1
|
Hu X, Xu T, Chen Y, Zhang Q, Tang L, Zheng L, Wang C, Wang P, Dong S, Wang R, Zhang S, Zhang Q, Xie HQ, Xu L, Zhao B. Comprehensive metabolic profiling of dioxin-like compounds exposure in laying hens: Implications for toxicity assessment. J Environ Sci (China) 2025; 148:107-115. [PMID: 39095149 DOI: 10.1016/j.jes.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 08/04/2024]
Abstract
The evaluation of toxicity related to polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) is crucial for a comprehensive risk assessment in real-world exposure scenarios. This study employed a controlled feeding experiment to investigate the metabolic effects of dioxin-like compounds (DLCs) on laying hens via feed exposure. Diets enriched with two concentrations (1.17 and 5.13 pg toxic equivalents (TEQ)/g dry weight (dw)) were administered over 14 days, followed by 28 days of clean feed. Metabolomics analyses of blood samples revealed significant metabolic variations between PCDD/Fs and DL-PCBs exposed groups and controls, reflecting the induced metabolic disruption. Distinct changes were observed in sphingosine, palmitoleic acid, linoleate, linolenic acid, taurocholic acid, indole acrylic acid, and dibutyl phthalate levels, implying possible connections between PCDD/Fs and DL-PCBs toxic effects and energy-neuronal imbalances, along with lipid accumulation and anomalous amino acid metabolism, impacting taurine metabolism. Moreover, we identified three differential endogenous metabolites-L-tryptophan, indole-3-acetaldehyde, and indole acrylic acid-as potential ligands for the aryl hydrocarbon receptor (AhR), suggesting their role in mediating PCDD/Fs and DL-PCBs toxicity. This comprehensive investigation provides novel insights into the metabolic alterations induced by PCDD/Fs and DL-PCBs in laying hens, thereby enhancing our ability to assess risks associated with their exposure in human populations.
Collapse
Affiliation(s)
- Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Lijuan Tang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Wang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Laguzzi F, Maitusong B, Strawbridge RJ, Baldassarre D, Veglia F, Humphries SE, Rauramaa R, Kurl S, Smit AJ, Giral P, Silveira A, Tremoli E, Hamsten A, de Faire U, Gigante B, Leander K. Intake of food rich in saturated fat in relation to subclinical atherosclerosis and potential modulating effects from single genetic variants. Sci Rep 2021; 11:7866. [PMID: 33846368 PMCID: PMC8042105 DOI: 10.1038/s41598-021-86324-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
The relationship between intake of saturated fats and subclinical atherosclerosis, as well as the possible influence of genetic variants, is poorly understood and investigated. We aimed to investigate this relationship, with a hypothesis that it would be positive, and to explore whether genetics may modulate it, using data from a European cohort including 3,407 participants aged 54-79 at high risk of cardiovascular disease. Subclinical atherosclerosis was assessed by carotid intima-media thickness (C-IMT), measured at baseline and after 30 months. Logistic regression (OR; 95% CI) was employed to assess the association between high intake of food rich in saturated fat (vs. low) and: (1) the mean and the maximum values of C-IMT in the whole carotid artery (C-IMTmean, C-IMTmax), in the bifurcation (Bif-), the common (CC-) and internal (ICA-) carotid arteries at baseline (binary, cut-point ≥ 75th), and (2) C-IMT progression (binary, cut-point > zero). For the genetic-diet interaction analyses, we considered 100,350 genetic variants. We defined interaction as departure from additivity of effects. After age- and sex-adjustment, high intake of saturated fat was associated with increased C-IMTmean (OR:1.27;1.06-1.47), CC-IMTmean (OR:1.22;1.04-1.44) and ICA-IMTmean (OR:1.26;1.07-1.48). However, in multivariate analysis results were no longer significant. No clear associations were observed between high intake of saturated fat and risk of atherosclerotic progression. There was no evidence of interactions between high intake of saturated fat and any of the genetic variants considered, after multiple testing corrections. High intake of saturated fats was not independently associated with subclinical atherosclerosis. Moreover, we did not identify any significant genetic-dietary fat interactions in relation to risk of subclinical atherosclerosis.
Collapse
Affiliation(s)
- Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden.
| | - Buamina Maitusong
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Rona J Strawbridge
- Institute of Mental Health and Wellbeing, Mental Health and Wellbeing, University of Glasgow, Glasgow, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Health Data Research United Kingdom, London, UK
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute Cardiovascular Science, University College London, London, UK
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Sudhir Kurl
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Andries J Smit
- Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Philippe Giral
- Assistance Publique-Hôpitaux de Paris, Service Endocrinologie-Métabolisme, Groupe Hospitalier Pitié-Salpétrière, Unités de Prévention Cardiovasculaire, Paris, France
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | | | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Ulf de Faire
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden
| | - Bruna Gigante
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden
| |
Collapse
|
3
|
Long-Chain Acylcarnitines and Monounsaturated Fatty Acids Discriminate Heart Failure Patients According to Pulmonary Hypertension Status. Metabolites 2021; 11:metabo11040196. [PMID: 33810372 PMCID: PMC8066759 DOI: 10.3390/metabo11040196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Defects in fatty acid (FA) utilization have been well described in group 1 pulmonary hypertension (PH) and in heart failure (HF), yet poorly studied in group 2 PH. This study was to assess whether the metabolomic profile of patients with pulmonary hypertension (PH) due HF, classified as group 2 PH, differs from those without PH. We conducted a proof-of-principle cross-sectional analysis of 60 patients with chronic HF with reduced ejection fraction and 72 healthy controls in which the circulating level of 71 energy-related metabolites was measured using various methods. Echocardiography was used to classify HF patients as noPH-HF (n = 27; mean pulmonary artery pressure [mPAP] 21 mmHg) and PH-HF (n = 33; mPAP 35 mmHg). The profile of circulating metabolites among groups was compared using principal component analysis (PCA), analysis of covariance (ANCOVA), and Pearson’s correlation tests. Patients with noPH-HF and PH-HF were aged 64 ± 11 and 68 ± 10 years, respectively, with baseline left ventricular ejection fractions of 27 ± 7% and 26 ± 7%. Principal component analysis segregated groups, more markedly for PH-HF, with long-chain acylcarnitines, acetylcarnitine, and monounsaturated FA carrying the highest loading scores. After adjustment for age, sex, kidney function, insulin resistance, and N-terminal pro-brain natriuretic peptide (NT-proBNP), 5/15 and 8/15 lipid-related metabolite levels were significantly different from controls in noPH-HF and PH-HF subjects, respectively. All metabolites for which circulating levels interacted between group and NT-proBNP significantly correlated with NT-proBNP in HF-PH, but none with HF-noPH. FA-related metabolites were differently affected in HF with or without PH, and may convey adverse outcomes given their distinct correlation with NT-proBNP in the setting of PH.
