevant pollution prevention strategies. The rhizosphere and phyllosphere are the interfaces where crops are exposed to MPs/NPs. The environmental behavior of MPs/NPs in soil and atmosphere, especially in the rhizosphere and phyllosphere, determines their plant accessibility, bioavailability and ecotoxicity. This article comprehensively reviews the transformation and migration of MPs/NPs in soil, transportation and deposition in the atmosphere, environmental behavior and effects in the rhizosphere and phyllosphere, and plant uptake and transportation pathways. The article also summarizes the key factors controlling MPs/NPs environmental processes, including their properties, biotic and abiotic factors. Based on the sources, environmental processes and intake risks of MPs/NPs in agroecosystems, the article offers several feasible pollution prevention and risk management options. Finally, the review highlights the need for further research on MPs/NPs in agro-systems, including developing quantitative detection methods, exploring transformation and migration patterns in-situ soil, monitoring long-term field experiments, and establishing pollution prevention and control systems. This review can assist in improving our understanding of the biogeochemistry behavior of MPs/NPs in the soil-plant-atmosphere system and provide a roadmap for future research.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
29
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
30
|
Masson D, Pédrot M, Davranche M, Cabello-Hurtado F, Ryzhenko N, El Amrani A, Wahl A, Gigault J. Are nanoplastics potentially toxic for plants and rhizobiota? Current knowledge and recommendations. NANOIMPACT 2023; 31:100473. [PMID: 37392957 DOI: 10.1016/j.impact.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Soil is now becoming a reservoir of plastics in response to global production, use/disposal patterns and low recovery rates. Their degradation is caused by numerous processes, and this degradation leads to the formation and release of plastic nanoparticles, i.e., nanoplastics. The occurrence of nanoplastics in the soil is expected to both directly and indirectly impact its properties and functioning. Nanoplastics may directly impact the physiology and development of living organisms, especially plants, e.g., by modifying their production yield. Nanoplastics can also indirectly modify the physicochemical properties of the soil and, as a result, favour the release of related contaminants (organic or inorganic) and have an impact on soil biota, and therefore have a negative effect on the functioning of rhizospheres. However all these results have to be taken carefully since performed with polymer nano-bead not representative of the nanoplastics observed in the environment. This review highlight thus the current knowledge on the interactions between plants, rhizosphere and nanoplastics, their consequences on plant physiology and development in order to identify gaps and propose scientific recommendations.
Collapse
Affiliation(s)
- Delphine Masson
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Mathieu Pédrot
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Mélanie Davranche
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | | | - Nataliia Ryzhenko
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; Univ. Rennes, CNRS, ECOBIO - UMR 6553, F-35000 Rennes, France; State Ecol Acad Postgrad Educ & Management, Dept Environm Safety, 35 Mytropolyta Lypkivskogo St, 35, UA-03135 Kyiv, Ukraine
| | | | - Aurélie Wahl
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Julien Gigault
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; TAKUVIK Laboratoy, UMI3376 CNRS/Université Laval, Québec, Canada.
| |
Collapse
|
31
|
Zantis LJ, Borchi C, Vijver MG, Peijnenburg W, Di Lonardo S, Bosker T. Nano- and microplastics commonly cause adverse impacts on plants at environmentally relevant levels: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161211. [PMID: 36634785 DOI: 10.1016/j.scitotenv.2022.161211] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Over the last years there has been significant research on the presence and effects of plastics in terrestrial systems. Here we summarize current research findings on the effects of nano- and microplastics (NMPs) on terrestrial plants, with the aim to determine patterns of response and sensitive endpoints. We conducted a systematic review (based on 78 studies) on the effects of NMPs on germination, plant growth and biochemical biomarkers. This review highlights that the majority of studies to date have used pristine polystyrene or polyethylene particles, either in a hydroponic or pot-plant setup. Based on these studies we found that effects on plants are widespread. We noted similar responses between and within monocots and dicots to NMPs, except for consistent lower germination seen in dicots exposed to NMPs. During early development, germination and root growth are more strongly affected compared to shoot growth. NMPs induced similar adverse growth effects on plant biomass and length in the most tested plant species (lettuce, wheat, corn, and rice) irrespective of the polymer type and size used. Moreover, biomarker responses were consistent across species; chlorophyll levels were commonly negatively affected, while stress indicators (e.g., ROS or free radicals) and stress respondents (e.g., antioxidant enzymes) were consistently upregulated. In addition, effects were commonly observed at environmentally relevant levels. These findings provide clear evidence that NMPs have wide-ranging impacts on plant performance. However, as most studies have been conducted under highly controlled conditions and with pristine plastics, there is an urgent need to test under more environmentally realistic conditions to ensure the lab-based studies can be extrapolated to the field.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Caterina Borchi
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta 3, 50139 Firenze, Italy.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Sara Di Lonardo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE The Hague, the Netherlands.
