1
|
Fang X, Lee S, Rayalam S, Park HJ. Docosahexaenoic acid supplementation and infant brain development: role of gut microbiome. Nutr Res 2024; 131:1-13. [PMID: 39342808 DOI: 10.1016/j.nutres.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Perinatal stage represents a critical period for brain development. Docosahexaenoic acid (DHA) is a ω-3 polyunsaturated fatty acid preferentially accumulated in the brain that may benefit neurodevelopment. Microbial colonization and maturation parallel with the rapid development of infant metabolic and brain function that may influence the effects of DHA on neurological development. This review aims to summarize the current literature on the mediating effects of DHA on brain and gut microbiome development and attempts to reevaluate the efficacy of DHA from a gut microbiome-mediated perspective. Specifically, the regulatory roles of DHA on hypothalamic-pituitary-adrenal axis, inflammation, and neuroactive mediators may be partly moderated through gut microbiome. Consideration of the gut microbiome and gut-brain communication, when evaluating the efficacy of DHA, may provide new insights in better understanding the mechanisms of DHA and impart advantages to future development of nutritional therapy based on the nutrient-microbiome interaction.
Collapse
Affiliation(s)
- Xi Fang
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | - Soon Lee
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Hea Jin Park
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA.
| |
Collapse
|
2
|
Fox EA, Serlin HK. Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli. Am J Physiol Regul Integr Comp Physiol 2024; 327:R173-R187. [PMID: 38860288 DOI: 10.1152/ajpregu.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.
Collapse
Affiliation(s)
- Edward A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Hannah K Serlin
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
3
|
Seessle J, Liebisch G, Staffer S, Tuma-Kellner S, Merle U, Herrmann T, Chamulitrat W. Enterocyte-specific FATP4 deficiency elevates blood lipids via a shift from polar to neutral lipids in distal intestine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G202-G216. [PMID: 38915276 DOI: 10.1152/ajpgi.00109.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Fatty acid transport protein (FATP)4 was thought to mediate intestinal lipid absorption, which was disputed by a study using keratinocyte-Fatp4-rescued Fatp4-/- mice. These knockouts when fed with a Western diet showed elevated intestinal triglyceride (TG) and fatty acid levels. To investigate a possible role of FATP4 on intestinal lipid processing, ent-Fatp4 (KO) mice were generated by Villin-Cre-specific inactivation of the Fatp4 gene. We aimed to measure circulating and intestinal lipids in control and KO mice after acute or chronic fat intake or during aging. Remarkably, ent-Fatp4 mice displayed an approximately 30% decrease in ileal behenic, lignoceric, and nervonic acids, ceramides containing these FA, as well as, ileal sphingomyelin, phosphatidylcholine, and phosphatidylinositol levels. Such decreases were concomitant with an increase in jejunal cholesterol ester. After a 2-wk recovery from high lipid overload by tyloxapol and oral-lipid treatment, ent-Fatp4 mice showed an increase in plasma TG and chylomicrons. Upon overnight fasting followed by an oral fat meal, ent-Fatp4 mice showed an increase in plasma TG-rich lipoproteins and the particle number of chylomicrons and very low-density lipoproteins. During aging or after feeding with a high-fat high-cholesterol (HFHC) diet, ent-Fatp4 mice showed an increase in plasma TG, fatty acids, glycerol, and lipoproteins as well as intestinal lipids. HFHC-fed KO mice displayed an increase in body weight, the number of lipid droplets with larger sizes in the ileum, concomitant with a decrease in ileal ceramides and phosphatidylcholine. Thus, enterocyte FATP4 deficiency led to a metabolic shift from polar to neutral lipids in distal intestine rendering an increase in plasma lipids and lipoproteins.NEW & NOTEWORTHY Enterocyte-specific Fatp4 deficiency in mice increased intestinal lipid absorption with elevation of blood lipids during fasting and aging, as well as after an acute oral fat-loading or chronic HFHC feeding. Lipidomics revealed that knockout mice displayed a shift from very long-chain to long-chain fatty acids, and from polar to neutral lipids, predominantly in the ileum. Thus, FATP4 may have a physiological function in the control of blood lipids via metabolic shifts in distal intestine.
Collapse
Affiliation(s)
- Jessica Seessle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Herrmann
- Department of Medical Clinic 1, Westkuesten Hospital, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Wilson NG, Hernandez-Leyva A, Schwartz DJ, Bacharier LB, Kau AL. The gut metagenome harbors metabolic and antibiotic resistance signatures of moderate-to-severe asthma. FEMS MICROBES 2024; 5:xtae010. [PMID: 38560624 PMCID: PMC10981462 DOI: 10.1093/femsmc/xtae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Asthma is a common allergic airway disease that has been associated with the development of the human microbiome early in life. Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples from a cross-sectional cohort of 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the metagenomes of gut microbiota in adults and children 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways, which have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness of antibiotic resistance genes (ARGs) in people with asthma. Several differentially abundant ARGs in the asthma cohort encode resistance to macrolide antibiotics, which are often prescribed to patients with asthma. Lastly, we found that ARG and virulence factor (VF) richness in the microbiome were correlated in both cohorts. ARG and VF pairs co-occurred in both cohorts suggesting that virulence and antibiotic resistance traits are coselected and maintained in the fecal microbiota of people with asthma. Overall, our results show functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with moderate-to-severe asthma and could have implications for asthma management and treatment.
Collapse
Affiliation(s)
- Naomi G Wilson
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Drew J Schwartz
- Division of Infectious Diseases, Department of Pediatrics and Center for Women’s Infectious Disease Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232, United States
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
5
|
Miao J, Chen L, Pan X, Li L, Zhao B, Lan J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cell Mol Neurobiol 2023; 43:3191-3210. [PMID: 37341833 DOI: 10.1007/s10571-023-01376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining brain homeostasis. However, in neurodegenerative conditions, microglial cells undergo metabolic reprogramming in response to pathological stimuli, including Aβ plaques, Tau tangles, and α-synuclein aggregates. This metabolic shift is characterized by a transition from oxidative phosphorylation (OXPHOS) to glycolysis, increased glucose uptake, enhanced production of lactate, lipids, and succinate, and upregulation of glycolytic enzymes. These metabolic adaptations result in altered microglial functions, such as amplified inflammatory responses and diminished phagocytic capacity, which exacerbate neurodegeneration. This review highlights recent advances in understanding the molecular mechanisms underlying microglial metabolic reprogramming in neurodegenerative diseases and discusses potential therapeutic strategies targeting microglial metabolism to mitigate neuroinflammation and promote brain health. Microglial Metabolic Reprogramming in Neurodegenerative Diseases This graphical abstract illustrates the metabolic shift in microglial cells in response to pathological stimuli and highlights potential therapeutic strategies targeting microglial metabolism for improved brain health.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lihua Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaojin Pan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liqing Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Beibei Zhao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Fat digestion and metabolism: effect of different fat sources and fat mobilisers in broilers diet on growth performance and physiological parameters – a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Commercial broilers have a short production cycle and a high requirement for energy (3000 kcal/kg in starter phase and 3200 kcal/kg in finisher phase). Therefore, the need to add energy rich lipids to their diet is inevitable. Digestibility of fat depends on its multiple properties: chain length, the composition of fatty acids, ratio of saturated/unsaturated fatty acids and free fatty acids. The high cost of vegetable oils and less availability due to their consumption in human diet are the main reasons for searching cheaper alternative fat sources. Animal oils like poultry and fish oil are the by-product of rendering plants and after refining, they are used in poultry diets as an energy source. Due to presence of impurities and free fatty acids, the digestibility of animal fat is less. There is a limited amount of bile acids and lipase available during early age and when birds are reared on high energy diet (finisher phase). Supplementation of emusifier or lipase in broilers diet increase fat utilisation. Emulsifiers increase fat digestibility by increasing active surface area of lipid droplets. Lysolecithin and Lysophospholipids are produced from hydrolyses of lecithin and phospholipids by phopholipase A2. The bile acids mainly compose of cholic acid, hyodeoxycholic acid and chenodeoxycholic acid and have strong emulsification properties. Triacylglyceryl acylase (lipase) is an enzyme involved in catalysis and the hydrolysis of lipids. It can be concluded that use of emulsifier and lipase in broilers diet improves growth performance, nutrient digestibility and intestinal histology in broilers.