Collapse
|
4
|
Del Pinto R, Pietropaoli D, Monaco A, Desideri G, Ferri C, Grassi D. Non-pharmacological Strategies Against Systemic Inflammation: Molecular Basis and Clinical Evidence. Curr Pharm Des 2020; 26:2620-2629. [PMID: 32242777 DOI: 10.2174/1381612826666200403122600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Systemic inflammation is a common denominator to a variety of cardiovascular (CV) and non-CV diseases and relative risk factors, including hypertension and its control, metabolic diseases, rheumatic disorders, and those affecting the gastrointestinal tract. Besides medications, a non-pharmacological approach encompassing lifestyle changes and other complementary measures is mentioned in several updated guidelines on the management of these conditions. We performed an updated narrative review on the mechanisms behind the systemic impact of inflammation and the role of non-pharmacological, complementary measures centered on lowering systemic phlogosis for preserving or restoring a good global health. The central role of genetics in shaping the immune response is discussed in conjunction with that of the microbiome, highlighting the interdependence and mutual influences between the human genome and microbial integrity, diversity, and functions. Several plausible strategies to modulate inflammation and restore balanced crosstalk between the human genome and the microbiome are then recapitulated, including dietary measures, active lifestyle, and other potential approaches to manipulate the resident microbial community. To date, evidence from high-quality human studies is sparse to allow the unconditioned inclusion of understudied, though plausible solutions against inflammation into public health strategies for global wellness. This gap claims further focused, well-designed research targeted at unravelling the mechanisms behind future personalized medicine.
Collapse
Affiliation(s)
- Rita Del Pinto
- University of L'Aquila, Department of Life, Health, and Environmental Sciences, San Salvatore Hospital, L'Aquila, Italy
| | - Davide Pietropaoli
- University of L'Aquila, Department of Life, Health, and Environmental Sciences, San Salvatore Hospital, L'Aquila, Italy
| | - Annalisa Monaco
- University of L'Aquila, Department of Life, Health, and Environmental Sciences, San Salvatore Hospital, L'Aquila, Italy
| | - Giovambattista Desideri
- University of L'Aquila, Department of Life, Health, and Environmental Sciences, San Salvatore Hospital, L'Aquila, Italy
| | - Claudio Ferri
- University of L'Aquila, Department of Life, Health, and Environmental Sciences, San Salvatore Hospital, L'Aquila, Italy
| | - Davide Grassi
- University of L'Aquila, Department of Life, Health, and Environmental Sciences, San Salvatore Hospital, L'Aquila, Italy
| |
Collapse
|
5
|
Mastellone V, Musco N, Vassalotti G, Piantedosi D, Vastolo A, Cutrignelli MI, Britti D, Cortese L, Lombardi P. A Nutritional Supplement (DìLsh TM) Improves the Inflammatory Cytokines Response, Oxidative Stress Markers and Clinical Signs in Dogs Naturally Infected by Leishmania infantum. Animals (Basel) 2020; 10:E938. [PMID: 32485886 PMCID: PMC7341525 DOI: 10.3390/ani10060938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
The possibility to associate nutraceuticals, as immune-modulating tools, to the treatment of visceral leishmaniosis is a matter of great interest. In this study, we investigated whether the administration of a nutritional supplement (DìLshTM, Dynamopet SRL, Verona, Italy) was able to exert beneficial effects on the inflammatory state and oxidative stress of the dogs naturally infected by Leishmania infantum. To this purpose, specific parameters, namely Tumor Necrosis Factor -alpha (TNF), Interleukin-6 (IL-6), Inteleukin-10 (IL-10), leptin, derivates of Reactive Oxigen Metabolites (d-Roms) and Biological Antioxidant Potential (BAP), as well as the haematological and biochemical profiles of the infected dogs, were investigated upon the treatment with the nutritional supplement and compared with the conventional pharmacological anti-Leishmania therapy. The animals underwent complete clinical examination and blood sample collection before (T0) and 3 months after (T90) the onset of the two treatments. The two treatments showed similar results: significant clinical improvement, ELISA positivity and IgG decrease, an increase in IL-10, and a decrease in IL-6 were observed in animals treated with the nutritional supplement. A decrease in d-Roms and an increase in BAP were also detected in both groups. On the whole, the nutritional supplement possesses anti-inflammatory and antioxidant properties, suggesting that it may support animals' health and be useful to extend the time a drug therapy is needed.
Collapse
Affiliation(s)
- Vincenzo Mastellone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (V.M.); (N.M.); (D.P.); (A.V.); (M.I.C.); (P.L.)
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (V.M.); (N.M.); (D.P.); (A.V.); (M.I.C.); (P.L.)
| | - Giuseppe Vassalotti
- Department of Health Sciences, University Magna Graecia, Catanzaro, 88100 Catanzaro, Italy; (G.V.); (D.B.)
| | - Diego Piantedosi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (V.M.); (N.M.); (D.P.); (A.V.); (M.I.C.); (P.L.)
| | - Alessandro Vastolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (V.M.); (N.M.); (D.P.); (A.V.); (M.I.C.); (P.L.)
| | - Monica Isabella Cutrignelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (V.M.); (N.M.); (D.P.); (A.V.); (M.I.C.); (P.L.)
| | - Domenico Britti
- Department of Health Sciences, University Magna Graecia, Catanzaro, 88100 Catanzaro, Italy; (G.V.); (D.B.)
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (V.M.); (N.M.); (D.P.); (A.V.); (M.I.C.); (P.L.)