| |
Collapse
|
32
|
Ozfidan-Konakci C, Yildiztugay E, Arikan B, Alp-Turgut FN, Turan M, Cavusoglu H, Sakalak H. Responses of individual and combined polystyrene and polymethyl methacrylate nanoplastics on hormonal content, fluorescence/photochemistry of chlorophylls and ROS scavenging capacity in Lemna minor under arsenic-induced oxidative stress. Free Radic Biol Med 2023; 196:93-107. [PMID: 36657731 DOI: 10.1016/j.freeradbiomed.2023.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Nanoplastics alter the adverse impacts of hazardous contaminants such as heavy metals by changing their adsorption and accumulation. Few findings are available on the interaction between nanoplastic and heavy metals in plants. However, there is no report on the mechanisms for removing metal stress-mediated oxidative damage by the combination treatments of nanoplastics. To address this lack of information, polystyrene nanoplastic (PS, 100 mg L-1) and polymethyl methacrylate (PMMA, 100 mg L-1) were hydroponically applied to Lemna minor exposed to arsenate (As, 100 μM) for 7 days. PS or PMMA caused a reduction in the contents of N, P, K, Ca, Mg and Mn, but the improved contents were detected in the presence of PS or PMMA plus As stress. The hormone contents (auxin, gibberellic acid, cytokinin, salicylic acid and jasmonic acid) reduced by stress were re-arranged through PS or PMMA applications. Based on chlorophyll efficiency, fluorescence kinetics and performance of PSII, the impaired photosynthesis by As stress was improved via PS or PMMA applications. This alleviation did not continue under the combined form of PS and PMMA in As-applied plants. All analyzed antioxidant activity (superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR)) decreased or unchanged under As, PS or PMMA. Due to the inactivation of the defense system, L. minor had high levels of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS), showing lipid peroxidation. After As toxicity, induvial applications of PS or PMMA indicated the activated enzyme capacity (SOD, POX, GST and GPX) and upregulated AsA/DHA, GSH/GSSG and redox state of GSH, which facilitated the removal of radical accumulation. The efficiency of the antioxidant system in As + PS + PMMA-applied L. minor was not enough to remove damage induced by As stress; hereby, TBARS and H2O2 contents were similar to the As-treated group. Our findings from alone or combined application of PS and PMMA provide new information to advance the tolerance mechanism against As exposure in L. minor.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Metin Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, 34755, Istanbul, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Huseyin Sakalak
- Graduate School of Natural and Applied Sciences, Nanotechnology and Advanced Materials, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
33
|
Pérez-Reverón R, Álvarez-Méndez SJ, González-Sálamo J, Socas-Hernández C, Díaz-Peña FJ, Hernández-Sánchez C, Hernández-Borges J. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120788. [PMID: 36481462 DOI: 10.1016/j.envpol.2022.120788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Soils play a very important role in ecosystems sustainability, either natural or agricultural ones, serving as an essential support for living organisms of different kinds. However, in the current context of extremely high plastic pollution, soils are highly threatened. Plastics can change the chemical and physical properties of the soils and may also affect the biota. Of particular importance is the fact that plastics can be fragmented into microplastics and, to a final extent into nanoplastics. Due to their extremely low size and high surface area, nanoplastics may even have a higher impact in soil ecosystems. Their transport through the edaphic environment is regulated by the physicochemical properties of the soil and plastic particles themselves, anthropic activities and biota interactions. Their degradation in soils is associated with a series of mechanical, photo-, thermo-, and bio-mediated transformations eventually conducive to their mineralisation. Their tiny size is precisely the main setback when it comes to sampling soils and subsequent processes for their identification and quantification, albeit pyrolysis coupled with gas chromatography-mass spectrometry and other spectroscopic techniques have proven to be useful for their analysis. Another issue as a consequence of their minuscule size lies in their uptake by plants roots and their ingestion by soil dwelling fauna, producing morphological deformations, damage to organs and physiological malfunctions, as well as the risks associated to their entrance in the food chain, although current conclusions are not always consistent and show the same pattern of effects. Thus, given the omnipresence and seriousness of the plastic menace, this review article pretends to provide a general overview of the most recent data available regarding nanoplastics determination, occurrence, fate and effects in soils, with special emphasis on their ecological implications.