Collapse
|
7
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
8
|
Wilson NG, Hernandez-Leyva A, Schwartz DJ, Bacharier LB, Kau AL. The gut metagenome harbors metabolic and antibiotic resistance signatures of moderate-to-severe asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522677. [PMID: 36711684 PMCID: PMC9882014 DOI: 10.1101/2023.01.03.522677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Asthma is a common allergic airway disease that develops in association with the human microbiome early in life. Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples from 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the metagenomes of gut microbiota in children and adults 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways which have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness of antibiotic resistance genes (ARGs) in people with asthma. One differentially abundant ARG was a macrolide resistance marker, ermF, which significantly co-occurred with the Bacteroides fragilis toxin, suggesting a possible relationship between enterotoxigenic B. fragilis, antibiotic resistance, and asthma. Lastly, we found multiple virulence factor (VF) and ARG pairs that co-occurred in both cohorts suggesting that virulence and antibiotic resistance traits are co-selected and maintained in the fecal microbiota of people with asthma. Overall, our results show functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with moderate-to-severe asthma and could have implications for asthma management and treatment.
Collapse
Affiliation(s)
- Naomi G. Wilson
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Drew J. Schwartz
- Division of Infectious Diseases, Department of Pediatrics and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Leonard B. Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
9
|
Gajda AM, Tawfeeq HR, Lackey AI, Zhou YX, Kanaan H, Pappas A, Xu H, Kodukula S, Storch J. The proximal intestinal Fatty Acid-Binding Proteins liver FABP (LFABP) and intestinal FABP (IFABP) differentially modulate whole body energy homeostasis but are not centrally involved in net dietary lipid absorption: Studies of the LFABP/IFABP double knockout mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159238. [PMID: 36206853 PMCID: PMC9940823 DOI: 10.1016/j.bbalip.2022.159238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022]
Abstract
Proximal intestinal enterocytes expresses both intestinal-fatty acid binding protein (IFABP; FABP2) and liver-FABP (LFABP; FABP1). These FABPs are thought to be important in the net uptake of dietary lipid from the intestinal lumen, however their specific and potentially unique functions in the enterocyte remain incompletely understood. We previously showed markedly divergent phenotypes in LFABP-/- vs. IFABP-/- mice fed high-fat diets, with the former becoming obese and the latter remaining lean relative to wild-type (WT) mice, supporting different functional roles for each protein. Interestingly, neither mouse model displayed increased fecal lipid concentration, raising the question of whether the presence of one FABP was sufficient to compensate for absence of the other. Here, we generated an LFABP and IFABP double knockout mouse (DKO) to determine whether simultaneous ablation would lead to fat malabsorption, and to further interrogate the individual vs. overlapping functions of these proteins. Male WT, IFABP-/-, LFABP-/-, and DKO mice were fed a low-fat (10 % kcal) or high-fat (45 % kcal) diet for 12 weeks. The body weights and fat mass of the DKO mice integrated those of the LFABP-/- and IFABP-/- single knockouts, supporting the notion that IFABP and LFABP have distinct functions in intestinal lipid assimilation that result in downstream alterations in systemic energy metabolism. Remarkably, no differences in fecal fat concentrations were found in the DKO compared to WT, revealing that the FABPs are not required for net intestinal uptake of dietary lipid.
Collapse
Affiliation(s)
- Angela M Gajda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hiba R Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yin Xiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hamzeh Kanaan
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Arete Pappas
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Sarala Kodukula
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
10
|
Zumaraga MP, Borel P, Bott R, Nowicki M, Lairon D, Desmarchelier C. The Interindividual Variability of Phytofluene Bioavailability is Associated with a Combination of Single Nucleotide Polymorphisms. Mol Nutr Food Res 2023; 67:e2200580. [PMID: 36349532 PMCID: PMC10078114 DOI: 10.1002/mnfr.202200580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SCOPE Phytofluene is a colorless carotenoid with potential health benefits that displays a higher bioavailability compared to carotenoids such as lutein, β-carotene or lycopene. Several studies suggest its bioavailability displays an elevated interindividual variability. The aim of this work is to investigate whether a combination of SNPs is associated with this variability. METHODS AND RESULTS Thirty-seven healthy adult males consume a test meal that provides phytofluene from a tomato puree. Phytofluene concentrations are measured at fast and in chylomicrons at regular time intervals after meal intake. Identification of the combination of SNPs that best explained the interindividual variability of the phytofluene response is assessed by partial least squares regression. There is a large interindividual variability in the phytofluene response, with CV = 88%. Phytofluene bioavailability is positively correlated with fasting plasma phytofluene concentration (r = 0.57; p = 2 × 10-4 ). A robust partial least squares regression model comprising 14 SNPs near or within 11 genes (ABCA1-rs2487059, rs2515629, and rs4149316, APOC1-rs445925, CD36-rs3211881, ELOVL5-rs6941533, FABP1-rs10185660, FADS3-rs1000778, ISX-rs130461, and rs17748559, LIPC-rs17240713, LPL-rs7005359, LYPLAL1-rs1351472, SETD7-rs11936429) explains 51% (adjusted R2 ) of the interindividual variability in phytofluene bioavailability. CONCLUSIONS This study reports a combination of SNPs that is associated with a significant part of the interindividual variability of phytofluene bioavailability in a healthy male adult population.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Department of Science and Technology, Food and Nutrition Research Institute, Bicutan, Taguig City, NCR 1631, Philippines
| | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Romain Bott
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Denis Lairon
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
11
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Hu T, Chen G, Xu Z, Luo S, Wang H, Li C, Shan L, Zhang B. De Novo Whole-Genome Sequencing and Assembly of the Yellow-Throated Bunting (Emberiza elegans) Provides Insights into Its Evolutionary Adaptation. Animals (Basel) 2022; 12:ani12152004. [PMID: 35953992 PMCID: PMC9367368 DOI: 10.3390/ani12152004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We report the genomic sequence of Emberiza elegans for understanding the evolutionary mechanisms of environmental adaptation and for studying a more effective genetic monitoring of this species. The E. elegans assembly was approximately 1.14 Gb, with a scaffold N50 of 28.94 Mb. About 15,868 protein-coding genes were predicted, and 16.62% of the genome was identified as having repetitive elements. Our genomic evolution analyses found considerable numbers of adaptive genes that may help the yellow-throated bunting cope with migratory behavior and environmental stressors of diseases. These results provide us with new insights into genomic evolution and adaptation, thus providing a valuable resource for further studies of population genetic diversity and genome evolution in this species. Abstract Yellow-throated bunting is a small migratory songbird unique to the Palearctic region. However, the genetic studies of this species remain limited, with no nuclear genomic sequence reported to date. In this study, the genomic DNA from the bird was sequenced in long reads using Nanopore sequencing technology. Combining short-read sequencing, the genome was well-assembled and annotated. The final length of the assembly is approximately 1.14 Gb, with a scaffold N50 of 28.94 Mb. About 15,868 protein-coding genes were predicted, and 16.62% of the genome was identified as having repetitive elements. Comparative genomic analysis showed numerous expanded gene families and positively selected genes significantly enriched in those KEGG pathways that are associated with migratory behavior adaptation and immune response. Here, this newly generated de novo genome of the yellow-throated bunting using long reads provide the research community with a valuable resource for further studies of population genetic diversity and genome evolution in this species.
Collapse
Affiliation(s)
- Tingli Hu
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guotao Chen
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Zhen Xu
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Site Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Wang
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China
| | - Chunlin Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Lei Shan
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (L.S.); (B.Z.)
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei 230601, China
- Correspondence: (L.S.); (B.Z.)
| |
Collapse
|
13
|
Maldonado-Pereira L, Barnaba C, de Los Campos G, Medina-Meza IG. Evaluation of the nutritional quality of ultra-processed foods (ready to eat + fast food): Fatty acids, sugar, and sodium. J Food Sci 2022; 87:3659-3676. [PMID: 35781710 DOI: 10.1111/1750-3841.16235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
The average American consumes more than 50% of their total dietary energy from ultra-processed foods (UPFs). From a nutritional standpoint, as UPFs intake increases, fiber, vitamin, and mineral intake decrease. High consumption of UPFs, mainly from fast foods (FF) and ready-to-eat (RTE) food items, emerges as a critical public health concern linking nutritional quality and food safety. In the present work, a systematic database of the fatty acid composition of the most consumed UPFs in the Midwest is reported. Saturated and monounsaturated fatty acids were predominant in RTE (42.5%) and FF (43.2%), respectively. In addition, the fatty acid profile in UPFs is reported according to six food categories: meat and poultry, eggs and derivatives, dairy products, seafood, baby foods, and others. Meat and poultry, and dairy products were the dominant food categories among UPFs. Meanwhile, polyunsaturated fatty acids were abundant in the eggs and seafood groups UPFs (61.8% and 46.4%, respectively) regardless of the food group. Furthermore, no significant differences were found in sugar content in UPFs. Caloric content was positively correlated with sodium (ρ = 0.748) and price (ρ = 0.534). The significance of this study relies on providing new quantitative data on the fat, sodium, and sugar contents of the most consumed UPFs in the Midwestern area of the United States. This information suggests paying more attention to these nutritional attributes, aiming to reduce their incorporation in UPF preparations. Additionally, more quantitative data are needed regarding other nutritional parameters such as protein and lipid degradation in UPFs. PRACTICAL APPLICATION: This study provides a profile of the fatty acid composition of the most consumed UPFs in the Midwestern region of the United States, as well as correlations with fat, sodium, and sugar contents in UPFs. The information offered a new perspective on the nutrition quality of UPFs, suggesting the reduction of the incorporation of these attributes in UPFs. Additionally, it will help define priority interventions for more advanced precision nutrition, especially for vulnerable populations, for example, children and older people. The overall decrease in added sugar and sodium and the service size in UPFs will significantly improve the nutritional quality of the Western diet.
