1
|
Dembitz V, Lawson H, Burt R, Natani S, Philippe C, James SC, Atkinson S, Durko J, Wang LM, Campos J, Magee AMS, Woodley K, Austin MJ, Rio-Machin A, Casado P, Bewicke-Copley F, Rodriguez Blanco G, Pereira-Martins D, Oudejans L, Boet E, von Kriegsheim A, Schwaller J, Finch AJ, Patel B, Sarry JE, Tamburini J, Schuringa JJ, Hazlehurst L, Copland Iii JA, Yuneva M, Peck B, Cutillas P, Fitzgibbon J, Rouault-Pierre K, Kranc K, Gallipoli P. Stearoyl-CoA desaturase inhibition is toxic to acute myeloid leukemia displaying high levels of the de novo fatty acid biosynthesis and desaturation. Leukemia 2024; 38:2395-2409. [PMID: 39187579 PMCID: PMC11518998 DOI: 10.1038/s41375-024-02390-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Identification of specific and therapeutically actionable vulnerabilities, ideally present across multiple mutational backgrounds, is needed to improve acute myeloid leukemia (AML) patients' outcomes. We identify stearoyl-CoA desaturase (SCD), the key enzyme in fatty acid (FA) desaturation, as prognostic of patients' outcomes and, using the clinical-grade inhibitor SSI-4, show that SCD inhibition (SCDi) is a therapeutic vulnerability across multiple AML models in vitro and in vivo. Multiomic analysis demonstrates that SCDi causes lipotoxicity, which induces AML cell death via pleiotropic effects. Sensitivity to SCDi correlates with AML dependency on FA desaturation regardless of mutational profile and is modulated by FA biosynthesis activity. Finally, we show that lipotoxicity increases chemotherapy-induced DNA damage and standard chemotherapy further sensitizes AML cells to SCDi. Our work supports developing FA desaturase inhibitors in AML while stressing the importance of identifying predictive biomarkers of response and biologically validated combination therapies to realize their full therapeutic potential.
Collapse
Affiliation(s)
- Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Physiology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hannah Lawson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Richard Burt
- Division of Cell and Molecular Biology, Imperial College London, London, UK
- Francis Crick Institute, London, UK
| | - Sirisha Natani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Céline Philippe
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- INSERM U1242, University of Rennes, Rennes, France
| | - Sophie C James
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Samantha Atkinson
- Division of Cell and Molecular Biology, Imperial College London, London, UK
- Francis Crick Institute, London, UK
| | - Jozef Durko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lydia M Wang
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Joana Campos
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Aoife M S Magee
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Keith Woodley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael J Austin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Experimental Hematology Lab, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Pedro Casado
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Findlay Bewicke-Copley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giovanny Rodriguez Blanco
- The University of Edinburgh MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Diego Pereira-Martins
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lieve Oudejans
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, LabEx Toucan, Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Alex von Kriegsheim
- The University of Edinburgh MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Juerg Schwaller
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, Basel, Switzerland
| | - Andrew J Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bela Patel
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, LabEx Toucan, Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Jerome Tamburini
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Barrie Peck
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Pedro Cutillas
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jude Fitzgibbon
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kamil Kranc
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Klatt A, Wollschlaeger JO, Albrecht FB, Rühle S, Holzwarth LB, Hrenn H, Melzer T, Heine S, Kluger PJ. Dynamically cultured, differentiated bovine adipose-derived stem cell spheroids as building blocks for biofabricating cultured fat. Nat Commun 2024; 15:9107. [PMID: 39438462 PMCID: PMC11496621 DOI: 10.1038/s41467-024-53486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cultured or cultivated meat, animal muscle, and fat tissue grown in vitro, could transform the global meat market, reducing animal suffering while using fewer resources than traditional meat production and no antimicrobials at all. To ensure the appeal of cultured meat to future customers, cultured fat is essential for achieving desired mouthfeel, taste, and texture, especially in beef. In this work we show the establishment of primary bovine adipose-derived stem cell spheroids in static and dynamic suspension culture. Spheroids are successfully differentiated using a single-step protocol. Differentiated spheroids from dynamic cultures maintain stability and viability during 3D bioprinting in edible gellan gum. Also, the fatty acid composition of differentiated spheroids is significantly different from control spheroids. The cells are cultured antibiotic-free to minimize the use of harmful substances. This work presents a stable and bioprintable building block for cultured fat with a high cell density in a 3D dynamic cell culture system.
Collapse
Affiliation(s)
- Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany
| | | | | | - Sara Rühle
- Faculty of Life Sciences, Reutlingen University, Reutlingen, Germany
| | - Lena B Holzwarth
- Faculty of Life Sciences, Reutlingen University, Reutlingen, Germany
| | - Holger Hrenn
- Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany
| | - Tanja Melzer
- Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany
| | - Simon Heine
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany
| | - Petra J Kluger
- Faculty of Life Sciences, Reutlingen University, Reutlingen, Germany.
| |
Collapse
|
3
|
Haaker MW, Goossens V, Hoogland NAN, van Doorne H, Wang Z, Jansen JWA, Kaloyanova DV, van de Lest CHA, Houweling M, Vaandrager AB, Helms JB. Early activation of hepatic stellate cells induces rapid initiation of retinyl ester breakdown while maintaining lecithin:retinol acyltransferase (LRAT) activity. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159540. [PMID: 39068984 DOI: 10.1016/j.bbalip.2024.159540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lecithin:retinol acyltransferase (LRAT) is the main enzyme producing retinyl esters (REs) in quiescent hepatic stellate cells (HSCs). When cultured on stiff plastic culture plates, quiescent HSCs activate and lose their RE stores in a process similar to that in the liver following tissue damage, leading to fibrosis. Here we validated HSC cultures in soft gels to study RE metabolism in stable quiescent HSCs and investigated RE synthesis and breakdown in activating HSCs. HSCs cultured in a soft gel maintained characteristics of quiescent HSCs, including the size, amount and composition of their characteristic large lipid droplets. Quiescent gel-cultured HSCs maintained high expression levels of Lrat and a RE storing phenotype with low levels of RE breakdown. Newly formed REs are highly enriched in retinyl palmitate (RP), similar to freshly isolated quiescent HSCs, which is associated with high LRAT activity. Comparison of these quiescent gel-cultured HSCs with activated plastic-cultured HSCs showed that although during early activation the total RE levels and RP-enrichment are reduced, levels of RE formation are maintained and mediated by LRAT. Loss of REs was caused by enhanced RE breakdown in activating HSCs. Upon prolonged culturing, activated HSCs have lost their LRAT activity and produce small amounts of REs by DGAT1. This study reveals unexpected dynamics in RE metabolism during early HSC activation, which might be important in liver disease as early stages are reversible. Soft gel cultures provide a promising model to study RE metabolism in quiescent HSCs, allowing detailed molecular investigations on the mechanisms for storage and release.
Collapse
Affiliation(s)
- Maya W Haaker
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Vera Goossens
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Nina A N Hoogland
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Hidde van Doorne
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Ziqiong Wang
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Dora V Kaloyanova
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Chris H A van de Lest
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Martin Houweling
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - A Bas Vaandrager
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
4
|
Busquets-Hernández C, Ribó S, Gratacós-Batlle E, Carbajo D, Tsiotsia A, Blanco-Canosa JB, Chamberlain LH, Triola G. Quantitative analysis of protein lipidation and acyl-CoAs reveals substrate preferences of the S-acylation machinery. Chem Sci 2024; 15:12845-12855. [PMID: 39148806 PMCID: PMC11322976 DOI: 10.1039/d4sc02235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Protein palmitoylation or S-acylation has emerged as a key regulator of cellular processes. Increasing evidence shows that this modification is not restricted to palmitate but it can include additional fatty acids, raising the possibility that differential S-acylation contributes to the fine-tuning of protein activity. However, methods to profile the acyl moieties attached to proteins are scarce. Herein, we report a method for the identification and quantification of lipids bound to proteins that relies on hydroxylamine treatment and mass spectrometry analysis of fatty acid hydroxamates. This method has enabled unprecedented and extensive profiling of the S-acylome in different cell lines and tissues and has shed light on the substrate specificity of some S-acylating enzymes. Moreover, we could extend it to quantify also the acyl-CoAs, which are thioesters formed between a fatty acid and a coenzyme A, overcoming many of the previously described challenges for the detection of such species. Importantly, the simultaneous analysis of the lipid fraction and the proteome allowed us to establish, for the first time, a direct correlation between the endogenous levels of acyl-CoAs and the S-acylation profile of its proteome.
Collapse
Affiliation(s)
- Carla Busquets-Hernández
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Silvia Ribó
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Esther Gratacós-Batlle
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Daniel Carbajo
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Alexandra Tsiotsia
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow UK
| | - Gemma Triola
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| |
Collapse
|
5
|
Milanes JE, Yan VC, Pham CD, Muller F, Kwain S, Rees KC, Dominy BN, Whitehead DC, Millward SW, Bolejack M, Shek R, Tillery L, Phan IQ, Staker B, Moseman EA, Zhang X, Ma X, Jebet A, Yin X, Morris JC. Enolase inhibitors as therapeutic leads for Naegleria fowleri infection. PLoS Pathog 2024; 20:e1012412. [PMID: 39088549 PMCID: PMC11321563 DOI: 10.1371/journal.ppat.1012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/13/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024] Open
Abstract
Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amoebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate these agents are potent inhibitors of N. fowleri ENO (NfENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC50 = 0.14 ± 0.04 μM) that was toxic to trophozoites (EC50 = 0.21 ± 0.02 μM) while the reported CC50 was >300 μM. Molecular docking simulation revealed that HEX binds strongly to the active site of NfENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of NfENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the end of the one-week observation, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. However, intranasal HEX delivery was not curative as brains of six of the eight survivors were positive for amoebae. These findings suggest that HEX requires further evaluation to develop as a lead for treatment of PAM.
