1
|
Joinson C, Drake MJ, Fraser A, Tilling K, Heron J. Bidirectional relationships between depression, anxiety and urinary symptoms in women: A prospective cohort study. J Affect Disord 2024; 369:516-522. [PMID: 39393464 DOI: 10.1016/j.jad.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES To examine (i) if depression and anxiety are prospectively associated with subsequent lower urinary tract symptoms (LUTS) and (ii) if LUTS are prospectively associated with subsequent depression. PARTICIPANTS AND METHODS The study is based on data from parous middle-aged women from the Avon Longitudinal Study of Parents and Children. LUTS were assessed using the Bristol Female LUTS Questionnaire and the International Consultation on Incontinence Questionnaire on Female LUTS. Depression was assessed using the Edinburgh Postnatal Depression Scale and anxiety was assessed using the Crown Crisp Experiential Index. We used multivariable logistic regression to examine (i) associations between depression and anxiety at baseline in 2002-04 and subsequent LUTS at follow-up in 2011-2012 (n = 5291) and (ii) associations between LUTS at baseline in 2002-04 and subsequent depression at follow-up in 2010-11 (n = 6147). Analyses were adjusted for age, socioeconomic factors, stressful life events, social support, smoking, weekly alcohol consumption, BMI, physical activity, obstetric/reproductive factors, and menopausal status. RESULTS We found evidence of prospective associations between depression and subsequent mixed urinary incontinence [odds ratio = 1.97, 95 % confidence interval = 1.16, 3.33], any urinary incontinence [1.68 (1.21, 2.31)], and urgency [1.90 (1.28, 2.83)]. Anxiety was only associated with subsequent nocturia [1.84 (1.04, 3.26)]. Only stress urinary incontinence was associated with subsequent depression [1.37 (1.03, 1.83)]. CONCLUSIONS We find evidence that mental health problems could be contributing factors, as well as consequences, of LUTS. Research is needed to determine if these observed associations are causal and to identify underlying mechanisms.
Collapse
Affiliation(s)
- Carol Joinson
- Bristol Medical School, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom of Great Britain and Northern Ireland.
| | - Marcus J Drake
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom of Great Britain and Northern Ireland
| | - Abigail Fraser
- Bristol Medical School, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom of Great Britain and Northern Ireland
| | - Kate Tilling
- Bristol Medical School, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom of Great Britain and Northern Ireland
| | - Jon Heron
- Bristol Medical School, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
2
|
Francesconi W, Olivera-Pasilio V, Berton F, Olson SL, Chudoba R, Monroy LM, Krabichler Q, Grinevich V, Dabrowska J. Like sisters but not twins - vasopressin and oxytocin excite BNST neurons via cell type-specific expression of oxytocin receptor to reduce anxious arousal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611656. [PMID: 39282380 PMCID: PMC11398521 DOI: 10.1101/2024.09.06.611656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to dorsolateral bed nucleus of stria terminalis (BNSTDL), which expresses oxytocin receptors (OTR) and vasopressin receptors and mediates fear responses. However, understanding the integrated role of neurohypophysial hormones is complicated by the cross-reactivity of AVP and OT and their mutual receptor promiscuity. Here, we provide evidence that the effects of neurohypophysial hormones on BNST excitability are driven by input specificity and cell type-specific receptor selectivity. We show that OTR-expressing BNSTDL neurons, excited by hypothalamic OT and AVP inputs via OTR, play a major role in regulating BNSTDL excitability, overcoming threat avoidance, and reducing threat-elicited anxious arousal. Therefore, OTR-BNSTDL neurons are perfectly suited to drive the dynamic interactions balancing external threat risk and physiological needs.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA
| | - Fulvia Berton
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Susan L. Olson
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Rachel Chudoba
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Lorena M. Monroy
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Neuroscience Program, Lake Forest College, Lake Forest, IL, 60045, USA
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Joanna Dabrowska
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
3
|