Collapse
Affiliation(s)
- Lisaura Maldonado-Pereira
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, USA.,Department of Biosystems and Agricultural Engineering, East Lansing, Michigan, USA
| | - Carlo Barnaba
- Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Ilce Gabriela Medina-Meza
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, USA.,Department of Biosystems and Agricultural Engineering, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Liang X, Wang Y, Liu L, Zhang X, Li L, Tang R, Li D. Acute nitrite exposure interferes with intestinal thyroid hormone homeostasis in grass carp (Ctenopharyngodon idellus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113510. [PMID: 35468440 DOI: 10.1016/j.ecoenv.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Nitrite in the aquatic environment potentially disturbs thyroid hormone (TH) homeostasis in peripheral tissues, but little is known about TH metabolism in the intestine. This study investigated the serum concentrations of THs and thyroid-stimulating hormone (TSH) as well as the activity of intestinal iodothyronine deiodinases (IDs) of grass carp (Ctenopharyngodon idellus) exposed to various concentrations of nitrite (0, 8, 25, or 50 mg/L) for 96 h. Acute nitrite exposure significantly altered the triiodothyronine (T3) levels and the morphology of thyroid follicles at 96 h. Thyroxine (T4), free T4 levels and intestinal IDs activities showed an increase trend under nitrite stress. After 96 h exposure, nitrite down-regulated the expressions levels of intestinal Akt1 protein, sugar transporter genes, and thyroid hormone receptor (TR) signaling pathway genes except for tr ɑ1 and tr ɑ2. Moreover, the expressions levels of pparγ, cpt1α, cd36, fabp2 and fatp4 were down-regulated, whereas fabp6 and lpl were up-regulated in the 50 mg/L exposure group at 96 h. The results indicate that acute nitrite exposure has the potential to disturb the homeostasis of intestinal TH metabolism, which in turn alters TRs genes transcription, down-regulates sugar transporter activities, and promotes the energy expenditure in gut of grass carp.
Collapse
Affiliation(s)
- Xiao Liang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yin Wang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Lu Liu
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
15
|
Ye Z, Xu YJ, Liu Y. Different typical dietary lipid consumption affects the bile acid metabolism and the gut microbiota structure: an animal trial using Sprague-Dawley rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3179-3192. [PMID: 34787315 DOI: 10.1002/jsfa.11661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The palm oil (PO), leaf lard oil (LO), rapeseed oil (RO), sunflower oil (SO) and linseed oil (LN) are five of the most typical dietary lipids in most Asian countries. However, their influences on gut health, and the connections between the fatty acid composition, the gut microbiota, and the bile acid metabolism are not fully understood. RESULTS In the present study, results showed that compared with polyunsaturated fatty acid (PUFA)-rich SO and LN, the saturated fatty acid (SFA)-rich and monounsaturated fatty acid (MUFA)-rich PO, LO and RO were more likely to decrease the re-absorption of bile acid in the colon, which was probably caused by their different role in modulating the gut microbiota structure. LO consumption significantly up-regulated the Cyp27a1, FXR and TGR5 gene expression level (P < 0.05). The correlation results suggested that the C18:0 was significantly positive correlated with these three genes, indicating that intake of SFA-rich dietary lipids, especially for the C18:0, could specifically increase the bile acid production by stimulating the bile acid alternative synthesis pathway. Although the bile acid receptor expression in the colon was increased, the re-absorption of bile acid did not show a significant increase (P > 0.05) as compared with other dietary lipids. Moreover, the C18:2-rich SO maintained the bile acid metabolic balance probably by decreasing the Romboutsia, while increasing the Bifidobacterium abundance in the colon. CONCLUSIONS The different dietary lipids showed different effects on the bile acid metabolism, which was probably connected with the alterations in the gut microbiota structure. The present study could provide basic understandings about the influences of the different dietary lipids consumption on gut homeostasis and bile acid metabolism. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
16
|
Wang Y, Zhang T, Liu R, Chang M, Wei W, Jin Q, Wang X. Reviews of medium- and long-chain triglyceride with respect to nutritional benefits and digestion and absorption behavior. Food Res Int 2022; 155:111058. [DOI: 10.1016/j.foodres.2022.111058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
|
17
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
18
|
Ma Y, Nenkov M, Chen Y, Press AT, Kaemmerer E, Gassler N. Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis. World J Hepatol 2021; 13:1512-1533. [PMID: 34904027 PMCID: PMC8637682 DOI: 10.4254/wjh.v13.i11.1512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are energy substrates and cell components which participate in regulating signal transduction, transcription factor activity and secretion of bioactive lipid mediators. The acyl-CoA synthetases (ACSs) family containing 26 family members exhibits tissue-specific distribution, distinct fatty acid substrate preferences and diverse biological functions. Increasing evidence indicates that dysregulation of fatty acid metabolism in the liver-gut axis, designated as the bidirectional relationship between the gut, microbiome and liver, is closely associated with a range of human diseases including metabolic disorders, inflammatory disease and carcinoma in the gastrointestinal tract and liver. In this review, we depict the role of ACSs in fatty acid metabolism, possible molecular mechanisms through which they exert functions, and their involvement in hepatocellular and colorectal carcinoma, with particular attention paid to long-chain fatty acids and small-chain fatty acids. Additionally, the liver-gut communication and the liver and gut intersection with the microbiome as well as diseases related to microbiota imbalance in the liver-gut axis are addressed. Moreover, the development of potentially therapeutic small molecules, proteins and compounds targeting ACSs in cancer treatment is summarized.
Collapse
Affiliation(s)
- Yunxia Ma
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Miljana Nenkov
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Elke Kaemmerer
- Department of Pediatrics, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany.
| |
Collapse
|
19
|
Supplemental effects of fish oil and powdered/coated docosahexaenoic acid on the growth performance, nutrient digestibility, blood profile and fecal coliform and lactic acid bacteria counts in weaner pigs. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Yang S, Qin C, Hu ZW, Zhou LQ, Yu HH, Chen M, Bosco DB, Wang W, Wu LJ, Tian DS. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol Dis 2021; 152:105290. [PMID: 33556540 DOI: 10.1016/j.nbd.2021.105290] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Wei Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hai-Han Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
21
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
22
|
van de Peppel IP, Rao A, Dommerholt MB, Bongiovanni L, Thomas R, de Bruin A, Karpen SJ, Dawson PA, Verkade HJ, Jonker JW. The Beneficial Effects of Apical Sodium-Dependent Bile Acid Transporter Inactivation Depend on Dietary Fat Composition. Mol Nutr Food Res 2020; 64:e2000750. [PMID: 33079450 PMCID: PMC7757219 DOI: 10.1002/mnfr.202000750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Indexed: 02/06/2023]
Abstract
SCOPE The apical sodium-dependent bile acid transporter (ASBT, SLC10A2) is important in the enterohepatic cycling of bile acids and thereby in the intestinal absorption of lipids. ASBT inhibition has been shown to improve aspects of the metabolic syndrome, but the underlying mechanisms have remained unclear. Here, the effect of ASBT inhibition on the uptake of specific fatty acids and its consequences for diet-induced obesity and non-alcoholic fatty liver disease (NAFLD) are investigated. METHODS Intestinal fat absorption is determined in mice receiving an ASBT inhibitor and in Asbt-/- mice. Metabolic disease development is determined in Asbt-/- mice receiving a low-fat control diet (LFD) or high-fat diet (HFD) rich in saturated fatty acids (SFAs) or PUFAs. RESULTS Both ASBT inhibition and Asbt gene inactivation reduce total fat absorption, particularly of SFAs. Asbt gene inactivation lowers bodyweight gain, improves insulin sensitivity, and decreases the NAFLD activity score upon feeding a HFD rich in SFAs, but not in PUFAs. CONCLUSIONS The beneficial metabolic effects of ASBT inactivation on diet-induced obesity depend on decreased intestinal absorption of SFAs, and thus on the dietary fatty acid composition. These findings highlight the importance of dietary fatty acid composition in the therapeutic effects of ASBT inhibition.