Collapse
Affiliation(s)
- Jillian E. Milanes
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Victoria C. Yan
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Florian Muller
- Sporos Bioventures, Houston, Texas, United States of America
| | - Samuel Kwain
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Kerrick C. Rees
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Brian N. Dominy
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel C. Whitehead
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Steven W. Millward
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Madison Bolejack
- UCB BioSciences, Bainbridge Island, Washington, United States of America
| | - Roger Shek
- Center for Emerging and Re-emerging Infectious Diseases and Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Logan Tillery
- Center for Emerging and Re-emerging Infectious Diseases and Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Isabelle Q. Phan
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Audriy Jebet
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - James C. Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
6
|
Mandrou E, Thomason PA, Paschke PI, Paul NR, Tweedy L, Insall RH. A Reliable System for Quantitative G-Protein Activation Imaging in Cancer Cells. Cells 2024; 13:1114. [PMID: 38994966 PMCID: PMC11240385 DOI: 10.3390/cells13131114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Fluorescence resonance energy transfer (FRET) biosensors have proven to be an indispensable tool in cell biology and, more specifically, in the study of G-protein signalling. The best method of measuring the activation status or FRET state of a biosensor is often fluorescence lifetime imaging microscopy (FLIM), as it does away with many disadvantages inherent to fluorescence intensity-based methods and is easily quantitated. Despite the significant potential, there is a lack of reliable FLIM-FRET biosensors, and the data processing and analysis workflows reported previously face reproducibility challenges. Here, we established a system in live primary mouse pancreatic ductal adenocarcinoma cells, where we can detect the activation of an mNeonGreen-Gαi3-mCherry-Gγ2 biosensor through the lysophosphatidic acid receptor (LPAR) with 2-photon time-correlated single-photon counting (TCSPC) FLIM. This combination gave a superior signal to the commonly used mTurquoise2-mVenus G-protein biosensor. This system has potential as a platform for drug screening, or to answer basic cell biology questions in the field of G-protein signalling.
Collapse
Affiliation(s)
- Elena Mandrou
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
| | | | | | - Nikki R. Paul
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
| | - Luke Tweedy
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Robert H. Insall
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Division of Cell & Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Seidel U, Eberhardt K, Wiebel M, Luersen K, Ipharraguerre IR, Haegele FA, Winterhalter P, Bosy-Westphal A, Schebb NH, Rimbach G. Stearidonic acid improves eicosapentaenoic acid status: studies in humans and cultured hepatocytes. Front Nutr 2024; 11:1359958. [PMID: 38974810 PMCID: PMC11225816 DOI: 10.3389/fnut.2024.1359958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 07/09/2024] Open
Abstract
Background Ahiflower oil from the seeds of Buglossoides arvensis is rich in α-linolenic acid (ALA) and stearidonic acid (SDA). ALA and SDA are potential precursor fatty acids for the endogenous synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are n3-long chain polyunsaturated fatty acids (n3-LC-PUFAS), in humans. Since taurine, an amino sulfonic acid, is often associated with tissues rich in n3-LC-PUFAS (e.g., in fatty fish, human retina), taurine may play a role in EPA- and DHA-metabolism. Objective To examine the capacity of the plant-derived precursor fatty acids (ALA and SDA) and of the potential fatty acid metabolism modulator taurine to increase n3-LC-PUFAS and their respective oxylipins in human plasma and cultivated hepatocytes (HepG2 cells). Methods In a monocentric, randomized crossover study 29 healthy male volunteers received three sequential interventions, namely ahiflower oil (9 g/day), taurine (1.5 g/day) and ahiflower oil (9 g/day) + taurine (1.5 g/day) for 20 days. In addition, cultivated HepG2 cells were treated with isolated fatty acids ALA, SDA, EPA, DHA as well as taurine alone or together with SDA. Results Oral ahiflower oil intake significantly improved plasma EPA levels (0.2 vs. 0.6% of total fatty acid methyl esters (FAMES)) in humans, whereas DHA levels were unaffected by treatments. EPA-levels in SDA-treated HepG2 cells were 65% higher (5.1 vs. 3.0% of total FAMES) than those in ALA-treated cells. Taurine did not affect fatty acid profiles in human plasma in vivo or in HepG2 cells in vitro. SDA-rich ahiflower oil and isolated SDA led to an increase in EPA-derived oxylipins in humans and in HepG2 cells, respectively. Conclusion The consumption of ahiflower oil improves the circulating levels of EPA and EPA-derived oxylipins in humans. In cultivated hepatocytes, EPA and EPA-derived oxylipins are more effectively increased by SDA than ALA.
Collapse
Affiliation(s)
- Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Michelle Wiebel
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Kai Luersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Franziska A. Haegele
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
8
|
Li X, Liang T, Dai B, Chang L, Zhang Y, Hu S, Guo J, Xu S, Zheng L, Yao H, Lian H, Nie Y, Li Y, He X, Yao Z, Tong W, Wang X, Chow DHK, Xu J, Qin L. Excess glucocorticoids inhibit murine bone turnover via modulating the immunometabolism of the skeletal microenvironment. J Clin Invest 2024; 134:e166795. [PMID: 38512413 DOI: 10.1172/jci166795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Yuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shiwen Hu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Hong Lian
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, and
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Xinluan Wang
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| |
Collapse
|
9
|
Suda A, Umaru BA, Yamamoto Y, Shima H, Saiki Y, Pan Y, Jin L, Sun J, Low YLC, Suzuki C, Abe T, Igarashi K, Furukawa T, Owada Y, Kagawa Y. Polyunsaturated fatty acids-induced ferroptosis suppresses pancreatic cancer growth. Sci Rep 2024; 14:4409. [PMID: 38388563 PMCID: PMC10884029 DOI: 10.1038/s41598-024-55050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Akane Suda
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yui Yamamoto
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jiaqi Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Yi Ling Clare Low
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Chitose Suzuki
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takaaki Abe
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
10
|
Wouters R, Beletchi I, Van den Haute C, Baekelandt V, Martin S, Eggermont J, Vangheluwe P. The lipid flippase ATP10B enables cellular lipid uptake under stress conditions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119652. [PMID: 38086447 DOI: 10.1016/j.bbamcr.2023.119652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Pathogenic ATP10B variants have been described in patients with Parkinson's disease and dementia with Lewy body disease, and we previously established ATP10B as a late endo-/lysosomal lipid flippase transporting both phosphatidylcholine (PC) and glucosylceramide (GluCer) from the lysosomal exoplasmic to cytoplasmic membrane leaflet. Since several other lipid flippases regulate cellular lipid uptake, we here examined whether also ATP10B impacts cellular lipid uptake. Transient co-expression of ATP10B with its obligatory subunit CDC50A stimulated the uptake of fluorescently (NBD-) labeled PC in HeLa cells. This uptake is dependent on the transport function of ATP10B, is impaired by disease-associated variants and appears specific for NBD-PC. Uptake of non-ATP10B substrates, such as NBD-sphingomyelin or NBD-phosphatidylethanolamine is not increased. Remarkably, in stable cell lines co-expressing ATP10B/CDC50A we only observed increased NBD-PC uptake following treatment with rotenone, a mitochondrial complex I inhibitor that induces transport-dependent ATP10B phenotypes. Conversely, Im95m and WM-115 cells with endogenous ATP10B expression, present a decreased NBD-PC uptake following ATP10B knockdown, an effect that is exacerbated under rotenone stress. Our data show that the endo-/lysosomal lipid flippase ATP10B contributes to cellular PC uptake under specific cell stress conditions.
Collapse
Affiliation(s)
- Rosanne Wouters
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Igor Beletchi
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Chris Van den Haute
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Leuven Viral Vector Core, KU Leuven, B-3000 Leuven, Belgium; Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| | - Veerle Baekelandt
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
11
|
Nesbeth PDC, Ziegler TR, Tripathi AK, Dabeer S, Weiss D, Hao L, Smith MR, Jones DP, Maner-Smith KM, Tu CL, Chang W, Weitzmann MN, Alvarez JA. Linoleic acid blunts early osteoblast differentiation and impairs oxidative phosphorylation in vitro. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102617. [PMID: 38788347 PMCID: PMC11293625 DOI: 10.1016/j.plefa.2024.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Linoleic acid (LNA), an essential polyunsaturated fatty acid (PUFA), plays a crucial role in cellular functions. However, excessive intake of LNA, characteristic of Western diets, can have detrimental effects on cells and organs. Human observational studies have shown an inverse relationship between plasma LNA concentrations and bone mineral density. The mechanism by which LNA impairs the skeleton is unclear, and there is a paucity of research on the effects of LNA on bone-forming osteoblasts. METHODS The effect of LNA on osteoblast differentiation, cellular bioenergetics, and production of oxidized PUFA metabolites in vitro, was studied using primary mouse bone marrow stromal cells (BMSC) and MC3T3-E1 osteoblast precursors. RESULTS LNA treatment decreased alkaline phosphatase activity, an early marker of osteoblast differentiation, but had no effect on committed osteoblasts or on mineralization by differentiated osteoblasts. LNA suppressed osteoblast commitment by blunting the expression of Runx2 and Osterix, key transcription factors involved in osteoblast differentiation, and other key osteoblast-related factors involved in bone formation. LNA treatment was associated with increased production of oxidized LNA- and arachidonic acid-derived metabolites and blunted oxidative phosphorylation, resulting in decreased ATP production. CONCLUSION Our results show that LNA inhibited early differentiation of osteoblasts and this inhibitory effect was associated with increased production of oxidized PUFA metabolites that likely impaired energy production via oxidative phosphorylation.