Taniguchi M, Murata Y, Yamaguchi M, Kaba H. Activation of arginine vasopressin receptor 1a reduces inhibitory synaptic currents at reciprocal synapses in the mouse accessory olfactory bulb. Front Cell Neurosci 2024; 18:1466817. [PMID: 39386179 PMCID: PMC11462548 DOI: 10.3389/fncel.2024.1466817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Central arginine vasopressin (AVP) facilitates social recognition and modulates many complex social behaviors in mammals that, in many cases, recognize each other based on olfactory and/or pheromonal signals. AVP neurons are present in the accessory olfactory bulb (AOB), which is the first relay in the vomeronasal system and has been demonstrated to be a critical site for mating-induced mate recognition (olfactory memory) in female mice. The transmission of information from the AOB to higher centers is controlled by the dendrodendritic recurrent inhibition, i.e., inhibitory postsynaptic currents (IPSCs) generated in mitral cells by recurrent dendrodendritic inhibitory inputs from granule cells. These reports suggest that AVP might play an important role in regulating dendrodendritic inhibition in the AOB. To test this hypothesis, we examined the effects of extracellularly applied AVP on synaptic responses measured from mitral and granule cells in slice preparations from 23--36-day-old Balb/c mice. To evoke dendrodendritic inhibition in a mitral cell, depolarizing voltages of -70 to 0 mV (10 ms duration) were applied to a mitral cell using a conventional whole-cell configuration. We found that AVP significantly reduced the IPSCs. The suppressive effects of AVP on the IPSCs was diminished by an antagonist for vasopressin receptor 1a (V1aR) (Manning compound), but not by an antagonist for vasopressin receptor 1b (SSR149415). An agonist for V1aRs [(Phe2)OVT] mimicked the action of AVP on IPSCs. Additionally, AVP significantly suppressed voltage-activated currents in granule cells without affecting the magnitude of the response of mitral cells to gamma-aminobutyric acid (GABA). The present results suggest that V1aRs play a role in reciprocal transmission between mitral cells and granule cells in the mouse AOB by reducing GABAergic transmission through a presynaptic mechanism in granule cells.
Collapse
Affiliation(s)
- Mutsuo Taniguchi
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | | | | |
Collapse
|
4
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
5
|
Takeda T, Takeda S, Kakigi A. The clinical manifestation and treatment of Meniere's Disease from the viewpoint of the water homeostasis of the inner ear. Auris Nasus Larynx 2024; 51:905-910. [PMID: 39244939 DOI: 10.1016/j.anl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Endolymphatic hydrops, a pathological feature of Ménière's disease, has been experimentally and clinically confirmed to be influenced by the blood circulation of vasopressin (VP). VP is a well-known hormonal regulator of water homeostasis. In addition, VP is influenced by various environmental changes, dehydration, fluctuation of atmospheric pressure, pregnancy, and other factors. Furthermore, VP is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is a major neuroendocrine system that controls reactions to emotional and physical stresses, as well as the sleep/wake cycle (circadian rhythm). Therefore, VP is susceptible to change via the HPA axis. This review considers possible mechanisms of the formation of endolymphatic hydrops from the perspective of the vasopressin-aquaporin 2 system.
Collapse
Affiliation(s)
- Taizo Takeda
- Department of Otolaryngology, Kochi Medical School, Nankoku, Kochi, Japan
| | | | - Akinobu Kakigi
- Department of Otolaryngology-Head & Neck Surgery, Kobe University, Graduate School of Medicine, Hyogo, Japan.
| |
Collapse
|
6
|
Huang S, Shi C, Tao D, Yang C, Luo Y. Modulating reward and aversion: Insights into addiction from the paraventricular nucleus. CNS Neurosci Ther 2024; 30:e70046. [PMID: 39295107 PMCID: PMC11410887 DOI: 10.1111/cns.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Drug addiction, characterized by compulsive drug use and high relapse rates, arises from complex interactions between reward and aversion systems in the brain. The paraventricular nucleus (PVN), located in the anterior hypothalamus, serves as a neuroendocrine center and is a key component of the hypothalamic-pituitary-adrenal axis. OBJECTIVE This review aimed to explore how the PVN impacts reward and aversion in drug addiction through stress responses and emotional regulation and to evaluate the potential of PVN as a therapeutic target for drug addiction. METHODS We review the current literature, focusing on three main neuron types in the PVN-corticotropin-releasing factor, oxytocin, and arginine vasopressin neurons-as well as other related neurons, to understand their roles in modulating addiction. RESULTS Existing studies highlight the PVN as a key mediator in addiction, playing a dual role in reward and aversion systems. These findings are crucial for understanding addiction mechanisms and developing targeted therapies. CONCLUSION The role of PVN in stress response and emotional regulation suggests its potential as a therapeutic target in drug addiction, offering new insights for addiction treatment.