Collapse
Affiliation(s)
- Raquel Pérez-Reverón
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Sergio J Álvarez-Méndez
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez, s/n, 38206 La Laguna, Tenerife, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Cristina Socas-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Avenida Catalunya, 21, 46020, Valencia, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto 2, 38001, Santa Cruz de Tenerife, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
34
|
Bhanot V, Panwar J. Unveiling the potential of Lichtheimia ramosa AJP11 for myco-transformation of polystyrene sulfonate and its driving molecular mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116579. [PMID: 36302301 DOI: 10.1016/j.jenvman.2022.116579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is a major environmental concern due to its deleterious effects on various ecosystems. The limitations and shortcomings of waste management strategies has led to the over-accumulation of plastic waste, mainly comprised of single-use plastics, such as polystyrene (PS). Considering the advantages of biotransformation over the other plastic disposal methods, it has become a major focus of the modern research. Biotransformation of plastics involves its microbial hydrolysis into short chain oligomers and monomers that are eventually assimilated as carbon source by the microbes leading to the release of CO2. As fungi are known to possess multifarious and highly regulated enzyme system capable of utilizing diverse nutrient sources, the present study explored the potential of Lichtheimia ramosa AJP11 towards myco-transformation of polystyrene sulfonate (PSS), a structural analogue of polystyrene (PS). During the 30-day incubation period of L. ramosa AJP11 in minimal salt medium (MSM)+1% PSS, the fungus showed 41.6% increment in its fresh weight biomass, indicating the utilization of PSS as sole carbon source. Further analysis revealed the generation of various reaction intermediates such as alkanes and fatty acids, crucial for the continuum of fungal metabolic pathways. Moreover, detection of PS oligomers such as cyclohexane and 2,4-DTBP confirmed the myco-transformation of PSS. The extracellular fungal protein profile showed considerable overexpression of a 14.4 kDa protein, characterized to be a hydrophobic surface binding (Hsb) protein, which is hypothesized to adsorb onto the PSS to facilitate its transformation. Further, in silico analysis of Hsb protein indicated it to be an amphiphilic α-helical protein with ability to bind styrene sulfonate unit via both hydrogen and hydrophobic interactions, with a binding energy of -5.02 kcal mol-1. These findings open new avenues for over expression of Hsb under controlled reactor conditions to accelerate the PS waste disposal.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
35
|
Ullah R, Tsui MTK, Chow A, Chen H, Williams C, Ligaba-Osena A. Micro(nano)plastic pollution in terrestrial ecosystem: emphasis on impacts of polystyrene on soil biota, plants, animals, and humans. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:252. [PMID: 36585967 DOI: 10.1007/s10661-022-10769-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Pollution with emerging microscopic contaminants such as microplastics (MPs) and nanoplastics (NPs) including polystyrene (PS) in aquatic and terrestrial environments is increasingly recognized. PS is largely used in packaging materials and is dumped directly into the ecosystem. PS micro-nano-plastics (MNPs) can be potentially bioaccumulated in the food chain and can cause human health concerns through food consumption. Earlier MP research has focused on the aquatic environments, but recent researches show significant MP and NP contamination in the terrestrial environments especially agricultural fields. Though PS is the hotspot of MPs research, however, to our knowledge, this systematic review represents the first of its kind that specifically focused on PS contamination in agricultural soils, covering sources, effects, and ways of PS mitigation. The paper also provides updated information on the effects of PS on soil organisms, its uptake by plants, and effects on higher animals as well as human beings. Directions for future research are also proposed to increase our understanding of the environmental contamination of PS in terrestrial environments.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China