Collapse
Affiliation(s)
- Paula-Dene C Nesbeth
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA
| | - Ashish Kumar Tripathi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sadaf Dabeer
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Daiana Weiss
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Li Hao
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Matthew R Smith
- Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Chia-Ling Tu
- Endocrine Research Unit, San Francisco VA Healthcare System, University of California, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco VA Healthcare System, University of California, San Francisco, CA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Milanes JE, Yan VC, Pham CD, Muller F, Kwain S, Rees KC, Dominy BN, Whitehead DC, Millward SW, Bolejack M, Abendroth J, Phan IQ, Staker B, Moseman EA, Zhang X, Ma X, Jebet A, Yin X, Morris JC. Enolase inhibitors as therapeutic leads for Naegleria fowleri infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575558. [PMID: 38293107 PMCID: PMC10827119 DOI: 10.1101/2024.01.16.575558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate that these agents are potent inhibitors of N. fowleri ENO ( Nf ENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC 50 value of 0.14 ± 0.04 µM) that was toxic to trophozoites (EC 50 value of 0.21 ± 0.02 µM) while the reported CC 50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of Nf ENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of Nf ENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the conclusion of the experiment, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. Brains of six of the eight survivors were positive for amoebae, suggesting the agent at the tested dose suppressed, but did not eliminate, infection. These findings suggest that HEX is a promising lead for the treatment of PAM.
Collapse
|
13
|
Panchal MH, Swindle EJ, Pell TJ, Rowan WC, Childs CE, Thompson J, Nicholas BL, Djukanovic R, Goss VM, Postle AD, Davies DE, Blume C. Membrane lipid composition of bronchial epithelial cells influences antiviral responses during rhinovirus infection. Tissue Barriers 2024:2300580. [PMID: 38179897 DOI: 10.1080/21688370.2023.2300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.
Collapse
Affiliation(s)
- Madhuriben H Panchal
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Emily J Swindle
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | | | - Caroline E Childs
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| | - James Thompson
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin L Nicholas
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Victoria M Goss
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anthony D Postle
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Donna E Davies
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Cornelia Blume
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Jain R, Geoghegan G, Davidson J, Nesbitt DJ, Abe A, Chao X, James I, Cavanagh A, Michorowska S, Verma R, Scheuler K, Hinkovska-Galcheva V, Shishkova E, Ding WX, Coon JJ, Shayman JA, Simcox JA. Modulation of hepatic transcription factor EB activity during cold exposure uncovers direct regulation of bis(monoacylglycero)phosphate lipids by Pla2g15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565498. [PMID: 37986778 PMCID: PMC10659384 DOI: 10.1101/2023.11.03.565498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cold exposure is an environmental stress that elicits a rapid metabolic shift in endotherms and is required for survival. The liver provides metabolic flexibility through its ability to rewire lipid metabolism to respond to an increased demand in energy for thermogenesis. We leveraged cold exposure to identify novel lipids contributing to energy homeostasis and found that lysosomal bis(monoacylglycero)phosphate (BMP) lipids were significantly increased in the liver during acute cold exposure. BMP lipid changes occurred independently of lysosomal abundance but were dependent on the lysosomal transcriptional regulator transcription factor EB (TFEB). Knockdown of TFEB in hepatocytes decreased BMP lipid levels. Through molecular biology and biochemical assays, we found that TFEB regulates lipid catabolism during cold exposure and that TFEB knockdown mice were cold intolerant. To identify how TFEB regulates BMP lipid levels, we used a combinatorial approach to identify TFEB target Pla2g15 , a lysosomal phospholipase, as capable of degrading BMP lipids in in vitro liposome assays. Knockdown of Pla2g15 in hepatocytes led to a decrease in BMP lipid species. Together, our studies uncover a required role of TFEB in mediating lipid liver remodeling during cold exposure and identified Pla2g15 as an enzyme that regulates BMP lipid catabolism.
Collapse
|
15
|
Favor OK, Rajasinghe LD, Wierenga KA, Maddipati KR, Lee KSS, Olive AJ, Pestka JJ. Crystalline silica-induced proinflammatory eicosanoid storm in novel alveolar macrophage model quelled by docosahexaenoic acid supplementation. Front Immunol 2023; 14:1274147. [PMID: 38022527 PMCID: PMC10665862 DOI: 10.3389/fimmu.2023.1274147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Phagocytosis of inhaled crystalline silica (cSiO2) particles by tissue-resident alveolar macrophages (AMs) initiates generation of proinflammatory eicosanoids derived from the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) that contribute to chronic inflammatory disease in the lung. While supplementation with the ω-3 PUFA docosahexaenoic acid (DHA) may influence injurious cSiO2-triggered oxylipin responses, in vitro investigation of this hypothesis in physiologically relevant AMs is challenging due to their short-lived nature and low recovery numbers from mouse lungs. To overcome these challenges, we employed fetal liver-derived alveolar-like macrophages (FLAMs), a self-renewing surrogate that is phenotypically representative of primary lung AMs, to discern how DHA influences cSiO2-induced eicosanoids. Methods We first compared how delivery of 25 µM DHA as ethanolic suspensions or as bovine serum albumin (BSA) complexes to C57BL/6 FLAMs impacts phospholipid fatty acid content. We subsequently treated FLAMs with 25 µM ethanolic DHA or ethanol vehicle (VEH) for 24 h, with or without LPS priming for 2 h, and with or without cSiO2 for 1.5 or 4 h and then measured oxylipin production by LC-MS lipidomics targeting for 156 oxylipins. Results were further related to concurrent proinflammatory cytokine production and cell death induction. Results DHA delivery as ethanolic suspensions or BSA complexes were similarly effective at increasing ω-3 PUFA content of phospholipids while decreasing the ω-6 PUFA arachidonic acid (ARA) and the ω-9 monounsaturated fatty acid oleic acid. cSiO2 time-dependently elicited myriad ARA-derived eicosanoids consisting of prostaglandins, leukotrienes, thromboxanes, and hydroxyeicosatetraenoic acids in unprimed and LPS-primed FLAMs. This cSiO2-induced eicosanoid storm was dramatically suppressed in DHA-supplemented FLAMs which instead produced potentially pro-resolving DHA-derived docosanoids. cSiO2 elicited marked IL-1α, IL-1β, and TNF-α release after 1.5 and 4 h of cSiO2 exposure in LPS-primed FLAMs which was significantly inhibited by DHA. DHA did not affect cSiO2-triggered death induction in unprimed FLAMs but modestly enhanced it in LPS-primed FLAMs. Discussion FLAMs are amenable to lipidome modulation by DHA which suppresses cSiO2-triggered production of ARA-derived eicosanoids and proinflammatory cytokines. FLAMs are a potential in vitro alternative to primary AMs for investigating interventions against early toxicant-triggered inflammation in the lung.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | | | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Khalifa A, Guijarro A, Ravera S, Bertola N, Adorni MP, Papotti B, Raffaghello L, Benelli R, Becherini P, Namatalla A, Verzola D, Reverberi D, Monacelli F, Cea M, Pisciotta L, Bernini F, Caffa I, Nencioni A. Cyclic fasting bolsters cholesterol biosynthesis inhibitors' anticancer activity. Nat Commun 2023; 14:6951. [PMID: 37907500 PMCID: PMC10618279 DOI: 10.1038/s41467-023-42652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Identifying oncological applications for drugs that are already approved for other medical indications is considered a possible solution for the increasing costs of cancer treatment. Under the hypothesis that nutritional stress through fasting might enhance the antitumour properties of at least some non-oncological agents, by screening drug libraries, we find that cholesterol biosynthesis inhibitors (CBIs), including simvastatin, have increased activity against cancers of different histology under fasting conditions. We show fasting's ability to increase CBIs' antitumour effects to depend on the reduction in circulating insulin, insulin-like growth factor-1 and leptin, which blunts the expression of enzymes from the cholesterol biosynthesis pathway and enhances cholesterol efflux from cancer cells. Ultimately, low cholesterol levels through combined fasting and CBIs reduce AKT and STAT3 activity, oxidative phosphorylation and energy stores in the tumour. Our results support further studies of CBIs in combination with fasting-based dietary regimens in cancer treatment and highlight the value of fasting for drug repurposing in oncology.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132, Genoa, Italy
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132, Genoa, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Roberto Benelli
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Pamela Becherini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Asmaa Namatalla
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Daniele Reverberi
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy.