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (V.M.); (N.M.); (D.P.); (A.V.); (M.I.C.); (P.L.)
| |
Collapse
|
6
|
Zhou Y, Li X, Zhang L, Xiao H, Yan S, Wen L, Wang J. Effect of mixing lard with soybean oil in cooking on hepatic antioxidative ability and renal metabolic activity. OIL CROP SCIENCE 2020; 5:26-30. [DOI: 10.1016/j.ocsci.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
|
7
|
|
8
|
Horigome A, Okubo R, Hamazaki K, Kinoshita T, Katsumata N, Uezono Y, Xiao JZ, Matsuoka YJ. Association between blood omega-3 polyunsaturated fatty acids and the gut microbiota among breast cancer survivors. Benef Microbes 2019; 10:751-758. [PMID: 31965846 DOI: 10.3920/bm2019.0034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) are essential nutrients demonstrated to have health benefits, such as decreasing the risk of coronary heart disease, improving parameters associated with metabolic syndrome, and decreasing anxiety symptoms and depression risk. Previous intervention studies indicated the association between blood or tissue PUFA levels and the gut microbiota; however, the details remain incompletely elucidated. We conducted a cross-sectional study to examine the association between PUFAs and the gut microbiota among breast cancer survivors. Adults who had been diagnosed with invasive breast cancer more than one year ago and were not currently undergoing chemotherapy were enrolled. Capillary blood and faecal samples were obtained to assess the blood PUFA levels and gut microbiota compositions. The mean age (n=124) was 58.7 years, and 46% of the participants had a history of chemotherapy. Multiple regression analysis controlling for possible confounders indicated that an increased relative abundance of Actinobacteria was significantly associated with increased levels of docosahexaenoic acid (DHA, beta=0.304, q<0.01). At the genus level, the abundance of Bifidobacterium was positively associated with the level of DHA (beta=0.307, q<0.01). No significant association between omega-6 PUFAs and the relative abundances of gut microbiota members was observed. In addition, analyses stratified by the history of chemotherapy indicated significant associations of PUFA levels with the abundance of some bacterial taxa, including the phylum Actinobacteria (DHA, beta=0.365, q<0.01) and Bacteroidetes (EPA, beta=-0.339, q<0.01) and the genus Bifidobacterium (DHA, beta=0.368, q<0.01) only among participants without a history of chemotherapy. These findings provide the first evidence of positive associations between the abundances of Bifidobacterium among the gut microbiota and the levels of omega-3 PUFAs in the blood. Further studies are required to gain additional insight into these associations in healthy subjects as well as into the causality of the relationship.
Collapse
Affiliation(s)
- A Horigome
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama City, Kanagawa 252-8583, Japan
| | - R Okubo
- Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - K Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama City, Toyama 930-0194, Japan
| | - T Kinoshita
- Department of Breast Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - N Katsumata
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama City, Kanagawa 252-8583, Japan
| | - Y Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - J Z Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama City, Kanagawa 252-8583, Japan
| | - Y J Matsuoka
- Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
9
|
Lombardi P, Palatucci AT, Giovazzino A, Mastellone V, Ruggiero G, Rubino V, Musco N, Crupi R, Cutrignelli MI, Britti D, Vassalotti G, Terrazzano G, Cortese L. Clinical and Immunological Response in Dogs Naturally Infected by L. infantum Treated with a Nutritional Supplement. Animals (Basel) 2019; 9:ani9080501. [PMID: 31366122 PMCID: PMC6721201 DOI: 10.3390/ani9080501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
Simple Summary We evaluated the effects of a commercial nutraceutical supplementation in dogs naturally affected by Leishmania infantum. This nutraceutical supplement is proposed to be added to dog diet to foster physiological immune-response during chronic leishmaniasis. Parasite clearance is infrequently obtained by immune response in both the human and canine leishmaniasis. Pharmacological therapies frequently fail in the elimination of L. infantum that could have settled in deep organs, escaping immune responses and therapy. The conventional drug therapy improves clinical signs, reduces parasitemia as well as relapse of infection. This nutraceutical supplementation can improve the impaired immune response of the infected dogs to fight the disease. Abstract The use of nutraceuticals as immunomodulators in the treatment of visceral leishmaniasis has generated interest in the current approaches to treat the disease. In this clinical and immunological study, we investigated whether the administration of a nutritional supplement mediates the immune-modulatory response in canine leishmaniosis (CL) and improves the clinical outcome of the disease. With this purpose, we analysed T lymphocyte subsets in peripheral blood (PB) of 12 dogs naturally infected by Leishmania infantum, following treatment with a nutritional supplement. The regulatory T (Treg) cells and the T helper (Th) 1 population were specifically evaluated. The animals underwent complete clinical examination and blood sample collection for haematological, biochemical, serological and immunological analysis before treatment (T0), one month (T30) and 3 months (T90) after the onset of the nutraceutical supplementation. We observed that nutraceutical supplementation was associated with immunomodulation of Th1 response and significant clinical improvement of the animals. No side effects were observed. Therefore, a potential supportive role for the nutraceutical supplement during canine leishmaniasis is proposed.
Collapse
Affiliation(s)
- Pietro Lombardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Napoli NA, Italy
| | | | - Angela Giovazzino
- Department of Science, University of Basilicata, 85100 Potenza PZ, Italy
| | - Vincenzo Mastellone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Napoli NA, Italy
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Napoli NA, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Napoli NA, Italy
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Napoli NA, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina ME, Italy
| | - Monica Isabella Cutrignelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Napoli NA, Italy
| | - Domenico Britti
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro CZ, Italy
| | - Giuseppe Vassalotti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Napoli NA, Italy
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza PZ, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Napoli NA, Italy.
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Napoli NA, Italy.
| |
Collapse
|
10
|
Musco N, Vassalotti G, Mastellone V, Cortese L, Della Rocca G, Molinari ML, Calabrò S, Tudisco R, Cutrignelli MI, Lombardi P. Effects of a nutritional supplement in dogs affected by osteoarthritis. Vet Med Sci 2019; 5:325-335. [PMID: 31313893 PMCID: PMC6682793 DOI: 10.1002/vms3.182] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis is a form of chronic joint inflammation caused by the deterioration of the joint cartilage, accompanied by chronic pain, lameness and stiffness, particularly after prolonged activity. Alternative treatments of canine osteoarthritis would be desirable and, recently nutraceuticals, have been proposed for this purpose. Twenty cross breed adult dogs affected by osteoarthritis were enrolled and equally divided into two groups (control vs. experimental). The nutritional supplement (Dynamopet srl, Verone, Italy) was administered for 90 days to the dogs of the experimental group in order to evaluate its metabolic and locomotor effects. All the clinical signs (lameness, pain on manipulation and palpation, range of motion and joint swelling) significantly (p < 0.01) improved during the trial as regards the experimental group. This group showed a significantly lower joint score than the control group (mean value 7.40 vs. 3.80). With regard to haematology, the mean corpuscular volume resulted significantly (p < 0.01) higher in the experimental group, i.e. alkaline phosphatase, cholesterol and triglycerides values decreased and were significantly (p < 0.01) lower than the control one, thus suggesting an improvement in bone remodelling and lipid metabolism. A decrease in the reactive oxygen metabolites and an increase in the biological antioxidant potential demonstrated an improvement in oxidative stress during the trial in the experimental group compare to the control group. Interleukins 6 decreased in the experimental group, while interleukins 10 resulted in the opposite trend. Moreover, the administration of up to 3 months of the studied supplement was well tolerated in the dogs and caused no adverse effects.