| | - Alex Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Clemson, SC, 29442, USA
- Dep. of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Huan Chen
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Clemson, SC, 29442, USA
- Dep. of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, Cardon Ln, Maricopa, AZ, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
36
|
Zhao B, Luo Z, Zhang H, Zhang H. Imaging tools for plant nanobiotechnology. Front Genome Ed 2022; 4:1029944. [PMID: 36569338 PMCID: PMC9772283 DOI: 10.3389/fgeed.2022.1029944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The successful application of nanobiotechnology in biomedicine has greatly changed the traditional way of diagnosis and treating of disease, and is promising for revolutionizing the traditional plant nanobiotechnology. Over the past few years, nanobiotechnology has increasingly expanded into plant research area. Nanomaterials can be designed as vectors for targeted delivery and controlled release of fertilizers, pesticides, herbicides, nucleotides, proteins, etc. Interestingly, nanomaterials with unique physical and chemical properties can directly affect plant growth and development; improve plant resistance to disease and stress; design as sensors in plant biology; and even be used for plant genetic engineering. Similarly, there have been concerns about the potential biological toxicity of nanomaterials. Selecting appropriate characterization methods will help understand how nanomaterials interact with plants and promote advances in plant nanobiotechnology. However, there are relatively few reviews of tools for characterizing nanomaterials in plant nanobiotechnology. In this review, we present relevant imaging tools that have been used in plant nanobiotechnology to monitor nanomaterial migration, interaction with and internalization into plants at three-dimensional lengths. Including: 1) Migration of nanomaterial into plant organs 2) Penetration of nanomaterial into plant tissues (iii)Internalization of nanomaterials by plant cells and interactions with plant subcellular structures. We compare the advantages and disadvantages of current characterization tools and propose future optimal characterization methods for plant nanobiotechnology.
Collapse
Affiliation(s)
- Bin Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Zhongxu Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Honglu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Surgun-Acar Y. Response of soybean (Glycine max L.) seedlings to polystyrene nanoplastics: Physiological, biochemical, and molecular perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120262. [PMID: 36162560 DOI: 10.1016/j.envpol.2022.120262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Micro and nanoplastics are new generation contaminants of global concern. It is important to evaluate the effects on edible products due to the presence of micro- and nano-sized plastics in the treated wastewater. A hydroponic experiment was carried out to explore the effect of polsytrene nanoplastics (PS-NPs; 20 nm) at different concentrations (0, 12.5, 25, and 50 mg L-1) on Glycine max L. (soybean) seedlings for 7-days. In the current study, firstly the uptake of PS-NPs by Glycine max L. (soybean) roots were confirmed by laser confocal scanning microscope. Exposure to PS-NPs, negatively affected growth parameters and increased Fe, Zn and Mn contents in roots and leaves of soybean seedlings. PS-NPs treatments caused oxidative stress in soybean seedlings. The hydrogen peroxide and malondialdehyde contents, showed similar increase pattern in seedlings exposed to PS-NPs. Response to PS-NPs, the level of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase) and proline content were generally enhanced in roots and leaves of soybean. The expression level of stress-related genes examined in the study included CSD5, FSD3, APX1, and POD up-regulated in PS-NPs treated-soybean seedlings in a tissue specific manner. The results of the present study showed the adverse effects of PS-NPs on soybean seedlings, which may have important implications for the risk assessment of NPs on crop production and environmental safety.
Collapse
Affiliation(s)
- Yonca Surgun-Acar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey.