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy.
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
17
|
Lev B, Chennath M, Cranfield CG, Cornelius F, Allen TW, Clarke RJ. Involvement of the alpha-subunit N-terminus in the mechanism of the Na +,K +-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119539. [PMID: 37479188 DOI: 10.1016/j.bbamcr.2023.119539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Previous studies have shown that cytoplasmic K+ release and the associated E2 → E1 conformational change of the Na+,K+-ATPase is a major rate-determining step of the enzyme's ion pumping cycle and hence a prime site of acute regulatory intervention. From the ionic strength dependence of the enzyme's distribution between the E2 and E1 states, it has also been found that E2 is stabilized by an electrostatic attraction. Any disruption of this electrostatic attraction would, thus, have profound effects on the rate of ion pumping. The aim of this paper is to identify the location of this interaction. Using enhanced-sampling molecular dynamics simulations with a predicted N-terminal structure added to the X-ray crystal structure of the Na+,K+-ATPase, a previously postulated salt bridge between Lys32 and Glu233 (rat sequence numbering) of the enzyme's α-subunit can be excluded. The residues never approach closely enough to form a salt bridge. In contrast, strong interactions with anionic lipid head groups were seen. To investigate the possibility of a protein-lipid interaction experimentally, the surface charge density of Na+,K+-ATPase-containing membrane fragments was estimated from zeta potential measurements to be 0.019 (± 0.001) C m-2. This is in good agreement with the charge density previously determined to be responsible for stabilization of the E2 state of 0.023 (± 0.009) C m-2 and the membrane charge density estimated here from published electron-microscopic images of 0.018C m-2. The results are, therefore, consistent with an interaction of the Na+,K+-ATPase α-subunit N-terminus with negatively-charged lipid head groups of the neighbouring cytoplasmic membrane surface as the origin of the electrostatic interaction stabilising the E2 state.
Collapse
Affiliation(s)
- B Lev
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - M Chennath
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - C G Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - F Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, C, Denmark
| | - T W Allen
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - R J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Oh M, Jang SY, Lee JY, Kim JW, Jung Y, Kim J, Seo J, Han TS, Jang E, Son HY, Kim D, Kim MW, Park JS, Song KH, Oh KJ, Kim WK, Bae KH, Huh YM, Kim SH, Kim D, Han BS, Lee SC, Hwang GS, Lee EW. The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat Commun 2023; 14:5728. [PMID: 37714840 PMCID: PMC10504358 DOI: 10.1038/s41467-023-41462-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
Arachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors. We show that darapladib is able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, we find that Lp-PLA2 is located in the membrane and cytoplasm and suppresses ferroptosis, suggesting a critical role for intracellular Lp-PLA2. Lipidomic analyses show that darapladib treatment or deletion of PLA2G7, which encodes Lp-PLA2, generally enriches phosphatidylethanolamine species and reduces lysophosphatidylethanolamine species. Moreover, combination treatment of darapladib with the GPX4 inhibitor PACMA31 efficiently inhibits tumour growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
| | - Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
| | - Jiwoo Kim
- Therapeutics and Biotechnology Department, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 305-764, Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eunji Jang
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Korea
| | - Hye Young Son
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - Dain Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
- Department of Life Science, Ewha Womans University, Seoul, 03760, Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | | | - Kwon-Ho Song
- Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu, 42472, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Yong-Min Huh
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - Soon Ha Kim
- MitoImmune Therapeutics Inc., Seoul, 06123, Korea
| | - Doyoun Kim
- Therapeutics and Biotechnology Department, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
19
|
Jang S, Javadov S. Unraveling the mechanisms of cardiolipin function: The role of oxidative polymerization of unsaturated acyl chains. Redox Biol 2023; 64:102774. [PMID: 37300954 PMCID: PMC10363451 DOI: 10.1016/j.redox.2023.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiolipin is a unique phospholipid of the inner mitochondrial membrane (IMM) as well as in bacteria. It performs several vital functions such as resisting osmotic rupture and stabilizing the supramolecular structure of large membrane proteins, like ATP synthases and respirasomes. The process of cardiolipin biosynthesis results in the production of immature cardiolipin. A subsequent step is required for its maturation when its acyl groups are replaced with unsaturated acyl chains, primarily linoleic acid. Linoleic acid is the major fatty acid of cardiolipin across all organs and tissues, except for the brain. Linoleic acid is not synthesized by mammalian cells. It has the unique ability to undergo oxidative polymerization at a moderately accelerated rate compared to other unsaturated fatty acids. This property can enable cardiolipin to form covalently bonded net-like structures essential for maintaining the complex geometry of the IMM and gluing the quaternary structure of large IMM protein complexes. Unlike triglycerides, phospholipids possess only two covalently linked acyl chains, which constrain their capacity to develop robust and complicated structures through oxidative polymerization of unsaturated acyl chains. Cardiolipin, on the other hand, has four fatty acids at its disposal to form covalently bonded polymer structures. Despite its significance, the oxidative polymerization of cardiolipin has been overlooked due to the negative perception surrounding biological oxidation and methodological difficulties. Here, we discuss an intriguing hypothesis that oxidative polymerization of cardiolipin is essential for the structure and function of cardiolipin in the IMM in physiological conditions. In addition, we highlight current challenges associated with the identification and characterization of oxidative polymerization of cardiolipin in vivo. Altogether, the study provides a better understanding of the structural and functional role of cardiolipin in mitochondria.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA.
| |
Collapse
|
20
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
21
|
Sanford JD, Franklin D, Grois GA, Jin A, Zhang Y. Carnitine o-octanoyltransferase is a p53 target that promotes oxidative metabolism and cell survival following nutrient starvation. J Biol Chem 2023; 299:104908. [PMID: 37307919 PMCID: PMC10339192 DOI: 10.1016/j.jbc.2023.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Whereas it is known that p53 broadly regulates cell metabolism, the specific activities that mediate this regulation remain partially understood. Here, we identified carnitine o-octanoyltransferase (CROT) as a p53 transactivation target that is upregulated by cellular stresses in a p53-dependent manner. CROT is a peroxisomal enzyme catalyzing very long-chain fatty acids conversion to medium chain fatty acids that can be absorbed by mitochondria during β-oxidation. p53 induces CROT transcription through binding to consensus response elements in the 5'-UTR of CROT mRNA. Overexpression of WT but not enzymatically inactive mutant CROT promotes mitochondrial oxidative respiration, while downregulation of CROT inhibits mitochondrial oxidative respiration. Nutrient depletion induces p53-dependent CROT expression that facilitates cell growth and survival; in contrast, cells deficient in CROT have blunted cell growth and reduced survival during nutrient depletion. Together, these data are consistent with a model where p53-regulated CROT expression allows cells to be more efficiently utilizing stored very long-chain fatty acids to survive nutrient depletion stresses.
Collapse
Affiliation(s)
- Jack D Sanford
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Derek Franklin
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriella A Grois
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aiwen Jin
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yanping Zhang
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
22
|
Inague A, Alecrim LC, Monteiro JS, Yoshinaga MY, Setubal JC, Miyamoto S, Giordano RJ. Oxygen-induced pathological angiogenesis promotes intense lipid synthesis and remodeling in the retina. iScience 2023; 26:106777. [PMID: 37213234 PMCID: PMC10199268 DOI: 10.1016/j.isci.2023.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
The retina is a notable tissue with high metabolic needs which relies on specialized vascular networks to protect the neural retina while maintaining constant supplies of oxygen, nutrients, and dietary essential fatty acids. Here we analyzed the lipidome of the mouse retina under healthy and pathological angiogenesis using the oxygen-induced retinopathy model. By matching lipid profiles to changes in mRNA transcriptome, we identified a lipid signature showing that pathological angiogenesis leads to intense lipid remodeling favoring pathways for neutral lipid synthesis, cholesterol import/export, and lipid droplet formation. Noteworthy, it also shows profound changes in pathways for long-chain fatty acid production, vital for retina homeostasis. The net result is accumulation of large quantities of mead acid, a marker of essential fatty acid deficiency, and a potential marker for retinopathy severity. Thus, our lipid signature might contribute to better understand diseases of the retina that lead to vision impairment or blindness.
Collapse
Affiliation(s)
- Alex Inague
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Lilian Costa Alecrim
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Jhonatas Sirino Monteiro
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Marcos Yukio Yoshinaga
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - João Carlos Setubal
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
- Corresponding author
| | - Ricardo José Giordano
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
- Corresponding author
| |
Collapse
|
23
|
Bariås E, Jakubec M, Førsund E, Hjørnevik LV, Lewis AE, Halskau Ø. Contrasting the phospholipid profiles of two neoplastic cell lines reveal a high PC:PE ratio for SH-SY5Y cells relative to A431 cells. Biochem Biophys Res Commun 2023; 656:23-29. [PMID: 36947963 DOI: 10.1016/j.bbrc.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Lipids have been implicated in Parkinson's Disease (PD). We therefore studied the lipid profile of the neuroblastoma SH-SY5Y cell line, which is used extensively in PD research and compared it to that of the A431 epithelial cancer cell line. We have isolated whole cell extracts (WC) and plasma membrane (PM) fractions of both cell lines. The isolates were analyzed with 31P NMR. We observed a significant higher abundance of phosphatidylcholine (PC) for SH-SY5Y cells for both WC (55 ± 4.1%) and PM (63.3 ± 3.1%) compared to WC (40.5 ± 2.2%) and PM (43.4 ± 1.3%) of A431. Moreover, a higher abundance of phosphatidylethanolamine was detected for the WC of A431 compared to the SH-SY5Y. Using LC-MS/MS, we also determined the relative abundance of fatty acid (FA) moieties for each phospholipid class, finding that SH-SY5Y had high polyunsaturated FA levels, including arachidonic acid compared to A431 cells. When comparing our results to reported compositions of brain and neural tissues, we note the much higher PC levels, as well as very low levels of docosahexaenoic acid. However, relative levels of arachidonic acid and other polyunsaturated fatty acids were elevated, in line with what is desirable for a neural model system.