Collapse
Affiliation(s)
- Shihao Huang
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence ResearchPeking UniversityBeijingChina
- Department of Neurobiology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Cuijie Shi
- College of Forensic MedicineHebei Medical UniversityShijiazhuangChina
| | - Dan Tao
- School of MedicineHunan Normal UniversityChangshaChina
| | - Chang Yang
- School of MedicineHunan Normal UniversityChangshaChina
| | - Yixiao Luo
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Key Laboratory for Birth Defects Research and Prevention of the National Health CommissionHunan Provincial Maternal and Child Health Care HospitalChangshaChina
| |
Collapse
|
7
|
Gnanadesikan GE, Bray EE, Cook EN, Levy KM, Douglas LELC, Kennedy BS, Tecot SR, MacLean EL. Basal plasma oxytocin & fecal cortisol concentrations are highly heritable and associated with individual differences in behavior & cognition in dog puppies. Horm Behav 2024; 165:105612. [PMID: 39116461 DOI: 10.1016/j.yhbeh.2024.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Oxytocin and cortisol are hormones that can influence cognition and behavior, but the relationships between endogenous concentrations and individual differences in cognitive and behavioral phenotypes remain poorly understood. Across mammals, oxytocin has important roles in diverse social behaviors, and in dogs, it has been implicated in human-oriented behaviors such as social gaze and point-following. Cortisol, an end-product of the hypothalamic-pituitary-adrenal (HPA) axis, is often studied in relation to temperament and emotional reactivity, but it is also known to modulate executive functions. In this study, we measured basal fecal cortisol (n = 247) and plasma oxytocin (n = 249) in dog puppies from a pedigreed population (Canine Companions ®). We collected cognitive and behavioral data from these subjects (n = 247), including measures of human-oriented social cognition, memory, inhibitory control, perceptual discriminations, and temperament. Oxytocin concentrations were estimated to be very highly heritable (h2 = 0.90-0.99) and cortisol concentrations were estimated to be moderately-highly heritable (h2 = 0.43-0.47). Bayesian mixed models controlling for relatedness revealed that oxytocin concentrations were positively associated with spatial working memory and displayed a negative quadratic relationship with behavioral laterality, but no credible associations were seen for social measures. Cortisol concentrations exhibited a negative linear relationship with performance on an inhibitory control task and a negative quadratic relationship with bold behavioral reactions to a novel object. Collectively, our results suggest that individual differences in oxytocin and cortisol concentrations are under strong genetic control in dogs and are associated with phenotypic variation in aspects of temperament, behavioral laterality, and executive function.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Canine Companions for Independence, Santa Rosa, CA 95402, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Erica N Cook
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Kerinne M Levy
- Canine Companions for Independence, Santa Rosa, CA 95402, USA
| | | | | | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Coppeto DJ, Martin JS, Ringen EJ, Palmieri V, Young LJ, Jaeggi AV. Peptides and primate personality: Central and peripheral oxytocin and vasopressin levels and social behavior in two baboon species (Papio hamadryas and Papio anubis). Peptides 2024; 179:171270. [PMID: 38969236 DOI: 10.1016/j.peptides.2024.171270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The neurohormones oxytocin (OT) and arginine vasopressin (AVP) are involved in social behaviors and psychiatric conditions. However, more research on nonhuman primates with complex social behaviors is needed. We studied two closely-related primate species with divergent social and mating systems; hamadryas baboons (Papio hamadryas, n=38 individuals) and anubis baboons (Papio anubis, n=46). We measured OT in cerebrospinal fluid (CSF, n=75), plasma (n=81) and urine (n=77), and AVP in CSF (n=45), and we collected over 250 hours of focal behavioral observations. Using Bayesian multivariate models, we found no clear species difference in hormone levels; the strongest support was for hamadryas having higher CSF OT levels than anubis (posterior probability [PP] for females = 0.75, males = 0.84). Looking at nine specific behaviors, OT was associated with affiliative behaviors (approach, proximity, grooming, PP ∼ 0.85 - 1.00), albeit inconsistently across sources of measurement (CSF, plasma, and urine, which were uncorrelated with each other). Most behaviors had low repeatability (R ∼ 0 - 0.2), i.e. they did not exhibit stable between-individual differences (or "personality"), and different behaviors did not neatly coalesce into higher-order factors (or "behavioral syndromes"), which cautions against the use of aggregate behavioral measures and highlights the need to establish stable behavioral profiles when testing associations with baseline hormone levels. In sum, we found some associations between peptides and social behavior, but also many null results, OT levels from different sources were uncorrelated, and our behavioral measures did not indicate clear individual differences in sociability.