| |
Collapse
|
38
|
Roy T, Dey TK, Jamal M. Microplastic/nanoplastic toxicity in plants: an imminent concern. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:27. [PMID: 36279030 PMCID: PMC9589797 DOI: 10.1007/s10661-022-10654-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 05/04/2023]
Abstract
The toxic impact of microplastics/nanoplastics (MPs/NPs) in plants and the food chain has recently become a top priority. Several research articles highlighted the impact of MPs/NPs on the aquatic food chain; however, very little has been done in the terrestrial ecosystem. A number of studies revealed that MPs/NPs uptake and subsequent translocation in plants alter plant morphological, physiological, biochemical, and genetic properties to varying degrees. However, there is a research gap regarding MPs/NPs entry into plants, associated factors influencing phytotoxicity levels, and potential remediation plans in terms of food safety and security. To address these issues, all sources of MPs/NPs intrusion in agroecosystems should be revised to avoid these hazardous materials with special consideration as preventive measures. Furthermore, this review focuses on the routes of accumulation and transmission of MPs/NPs into plant tissues, related aspects influencing the intensity of plant stress, and potential solutions to improve food quality and quantity. This paper also concludes by providing an outlook approach of applying exogenous melatonin and introducing engineered plants that would enhance stress tolerance against MPs/NPs. In addition, an overview of inoculation of beneficial microorganisms and encapsulated enzymes in soil has been addressed, which would make the degradation of MPs/NPs faster.
Collapse
Affiliation(s)
- Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Thuhin K Dey
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh.
| |
Collapse
|
39
|
Ekner-Grzyb A, Duka A, Grzyb T, Lopes I, Chmielowska-Bąk J. Plants oxidative response to nanoplastic. FRONTIERS IN PLANT SCIENCE 2022; 13:1027608. [PMID: 36340372 PMCID: PMC9630848 DOI: 10.3389/fpls.2022.1027608] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Pollution of the environment with plastic is an important concern of the modern world. It is estimated that annually over 350 million tonnes of this material are produced, wherein, despite the recycling methods, a significant part is deposited in the environment. The plastic has been detected in the industrial areas, as well as farmlands and gardens in many world regions. Larger plastic pieces degraded in time into smaller pieces including microplastic (MP) and nanoplastic particles (NP). Nanoplastic is suggested to pose the most serious danger as due to the small size, it is effectively taken up from the environment by the biota and transported within the organisms. An increasing number of reports show that NP exert toxic effects also on plants. One of the most common plant response to abiotic stress factors is the accumulation of reactive oxygen species (ROS). On the one hand, these molecules are engaged in cellular signalling and regulation of genes expression. On the other hand, ROS in excess lead to oxidation and damage of various cellular compounds. This article reviews the impact of NP on plants, with special emphasis on the oxidative response.
Collapse
Affiliation(s)
- Anna Ekner-Grzyb
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Anna Duka
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Poznań, Poland
- Department of Mycology and Plant Resistance, Vasily Nazarovich Karazin (VN) Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Isabel Lopes
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
40
|
Arikan B, Ozfidan-Konakci C, Yildiztugay E, Turan M, Cavusoglu H. Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119851. [PMID: 35987286 DOI: 10.1016/j.envpol.2022.119851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a significant environmental pollution group that reaches toxic levels with anthropogenic activities. The adverse effects of nanoplastics accumulating in ecosystems with the degradation of plastic wastes are also a growing concern. Previous studies have generally focused on the impact of single PAH or plastic fragments exposure on plants. However, it is well recognized that these contaminants co-exist at varying rates in agricultural soil and water resources. Therefore, it is critical to elucidate the phytotoxicity and interaction mechanisms of mixed pollutants. The current study was designed to comparatively investigate the single and combined effects of anthracene (ANT, 100 mg L-1), fluorene (FLU, 100 mg L-1) and polystyrene nanoplastics (PS, 100 mg L-1) contaminations in wheat. Plants exposed to single ANT, FLU and PS treatments demonstrated decline in growth, water content, high stomatal limitations and oxidative damage. The effect of ANT + FLU on these parameters was more detrimental. In addition, ANT and/or FLU treatments significantly suppressed photosynthetic capacity as determined by carbon assimilation rate (A) and chlorophyll a fluorescence transient. The antioxidant system was not fully activated (decreased superoxide dismutase, peroxidase and glutathione reductase) under ANT + FLU, then hydrogen peroxide (H2O2) content (by 2.7-fold) and thiobarbituric acid reactive substances (TBARS) (by 2.8-fold) increased. Interestingly, ANT + PS and FLU + PS improved the growth, water relations and gas exchange parameters. The presence of nanoplastics recovered the adverse effects of ANT and FLU on growth by protecting the photosynthetic photochemistry and reducing oxidative stress. PAH plus PS reduced the ANT and FLU accumulation in wheat leaves. In parallel, the increased antioxidant system, regeneration of ascorbate, glutathione and glutathione redox status observed under ANT + PS and FLU + PS. These findings will provide an information about the phytotoxicity mechanisms of mixed pollutants in the environment.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42130, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42130, Turkey.