Collapse
Affiliation(s)
- Espen Bariås
- Department of Biological Sciences, University of Bergen, Norway
| | - Martin Jakubec
- Department of Biological Sciences, University of Bergen, Norway; Department of Chemistry, University of Tromsø, Norway
| | - Elise Førsund
- Department of Biological Sciences, University of Bergen, Norway
| | | | - Aurélia E Lewis
- Department of Biological Sciences, University of Bergen, Norway.
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Norway.
| |
Collapse
|
24
|
Miletić M, Vilotić A, Korićanac L, Žakula J, Krivokuća MJ, Dohčević-Mitrović Z, Aškrabić S. Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122180. [PMID: 36470088 DOI: 10.1016/j.saa.2022.122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Selective cytotoxicity of ZnO nanoparticles among different cell types and cancer and non-cancerous cells has been demonstrated earlier. In the view of anticancer potential of ZnO nanoparticles and their presence in numerous industrial products, it is of great importance to carefully evaluate their effects and mechanisms of action in both cancerous and healthy cells. In this paper, the effects of ZnO nanoparticles on cancerous HeLa and non-cancerous MRC-5 cells are investigated by studying the changes in the vibrational properties of the cells using Raman spectroscopy. Both types of cells were incubated with ZnO nanoparticles of average size 40 nm in the doses from the range 10-40 µg/ml for the period of 48 h, after which Raman spectra were collected. Raman modes' intensity ratios I1659/I1444, I2855/I2933 and I1337/I1305 were determined as spectral markers of the cytotoxic effect of ZnO in both cell types. Non-negative principal component analysis was used instead of standard one for analysis and detection of spectral features characteristic for nanoparticle-treated cells. The first several non-negative loading vectors obtained in this analysis coincided remarkably well with the Raman spectra of particular biomolecules, showing increase of lipid and decrease of nucleic acids and protein content. Our study pointed out that Raman spectral markers of lipid unsaturation, especially I1270/I1300, are relevant for tracing the cytotoxic effect of ZnO nanoparticles on both cancerous and non-cancerous cells. The change of these spectral markers is correlated to the dose of applied nanoparticles and to the degree of cellular damage. Furthermore, great similarity of spectral features of increasing lipids to spectral features of phosphatidylserine, one of the main apoptotic markers, was recognized in treated cells. Finally, the results strongly indicated that the degree of lipid saturation, presented in the cells, plays an important role in the interaction of cells with nanoparticles.
Collapse
Affiliation(s)
- Mirjana Miletić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Lela Korićanac
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Jelena Žakula
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | | | - Sonja Aškrabić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.
| |
Collapse
|
25
|
Chaves-Filho AB, Peixoto AS, Castro É, Oliveira TE, Perandini LA, Moreira RJ, da Silva RP, da Silva BP, Moretti EH, Steiner AA, Miyamoto S, Yoshinaga MY, Festuccia WT. Futile cycle of β-oxidation and de novo lipogenesis are associated with essential fatty acids depletion in lipoatrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159264. [PMID: 36535597 DOI: 10.1016/j.bbalip.2022.159264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Total absence of adipose tissue (lipoatrophy) is associated with the development of severe metabolic disorders including hepatomegaly and fatty liver. Here, we sought to investigate the impact of severe lipoatrophy induced by deletion of peroxisome proliferator-activated receptor gamma (PPARγ) exclusively in adipocytes on lipid metabolism in mice. Untargeted lipidomics of plasma, gastrocnemius and liver uncovered a systemic depletion of the essential linoleic (LA) and α-linolenic (ALA) fatty acids from several lipid classes (storage lipids, glycerophospholipids, free fatty acids) in lipoatrophic mice. Our data revealed that such essential fatty acid depletion was linked to increased: 1) capacity for liver mitochondrial fatty acid β-oxidation (FAO), 2) citrate synthase activity and coenzyme Q content in the liver, 3) whole-body oxygen consumption and reduced respiratory exchange rate in the dark period, and 4) de novo lipogenesis and carbon flux in the TCA cycle. The key role of de novo lipogenesis in hepatic steatosis was evidenced by an accumulation of stearic, oleic, sapienic and mead acids in liver. Our results thus indicate that the simultaneous activation of the antagonic processes FAO and de novo lipogenesis in liver may create a futile metabolic cycle leading to a preferential depletion of LA and ALA. Noteworthy, this previously unrecognized cycle may also explain the increased energy expenditure displayed by lipoatrophic mice, adding a new piece to the metabolic regulation puzzle in lipoatrophies.
Collapse
Affiliation(s)
- Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil; Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil.
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Railmara P da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Beatriz P da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Eduardo H Moretti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil.
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil.
| |
Collapse
|
26
|
Morais CM, Cardoso AM, Araújo ARD, Reis A, Domingues P, Domingues MRM, de Lima MCP, Jurado AS. Stearoyl CoA Desaturase-1 Silencing in Glioblastoma Cells: Phospholipid Remodeling and Cytotoxicity Enhanced upon Autophagy Inhibition. Int J Mol Sci 2022; 23:13014. [PMID: 36361811 PMCID: PMC9654881 DOI: 10.3390/ijms232113014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Modulation of lipid metabolism is a well-established cancer hallmark, and SCD1 has been recognized as a key enzyme in promoting cancer cell growth, including in glioblastoma (GBM), the deadliest brain tumor and a paradigm of cancer resistance. The central goal of this work was to identify, by MS, the phospholipidome alterations resulting from the silencing of SCD1 in human GBM cells, in order to implement an innovative therapy to fight GBM cell resistance. With this purpose, RNAi technology was employed, and low serum-containing medium was used to mimic nutrient deficiency conditions, at which SCD1 is overexpressed. Besides the expected increase in the saturated to unsaturated fatty acid ratio in SCD1 silenced-GBM cells, a striking increase in polyunsaturated chains, particularly in phosphatidylethanolamine and cardiolipin species, was noticed and tentatively correlated with an increase in autophagy (evidenced by the increase in LC3BII/I ratio). The contribution of autophagy to mitigate the impact of SCD1 silencing on GBM cell viability and growth, whose modest inhibition could be correlated with the maintenance of energetically associated mitochondria, was evidenced by using autophagy inhibitors. In conclusion, SCD1 silencing could constitute an important tool to halt GBM resistance to the available treatments, especially when coupled with a mitochondria disrupter chemotherapeutic.
Collapse
Affiliation(s)
- Catarina M. Morais
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Centre for Neuroscience and Cell Biology, CIIB—Centre for Innovative Biomedicine and Biotechnology, IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana M. Cardoso
- CNC—Centre for Neuroscience and Cell Biology, CIIB—Centre for Innovative Biomedicine and Biotechnology, IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Rita D. Araújo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana Reis
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Maria Rosário M. Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Maria C. Pedroso de Lima
- CNC—Centre for Neuroscience and Cell Biology, CIIB—Centre for Innovative Biomedicine and Biotechnology, IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Amália S. Jurado
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Centre for Neuroscience and Cell Biology, CIIB—Centre for Innovative Biomedicine and Biotechnology, IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
27
|
Inhibition of Aryl Hydrocarbon Receptor (AhR) Expression Disrupts Cell Proliferation and Alters Energy Metabolism and Fatty Acid Synthesis in Colon Cancer Cells. Cancers (Basel) 2022; 14:cancers14174245. [PMID: 36077780 PMCID: PMC9454859 DOI: 10.3390/cancers14174245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer cells undergo metabolic modifications in order to meet their high energetic demand. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor primarily known as a xenobiotic sensor. However, this receptor seems to have a wide range of physiological roles in many processes including cell proliferation, migration or control of immune responses. AhR is often overexpressed in tumor cells of various tissue origin, and several studies have indicated that AhR may also contribute to regulation of cellular metabolism, including synthesis of fatty acids (FA), one of the major steps in metabolic transition. Potential links between the AhR and the control of tumor cell proliferation and metabolism thus deserve more attention. Abstract The aryl hydrocarbon receptor (AhR) plays a wide range of physiological roles in cellular processes such as proliferation, migration or control of immune responses. Several studies have also indicated that AhR might contribute to the regulation of energy balance or cellular metabolism. We observed that the AhR is upregulated in tumor epithelial cells derived from colon cancer patients. Using wild-type and the corresponding AhR knockout (AhR KO) variants of human colon cancer cell lines HCT116 and HT-29, we analyzed possible role(s) of the AhR in cell proliferation and metabolism, with a focus on regulation of the synthesis of fatty acids (FAs). We observed a decreased proliferation rate in the AhR KO cells, which was accompanied with altered cell cycle progression, as well as a decreased ATP production. We also found reduced mRNA levels of key enzymes of the FA biosynthetic pathway in AhR KO colon cancer cells, in particular of stearoyl-CoA desaturase 1 (SCD1). The loss of AhR was also associated with reduced expression and/or activity of components of the PI3K/Akt pathway, which controls lipid metabolism, and other lipogenic transcriptional regulators, such as sterol regulatory element binding transcription factor 1 (SREBP1). Together, our data indicate that disruption of AhR activity in colon tumor cells may, likely in a cell-specific manner, limit their proliferation, which could be linked with a suppressive effect on their endogenous FA metabolism. More attention should be paid to potential mechanistic links between overexpressed AhR and colon tumor cell metabolism.