Collapse
Affiliation(s)
- Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | | | - Vincenzo Mastellone
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | | | | | - Serena Calabrò
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | | | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
11
|
De Silva GS, Desai K, Darwech M, Naim U, Jin X, Adak S, Harroun N, Sanchez LA, Semenkovich CF, Zayed MA. Circulating serum fatty acid synthase is elevated in patients with diabetes and carotid artery stenosis and is LDL-associated. Atherosclerosis 2019; 287:38-45. [PMID: 31202106 DOI: 10.1016/j.atherosclerosis.2019.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Accepted: 05/23/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Diabetes is an independent risk factor for carotid artery stenosis (CAS). Fatty acid synthase (FAS), an essential de novo lipogenesis enzyme, has increased activity in the setting of diabetes that leads to altered lipid metabolism. Circulating FAS (cFAS) was recently observed in the blood of patients with hyperinsulinemia and cancer. We thought to evaluate the origin of cFAS and its role in diabetes-associated CAS. METHODS Patients with diabetes and no diabetes, undergoing carotid endarterectomy (CEA) for CAS, were prospectively enrolled for collection of plaque and fasting serum. FPLC was used to purify lipoprotein fractions, and ELISA was used to quantify cFAS content and activity. Immunoprecipitation (IP) was used to evaluate the affinity of cFAS to LDL-ApoB. RESULTS Patients with CAS had higher cFAS activity (p < 0.01), and patients with diabetes had higher cFAS activity than patients with no diabetes (p < 0.05). cFAS activity correlated with serum glucose (p = 0.03, r2 = 0.35), and cFAS content trended with plaque FAS content (p = 0.06, r2 = 0.69). cFAS was predominantly in LDL cholesterol fractions of patients with CAS (p < 0.001), and IP of cFAS demonstrated pulldown of ApoB. Similar to patients with diabetes, db/db mice had highest levels of serum cFAS (p < 0.01), and fasL-/- (tissue-specific liver knockdown of FAS) mice had the lowest levels of cFAS (p < 0.001). CONCLUSIONS Serum cFAS is higher in patients with diabetes and CAS, appears to originate from the liver, and is LDL cholesterol associated. We postulate that LDL may be serving as a carrier for cFAS that contributes to atheroprogression in carotid arteries of patients with diabetes.
Collapse
Affiliation(s)
- Gayan S De Silva
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Kshitij Desai
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Malik Darwech
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Uzma Naim
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Xiaohua Jin
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Sangeeta Adak
- Washington University School of Medicine, Department of Internal Medicine, Division of Endocrinology, Lipid, and Metabolism, St. Louis, MO, USA
| | - Nikolai Harroun
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Luis A Sanchez
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Internal Medicine, Division of Endocrinology, Lipid, and Metabolism, St. Louis, MO, USA
| | - Mohamed A Zayed
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
12
|
Riveros ME, Retamal MA. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS. Front Physiol 2018; 9:693. [PMID: 29946266 PMCID: PMC6005883 DOI: 10.3389/fphys.2018.00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder (BD) is an extremely disabling psychiatric disease, characterized by alternate states of mania (or hypomania) and depression with euthymic states in between. Currently, patients receive pharmacological treatment with mood stabilizers, antipsychotics, and antidepressants. Unfortunately, not all patients respond well to this type of treatment. Bipolar patients are also more prone to heart and metabolic diseases as well as a higher risk of suicide compared to the healthy population. For a correct brain function is indispensable a right protein and lipids (e.g., fatty acids) balance. In particular, the amount of fatty acids in the brain corresponds to a 50–70% of the dry weight. It has been reported that in specific brain regions of BD patients there is a reduction in the content of unsaturated n-3 fatty acids. Accordingly, a diet rich in n-3 fatty acids has beneficial effects in BD patients, while their absence or high levels of saturated fatty acids in the diet are correlated to the risk of developing the disease. On the other hand, the histamine system is likely to be involved in the pathophysiology of several psychiatric diseases such as BD. Histamine is a neuromodulator involved in arousal, motivation, and energy balance; drugs acting on the histamine receptor H3 have shown potential as antidepressants and antipsychotics. The histaminergic system as other neurotransmission systems can be altered by fatty acid membrane composition. The purpose of this review is to explore how polyunsaturated fatty acids content alterations are related to the histaminergic system modulation and their impact in BD pathophysiology.
Collapse
Affiliation(s)
- María E Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
13
|
Naranjo MC, Bermudez B, Garcia I, Lopez S, Abia R, Muriana FJG, Montserrat-de la Paz S. Dietary fatty acids on aortic root calcification in mice with metabolic syndrome. Food Funct 2017; 8:1468-1474. [DOI: 10.1039/c7fo00143f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS) is associated with obesity, dyslipidemia, type 2 diabetes, and chronic low-grade inflammation.
Collapse
Affiliation(s)
- Maria C. Naranjo
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Beatriz Bermudez
- Department of Cell Biology
- Faculty of Biology
- University of Seville
- 41012 Seville
- Spain
| | - Indara Garcia
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | | | | |
Collapse
|
14
|
The integration of epigenetics and genetics in nutrition research for CVD risk factors. Proc Nutr Soc 2016; 76:333-346. [PMID: 27919301 DOI: 10.1017/s0029665116000823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is increasing evidence documenting gene-by-environment (G × E) interactions for CVD related traits. However, the underlying mechanisms are still unclear. DNA methylation may represent one of such potential mechanisms. The objective of this review paper is to summarise the current evidence supporting the interplay among DNA methylation, genetic variants, and environmental factors, specifically (1) the association between SNP and DNA methylation; (2) the role that DNA methylation plays in G × E interactions. The current evidence supports the notion that genotype-dependent methylation may account, in part, for the mechanisms underlying observed G × E interactions in loci such asAPOE, IL6and ATP-binding cassette A1. However, these findings should be validated using intervention studies with high level of scientific evidence. The ultimate goal is to apply the knowledge and the technology generated by this research towards genetically based strategies for the development of personalised nutrition and medicine.