Collapse
Affiliation(s)
- Daniel J Coppeto
- Department of Anthropology, Emory University, Atlanta, GA 30329, USA
| | - Jordan S Martin
- Institute of Evolutionary Medicine, University of Zurich, Zurich 8057, Switzerland
| | - Erik J Ringen
- Linguistic Research Infrastructure, University of Zurich, Zurich 8050, Switzerland
| | | | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adrian V Jaeggi
- Institute of Evolutionary Medicine, University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
9
|
Yun Y, Guo S, Xie X. V1bR enhances glucose-stimulated insulin secretion by paracrine production of glucagon which activates GLP-1 receptor. Cell Biosci 2024; 14:110. [PMID: 39217353 PMCID: PMC11365140 DOI: 10.1186/s13578-024-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Arginine vasopressin (AVP) has been reported to regulate insulin secretion and glucose homeostasis in the body. Previous study has shown that AVP and its receptor V1bR modulate insulin secretion via the hypothalamic-pituitary-adrenal axis. AVP has also been shown to enhance insulin secretion in islets, but the exact mechanism remains unclear. RESULTS In our study, we unexpectedly discovered that AVP could only stimulates insulin secretion from islets, but not β cells, and AVP-induced insulin secretion could be blocked by V1bR selective antagonist. Single-cell transcriptome analysis identified that V1bR is only expressed by the α cells. Further studies indicated that activation of the V1bR stimulates the α cells to secrete glucagon, which then promotes glucose-dependent insulin secretion from β cells in a paracrine way by activating GLP-1R but not GCGR on these cells. CONCLUSIONS Our study revealed a crosstalk between α and β cells initiated by AVP/V1bR and mediated by glucagon/GLP-1R, providing a mechanism to develop new glucose-controlling therapies targeting V1bR.
Collapse
Affiliation(s)
- Ying Yun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China
| | - Xin Xie
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China.
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
10
|
Clarke L, Gesundheit N, Sherr EH, Hardan AY, Parker KJ. Vasopressin deficiency: a hypothesized driver of both social impairment and fluid imbalance in autism spectrum disorder. Mol Psychiatry 2024; 29:2568-2570. [PMID: 38454082 PMCID: PMC11380037 DOI: 10.1038/s41380-024-02497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Affiliation(s)
- Lauren Clarke
- 401 Quarry Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Neil Gesundheit
- 1265 Welch Road, Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, 94305, USA
| | - Elliott H Sherr
- 675 Nelson Rising Lane, Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Antonio Y Hardan
- 401 Quarry Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Karen J Parker
- 401 Quarry Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
- 300 Pasteur Drive, Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Daiwile AP, McCoy MT, Ladenheim B, Subramaniam J, Cadet JL. Incubation of methamphetamine craving in punishment-resistant individuals is associated with activation of specific gene networks in the rat dorsal striatum. Mol Psychiatry 2024; 29:1990-2000. [PMID: 38351172 PMCID: PMC11408252 DOI: 10.1038/s41380-024-02455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Methamphetamine use disorder (MUD) is characterized by loss of control over compulsive drug use. Here, we used a self-administration (SA) model to investigate transcriptional changes associated with the development of early and late compulsivity during contingent footshocks. Punishment initially separated methamphetamine taking rats into always shock-resistant (ASR) rats that continued active lever pressing and shock-sensitive (SS) rats that reduced their lever pressing. At the end of the punishment phase, rats underwent 15 days of forced abstinence at the end of which they were re-introduced to the SA paradigm followed by SA plus contingent shocks. Interestingly, 36 percent of the initial SS rats developed delayed shock-resistance (DSR). Of translational relevance, ASR rats showed more incubation of methamphetamine craving than DSR and always sensitive (AS) rats. RNA sequencing revealed increased striatal Rab37 and Dipk2b mRNA levels that correlated with incubation of methamphetamine craving. Interestingly, Bdnf mRNA levels showed HDAC2-dependent decreased expression in the AS rats. The present SA paradigm should help to elucidate the molecular substrates of early and late addiction-like behaviors.