Collapse
|
28
|
Hancock SE, Friedrich MG, Mitchell TW, Truscott RJW, Else PL. Changes in Phospholipid Composition of the Human Cerebellum and Motor Cortex during Normal Ageing. Nutrients 2022; 14:nu14122495. [PMID: 35745225 PMCID: PMC9230801 DOI: 10.3390/nu14122495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Changes in phospholipid (phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine, i.e., PC, PE and PS) composition with age in the mitochondrial and microsomal membranes of the human cerebellum and motor cortex were examined and compared to previous analyses of the prefrontal cortex, hippocampus and entorhinal cortex. (2) Methods: Nano-electrospray ionization on a hybrid triple quadrupole−linear ion trap mass spectrometer was used to analyse the brain regions of subjects aged 18−104 years. (3) Results: With age, the cerebellum showed many changes in the major phospholipids (>10% of the phospholipid class). In both membrane types, these included increases in PE 18:0_22:6 and PS 18:0_22:6, decreases in PE 18:0_20:4 and PS 18:0_18:1 and an increase in PC 16:0_16:0 (microsomal membrane only). In addition, twenty-one minor phospholipids also changed. In the motor cortex, only ten minor phospholipids changed with age. With age, the acyl composition of the membranes in the cerebellum increased in docosahexaenoic acid (22:6) and decreased in the arachidonic (20:4) and adrenic (22:4) acids. A comparison of phospholipid changes in the cerebellum, motor cortex and other brain areas is provided. (4) Conclusions: The cerebellum is exceptional in the large number of major phospholipids that undergo changes (with consequential changes in acyl composition) with age, whereas the motor cortex is highly resistant to change.
Collapse
Affiliation(s)
- Sarah E. Hancock
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia;
| | - Michael G. Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; (M.G.F.); (T.W.M.); (R.J.W.T.)
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; (M.G.F.); (T.W.M.); (R.J.W.T.)
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Roger J. W. Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; (M.G.F.); (T.W.M.); (R.J.W.T.)
| | - Paul L. Else
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; (M.G.F.); (T.W.M.); (R.J.W.T.)
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +61-242682615
| |
Collapse
|
29
|
Thompson MJ, Domville JA, Edrington CH, Venes A, Giguère PM, Baenziger JE. Distinct functional roles for the M4 α-helix from each homologous subunit in the hetero-pentameric ligand-gated ion channel nAChR. J Biol Chem 2022; 298:102104. [PMID: 35679899 PMCID: PMC9260303 DOI: 10.1016/j.jbc.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022] Open
Abstract
The outermost lipid-exposed α-helix (M4) in each of the homologous α, β, δ, and γ/ε subunits of the muscle nicotinic acetylcholine receptor (nAChR) has previously been proposed to act as a lipid sensor. However, the mechanism by which this sensor would function is not clear. To explore how the M4 α-helix from each subunit in human adult muscle nAChR influences function, and thus explore its putative role in lipid sensing, we functionally characterized alanine mutations at every residue in αM4, βM4, δM4, and εM4, along with both alanine and deletion mutations in the post-M4 region of each subunit. Although no critical interactions involving residues on M4 or in post-M4 were identified, we found that numerous mutations at the M4–M1/M3 interface altered the agonist-induced response. In addition, homologous mutations in M4 in different subunits were found to have different effects on channel function. The functional effects of multiple mutations either along M4 in one subunit or at homologous positions of M4 in different subunits were also found to be additive. Finally, when characterized in both Xenopus oocytes and human embryonic kidney 293T cells, select αM4 mutations displayed cell-specific phenotypes, possibly because of the different membrane lipid environments. Collectively, our data suggest different functional roles for the M4 α-helix in each heteromeric nAChR subunit and predict that lipid sensing involving M4 occurs primarily through the cumulative interactions at the M4–M1/M3 interface, as opposed to the alteration of specific interactions that are critical to channel function.
Collapse
|
30
|
Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells 2022; 11:cells11081257. [PMID: 35455937 PMCID: PMC9024772 DOI: 10.3390/cells11081257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.
Collapse
|
31
|
Valencia FP, Marino AF, Noutsos C, Poon K. Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids. J Nutr Biochem 2022; 106:109033. [DOI: 10.1016/j.jnutbio.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
32
|
Need for more focus on lipid species in studies of biological and model membranes. Prog Lipid Res 2022; 86:101160. [DOI: 10.1016/j.plipres.2022.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
33
|
Pizzuti V, Abruzzo PM, Chatgilialoglu A, Zia S, Marrazzo P, Petrocelli G, Zannini C, Marchionni C, Poggi P, Simonazzi G, Canaider S, Alviano F, Facchin F, Bonsi L. A Tailored Lipid Supplement Restored Membrane Fatty Acid Composition and Ameliorates In Vitro Biological Features of Human Amniotic Epithelial Cells. J Clin Med 2022; 11:jcm11051236. [PMID: 35268327 PMCID: PMC8911266 DOI: 10.3390/jcm11051236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cell culture conditions influence several biological and biochemical features of stem cells (SCs), including the membrane lipid profile, thus limiting the use of SCs for cell therapy approaches. The present study aims to investigate whether the in vitro culture may alter the membrane fatty acid signature of human Amniotic Epithelial Cells (hAECs). The analysis of the membrane fatty acid composition of hAECs cultured in basal medium showed a loss in polyunsaturated fatty acids (PUFA), in particular in omega-6 (ω-6) content, compared to freshly isolated hAECs. The addition to the basal culture medium of a chemically defined and animal-free tailored lipid supplement, namely Refeed®, partially restored the membrane fatty acid signature of hAECs. Although the amelioration of the membrane composition did not prolong hAECs culture lifespan, Refeed® influenced cell morphology, counteracted the onset of senescence, and increased the migratory capacity as well as the ability of hAECs to inhibit Peripheral Blood Mononuclear Cell (PBMC) proliferation. This study provides new information on hAEC features during culture passages and demonstrates that the maintenance of the membrane fatty acid signature preserved higher cell quality during in vitro expansion, suggesting the use of lipid supplementation for SC expansion in cell-based therapies.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
- Unit of Nephrology, Dialysis and Renal Transplant, Department of Experimental, Diagnostic and Specialty Medicine, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | | | | | - Pasquale Marrazzo
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Giovannamaria Petrocelli
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-ELDOR Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Cosetta Marchionni
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Paola Poggi
- Remembrane S.r.l., 40026 Imola, Italy; (A.C.); (P.P.)
| | - Giuliana Simonazzi
- Obstetric Unit, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi, University of Bologna, 40126 Bologna, Italy;
| | - Silvia Canaider
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
- Correspondence:
| | - Federica Facchin
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| |
Collapse
|
34
|
Staufer O, Gupta K, Hernandez Bücher JE, Kohler F, Sigl C, Singh G, Vasileiou K, Yagüe Relimpio A, Macher M, Fabritz S, Dietz H, Cavalcanti Adam EA, Schaffitzel C, Ruggieri A, Platzman I, Berger I, Spatz JP. Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nat Commun 2022; 13:868. [PMID: 35165285 PMCID: PMC8844029 DOI: 10.1038/s41467-022-28446-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.
Collapse
Affiliation(s)
- Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany.
| | - Kapil Gupta
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Jochen Estebano Hernandez Bücher
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Fabian Kohler
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Christian Sigl
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Gunjita Singh
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Kate Vasileiou
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Ana Yagüe Relimpio
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Meline Macher
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Sebastian Fabritz
- Department for Chemical Biology, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Hendrik Dietz
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Elisabetta Ada Cavalcanti Adam
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK
- Halo Therapeutics Ltd, Science Creates, Albert Road St. Philips Central, Bristol, BS2 0XJ, UK
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrated Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Imre Berger
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK.
- Halo Therapeutics Ltd, Science Creates, Albert Road St. Philips Central, Bristol, BS2 0XJ, UK.
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Suresh P, London E. Using cyclodextrin-induced lipid substitution to study membrane lipid and ordered membrane domain (raft) function in cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183774. [PMID: 34534531 PMCID: PMC9128603 DOI: 10.1016/j.bbamem.2021.183774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
Methods for efficient cyclodextrin-induced lipid exchange have been developed in our lab. These make it possible to almost completely replace the lipids in the outer leaflet of artificial membranes or the plasma membranes of living cells with exogenous lipids. Lipid replacement/substitution allows detailed studies of how lipid composition and asymmetry influence the structure and function of membrane domains and membrane proteins. In this review, we both summarize progress on cyclodextrin exchange in cells, mainly by the use of methyl-alpha cyclodextrin to exchange phospholipids and sphingolipids, and discuss the issues to consider when carrying out lipid exchange experiments upon cells. Issues that impact interpretation of lipid exchange are also discussed. This includes how overly naïve interpretation of how lipid exchange-induced changes in domain formation can impact protein function.