Collapse
Affiliation(s)
- Ivo P. van de Peppel
- Section of Molecular Metabolism and NutritionDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9713 GZThe Netherlands
| | - Anuradha Rao
- Department of PediatricsEmory University School of Medicine1760 Haygood Drive NortheastAtlantaGA 30322USA
| | - Marleen B. Dommerholt
- Section of Molecular Metabolism and NutritionDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9713 GZThe Netherlands
| | - Laura Bongiovanni
- Dutch Molecular Pathology CentreDepartment of PathobiologyFaculty of Veterinary MedicineUtrecht UniversityYalelaan 1Utrecht3584 CLThe Netherlands
| | - Rachel Thomas
- Dutch Molecular Pathology CentreDepartment of PathobiologyFaculty of Veterinary MedicineUtrecht UniversityYalelaan 1Utrecht3584 CLThe Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology CentreDepartment of PathobiologyFaculty of Veterinary MedicineUtrecht UniversityYalelaan 1Utrecht3584 CLThe Netherlands
| | - Saul J. Karpen
- Department of PediatricsEmory University School of Medicine1760 Haygood Drive NortheastAtlantaGA 30322USA
| | - Paul A. Dawson
- Department of PediatricsEmory University School of Medicine1760 Haygood Drive NortheastAtlantaGA 30322USA
| | - Henkjan J. Verkade
- Section of Molecular Metabolism and NutritionDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9713 GZThe Netherlands
| | - Johan W. Jonker
- Section of Molecular Metabolism and NutritionDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|
23
|
Lema I, Araújo JR, Rolhion N, Demignot S. Jejunum: The understudied meeting place of dietary lipids and the microbiota. Biochimie 2020; 178:124-136. [PMID: 32949677 DOI: 10.1016/j.biochi.2020.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Although the jejunum is the main intestinal compartment responsible for lipid digestion and absorption, most of the studies assessing the impact of dietary lipids on the intestinal microbiota have been performed in the ileum, colon and faeces. This lack of interest in the jejunum is due to the much lower number of microbes present in this intestinal region and to the difficulty in accessing its lumen, which requires invasive methods. Recently, several recent publications highlighted that the whole jejunal microbiota or specific bacterial members are able to modulate lipid absorption and metabolism in enterocytes. This information reveals new strategies in the development of bacterial- and metabolite-based therapeutic interventions or nutraceutical recommendations to treat or prevent metabolic-related disorders, including obesity, cardiovascular diseases and malnutrition. This review is strictly focused on the following triad: dietary lipids, the jejunal epithelium and the jejunal microbiota. First, we will describe each member of the triad: the structure and functions of the jejunum, the composition of the jejunal microbiota, and dietary lipid handling by enterocytes and by microorganisms. Then, we will present the mechanisms leading to lipid malabsorption in small intestinal bacterial overgrowth (SIBO), a disease in which the jejunal microbiota is altered and which highlights the strong interactions among this triad. We will finally review the recent literature about the interactions among members of the triad, which should encourage research teams to further explore the mechanisms by which specific microbial strains or metabolites, alone or in concert, can mediate, control or modulate lipid absorption in the jejunum.
Collapse
Affiliation(s)
- Ingrid Lema
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France
| | - João Ricardo Araújo
- Nutrition and Metabolism, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal; Center for Health Technology Services Research (CINTESIS), Oporto, Portugal
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France
| | - Sylvie Demignot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France.
| |
Collapse
|
24
|
Ahlawat S, Asha, Sharma KK. Gut-organ axis: a microbial outreach and networking. Lett Appl Microbiol 2020; 72:636-668. [PMID: 32472555 DOI: 10.1111/lam.13333] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Human gut microbiota (GM) includes a complex and dynamic population of microorganisms that are crucial for well-being and survival of the organism. It has been reported as diverse and relatively stable with shared core microbiota, including Bacteroidetes and Firmicutes as the major dominants. They are the key regulators of body homeostasis, involving both intestinal and extra-intestinal effects by influencing many physiological functions such as metabolism, maintenance of barrier homeostasis, inflammation and hematopoiesis. Any alteration in GM community structures not only trigger gut disorders but also influence other organs and cause associated diseases. In recent past, the GM has been defined as a 'vital organ' with its involvement with other organs; thus, establishing a link or a bi- or multidirectional communication axis between the organs via neural, endocrine, immune, humoral and metabolic pathways. Alterations in GM have been linked to several diseases known to humans; although the exact interaction mechanism between the gut and the organs is yet to be defined. In this review, the bidirectional relationship between the gut and the vital human organs was envisaged and discussed under several headings. Furthermore, several disease symptoms were also revisited to redefine the communication network between the gut microbes and the associated organs.
Collapse
Affiliation(s)
- S Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Asha
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - K K Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
25
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
26
|
Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
|
27
|
Zhao Y, Cao X, Fu L, Gao J. n-3 PUFA reduction caused by fabp2 deletion interferes with triacylglycerol metabolism and cholesterolhomeostasis in fish. Appl Microbiol Biotechnol 2020; 104:2149-2161. [PMID: 31950220 DOI: 10.1007/s00253-020-10366-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023]
Abstract
Fatty acid-binding protein 2 (Fabp2), which is involved in the transport of long-chain fatty acids, is widely studied in mammals. Nevertheless, the role of this protein in teleost fish is mostly unknown. Here, we produced a fabp2-/- zebrafish (KO) animal model. Compared with wild-type zebrafish (WT), KO had a markedly decreased content of intestinal n-3 poly-unsaturated fatty acids (n-3 PUFAs) and increased levels of intestinal, hepatic, and serum triacylglycerols (TAG). The intestinal transcriptome analysis of KO and WT revealed an obviously disrupted TAG metabolism and up-regulated bile secretion in KO. Expression levels of the genes related to fatty acid transport and cholesterol (CL) absorption in the intestine of KO were significantly lower than those of WT, while the expression levels of genes related to intestinal TAG synthesis and hepatic CL synthesis were in the opposite direction. To confirm these findings, we further established fabp2 transgenic zebrafish (TG). Compared with WT, TG had a markedly increased content of intestinal n-3 PUFAs, a significantly decreased level of hepatic TAG, and significantly higher expression of genes related to fatty acid transport and CL absorption in the intestine. In conclusion, this study suggests that teleost fish fabp2 could promote intestinal n-3 PUFA absorption to mediate TAG synthesis and CL homeostasis, by regulating the genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Yan Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Lele Fu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
28
|
Ye Z, Cao C, Li Q, Xu YJ, Liu Y. Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats. Food Res Int 2020; 132:109117. [PMID: 32331659 DOI: 10.1016/j.foodres.2020.109117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/04/2023]
Abstract
Palm oil (PO), leaf lard oil (LO), rapeseed oil (RO), sunflower oil (SO), and linseed oil (LINO) are the five of the most typical dietary lipids, while few studies have explored and compared their influences on the serum lipid profiles, colonic short chain fatty acids (SCFAs) composition and colon health of Sprague Dawley (SD) rats. Results from the present work showed that PO and LO groups showed significantly higher serum TG and TC level compared with Ctrl group, whereas, the LDL-C/HDL-C and TC/HDL-C ratio were significantly lower in the RO, SO and LINO groups. Different dietary lipid consumption (15% of the normal diet) decreased the colonic SCFAs concentration. The saturated fatty acid (SFA) was negatively correlated, while unsaturated fatty acid (UFA)/SFA ratio was positively correlated, with colonic isobutyric acid concentration. The C18:2ω6 and ω3 fatty acids were positively correlated with colonic butyric acid and isovaleric acid concentration, respectively. Results also demonstrated that PO and LO could decrease the colon villus length and crypt depth, and led to colon injury, which might be due to their high SFAs content. Moreover, results suggested that PO and LO could specifically up-regulate the colon inflammation related gene expression levels and down-regulate the Muc2 expression levels, thus, imposing negative impact on the mucus layers. The present study could provide some information for nutritional evaluation about these dietary lipids.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Chen Cao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Qiu Li
- Shandong LuHua Group Co., LTD, Laiyang 265200, Shandong, People's Republic of China
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Evaluation of the protein and bioactive compound bioaccessibility/bioavailability and cytotoxicity of the extracts obtained from aquaculture and fisheries by-products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:97-125. [PMID: 32402448 DOI: 10.1016/bs.afnr.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioavailability, bioaccessibility, bioactivity and cytotoxicity define if a bioactive compound obtained from aquaculture and associated by-products can be assimilated and used for the body in a safe and efficient way. Four models are used to evaluate the bioavailability: in vitro (simulated gastrointestinal digestion using intestinal epithelial Caco-2 cell cultures); ex vivo (gastrointestinal organs or organoids in laboratory conditions); in situ (intestinal perfusion in animals) and in vivo (animal studies and human studies). In vitro models are very effective, predicting in vivo actions since they evaluate multiple conditions regardless physiological effects. However, in vivo systems are essential for the validation of the results. The use of a combined model between human digestion and cell culture-based models would solve these difficulties, allowing valid conclusions. These studies must be completed with the evaluation of cytotoxicity and oxidative stress markers, providing most accurate results regarding the adverse effect on the body. These methods would test the effect of food structure, food composition, dietary factors and the effect of food processing on bioavailability. Further studies should be carried out to establish a standardized method and achieve a balance between the use of in vivo and in vitro systems.