Collapse
Affiliation(s)
- Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jayanthi Subramaniam
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
12
|
Kuske JX, Godoy AS, Ramirez AV, Trainor BC. Sex differences in responses to aggressive encounters among California mice. Horm Behav 2024; 162:105537. [PMID: 38582062 DOI: 10.1016/j.yhbeh.2024.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Despite how widespread female aggression is across the animal kingdom, there remains much unknown about its neuroendocrine mechanisms, especially in females that engage in aggression outside the peripartum period. Although the impact of aggressive experience on steroid hormone responses have been described, little is known about the impact of these experiences on female behavior or the subsequent neuropeptide responses to performing aggression. In this study, we compared behavioral responses in both male and female adult California mice based on if they had 0, 1, or 3 aggressive encounters using a resident intruder paradigm. We measured how arginine vasopressin and oxytocin cells in the paraventricular nucleus responded to aggression using c-fos immunohistochemistry. We saw that both sexes disengaged from intruders with repeated aggressive encounters, but that on the final day of testing females were more likely to freeze when they encountered intruders compared to no aggression controls - which was not significant in males. Finally, we saw that percent of arginine vasopressin and c-fos co-localizations in the posterior region of the paraventricular nucleus increased in males who fought compared to no aggression controls. No difference was observed in females. Overall, there is evidence that engaging in aggression induces stress responses in both sexes, and that females may be more sensitive to the effects of fighting.
Collapse
Affiliation(s)
- Jace X Kuske
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Alexandra Serna Godoy
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Alison V Ramirez
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
13
|
Wu G, Ou Y, Feng Z, Xiong Z, Li K, Che M, Qi S, Zhou M. Oxytocin attenuates hypothalamic injury-induced cognitive dysfunction by inhibiting hippocampal ERK signaling and Aβ deposition. Transl Psychiatry 2024; 14:208. [PMID: 38796566 PMCID: PMC11127955 DOI: 10.1038/s41398-024-02930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
In clinical settings, tumor compression, trauma, surgical injury, and other types of injury can cause hypothalamic damage, resulting in various types of hypothalamic dysfunction. Impaired release of oxytocin can lead to cognitive impairment and affect prognosis and long-term quality of life after hypothalamic injury. Hypothalamic injury-induced cognitive dysfunction was detected in male animals. Behavioral parameters were measured to assess the characteristics of cognitive dysfunction induced by hypothalamic-pituitary stalk lesions. Brains were collected for high-throughput RNA sequencing and immunostaining to identify pathophysiological changes in hippocampal regions highly associated with cognitive function after injury to corresponding hypothalamic areas. Through transcriptomic analysis, we confirmed the loss of oxytocin neurons after hypothalamic injury and the reversal of hypothalamic-induced cognitive dysfunction after oxytocin supplementation. Furthermore, overactivation of the ERK signaling pathway and β-amyloid deposition in the hippocampal region after hypothalamic injury were observed, and cognitive function was restored after inhibition of ERK signaling pathway overactivation. Our findings suggest that cognitive dysfunction after hypothalamic injury may be caused by ERK hyperphosphorylation in the hippocampal region resulting from a decrease in the number of oxytocin neurons, which in turn causes β-amyloid deposition.