Collapse
|
36
|
Wu C, Hong B, Jiang S, Luo X, Lin H, Zhou Y, Wu J, Yue X, Shi H, Wu R. Recent advances on essential fatty acid biosynthesis and production: Clarifying the roles of Δ12/Δ15 fatty acid desaturase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Wade G, McGahee A, Ntambi JM, Simcox J. Lipid Transport in Brown Adipocyte Thermogenesis. Front Physiol 2021; 12:787535. [PMID: 35002769 PMCID: PMC8733649 DOI: 10.3389/fphys.2021.787535] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Non-shivering thermogenesis is an energy demanding process that primarily occurs in brown and beige adipose tissue. Beyond regulating body temperature, these thermogenic adipocytes regulate systemic glucose and lipid homeostasis. Historically, research on thermogenic adipocytes has focused on glycolytic metabolism due to the discovery of active brown adipose tissue in adult humans through glucose uptake imaging. The importance of lipids in non-shivering thermogenesis has more recently been appreciated. Uptake of circulating lipids into thermogenic adipocytes is necessary for body temperature regulation and whole-body lipid homeostasis. A wide array of circulating lipids contribute to thermogenic potential including free fatty acids, triglycerides, and acylcarnitines. This review will summarize the mechanisms and regulation of lipid uptake into brown adipose tissue including protein-mediated uptake, lipoprotein lipase activity, endocytosis, vesicle packaging, and lipid chaperones. We will also address existing gaps in knowledge for cold induced lipid uptake into thermogenic adipose tissue.
Collapse
Affiliation(s)
| | | | | | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
38
|
Perez-Valle A, Abad-García B, Fresnedo O, Barreda-Gómez G, Aspichueta P, Asumendi A, Astigarraga E, Fernández JA, Boyano MD, Ochoa B. A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma. Int J Mol Sci 2021; 22:12061. [PMID: 34769491 PMCID: PMC8585039 DOI: 10.3390/ijms222112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer due to its ability to colonize distant sites and initiate metastasis. Although these processes largely depend on the lipid-based cell membrane scaffold, our understanding of the melanoma lipid phenotype lags behind most other aspects of this tumor cell. Here, we examined a panel of normal human epidermal and nevus melanocytes and primary and metastatic melanoma cell lines to determine whether distinctive cell-intrinsic lipidomes can discern non-neoplastic from neoplastic melanocytes and define their metastatic potential. Lipidome profiles were obtained by UHPLC-ESI mass-spectrometry, and differences in the signatures were analyzed by multivariate statistical analyses. Significant and highly specific changes in more than 30 lipid species were annotated in the initiation of melanoma, whereas less numerous changes were associated with melanoma progression and the non-malignant transformation of nevus melanocytes. Notably, the "malignancy lipid signature" features marked drops in pivotal membrane lipids, like sphingomyelins, and aberrant elevation of ether-type lipids and phosphatidylglycerol and phosphatidylinositol variants, suggesting a previously undefined remodeling of sphingolipid and glycerophospholipid metabolism. Besides broadening the molecular definition of this neoplasm, the different lipid profiles identified may help improve the clinical diagnosis/prognosis and facilitate therapeutic interventions for cutaneous melanoma.
Collapse
Affiliation(s)
- Arantza Perez-Valle
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
| | - Beatriz Abad-García
- Central Analysis Service, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
| | - Gabriel Barreda-Gómez
- IMG Pharma Biotech S.L., Bizkaia Technological Park, 48160 Derio, Spain; (G.B.-G.); (E.A.)
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Egoitz Astigarraga
- IMG Pharma Biotech S.L., Bizkaia Technological Park, 48160 Derio, Spain; (G.B.-G.); (E.A.)
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
| |
Collapse
|
39
|
Lantz C, Becker A, Thorp EB. Can polarization of macrophage metabolism enhance cardiac regeneration? J Mol Cell Cardiol 2021; 160:87-96. [PMID: 34293342 PMCID: PMC8571050 DOI: 10.1016/j.yjmcc.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
While largely appreciated for their antimicrobial and repair functions, macrophages have emerged as indispensable for the development, homeostasis, and regeneration of tissue, including regeneration of the neonatal heart. Upon activation, mammalian neonatal macrophages express and secrete factors that coordinate angiogenesis, resolution of inflammation, and ultimately cardiomyocyte proliferation. This is contrary to adult macrophages in the adult heart, which are incapable of inducing significant levels of cardiac regeneration. The underlying mechanisms by which pro-regenerative macrophages are activated and regulated remain vague. A timely hypothesis is that macrophage metabolism contributes to this proliferative and regenerative potential. This is because we now appreciate the significant contributions of metabolites to immune cell programming and function, beyond solely bioenergetics. After birth, the metabolic milieu of the neonate is subject to significant alterations in oxygenation and nutrient supply, which will affect how metabolic substrates are catabolized. In this context, we discuss potential roles for select macrophage metabolic pathways during cardiac regeneration.
Collapse
Affiliation(s)
- Connor Lantz
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amanda Becker
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; The Division of Critical Care Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; The Heart Center, Stanley Manne Children's Research Institute, Chicago, IL, USA.
| |
Collapse
|
40
|
Yamane D, Hayashi Y, Matsumoto M, Nakanishi H, Imagawa H, Kohara M, Lemon SM, Ichi I. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. Cell Chem Biol 2021; 29:799-810.e4. [PMID: 34520742 DOI: 10.1016/j.chembiol.2021.07.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 07/29/2021] [Indexed: 01/20/2023]
Abstract
The metabolic oxidative degradation of cellular lipids severely restricts replication of hepatitis C virus (HCV), a leading cause of chronic liver disease, but little is known about the factors regulating this process in infected cells. Here we show that HCV is restricted by an iron-dependent mechanism resembling the one triggering ferroptosis, an iron-dependent form of non-apoptotic cell death, and mediated by the non-canonical desaturation of oleate to Mead acid and other highly unsaturated fatty acids by fatty acid desaturase 2 (FADS2). Genetic depletion and ectopic expression experiments show FADS2 is a key determinant of cellular sensitivity to ferroptosis. Inhibiting FADS2 markedly enhances HCV replication, whereas the ferroptosis-inducing compound erastin alters conformation of the HCV replicase and sensitizes it to direct-acting antiviral agents targeting the viral protease. Our results identify FADS2 as a rate-limiting factor in ferroptosis, and suggest the possibility of pharmacologically manipulating the ferroptosis pathway to attenuate viral replication.
Collapse
Affiliation(s)
- Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Yuri Hayashi
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyō-ku, Tokyo 112-8610, Japan
| | - Moe Matsumoto
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroki Nakanishi
- Research Center for Biosignaling, Akita University, Akita-city, Akita 010-8543, Japan; Lipidome Lab Co., Ltd, Akita-city, Akita 010-0825, Japan
| | - Haruka Imagawa
- Lipidome Lab Co., Ltd, Akita-city, Akita 010-0825, Japan
| | - Michinori Kohara
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA; Departments of Medicine and Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Ikuyo Ichi
- Natural Science Division, Ochanomizu University, Bunkyō-ku, Tokyo 112-8610, Japan; Institute for Human Life Innovation, Faculty of Core Research, Ochanomizu University, Bunkyō-ku, Tokyo 112-8610, Japan
| |
Collapse
|
41
|
Oemer G, Edenhofer ML, Wohlfarter Y, Lackner K, Leman G, Koch J, Cardoso LHD, Lindner HH, Gnaiger E, Dubrac S, Zschocke J, Keller MA. Fatty acyl availability modulates cardiolipin composition and alters mitochondrial function in HeLa cells. J Lipid Res 2021; 62:100111. [PMID: 34450173 PMCID: PMC8455370 DOI: 10.1016/j.jlr.2021.100111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
The molecular assembly of cells depends not only on the balance between anabolism and catabolism but to a large degree on the building blocks available in the environment. For cultured mammalian cells, this is largely determined by the composition of the applied growth medium. Here, we study the impact of lipids in the medium on mitochondrial membrane architecture and function by combining LC-MS/MS lipidomics and functional tests with lipid supplementation experiments in an otherwise serum-free and lipid-free cell culture model. We demonstrate that the composition of mitochondrial cardiolipins strongly depends on the lipid environment in cultured cells and favors the incorporation of essential linoleic acid over other fatty acids. Simultaneously, the mitochondrial respiratory complex I activity was altered, whereas the matrix-localized enzyme citrate synthase was unaffected. This raises the question on a link between membrane composition and respiratory control. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium. This underlines the importance of considering these factors when using and establishing cell culture models in biomedical research. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Marie-Luise Edenhofer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; Institute of Biological Chemistry, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Geraldine Leman
- Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Herbert H Lindner
- Institute of Clinical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments Corporation, Innsbruck, Austria
| | - Sandrine Dubrac
- Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
42
|
Herrmann HA, Rusz M, Baier D, Jakupec MA, Keppler BK, Berger W, Koellensperger G, Zanghellini J. Thermodynamic Genome-Scale Metabolic Modeling of Metallodrug Resistance in Colorectal Cancer. Cancers (Basel) 2021; 13:4130. [PMID: 34439283 PMCID: PMC8391396 DOI: 10.3390/cancers13164130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mass spectrometry-based metabolomics approaches provide an immense opportunity to enhance our understanding of the mechanisms that underpin the cellular reprogramming of cancers. Accurate comparative metabolic profiling of heterogeneous conditions, however, is still a challenge. METHODS Measuring both intracellular and extracellular metabolite concentrations, we constrain four instances of a thermodynamic genome-scale metabolic model of the HCT116 colorectal carcinoma cell line to compare the metabolic flux profiles of cells that are either sensitive or resistant to ruthenium- or platinum-based treatments with BOLD-100/KP1339 and oxaliplatin, respectively. RESULTS Normalizing according to growth rate and normalizing resistant cells according to their respective sensitive controls, we are able to dissect metabolic responses specific to the drug and to the resistance states. We find the normalization steps to be crucial in the interpretation of the metabolomics data and show that the metabolic reprogramming in resistant cells is limited to a select number of pathways. CONCLUSIONS Here, we elucidate the key importance of normalization steps in the interpretation of metabolomics data, allowing us to uncover drug-specific metabolic reprogramming during acquired metal-drug resistance.