Collapse
|
15
|
Perales-Torres AL, Castillo-Ruíz O, Castañeda Licón MT, Alemán-Castillo SE, Jiménez Andrade JM. [Diabetes and type of diet as determinant factor in the progression of atherosclerosis]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 86:326-334. [PMID: 26775035 DOI: 10.1016/j.acmx.2015.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/30/2022] Open
Abstract
The purpose of this review is to analyze the biochemical progression of atherosclerotic plaque and its association with diet and diabetes. This study shows the scientific evidence of demonstrating that diabetic patients present high levels of fatty acids like palmitic acid and linoleic acid in their atheroma plaques in comparison with non-diabetic patients. This study also establishes how patients with diabetes mellitus have a higher prevalence of atherosclerotic heart diseases in the form of Coronary Thrombosis and have different anatomopathological appearance like higher necrotic core and thin fibrotic layer than the general population. Furthermore this review describes the different anatomopathological appearance and cellular changes involved in the formation of these plaques and how diet can affect the development of these plaques.
Collapse
Affiliation(s)
| | - Octelina Castillo-Ruíz
- Departamento de Nutrición y Alimentos, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, México.
| | | | | | | |
Collapse
|
16
|
Liu L, Hu Q, Wu H, Xue Y, Cai L, Fang M, Liu Z, Yao P, Wu Y, Gong Z. Protective role of n6/n3 PUFA supplementation with varying DHA/EPA ratios against atherosclerosis in mice. J Nutr Biochem 2016; 32:171-80. [DOI: 10.1016/j.jnutbio.2016.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/16/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
17
|
Rodriguez-Lopez M, Osorio L, Acosta-Rojas R, Figueras J, Cruz-Lemini M, Figueras F, Bijnens B, Gratacós E, Crispi F. Influence of breastfeeding and postnatal nutrition on cardiovascular remodeling induced by fetal growth restriction. Pediatr Res 2016; 79:100-6. [PMID: 26372518 DOI: 10.1038/pr.2015.182] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/13/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Our aim was to determine the influence of breastfeeding and postnatal nutrition on cardiovascular remodeling induced by fetal growth restriction (FGR). METHODS A cohort study including 81 children with birthweight <10th centile (FGR) and 121 with adequate fetal growth for gestational age (AGA) was conducted. Cardiovascular endpoints were left ventricular sphericity index (LVSI), carotid intima-media thickness (cIMT), and blood pressure (BP) at 4-5 y of age. The combined effect of FGR and postnatal variables-including breastfeeding, fat dietary intake, and BMI-on cardiovascular endpoints was assessed by linear and robust regressions. RESULTS FGR was the strongest predictor of cardiovascular remodeling in childhood, leading to lower LVSI and increased cIMT and BP as compared with AGA. Breastfeeding >6 mo (coefficient: 0.0982) and healthy-fat dietary intake (coefficient: -0.0128) showed an independent beneficial effect on LVSI and cIMT, respectively. Overweight/obesity induced an additional increment of 1 SD on cIMT in FGR children (interaction coefficient: 0.0307) when compared with its effect in AGA. BMI increased systolic BP (coefficient: 0.7830) while weight catch-up increased diastolic BP (coefficient: 4.8929). CONCLUSIONS Postnatal nutrition ameliorates cardiovascular remodeling induced by FGR. Breastfeeding and healthy-fat dietary intake improved while increased BMI worsened cardiovascular endpoints, which opens opportunities for targeted postnatal interventions from early life.
Collapse
Affiliation(s)
- Merida Rodriguez-Lopez
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.,Epidemiology and Population Health Research Group (GESP), School of Public Health, Faculty of Health, Universidad del Valle, Cali, Colombia.,Comfandi Health Services Research Group, Cali, Colombia
| | - Lyda Osorio
- Epidemiology and Population Health Research Group (GESP), School of Public Health, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Ruthy Acosta-Rojas
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep Figueras
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Monica Cruz-Lemini
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Francesc Figueras
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Bart Bijnens
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Gratacós
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Fatima Crispi
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
18
|
Lee ES. A flood of health functional foods: what is to be recommended? J Menopausal Med 2015; 21:12-8. [PMID: 26046032 PMCID: PMC4452808 DOI: 10.6118/jmm.2015.21.1.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 12/31/2022] Open
Abstract
Health functional food is referred to a food prepared or processed from specific components or ingredients for functionality beneficial to the body through extraction, concentration, purification, blending and other methods. The demand for health functional foods is steadily increasing, and red ginseng is the most demanded food among women in the 50s, followed by multivitamin, omega-3, glucosamine and aloe. To date, there is insufficient evidence on the effect of red ginseng on exercise capacity, somatic symptom and cognitive performance in healthy individuals. Moreover, evidence is insufficient that a nutritional dose of vitamin or mineral reduces the incidence of cardiovascular disease and cancer, or mortality rate. A steady intake of oily fish is recommended to prevent the incidence of cardiovascular disease for postmenopausal women. Consumption of omega-3 fatty acids is expected to prevent cardiovascular disease in postmenopausal women with almost no intake of oily fish and those not taking statins. It still remains controversial whether glucosamine is effective in the treatment of osteoarthritis. Hence, physicians should fully inform patients with all controversial information about the effectiveness of glucosamine when prescribing glucosamine for patients with osteoarthritis.
Collapse
Affiliation(s)
- Eun Sil Lee
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Dunbar BS, Bosire RV, Deckelbaum RJ. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective. Mol Cell Endocrinol 2014; 398:69-77. [PMID: 25458696 DOI: 10.1016/j.mce.2014.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/10/2014] [Accepted: 10/12/2014] [Indexed: 01/10/2023]
Abstract
Lipids are essential for plant and animal development, growth and nutrition and play critical roles in health and reproduction. The dramatic increase in the human population has put increasing pressure on human food sources, especially of those sources of food which contain adequate levels of polyunsaturated fatty acids (PUFAs) and more importantly, sources of food which have favorable ratios of the n-3 (18-carbon, α-linolenic acid, ALA) to n-6 (18-carbon linoleic acid, LA) PUFAs. Recent studies have demonstrated the beneficial effects of the n-3 PUFAs in diets as well as potentially negative effects of excessive levels of n-6 PUFAs in diets. This review discusses these human health issues relating to changes in diets based on environmental and industrial changes as well as strategies in East Africa for improving lipid composition of food using indigenous sources.