Collapse
|
30
|
Liu Y, Li XY, Lu SH, Yu C, Zhang YZ, Wang ZM, Yao JM. Comparative Metabolic Responses Induced by Pyridine and Imidazole in Blakeslea trispora. Front Bioeng Biotechnol 2019; 7:347. [PMID: 31824936 PMCID: PMC6886401 DOI: 10.3389/fbioe.2019.00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Lycopene cyclase needs to be inhibited by the blockers like pyridine or imidazole in the lycopene accumulation of Blakeslea trispora. This work investigated how pyridine and imidazole impacted the basal metabolism of B. trispora, the results helped us understand how they could affect the lycopene production and application, and see the metabolic risks from different inhibitors. In this study, the highest yield of lycopene with pyridine was obtained at 176 mg/L without amino acids supplement, and got more lycopene at 237 mg/L adding tyrosine, lysine, proline all together as 0.01 mol/L each in fermented broth. GC-MS and Principal Component Analysis (PCA) were used to find that amino acids, fatty acids, organic acids including phosphoric acid, carbon source and imidazole derivatives played the most important roles in lycopene fermentation with imidazole, differently, fatty acids, carbon source, and pyridine derivatives were more significant in the pyridine process and it was remarkable that the residual of both blockers' derivatives would bring the potential risks on applications of lycopene products. Predominantly, durene met 0.35 mg/g DCW with imidazole and piperidine formaldehyde attained 0.24 mg/g DCW with pyridine after the end of lycopene fermentations.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Xiang-Yu Li
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Chao Yu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Yu-Zhou Zhang
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | | | - Jian-Ming Yao
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Ye Z, Cao C, Li R, Cao P, Li Q, Liu Y. Lipid composition modulates the intestine digestion rate and serum lipid status of different edible oils: a combination of in vitro and in vivo studies. Food Funct 2019; 10:1490-1503. [PMID: 30783644 DOI: 10.1039/c8fo01290c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of the present study was to investigate the connections between lipid compositions and the digestion and absorption differences of different lipids. Five typical edible oils (palm oil, PO; leaf lard oil, LO; rapeseed oil, RO; sunflower oil, SO; linseed oil, LINO) were selected to conduct in vitro digestion experiments considering the lipid digestion extent and hydrolysis rate before analyzing the fatty acid composition and TAG profiles using GC and UHPLC-Q-TOF-MS/MS. Meanwhile, the postprandial lipid absorption status after gavage administration was examined in adult male Sprague-Dawley rats with respect to serum lipid profiles. The results showed that the maximum FFA release extent decreased in the order: PO > RO > LINO > SO > LO, and the FFA release apparent constants were PO > SO ≈ RO > LO ≈ LINO. This suggested that the fatty acid species and the location of fatty acids within TAG molecules could significantly affect the lipid digestion fates in the gastrointestinal tract, and short chain saturated fatty acids located at the Sn-1, 3 position could favor the lipid digestion process. PO and LO were both shown to be more likely to affect the serum TG levels and LDL-C : HDL-C ratio compared with RO, SO and LINO. Different fatty acids displayed different correlations with serum lipid profiles when examined by Pearson correlation analysis. This suggested that fatty acid composition and TAG profiles may influence first the digestion rate and then the serum lipid profiles. This further confirmed that lipid composition could modulate the digestion and absorption status under the gastrointestinal conditions. These findings may provide some basic understanding of the connections between lipid composition and their functional difference.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
32
|
Li Z, Liu H, Xu B, Wang Y. Enterotoxigenic Escherichia coli Interferes FATP4-Dependent Long-Chain Fatty Acid Uptake of Intestinal Epithelial Enterocytes via Phosphorylation of ERK1/2-PPARγ Pathway. Front Physiol 2019; 10:798. [PMID: 31281267 PMCID: PMC6596317 DOI: 10.3389/fphys.2019.00798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
Sufficient fatty acid (FA) uptake from jejunal lumen is closely associated with pediatric growth. Enterotoxigenic Escherichia coli (ETEC), which poses a big threat to young mammals’ health, is also targeted on the jejunum, however, the effects on FA uptake is not understood yet. To explore the impacts of ETEC on the FA uptake ability of jejunum epithelial enterocytes during early life, we orally gavaged weaning piglets with ETEC K88 and found intestinal inflammation combined with compromised uptake of LCFA (C16:0, C18:0, C20:3, C20:4) except for C14:0 whose chain length is similar to medium chain fatty acid (MCFA). Furthermore, we observed reduced protein expression of TJs, fatty acid transport protein 4 (FATP4), peroxisome proliferator-activated receptor γ (PPARγ), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and upregulated expression of p-PPARγ. In the in vitro study, we challenged polarized porcine intestine jejunum cell line IPEC-J2 with ETEC K88 and discovered similar results on intestinal barrier and expression of associated genes combined with morphological changes. Based on the constructed cellular model, we then determined lower uptake of BODIPY-labeled C16:0 without any difference in the uptake of BODIPY-labeled C12:0. The content of intracellular triglyceride which was mainly synthesized by LCFA concomitantly lowered down. Using gene knock down and overexpression, FATP4 was confirmed to be responsible for LCFA uptake. Moreover, ERK1/2 inhibitor U0126 and PPARγ antagonist T0070907 revealed ETEC could initiate cascaded phosphorylation of ERK1/2 and PPARγ resulting in hindered expression of FATP4. These results indicate ETEC challenge will cause dysfunction in FATP4-dependent LCFA uptake by phosphorylation of ERK1/2 and PPARγ. Furthermore, intestinal uptake of MCFA is in a FATP4-independent manner which is not easily disturbed by ETEC.
Collapse
Affiliation(s)
- Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Heyuan Liu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Sun L, Zhang X, Zhang Y, Zheng K, Xiang Q, Chen N, Chen Z, Zhang N, Zhu J, He Q. Antibiotic-Induced Disruption of Gut Microbiota Alters Local Metabolomes and Immune Responses. Front Cell Infect Microbiol 2019; 9:99. [PMID: 31069173 PMCID: PMC6491449 DOI: 10.3389/fcimb.2019.00099] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/25/2019] [Indexed: 12/04/2022] Open
Abstract
Gut microbiome plays an essential role in modulating host immune responses. However, little is known about the interaction of microbiota, their metabolites and relevant inflammatory responses in the gut. By treating the mice with three different antibiotics (enrofloxacin, vancomycin, and polymixin B sulfate), we aimed to investigate the effects of different antibiotics exposure on gut microbiota, microbial metabolism, inflammation responses in the gut, and most importantly, pinpoint the underlying interactions between them. Although the administration of different antibiotics can lead to different effects on mouse models, the treatment did not affect the average body weight of the mice. A heavier caecum was observed in vancomycin treated mice. Treatment by these three antibiotics significantly up-regulated gene expression of various cytokines in the colon. Enrofloxacin treated mice seemed to have an increased Th1 response in the colon. However, such a difference was not found in mice treated by vancomycin or polymixin B sulfate. Vancomycin treatment induced significant changes in bacterial composition at phylum and family level and decreased richness and diversity at species level. Enrofloxacin treatment only induced changes in composition at family presenting as an increase in Prevotellaceae and Rikenellaceae and a decrease in Bacteroidaceae. However, no significant difference was observed after polymixin B sulfate treatment. When compared with the control group, significant metabolic shift was found in the enrofloxacin and vancomycin treated group. The metabolic changes mainly occurred in Valine, leucine, and isoleucine biosynthesis pathway and beta-Alanine metabolism in enrofloxacin treated group. For vancomycin treatment metabolic changes were mainly found in beta-Alanine metabolism and Alanine, aspartate and glutamate metabolism pathway. Moreover, modifications observed in the microbiota compositions were correlated with the metabolite concentrations. For example, concentration of pentadecanoic acid was positively correlated with richness of Rikenellaceae and Prevotellaceae and negatively correlated with Enterobacteriaceae. This study suggests that the antibiotic-induced changes in gut microbiota might contribute to the inflammation responses through the alternation of metabolic status, providing a novel insight regarding a complex network that integrates the different interactions between gut microbiota, metabolic functions, and immune responses in host.