| | - Metin Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, İstanbul, 34755, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, Konya, 42130, Turkey.
| |
Collapse
|
41
|
Menicagli V, Castiglione MR, Balestri E, Giorgetti L, Bottega S, Sorce C, Spanò C, Lardicci C. Early evidence of the impacts of microplastic and nanoplastic pollution on the growth and physiology of the seagrass Cymodocea nodosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156514. [PMID: 35679937 DOI: 10.1016/j.scitotenv.2022.156514] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in natural habitats and the risks their presence poses to marine environments and organisms are of increasing concern. There is evidence that seagrass meadows are particularly prone to accumulate plastic debris, including polystyrene particles, but the impacts of this pollutant on seagrass performance are currently unknown. This is a relevant knowledge gap as seagrasses provide multiple ecosystem services and are declining globally due to anthropogenic impact and climate-change-related stressors. Here, we explored the potential effects of a 12 day-exposure of seagrasses to one concentration (68 μg/L) of polystyrene MPs and NPs on the growth, oxidative status, and photosynthetic efficiency of plants using the foundation species Cymodocea nodosa as a model. Among plant organs, adventitious roots were particularly affected by MPs and NPs showing complete degeneration. The number of leaves per shoot was lower in MPs- and NPs-treated plants compared to control plants, and leaf loss exceeded new leaf production in MPs-treated plants. MPs also reduced photochemical efficiency and increased pigment content compared to control plants. Shoots of NPs-treated plants showed a greater oxidative damage and phenol content than those of control plants and MPs-treated plants. Biochemical data about oxidative stress markers were consistent with histochemical results. The effects of MPs on C. nodosa could be related to their adhesion to plant surface while those of NPs to entering tissues. Our study provides the first experimental evidence of the potential harmful effects of MPs/NPs on seagrass development. It also suggests that the exposure of seagrasses to MPs/NPs in natural environments could have negative consequences on the functioning of seagrass ecosystems. This stresses the importance of implementing cleaning programs to remove all plastics already present in marine habitats as well as of undertaking specific actions to prevent the introduction of these pollutants within seagrass meadows.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, via S. Maria 53, Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy.
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology (IBBA-CNR), Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, via S. Maria 53, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, Pisa, Italy
| |
Collapse
|
42
|
Saravanakumar K, SivaSantosh S, Sathiyaseelan A, Naveen KV, AfaanAhamed MA, Zhang X, Priya VV, MubarakAli D, Wang MH. Unraveling the hazardous impact of diverse contaminants in the marine environment: Detection and remedial approach through nanomaterials and nano-biosensors. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128720. [PMID: 35366447 DOI: 10.1016/j.jhazmat.2022.128720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Marine pollution is one of the most underlooked forms of pollution as it affects most aquatic lives and public health in the coastal area. The diverse form of the hazardous pollutant in the marine ecosystem leads the serious genetic level disorders and diseases which include cancer, diabetes, arthritis, reproductive, and neurological diseases such as Parkinson's, Alzheimer's, and several microbial infections. Therefore, a recent alarming study on these pollutants, the microplastics have been voiced out in many countries worldwide, it was even found to be in the human placenta. In recent times, nanomaterials have demonstrated their potential in the detection and remediation of sensitive contaminants. In this review, we presented a comprehensive overview of the source, and distribution of diverse marine pollution on both aquatic and human health by summarizing the concentration of diverse pollutions (heavy metals, pesticides, microbial toxins, and micro/nano plastics) in marine samples such as soil, water, and seafood. Followed by emphasizing its ecotoxicological impact on aquatic animal life and coastal public health. Also discussed are the applicability and advancements of nanomaterials and nano-based biosensors in the detection, prevention, and remediation of diverse pollution in the marine ecosystem.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Kumar Vishven Naveen
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Mohamed Ali AfaanAhamed
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India.
| | - Xin Zhang
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India.
| | - Myeong-Hyeon Wang
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|