Collapse
Affiliation(s)
- B S Dunbar
- Omega Farms Ltd., Ol Kokwe Island, Lake Baringo, Kenya; CEBIB, University of Nairobi, Nairobi, Kenya.
| | - R V Bosire
- Omega Farms Ltd., Ol Kokwe Island, Lake Baringo, Kenya
| | - R J Deckelbaum
- Institute of Human Nutrition, Columbia College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
20
|
Chang CL, Torrejon C, Jung UJ, Graf K, Deckelbaum RJ. Incremental replacement of saturated fats by n-3 fatty acids in high-fat, high-cholesterol diets reduces elevated plasma lipid levels and arterial lipoprotein lipase, macrophages and atherosclerosis in LDLR-/- mice. Atherosclerosis 2014; 234:401-9. [PMID: 24747115 DOI: 10.1016/j.atherosclerosis.2014.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental increases in dietary n-3 FA can counteract SAT-induced pro-atherogenic effects in atherosclerosis-prone LDL-receptor knockout (LDLR-/-) mice and have identified contributing mechanisms. METHODS AND RESULTS Mice were fed chow or high-fat diets enriched in SAT, n-3, or a combination of both SAT and n-3 in ratios of 3:1 (S:n-3 3:1) or 1:1 (S:n-3 1:1). Each diet resulted in the expected changes in fatty acid composition in blood and aorta for each feeding group. SAT-fed mice became hyperlipidemic. By contrast, n-3 inclusion decreased plasma lipid levels, especially cholesterol. Arterial LpL and macrophage levels were increased over 2-fold in SAT-fed mice but these were decreased with incremental replacement with n-3 FA. n-3 FA partial inclusion markedly decreased expression of pro-inflammatory markers (CD68, IL-6, and VCAM-1) in aorta. SAT diets accelerated advanced atherosclerotic lesion development, whereas all n-3 FA-containing diets markedly slowed atherosclerotic progression. CONCLUSION Mechanisms whereby dietary n-3 FA may improve adverse cardiovascular effects of high-SAT, high-fat diets include improving plasma lipid profiles, increasing amounts of n-3 FA in plasma and the arterial wall. Even low levels of replacement of SAT by n-3 FA effectively reduce arterial lipid deposition by decreasing aortic LpL, macrophages and pro-inflammatory markers.
Collapse
Affiliation(s)
- Chuchun L Chang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Claudia Torrejon
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Campus Norte Hospital Roberto del Río, University of Chile, Santiago, Chile
| | - Un Ju Jung
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kristin Graf
- Campus Norte Hospital Roberto del Río, University of Chile, Santiago, Chile
| | - Richard J Deckelbaum
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Triolein and trilinolein ameliorate oxidized low-density lipoprotein-induced oxidative stress in endothelial cells. Lipids 2014; 49:495-504. [PMID: 24604600 DOI: 10.1007/s11745-014-3889-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 02/11/2014] [Indexed: 01/06/2023]
Abstract
Uptake of oxidized low-density lipoprotein by endothelial cells is a critical step for the initiation of atherosclerosis. Triacylglycerol uptake in these cells is understood to be a part of the process. The present investigation, comparison among the effects of simple acylglycerol, including tristearin, triolein, and trilinolein, upon oxidized low-density lipoprotein -induced oxidative stress was undertaken. Results indicated that trilinolein (78 % ± 0.02) and triolein (90 % ± 0.01) increased cell viability of endothelial cells exposed to oxidized low-density lipoprotein, whereas tristearin decreased the cell viability (55 % ± 0.03) (P < 0.05). Oxidized low-density lipoprotein treatment significantly increased apoptosis (23 %), compared to cells simultaneously exposed to trilinolein (19 %) or triolein (16 %), where apoptosis was reduced (P < 0.05). On the other hand, exposure to tristearin further increased oxidized low-density lipoprotein -induced cell apoptosis (34 %). Treatment with trilinolein or triolein on oxidized low-density lipoprotein -stimulated endothelial cells inhibited the expression of ICAM-1 and E-selectin mRNA. Moreover, both trilinolein and triolein demonstrated a strong antioxidant response to oxidative stress caused by oxidized low-density lipoprotein. Taken together, the results indicate trilinolein and triolein possess anti-inflammatory properties, which are mediated via the antioxidant defense system.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article provides an updated review on mechanistic and molecular studies relating to the effects of n-3 fatty acids (FA) on inhibiting atherogenesis. RECENT FINDINGS The effects of n-3 FA on modulating arterial lipoprotein lipase levels link to changes in lipid deposition in the arterial wall. Lipoprotein lipase expression in the arterial wall also relates to local macrophage-mediated inflammatory processes. Increasing evidence suggests that n-3 FA ameliorate inflammation, another key component in the development of atherosclerosis, including decreases in proinflammatory cytokine production. n-3 FA inhibit atherogenic signaling pathways and modulate the phenotypes of inflammatory leukocytes and their recruitment in the arterial wall. SUMMARY New mechanistic insights into the antiatherogenic action of n-3 FA have emerged. These studies may contribute to future therapeutic advances in preventing mortality and morbidity associated with atherosclerosis.
Collapse
Affiliation(s)
- Chuchun L Chang
- Institute of Human Nutrition and Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
23
|
Peter S, Chopra S, Jacob JJ. A fish a day, keeps the cardiologist away! - A review of the effect of omega-3 fatty acids in the cardiovascular system. Indian J Endocrinol Metab 2013; 17:422-429. [PMID: 23869297 PMCID: PMC3712371 DOI: 10.4103/2230-8210.111630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dyslipidemia and its consequences are emerging as epidemics with deleterious consequences on cardiovascular (CV) health. The beneficial effects of omega-3-fatty acids on cardiac and extra cardiac organs have been extensively studied in the last two decades, and continue to show great promise in the primary and secondary prevention of cardiovascular diseases (CVDs). Omega-3-fatty acid supplementation has been proven to have beneficial action on lipid profile, cytokine cascade, oxidant-anti-oxidant balance, parasympathetic and sympathetic tone and nitric oxide synthesis. This review summarizes the current knowledge on the basis of its cardiac and non-cardiac benefits, present results from clinical trials and the recommendations for its use in cardiac diseases and dyslipidemias.