Collapse
Affiliation(s)
- Lin Sun
- Department of Medical Microbiology, Capital Medical University, Beijing, China
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoyan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Yuxiao Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Qiaoyan Xiang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Goupille O, Kadri Z, Langelé A, Luccantoni S, Badoual C, Leboulch P, Chrétien S. The integrity of the FOG-2 LXCXE pRb-binding motif is required for small intestine homeostasis. Exp Physiol 2019; 104:1074-1089. [PMID: 31012180 DOI: 10.1113/ep087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/16/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do Fog2Rb- / Rb- mice present a defect of small intestine homeostasis? What is the main finding and its importance? The importance of interactions between FOG-2 and pRb in adipose tissue physiology has previously been demonstrated. Here it is shown that this interaction is also intrinsic to small intestine homeostasis and exerts extrinsic control over mouse metabolism. Thus, this association is involved in maintaining small intestine morphology, and regulating crypt proliferation and lineage differentiation. It therefore affects mouse growth and adaptation to a high-fat diet. ABSTRACT GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. We have shown that GATA-1 and FOG-2 contain an LXCXE pRb-binding motif. Interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation, whereas the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Fog2-knock-in mice have defective pRb binding and are resistant to obesity, due to efficient white-into-brown fat conversion. Our aim was to investigate the pathophysiological impact of FOG-2-pRb interaction on the small intestine and mouse growth. Histological analysis of the small intestine revealed architectural changes in Fog2Rb- / Rb- mice, including villus shortening, with crypt expansion and a change in muscularis propria thickness. These differences were more marked in the proximo-distal part of the small intestine and were associated with an increase in crypt cell proliferation and disruption of the goblet and Paneth cell lineage. The small intestine of the mutants was unable to adapt to a high-fat diet, and had significantly lower plasma lipid levels on such a diet. Fog2Rb- / Rb- mice displayed higher levels of glucose-dependent insulinotropic peptide release, and lower levels of insulin-like growth factor I release on a regular diet. Their intestinal lipid absorption was impaired, resulting in restricted weight gain. In addition to the intrinsic effects of the mutation on adipose tissue, we show here an extrinsic relationship between the intestine and the effect of FOG-2 mutation on mouse metabolism. In conclusion, the interaction of FOG-2 with pRb coordinates the crypt-villus axis and controls small intestine homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Amandine Langelé
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, Institute of Biology François Jacob, CEA - Université Paris Sud 11 - INSERM U1184, Fontenay-aux-Roses, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP - Université Paris, Descartes, Paris, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Stany Chrétien
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,INSERM, Paris, France
| |
Collapse
|
35
|
Lavrador MSF, Afonso MS, Cintra DE, Koike M, Nunes VS, Demasi M, Lin CJ, Beda LMM, Gioielli LA, Bombo RDPA, Machado RM, Catanozi S, Nakandakare ER, Lottenberg AM. Interesterified Fats Induce Deleterious Effects on Adipose Tissue and Liver in LDLr-KO Mice. Nutrients 2019; 11:nu11020466. [PMID: 30813339 PMCID: PMC6412707 DOI: 10.3390/nu11020466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Interesterified fats are being widely used by the food industry in an attempt to replace trans fatty acids. The effect of interesterified fats containing palmitic or stearic acids on lipid metabolism and inflammatory signaling pathways in adipose and hepatic tissues was evaluated. Male LDLr-KO mice were fed a high-fat diet containing polyunsaturated (PUFA), palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR), or stearic interesterified (STEAR INTER) fats for 16 weeks. The expression of genes and protein levels involved in lipid metabolism and inflammatory processes in liver and white adipose tissue was determined by quantitative RT-PCR and by Western blot, respectively. The infiltration of inflammatory cells in hepatic and adipose tissues was determined by eosin and hematoxylin, while liver collagen content was determined by Sirius Red staining. Both interesterified fats increased liver collagen content and JNK phosphorylation. Additionally, the STEAR INTER group developed nonalcoholic steatohepatitis (NASH) associated with higher neutrophil infiltration. PALM INTER induced adipose tissue expansion and enlargement of adipocytes. Furthermore, PALM INTER triggered increased IKK phosphorylation and TNFα protein content, conditions associated with the upstream activation of the NFkB signaling pathway. STEAR INTER induced NASH, while PALM INTER triggered hepatic fibrosis and adipocyte hypertrophy with inflammatory response in LDLr-KO mice.
Collapse
Affiliation(s)
- Maria Silvia Ferrari Lavrador
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Milessa Silva Afonso
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics-School of Applied Science, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil.
| | - Marcia Koike
- Emergency Care Research Unit Laboratory (LIM51), Faculty of Medical Sciences of the University of São Paulo, São Paulo 01246-903, Brazil.
| | - Valeria Sutti Nunes
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Marina Demasi
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Chin Jia Lin
- Laboratory of Molecular Biology (LIM22), Department of Pathology, Faculty of Medical Sciences of the University of São Paulo, São Paulo 01246-903, Brazil.
| | - Lis Mie Masuzawa Beda
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Luiz Antonio Gioielli
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences of the University of São Paulo, São Paulo 05508-000, Brazil.
| | - Renata de Paula Assis Bombo
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Roberta Marcondes Machado
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Sergio Catanozi
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Edna Regina Nakandakare
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Ana Maria Lottenberg
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, BR 05521-200, Brazil.
| |
Collapse
|
36
|
Profile and distribution of fatty acids in edible parts of commonly consumed marine fishes in Chile. Food Chem 2019; 274:123-129. [DOI: 10.1016/j.foodchem.2018.08.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/12/2018] [Accepted: 08/24/2018] [Indexed: 11/22/2022]
|
37
|
Ye Z, Li R, Cao C, Xu YJ, Cao P, Li Q, Liu Y. Fatty acid profiles of typical dietary lipids after gastrointestinal digestion and absorbtion: A combination study between in-vitro and in-vivo. Food Chem 2018; 280:34-44. [PMID: 30642504 DOI: 10.1016/j.foodchem.2018.12.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
The objective of the present study was to investigate the influences of dietary lipid composition on the gastrointestinal digestion and postprandial serum lipid profiles, and the connections between them. The in-vitro digestion results showed that maximum free fatty acid (FFA) release level of different lipid samples was PO (Palm oil) > RO (Rapeseed oil) > LINO (Linseed oil) > SO (Sunflower oil) > LO (Lard oil), and the first-order kinetics apparent rate constant was PO > SO ≈ RO > LO ≈ LINO, this may probably be ascribed to their specific lipid fatty acid composition and TAG structure. The individual FFA released during 240 min in-vitro digestion time was measured, and it showed that the release rate of short-chain saturated fatty acids (e.g. C16:0 in PO) were higher than the long-chain poly-unsaturated fatty acids (e.g. C18:3n-3 in LINO). Besides, the position of fatty acids within TAG molecules could also impose influences on the lipid hydrolysis process upon pancreas lipase in gastrointestinal tract using in-vitro digestion model. The postprandial serum fatty acid composition of the adult SD male rats were examined within 240 min after oral gavage administration, and the Pearson correlations between lipid fatty acid composition and the serum fatty acid profiles were analyzed. Certain correlations were summarized between lipid compositions (i.e. fatty acid composition and TAG structure), lipid digestion fates and serum fatty acid content in postprandial. The present work may provide some basic understandings of the connections among lipid compositions, lipid gastrointestinal digestion differences and the postprandial serum lipid profiles, and provide useful information about their nutritional and functional evaluation.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Ruizhi Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chen Cao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Peirang Cao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Qiu Li
- Shandong LuHua Group Co., LTD, Laiyang 265200, Shandong, People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Zhao L, Huang Y, Lu L, Yang W, Huang T, Lin Z, Lin C, Kwan H, Wong HLX, Chen Y, Sun S, Xie X, Fang X, Yang H, Wang J, Zhu L, Bian Z. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. MICROBIOME 2018; 6:107. [PMID: 29903041 PMCID: PMC6003035 DOI: 10.1186/s40168-018-0492-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The gut microbiota is closely associated with gastrointestinal (GI) motility disorder, but the mechanism(s) by which bacteria interact with and affect host GI motility remains unclear. In this study, through using metabolomic and metagenomic analyses, an animal model of neonatal maternal separation (NMS) characterized by accelerated colonic motility and gut dysbiosis was used to investigate the mechanism underlying microbiota-driven motility dysfunction. RESULTS An excess of intracolonic saturated long-chain fatty acids (SLCFAs) was associated with enhanced bowel motility in NMS rats. Heptadecanoic acid (C17:0) and stearic acid (C18:0), as the most abundant odd- and even-numbered carbon SLCFAs in the colon lumen, can promote rat colonic muscle contraction and increase stool frequency. Increase of SLCFAs was positively correlated with elevated abundances of Prevotella, Lactobacillus, and Alistipes. Functional annotation found that the level of bacterial LCFA biosynthesis was highly enriched in NMS group. Essential synthetic genes Fabs were largely identified from the genera Prevotella, Lactobacillus, and Alistipes. Pseudo germ-free (GF) rats receiving fecal microbiota from NMS donors exhibited increased defecation frequency and upregulated bacterial production of intracolonic SLCFAs. Modulation of gut dysbiosis by neomycin effectively attenuated GI motility and reduced bacterial SLCFA generation in the colon lumen of NMS rats. CONCLUSIONS These findings reveal a previously unknown relationship between gut bacteria, intracolonic SLCFAs, and host GI motility, suggesting the importance of SLCFA-producing bacteria in GI motility disorders. Further exploration of this relationship could lead to a precise medication targeting the gut microbiota for treating GI motility disorders.