Collapse
Affiliation(s)
- Helena A. Herrmann
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (H.A.H.); (M.R.)
| | - Mate Rusz
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (H.A.H.); (M.R.)
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; (D.B.); (M.A.J.); (B.K.K.)
| | - Dina Baier
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; (D.B.); (M.A.J.); (B.K.K.)
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; (D.B.); (M.A.J.); (B.K.K.)
- Research Cluster Translational Cancer Therapy Research, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria;
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; (D.B.); (M.A.J.); (B.K.K.)
- Research Cluster Translational Cancer Therapy Research, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria;
| | - Walter Berger
- Research Cluster Translational Cancer Therapy Research, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria;
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (H.A.H.); (M.R.)
- Vienna Metabolomics Center (VIME), University of Vienna, 1090 Vienna, Austria
- Research Network Chemistry Meets Microbiology, University of Vienna, 1090 Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (H.A.H.); (M.R.)
| |
Collapse
|
43
|
Bayona-Bafaluy MP, Montoya J, Ruiz-Pesini E. Oxidative phosphorylation system and cell culture media. Trends Cell Biol 2021; 31:618-620. [PMID: 34052102 DOI: 10.1016/j.tcb.2021.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
Traditional culture media do not resemble the metabolic composition of human blood. The concentration of different metabolites in these media influences mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) function. This knowledge is essential for the interpretation of results obtained from cellular models used for the study of OXPHOS function.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009 and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009 and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009 and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
44
|
Symons JL, Cho KJ, Chang JT, Du G, Waxham MN, Hancock JF, Levental I, Levental KR. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. SOFT MATTER 2021; 17:288-297. [PMID: 32451522 PMCID: PMC7688498 DOI: 10.1039/d0sm00404a] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid membranes are ubiquitous biological organizers, required for structural and functional compartmentalization of the cell and sub-cellular organelles. Membranes in living cells are compositionally complex, comprising hundreds of dynamically regulated, distinct lipid species. Cellular physiology requires tight regulation of these lipidomic profiles to achieve proper membrane functionality. While some general features of tissue- and organelle-specific lipid complements have been identified, less is known about detailed lipidomic variations caused by cell-intrinsic or extrinsic factors. Here, we use shotgun lipidomics to report detailed, comprehensive lipidomes of a variety of cultured and primary mammalian membrane preparations to identify trends and sources of variation. Unbiased principle component analysis (PCA) shows clear separation between cultured and primary cells, with primary erythrocytes, synaptic membranes, and other mammalian tissue lipidomes sharply diverging from all cultured cell lines and also from one other. Most broadly, cultured cell membrane preparations were distinguished by their paucity of polyunsaturated lipids. Cultured mammalian cell lines were comparatively similar to one another, although we detected clear, highly reproducible lipidomic signatures of individual cell lines and plasma membrane (PM) isolations thereof. These measurements begin to establish a comprehensive lipidomic atlas of mammalian cells and tissues, identifying some major sources of variation. These observations will allow investigation of the regulation and functional significance of mammalian lipidomes in various contexts.
Collapse
Affiliation(s)
- Jessica L Symons
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Suite 4.202, 6431 Fannin St, Houston, TX 77030, USA.
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Suite 4.202, 6431 Fannin St, Houston, TX 77030, USA.
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Suite 4.202, 6431 Fannin St, Houston, TX 77030, USA.
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Suite 4.202, 6431 Fannin St, Houston, TX 77030, USA.
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Suite 4.202, 6431 Fannin St, Houston, TX 77030, USA.
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Suite 4.202, 6431 Fannin St, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
46
|
Germain N, Dhayer M, Boileau M, Fovez Q, Kluza J, Marchetti P. Lipid Metabolism and Resistance to Anticancer Treatment. BIOLOGY 2020; 9:biology9120474. [PMID: 33339398 PMCID: PMC7766644 DOI: 10.3390/biology9120474] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary Cancer cells directly control nutrient uptake and utilization in a different manner from that of normal cells. These metabolic changes drive growth, proliferation of cancer cells as well as their ability to develop resistance to traditional therapies. We review published studies with pre-clinical models, showing the essential roles of lipid metabolism in anticancer drug resistance. We also discuss how changes in cellular lipid metabolism contribute to the acquisition of drug resistance and the new therapeutic opportunities to target lipid metabolism for treating drug resistant cancers. Abstract Metabolic reprogramming is crucial to respond to cancer cell requirements during tumor development. In the last decade, metabolic alterations have been shown to modulate cancer cells’ sensitivity to chemotherapeutic agents including conventional and targeted therapies. Recently, it became apparent that changes in lipid metabolism represent important mediators of resistance to anticancer agents. In this review, we highlight changes in lipid metabolism associated with therapy resistance, their significance and how dysregulated lipid metabolism could be exploited to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Nicolas Germain
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Banque de Tissus, Centre de biologie-pathologie, CHU Lille, F-59000 Lille, France
- Correspondence: (N.G.); (P.M.); Tel.: +33-3-20-16-92-20 (P.M.)
| | - Mélanie Dhayer
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Marie Boileau
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Service de Dermatologie, Hopital Claude Huriez, CHU Lille, F-59000 Lille, France
| | - Quentin Fovez
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Jerome Kluza
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Philippe Marchetti
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Banque de Tissus, Centre de biologie-pathologie, CHU Lille, F-59000 Lille, France
- Correspondence: (N.G.); (P.M.); Tel.: +33-3-20-16-92-20 (P.M.)
| |
Collapse
|
47
|
Tutino V, Gigante I, Milella RA, De Nunzio V, Flamini R, De Rosso M, Scavo MP, Depalo N, Fanizza E, Caruso MG, Notarnicola M. Flavonoid and Non-Flavonoid Compounds of Autumn Royal and Egnatia Grape Skin Extracts Affect Membrane PUFA's Profile and Cell Morphology in Human Colon Cancer Cell Lines. Molecules 2020; 25:E3352. [PMID: 32718061 PMCID: PMC7435874 DOI: 10.3390/molecules25153352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Grapes contain many flavonoid and non-flavonoid compounds with anticancer effects. In this work we fully characterized the polyphenolic profile of two grape skin extracts (GSEs), Autumn Royal and Egnatia, and assessed their effects on Polyunsaturated Fatty Acid (PUFA) membrane levels of Caco2 and SW480 human colon cancer cell lines. Gene expression of 15-lipoxygenase-1 (15-LOX-1), and peroxisome proliferator-activated receptor gamma (PPAR-γ), as well as cell morphology, were evaluated. The polyphenolic composition was analyzed by Ultra-High-Performance Liquid Chromatography/Quadrupole-Time of Flight mass spectrometry (UHPLC/QTOF) analysis. PUFA levels were evaluated by gas chromatography, and gene expression levels of 15-LOX-1 and PPAR-γ were analyzed by real-time Polymerase Chain Reaction (PCR). Morphological cell changes caused by GSEs were identified by field emission scanning electron microscope (FE-SEM) and photomicrograph examination. We detected a different profile of flavonoid and non-flavonoid compounds in Autumn Royal and Egnatia GSEs. Cultured cells showed an increase of total PUFA levels mainly after treatment with Autumn Royal grape, and were richer in flavonoids when compared with the Egnatia variety. Both GSEs were able to affect 15-LOX-1 and PPAR-γ gene expression and cell morphology. Our results highlighted a new antitumor mechanism of GSEs that involves membrane PUFAs and their downstream pathways.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 70010 Turi (BA), Italy;
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Riccardo Flamini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano (TV), Italy; (R.F.); (M.D.R.)
| | - Mirko De Rosso
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano (TV), Italy; (R.F.); (M.D.R.)
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, 70125 Bari (BA), Italy; (N.D.); (E.F.)
| | - Elisabetta Fanizza
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, 70125 Bari (BA), Italy; (N.D.); (E.F.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari (BA), Italy
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| |
Collapse
|
48
|
Mukherjee S, Aseer KR, Yun JW. Roles of Macrophage Colony Stimulating Factor in White and Brown Adipocytes. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0023-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|