Collapse
Affiliation(s)
- Soumia Peter
- Department of Medicine, Christian Medical College, Ludhiana, Punjab, India
| | - Sandeep Chopra
- lDepartment of Cardiology, Christian Medical College, Ludhiana, Punjab, India
| | - Jubbin J. Jacob
- Department of Medicine, Christian Medical College, Ludhiana, Punjab, India
| |
Collapse
|
24
|
Zoccali C, Mallamaci F. Updating the lipids hypothesis of inflammation and vascular disease in patients with chronic kidney disease: a stearoyl-CoA desaturase affair? J Intern Med 2013; 273:249-52. [PMID: 23046408 DOI: 10.1111/joim.12005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Zoccali
- Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension CNR National Research Council and Renal and Transplantation Unit; Ospedali Riuniti Italy
| | - F. Mallamaci
- Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension CNR National Research Council and Renal and Transplantation Unit; Ospedali Riuniti Italy
| |
Collapse
|
25
|
Lamping KG, Nuno DW, Coppey LJ, Holmes AJ, Hu S, Oltman CL, Norris AW, Yorek MA. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction. Diabetes Obes Metab 2013; 15:144-52. [PMID: 22950668 PMCID: PMC3674571 DOI: 10.1111/dom.12004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/30/2012] [Accepted: 09/02/2012] [Indexed: 01/09/2023]
Abstract
AIMS The ability of dietary enrichment with monounsaturated fatty acid (MUFA), n-3 or n-6 polyunsaturated fatty acids (PUFAs) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA-enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). METHODS We fed mice a high saturated fat diet (HF) (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signalling and reactivity of isolated pressurized gracilis arteries. RESULTS After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance was abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance and indices of insulin signalling (phosphorylated Akt) to normal, whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine was reduced in MO-fed mice compared to normal. CONCLUSION We conclude that short-term enrichment of an ongoing high fat diet with n-3 PUFA rich MO, but not MUFA rich OO or n-6 PUFA rich SO, reverses glucose tolerance, insulin signalling and vascular dysfunction.
Collapse
Affiliation(s)
- K G Lamping
- Iowa City Veterans Affairs Health Care System, Iowa City, IA 52246, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Schmidt S, Stahl F, Mutz KO, Scheper T, Hahn A, Schuchardt JP. Different gene expression profiles in normo- and dyslipidemic men after fish oil supplementation: results from a randomized controlled trial. Lipids Health Dis 2012; 11:105. [PMID: 22929118 PMCID: PMC3484010 DOI: 10.1186/1476-511x-11-105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/19/2012] [Indexed: 01/18/2023] Open
Abstract
Background Epidemiological studies have suggested the benefits of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on cardiovascular health, but only limited data are available describing n-3 PUFA regulated pathways in humans. The aim of this study was to investigate the effects of n-3 PUFA administration on whole genome expression profiles in the blood of normo- and dyslipidemic subjects. Methods Differentially expressed genes were detected after four hours, one week and twelve weeks of supplementation with either fish oil (FO) or corn oil in normo- and dyslipidemic men using whole genome microarrays. Results Independent of the oil, a significantly higher number of genes was regulated in dyslipidemic subjects compared to normolipidemic subjects. Pathway analyses discovered metabolisms dominantly affected by FO after twelve weeks of supplementation, including the lipid metabolism, immune system and cardiovascular diseases. Several pro-inflammatory genes, in particular, were down-regulated in dyslipidemic subjects, indicating the immune-modulatory and anti-inflammatory capability of FO and its bioactive FAs, eicosapentaenoic acid and docosahexaenoic acid. Conclusions This is the first study showing significant differences in gene expression profiles between normo- and dyslipidemic men after FO supplementation. Further studies need to clarify the exact role of n-3 PUFAs in pathways and metabolisms which were identified as being regulated after FO supplementation in this study. Trial registration ClinicalTrials.gov (ID: NCT01089231)
Collapse
Affiliation(s)
- Simone Schmidt
- Institute of Food Science and Human Nutrition, Leibniz University of Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Schmidt S, Stahl F, Mutz KO, Scheper T, Hahn A, Schuchardt JP. Transcriptome-based identification of antioxidative gene expression after fish oil supplementation in normo- and dyslipidemic men. Nutr Metab (Lond) 2012; 9:45. [PMID: 22621246 PMCID: PMC3408332 DOI: 10.1186/1743-7075-9-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/23/2012] [Indexed: 12/31/2022] Open
Abstract
Background The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs), especially in dyslipidemic subjects with a high risk of cardiovascular disease, are widely described in the literature. A lot of effects of n-3 PUFAs and their oxidized metabolites are triggered by regulating the expression of genes. Currently, it is uncertain if the administration of n-3 PUFAs results in different expression changes of genes related to antioxidative mechanisms in normo- and dyslipidemic subjects, which may partly explain their cardioprotective effects. The aim of this study was to investigate the effects of n-3 PUFA supplementation on expression changes of genes involved in oxidative processes. Methods Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with fish oil capsules, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. Gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction (qRT-PCR). Results Using microarrays, we discovered an increased expression of antioxidative enzymes and a decreased expression of pro-oxidative and tissue enzymes, such as cytochrome P450 enzymes and matrix metalloproteinases, in both normo- and dyslipidemic men. An up-regulation of catalase and heme oxigenase 2 in both normo- and dyslipidemic subjects and an up-regulation of cytochrome P450 enzyme 1A2 only in dyslipidemic subjects could be observed by qRT-PCR analysis. Conclusions Supplementation of normo- and dyslipidemic subjects with n-3 PUFAs changed the expression of genes related to oxidative processes, which may suggest antioxidative and potential cardioprotective effects of n-3 PUFAs. Further studies combining genetic and metabolic endpoints are needed to verify the regulative effects of n-3 PUFAs in antioxidative gene expression to better understand their beneficial effects in health and disease prevention. Trial registration ClinicalTrials.gov (ID: NCT01089231)
Collapse
Affiliation(s)
- Simone Schmidt
- Faculty of Natural Sciences at the Leibniz University of Hannover, Institute of Food Science and Human Nutrition, Am Kleinen Felde 30, 30167, Hannover, Germany
| | - Frank Stahl
- Faculty of Natural Sciences at the Leibniz University of Hannover, Institute of Technical Chemistry, Callinstr 5, 30167, Hannover, Germany
| | - Kai-Oliver Mutz