Collapse
Affiliation(s)
- Ling Zhao
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | | | - Lin Lu
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wei Yang
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Tao Huang
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zesi Lin
- Preparatory Office of Shenzhen-Melbourne Institute of Life Sciences and Bioengineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengyuan Lin
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Hiuyee Kwan
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yang Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Xiaodong Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo, 3435 Main Street, 422BRB, Buffalo, NY, 14214, USA.
| | - Zhaoxiang Bian
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
39
|
Domínguez-Perles R, Auñón D, Ferreres F, Gil-Izquierdo A. Physiological linkage of gender, bioavailable hydroxytyrosol derivatives, and their metabolites with systemic catecholamine metabolism. Food Funct 2018; 8:4570-4581. [PMID: 29119177 DOI: 10.1039/c7fo01124e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite extensive characterization of hydroxytyrosol (HT), there is a gap in the knowledge about its capacity to modulate catecholamine pathways. This study deals with the evaluation of the effects of HT, hydroxytyrosol acetate (HTA), and 3,4-dihydroxyphenylacetic acid (DOPAC), as well as their microbial metabolites (homovanillyl alcohol and tyrosol), on the excretion of catecholamines by UHPLC-ESI-QqQ-MS/MS upon administration at 1 and 5 mg kg-1 to male and female rats. The evaluation of urinary dopamine, norepinephrine, normetanephrine, and 3-methoxytyramine demonstrated 12.0- and 1.5-fold augmented excretions in males and females, respectively, due to the intake of HT derivatives. In addition, specific interconnections were identified between HT, HTA, DOPAC, and tyrosol and 3-methoxytyramine; between HTA and dopamine, norepinephrine, and normetanephrine; between HT, HTA, HVA, and tyrosol and dopamine, norepinephrine, and normetanephrine; and between HT, DOPAC, and HVA and dopamine and 3-methoxytyramine. Hence, a lack of linear relationships was observed between the oral administration of HT, HTA, and DOPAC and their plasma concentrations or urinary excretion levels after they were absorbed and distributed systemically. HT derivatives increase the synthesis of catecholamines in a derivative-, dosage-, and gender-dependent way.
Collapse
Affiliation(s)
- R Domínguez-Perles
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, Edif. 25, 30100 Espinardo, Spain.
| | | | | | | |
Collapse
|
40
|
Tan JK, McKenzie C, Mariño E, Macia L, Mackay CR. Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation. Annu Rev Immunol 2018; 35:371-402. [PMID: 28446062 DOI: 10.1146/annurev-immunol-051116-052235] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jian K Tan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; , , ,
| | - Craig McKenzie
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; , , ,
| | - Eliana Mariño
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; , , , .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Laurence Macia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; , , , .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia; .,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; , , ,
| |
Collapse
|
41
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
42
|
de Gelder S, Sundh H, Pelgrim TNM, Rasinger JD, van Daal L, Flik G, Berntssen MHG, Klaren PHM. Transepithelial transfer of phenanthrene, but not of benzo[a]pyrene, is inhibited by fatty acids in the proximal intestine of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:97-105. [PMID: 29223736 DOI: 10.1016/j.cbpc.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022]
Abstract
The inclusion of vegetable oils in aquafeeds introduces contaminating polycyclic aromatic hydrocarbons (PAHs) in salmonids. Since lipophilic PAHs solubilize in micelles composed of lipids, bile salts and fatty acids, dietary lipid composition can alter intestinal transepithelial PAH transfer. We studied the uptake of two PAHs, viz. benzo[a]pyrene (BaP) and phenanthrene (PHE), in rainbow trout (Oncorhynchus mykiss) intestine. We also investigated the effects of two fatty acids, viz. fish oil-derived eicosapentaenoic acid (EPA, 20:5n-3) and vegetable oil-derived oleic acid (18:1n-9) on intestinal uptake. Radiolabeled PAHs were solubilized in micelles composed of tritiated EPA and oleic acid, respectively, and administrated to intestinal segments mounted in Ussing chambers. In the absence of micelles, PHE accumulation was two times higher than BaP in the mucosal and serosal layers of proximal and distal intestine. Administration of PHE in micelles composed of oleic acid resulted in a 50% lower accumulation of PHE in the mucosal layers of the proximal intestine compared to EPA-composed micelles. Accumulation of EPA and oleic acid in the proximal intestinal mucosa correlated negatively with the transepithelial transfer of these fatty acids across the proximal intestinal epithelium. Transepithelial PHE transfer across the proximal intestine was reduced by 30% in co-exposure with EPA-composed micelles compared to 80% with oleic acid micelles. BaP was not transferred across the intestine. We conclude that the lipid composition of an aquafeed is an important determinant of PAH bioavailability. Therefore, lipid composition should be an important consideration in choosing vegetable oils as alternatives for fish oil in aquafeeds.
Collapse
Affiliation(s)
- Stefan de Gelder
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
| | - Henrik Sundh
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | - Thamar N M Pelgrim
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Josef D Rasinger
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
| | - Lotte van Daal
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Gert Flik
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Marc H G Berntssen
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
| | - Peter H M Klaren
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| |
Collapse
|
43
|
Deficiency of essential dietary n-3 PUFA disrupts the caecal microbiome and metabolome in mice. Br J Nutr 2017; 118:959-970. [PMID: 29173237 DOI: 10.1017/s0007114517002999] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
n-3 PUFA are lipids that play crucial roles in immune-regulation, cardio-protection and neurodevelopment. However, little is known about the role that these essential dietary fats play in modulating caecal microbiota composition and the subsequent production of functional metabolites. To investigate this, female C57BL/6 mice were assigned to one of three diets (control (CON), n-3 supplemented (n3+) or n-3 deficient (n3-)) during gestation, following which their male offspring were continued on the same diets for 12 weeks. Caecal content of mothers and offspring were collected for 16S sequencing and metabolic phenotyping. n3- male offspring displayed significantly less % fat mass than n3+ and CON. n-3 Status also induced a number of changes to gut microbiota composition such that n3- offspring had greater abundance of Tenericutes, Anaeroplasma and Coriobacteriaceae. Metabolomics analysis revealed an increase in caecal metabolites involved in energy metabolism in n3+ including α-ketoglutaric acid, malic acid and fumaric acid. n3- animals displayed significantly reduced acetate, butyrate and total caecal SCFA production. These results demonstrate that dietary n-3 PUFA regulate gut microbiota homoeostasis whereby n-3 deficiency may induce a state of disturbance. Further studies are warranted to examine whether these microbial and metabolic disturbances are causally related to changes in metabolic health outcomes.