Collapse
Affiliation(s)
- Guangsen Wu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yichao Ou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiwei Xiong
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kai Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Mengjie Che
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Mingfeng Zhou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Rigney N, Campos-Lira E, Kirchner MK, Wei W, Belkasim S, Beaumont R, Singh S, Suarez SG, Hartswick D, Stern JE, de Vries GJ, Petrulis A. A vasopressin circuit that modulates mouse social investigation and anxiety-like behavior in a sex-specific manner. Proc Natl Acad Sci U S A 2024; 121:e2319641121. [PMID: 38709918 PMCID: PMC11098102 DOI: 10.1073/pnas.2319641121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Elba Campos-Lira
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Selma Belkasim
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Rachael Beaumont
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Sumeet Singh
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Delenn Hartswick
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| |
Collapse
|
15
|
Greene ES, Tabler TW, Orlowski SK, Dridi S. Effect of heat stress on the hypothalamic expression of water channel- and noncoding RNA biogenesis-related genes in modern broilers and their ancestor red jungle fowl. Brain Res 2024; 1830:148810. [PMID: 38365130 DOI: 10.1016/j.brainres.2024.148810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Genetic selection for high growth rate has resulted in spectacular progress in feed efficiency in chickens. As feed intake and water consumption (WC) are associated and both are affected by environmental conditions, we evaluated WC and its hypothalamic regulation in three broiler-based research lines and their ancestor jungle fowl (JF) under heat stress (HS) conditions. Slow growing ACRB, moderate growing 95RB, fast growing MRB, and JF were exposed to daily chronic cyclic HS (36 °C, 9 h/d) or thermoneutral temperature (24 °C). HS increased WC in the MRB only. Arginine vasopressin (AVP) mRNA levels were decreased by HS in the MRB. Within the renin-angiotensin-aldosterone system (RAAS) system, renin expression was increased by HS in the JF, ACRB, and 95RB, while angiotensin I-converting enzyme (ACE), angiotensin II receptors (type 1, AT1, and type 2, AT2) were affected by line. The expression of aquaporin (AQP2, 7, 9, 10, 11, and 12) genes was upregulated by HS, whereas AQP4 and AQP5 expressions were influenced by line. miRNA processing components (Dicer1, Ago2, Drosha) were significantly different among the lines, but were unaffected by HS. In summary, this is the first report showing the effect of HS on hypothalamic water channel- and noncoding RNA biogenesis-related genes in modern chicken populations and their ancestor JF. These results provide a novel framework for future research to identify new molecular mechanisms and signatures involved in water homeostasis and adaptation to HS.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Travis W Tabler
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara K Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
16
|
Bhattarai A, Shah S, Baidya S, Thapa R, Bhandari S, Tuladhar ET, Acharya SP, Sah R. Association of copeptin levels with patient prognosis and survival in sepsis syndromes: a meta-analysis. Int J Surg 2024; 110:2355-2365. [PMID: 38668663 PMCID: PMC11019991 DOI: 10.1097/js9.0000000000001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/24/2023] [Indexed: 04/29/2024]
Abstract
BACKGROUND Sepsis syndromes are a major burden in the ICU with very high mortality. Vasopressin and copeptin are released in response to hypovolemia and have shown potential significance in diagnosing sepsis. OBJECTIVE To investigate the levels of copeptin in patients with sepsis syndromes and evaluate its relation with patient prognosis and mortality. METHODS Four databases were searched for literature published from inception to the 8th of November 2022. Original research articles where copeptin was measured in sepsis patients and compared with controls were included. Data extraction and synthesis: study characteristics, levels of copeptin in the participants, and copeptin assay description were extracted. Levels of copeptin in patients were pooled and compared with controls in terms of the standard mean difference (SMD) generated using a random-effects model. RESULTS Fifteen studies met the selection criteria. Copeptin levels were significantly higher in patients with sepsis, severe sepsis, and septic shock as compared to controls [(SMD: 1.49, 95% CI: 0.81-2.16, P<0.0001), (SMD: 1.94, 95% CI: 0.34-3.54, P=0.02), and (SMD: 2.17, 95% CI: 0.68-3.66, P=0.004), respectively]. The highest copeptin levels were noted in septic shock patients. The admission copeptin levels were significantly lower in survivors as compared to nonsurvivors (SMD: -1.73; 95% CI: -2.41 to -1.06, P<0.001). CONCLUSION AND RELEVANCE Copeptin was significantly elevated in sepsis, severe sepsis, and septic shock. Survivors had a significantly lower copeptin during admission. Copeptin offered an excellent predictability to predict 1-month mortality. Measuring the copeptin in sepsis patients can aid treating physicians to foresee patients' prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Eans T. Tuladhar