- Faculty of Natural Sciences at the Leibniz University of Hannover, Institute of Technical Chemistry, Callinstr 5, 30167, Hannover, Germany
| | - Thomas Scheper
- Faculty of Natural Sciences at the Leibniz University of Hannover, Institute of Technical Chemistry, Callinstr 5, 30167, Hannover, Germany
| | - Andreas Hahn
- Faculty of Natural Sciences at the Leibniz University of Hannover, Institute of Food Science and Human Nutrition, Am Kleinen Felde 30, 30167, Hannover, Germany
| | - Jan Philipp Schuchardt
- Faculty of Natural Sciences at the Leibniz University of Hannover, Institute of Food Science and Human Nutrition, Am Kleinen Felde 30, 30167, Hannover, Germany
| |
Collapse
|
28
|
Deckelbaum RJ, Torrejon C. The omega-3 fatty acid nutritional landscape: health benefits and sources. J Nutr 2012; 142:587S-591S. [PMID: 22323763 PMCID: PMC3278270 DOI: 10.3945/jn.111.148080] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dietary fatty acids (FA) are increasingly recognized as major biologic regulators and have properties that relate to health outcomes and disease. The longer chain, more bioactive (n-6) (or omega-6) FA and (n-3) (or omega-3) FA share similar elongation and desaturation enzymes in their conversion from the essential (n-6) FA, linoleic acid, and (n-3) FA, α-linolenic acid (ALA). Conversion from these essential FA is very inefficient. However, now for the (n-3) FA series, soy oil can be enriched with (n-3) stearidonic acid (SDA) to allow for much more efficient conversion to longer chain EPA. EPA and the longer chain DHA possess distinct physical and biological properties that generally impart properties to cells and tissue, which underlie their ability to promote health and prevent disease. Although active in a number of areas of human biology, mechanisms of action of EPA and DHA are perhaps best defined in cardiovascular disease. There is concern that to reach the intake recommendations of EPA and DHA, their supply from cold water fish will be insufficient. Gaps in understanding mechanisms of action of (n-3) FA in a number of health and disease areas as well as optimal sources and intake levels for each need to be defined by further research. Because of the inefficient conversion of ALA, the appearance of SDA in enriched soy oil offers a biologically effective and cost effective approach to providing a sustainable plant source for (n-3) FA in the future.
Collapse
Affiliation(s)
- Richard J. Deckelbaum
- Institute of Human Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032; and Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile,To whom correspondence should be addressed. E-mail:
| | - Claudia Torrejon
- Institute of Human Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032; and Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| |
Collapse
|
29
|
Fiori Zara R, Guntendorfer Bonafé E, Antunes Martin C, Evelázio de Souza N, Curti Muniz E, Vergílio Visentainer J. Preparation of Fame by Microwave Irradiation Using Boron Trifluoride as a Catalyst. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajac.2012.34039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
A review of the evidence for the effects of total dietary fat, saturated, monounsaturated and n-6 polyunsaturated fatty acids on vascular function, endothelial progenitor cells and microparticles. Br J Nutr 2011; 107:303-24. [DOI: 10.1017/s0007114511004764] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vascular dysfunction is recognised as an integrative marker of CVD. While dietary strategies aimed at reducing CVD risk include reductions in the intake of SFA, there are currently no clear guidelines on what should replace SFA. The purpose of this review was to assess the evidence for the effects of total dietary fat and individual fatty acids (SFA, MUFA and n-6 PUFA) on vascular function, cellular microparticles and endothelial progenitor cells. Medline was systematically searched from 1966 until November 2010. A total of fifty-nine peer-reviewed publications (covering fifty-six studies), which included five epidemiological, eighteen dietary intervention and thirty-three test meal studies, were identified. The findings from the epidemiological studies were inconclusive. The limited data available from dietary intervention studies suggested a beneficial effect of low-fat diets on vascular reactivity, which was strongest when the comparator diet was high in SFA, with a modest improvement in measures of vascular reactivity when high-fat, MUFA-rich diets were compared with SFA-rich diets. There was consistent evidence from the test meal studies that high-fat meals have a detrimental effect on postprandial vascular function. However, the evidence for the comparative effects of test meals rich in MUFA or n-6 PUFA with SFA on postprandial vascular function was limited and inconclusive. The lack of studies with comparable within-study dietary fatty acid targets, a variety of different study designs and different methods for determining vascular function all confound any clear conclusions on the impact of dietary fat and individual fatty acids on vascular function.
Collapse
|
31
|
Ortega A, Varela LM, Bermudez B, Lopez S, Abia R, Muriana FJG. Dietary fatty acids linking postprandial metabolic response and chronic diseases. Food Funct 2011; 3:22-7. [PMID: 22020286 DOI: 10.1039/c1fo10085h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.
Collapse
Affiliation(s)
- Almudena Ortega
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), 41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
32
|
The -308 G/A polymorphism of the tumour necrosis factor-α gene modifies the association between saturated fat intake and serum total cholesterol levels in white South African women. GENES AND NUTRITION 2011; 6:353-9. [PMID: 21484162 DOI: 10.1007/s12263-011-0213-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
This study explored interactions between dietary fat intake and the tumour necrosis factor-α gene (TNFA) -308 G/A polymorphism on serum lipids in white South African (SA) women. Normal-weight (N = 88) and obese (N = 60) white SA women underwent measurements of body composition, fat distribution, fasting serum lipids, glucose, insulin concentrations and dietary intake. Subjects were genotyped for the functional -308 G/A polymorphism within the TNFA gene. There were no significant differences in the genotype or allele frequencies between groups, and no significant genotype associations were found for body fatness or distribution, or serum lipid concentrations. However, there was a significant interaction effect between dietary saturated fat (SFA) intake (%E) and TNFA -308 genotypes on serum total cholesterol concentrations (P = 0.047). With increasing SFA intake (%E), serum total cholesterol levels decreased for the GG genotype and increased for the GA plus AA genotypes. The TNFA -308 G/A polymorphism appears to modify the relationship between dietary fat intake and serum total cholesterol concentrations in white SA women.
Collapse
|
33
|
Deckelbaum RJ. n-6 and n-3 Fatty acids and atherosclerosis: ratios or amounts? Arterioscler Thromb Vasc Biol 2010; 30:2325-6. [PMID: 21084701 DOI: 10.1161/atvbaha.110.214353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|