Collapse
|
44
|
Rich MK, Nouri E, Courty PE, Reinhardt D. Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? TRENDS IN PLANT SCIENCE 2017. [PMID: 28622919 DOI: 10.1016/j.tplants.2017.05.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most plants entertain mutualistic interactions known as arbuscular mycorrhiza (AM) with soil fungi (Glomeromycota) which provide them with mineral nutrients in exchange for reduced carbon from the plant. Mycorrhizal roots represent strong carbon sinks in which hexoses are transferred from the plant host to the fungus. However, most of the carbon in AM fungi is stored in the form of lipids. The absence of the type I fatty acid synthase (FAS-I) complex from the AM fungal model species Rhizophagus irregularis suggests that lipids may also have a role in nutrition of the fungal partner. This hypothesis is supported by the concerted induction of host genes involved in lipid metabolism. We explore the possible roles of lipids in the light of recent literature on AM symbiosis.
Collapse
Affiliation(s)
- Mélanie K Rich
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland
| | - Eva Nouri
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland; Present address: Agroécologie, AgroSupDijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland.
| |
Collapse
|
45
|
Niot I, Besnard P. Appetite control by the tongue-gut axis and evaluation of the role of CD36/SR-B2. Biochimie 2017; 136:27-32. [PMID: 28238842 DOI: 10.1016/j.biochi.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms governing food intake is a public health issue given the dramatic rise of obesity over the world. The overconsumption of tasty energy-dense foods rich in lipids is considered to be one of the nutritional causes of this epidemic. Over the last decade, the identification of fatty acid receptors in strategic places in the body (i.e. oro-intestinal tract and brain) has provided a major progress in the deciphering of regulatory networks involved in the control of dietary intake. Among these lipid sensors, CD36/SR-B2 appears to play a significant role since this membrane protein, known to bind long-chain fatty acid with a high affinity, was specifically found both in enterocytes and in a subset of taste bud cells and entero-endocrine cells. After a short overview on CD36/SR-B2 structure, function and regulation, this mini-review proposes to analyze the key findings about the role of CD36/SR-B2 along of the tongue-gut axis in relation to appetite control. In addition, we discuss whether obesogenic diets might impair lipid sensing mediated by CD36/SR-B2 along this axis.
Collapse
Affiliation(s)
- Isabelle Niot
- Physiologie de la Nutrition et Toxicologie (NUTox), LCN UMR 1231, INSERM/AgroSupDijon/Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Philippe Besnard
- Physiologie de la Nutrition et Toxicologie (NUTox), LCN UMR 1231, INSERM/AgroSupDijon/Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
46
|
Yang Q, Wang S, Ji Y, Chen H, Zhang H, Chen W, Gu Z, Chen YQ. Dietary intake of n-3 PUFAs modifies the absorption, distribution and bioavailability of fatty acids in the mouse gastrointestinal tract. Lipids Health Dis 2017; 16:10. [PMID: 28095863 PMCID: PMC5240384 DOI: 10.1186/s12944-016-0399-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dietary polyunsaturated fatty acids (PUFAs), especially n-3 PUFAs, are important for human health. The intestinal tract, a location that is heavily colonized by microorganisms, is the main organ for absorbing fatty acids. METHODS The purpose of this study was to analyze the effects of dietary n-3 and n-6 PUFAs on the distribution of different types of fatty acids and their bioavailability along the gut. Mice were fed for a week with experimental diets containing high n-3 or high n-6 fatty acid levels. Blood was collected at different time points, and after 7 days the mice were euthanized and their digestive tract was divided into 17 segments for fatty acids analyses. RESULTS We found that supplementing n-3 fatty acids significantly changed the ratio of n-6/n-3 PUFAs, increased the bioavailability of n-3 PUFAs, and altered fatty acid distribution. In addition, in the n-3 diet group, the absorption of saturated fatty acids (SFAs) along the gut was found to be inhibited, which was confirmed by feeding the mice with a diet containing deuterium-labeled palmitic acid and stearic acid. CONCLUSION These results show that a diet rich in n-3 PUFAs can significantly modify the distribution and bioavailability of fatty acids, and particularly, may block the absorption of SFAs in the mouse gastrointestinal (GI) tract.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Yunqi Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China. .,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China. .,Department of Cancer Biology and Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China.,Department of Cancer Biology and Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
47
|
Kalsbeek MJT, Mulder L, Yi CX. Microglia energy metabolism in metabolic disorder. Mol Cell Endocrinol 2016; 438:27-35. [PMID: 27687525 DOI: 10.1016/j.mce.2016.09.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity.
Collapse
Affiliation(s)
- Martin J T Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Laurie Mulder
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Molecular characterization and developmental expression patterns of apolipoprotein A-I in Senegalese sole (Solea senegalensis Kaup). Gene Expr Patterns 2016; 21:7-18. [PMID: 27261260 DOI: 10.1016/j.gep.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
Abstract
The apolipoprotein A-I (ApoA-I) is an essential component of the high density lipoproteins (HDL). In this study, the cDNA and genomic sequences of this apolipoprotein were characterized for first time in Solea senegalensis. The predicted polypeptide revealed conserved structural features including ten repeats in the lipid-binding domain and some residues involved in cholesterol interaction and binding. The gene structure analysis identified four exons and three introns. Moreover, the synteny analysis revealed that apoA-I did not localize with other apolipoproteins indicating a divergent evolution with respect to the apoA-IV and apoE cluster. The phylogenetic analyses identified two distinct apoA-I paralogs in Ostariophysi (referred to as Ia and Ib) and only one (Ib) in Acanthopterygii. Whole-mount in situ hybridization located the apoA-I signal mainly in the yolk syncytial layer in lecitotrophic larval stages. Later at mouth opening, the mRNA signals were detected mainly in liver and intestine compatible with its role in the HDL formation. Moreover, a clear signal was detected in some regions of the brain, retina and neural cord suggesting a role in local regulation of cholesterol homeostasis. After metamorphosis, apoA-I was also detected in other tissues such as gills, head kidney and spleen suggesting a putative role in immunity. Expression analyses in larvae fed two diets with different triacylglycerol levels indicated that apoA-I mRNA levels were more associated to larval size and development than dietary lipid levels. Finally, qPCR analyses of immature and mature transcripts revealed distinct expression profiles suggesting a posttranscriptional regulatory mechanism.
Collapse
|
49
|
Buttet M, Poirier H, Traynard V, Gaire K, Tran TTT, Sundaresan S, Besnard P, Abumrad NA, Niot I. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model. PLoS One 2016; 11:e0145626. [PMID: 26727015 PMCID: PMC4703141 DOI: 10.1371/journal.pone.0145626] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/07/2015] [Indexed: 12/28/2022] Open
Abstract
The metabolic syndrome (MetS) greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL) in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD). By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP) and blood clearance (ApoC2). These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG), while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the reported association of CD36 variants with MetS risk.
Collapse
Affiliation(s)
- Marjorie Buttet
- Physiologie de la Nutrition et Toxicologie (NUTox), UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F-21000, Dijon, France
| | - Hélène Poirier
- Physiologie de la Nutrition et Toxicologie (NUTox), UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F-21000, Dijon, France
| | - Véronique Traynard
- Physiologie de la Nutrition et Toxicologie (NUTox), UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F-21000, Dijon, France
| | - Kévin Gaire
- Physiologie de la Nutrition et Toxicologie (NUTox), UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F-21000, Dijon, France
| | - Thi Thu Trang Tran
- Physiologie de la Nutrition et Toxicologie (NUTox), UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F-21000, Dijon, France
| | - Sinju Sundaresan
- Department of Medicine, Gastroenterology Division, University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - Philippe Besnard
- Physiologie de la Nutrition et Toxicologie (NUTox), UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F-21000, Dijon, France
| | - Nada A. Abumrad
- Department of Medicine, Center for Human Nutrition, and Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States of America
| | - Isabelle Niot
- Physiologie de la Nutrition et Toxicologie (NUTox), UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F-21000, Dijon, France
- * E-mail:
| |
Collapse
|
50
|
Esteves A, Knoll-Gellida A, Canclini L, Silvarrey MC, André M, Babin PJ. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei. J Lipid Res 2015; 57:219-32. [PMID: 26658423 DOI: 10.1194/jlr.m062232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/13/2022] Open
Abstract
Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity.
Collapse
Affiliation(s)
- Adriana Esteves
- Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Anja Knoll-Gellida
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), F-33615 Pessac, France INSERM, U1211, F-33076, Bordeaux, France
| | - Lucia Canclini
- Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | | | - Michèle André
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), F-33615 Pessac, France INSERM, U1211, F-33076, Bordeaux, France
| | - Patrick J Babin
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), F-33615 Pessac, France INSERM, U1211, F-33076, Bordeaux, France
| |
Collapse
|