- Department of Biochemistry, Institute of Medicine, Tribhuvan University
| | | | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
17
|
Mishra S, Grewal J, Wal P, Bhivshet GU, Tripathi AK, Walia V. Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides 2024; 174:171166. [PMID: 38309582 DOI: 10.1016/j.peptides.2024.171166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Jyoti Grewal
- Maharisi Markandeshwar University, Sadopur, India
| | - Pranay Wal
- Pranveer Singh Institute of Pharmacy, Kanpur, India
| | | | | | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
18
|
Shankey NT, Cohen RE. Neural control of reproduction in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:307-321. [PMID: 38247297 DOI: 10.1002/jez.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| |
Collapse
|
19
|
Baska F, Bozó É, Szeleczky Z, Szántó G, Vukics K, Szakács Z, Domány-Kovács K, Kurkó D, Vass E, Thán M, Vastag M, Temesvári K, Lévai S, Halász AS, Szondiné Kordás K, Román V, Greiner I, Bata I. Discovery and Characterization of RGH-122, a Potent, Selective, and Orally Bioavailable V1a Receptor Antagonist. J Med Chem 2024; 67:643-673. [PMID: 38165765 DOI: 10.1021/acs.jmedchem.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The V1a receptor is a major contributor in mediating the social and emotional effects of arginine-vasopressin (AVP); therefore it represents a promising target in the treatment of several neuropsychiatric conditions. The aim of this research was to design and synthesize novel and selective V1a antagonists with improved in vitro and in vivo profiles. Through optimization and detailed SAR studies, we developed low nanomolar antagonists, and further characterizations led to the discovery of the clinical candidate compound 43 (RGH-122). The CNS activity of the compound was determined in a 3-chamber social preference test of autism in which RGH-122 successfully enhanced social preference with the lowest effective dose of 1.5 mg/kg.
Collapse
Affiliation(s)
- Ferenc Baska
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| | - Éva Bozó
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| | | | - Gábor Szántó
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| | | | | | | | - Dalma Kurkó
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| | - Elemér Vass
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Márta Thán
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| | - Mónika Vastag
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| | | | - Sándor Lévai
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| | | | | | - Viktor Román
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| | | | - Imre Bata
- Gedeon Richter Plc, PO Box 27, Budapest H-1475, Hungary
| |
Collapse
|
20
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
21
|
Fulenwider HD, Zhang Y, Ryabinin AE. Characterization of social hierarchy formation and maintenance in same-sex, group-housed male and female C57BL/6 J mice. Horm Behav 2024; 157:105452. [PMID: 37977023 PMCID: PMC10841988 DOI: 10.1016/j.yhbeh.2023.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Social hierarchies are a prevalent feature of all animal groups, and an individual's rank within the group can significantly affect their overall health, typically at the greatest expense of the lowest-ranked individuals, or omegas. These subjects have been shown to exhibit various stress-related phenotypes, such as increased hypothalamic-pituitary axis activity and increased amygdalar corticotropin-releasing factor levels compared to higher-ranked subjects. However, these findings have been primarily characterized in males and in models requiring exhibition of severe aggression. The goals of the current study, therefore, were to characterize the formation and maintenance of social hierarchies using the tube test and palatable liquid competition in same-sex groups of male and female C57BL/6 J mice. We also aimed to examine the effects of tube test-determined social rank on plasma and hypothalamic oxytocin and vasopressin levels, peptides with established roles in social behaviors and the stress response. Lastly, we assessed the effects of environmental enrichment and length of testing on the measures outlined above. Overall, we demonstrated that males and females develop social hierarchies and that these hierarchies can be determined using the tube test. While we were unable to establish a consistent connection between peptide levels and social rank, we observed transient changes in these peptides reflecting complex interactions between social rank, sex, environment, and length of testing. We also found that many male and female omegas began to exhibit passive coping behavior after repeated tube test losses, demonstrating the potential of this assay to serve as a model of chronic, mild psychosocial stress.
Collapse
Affiliation(s)
- Hannah D Fulenwider
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Yangmiao Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
22
|
Wirth U, Raabe K, Kalaba P, Keimpema E, Muttenthaler M, König B. Photoswitchable Probes of Oxytocin and Vasopressin. J Med Chem 2023; 66:14853-14865. [PMID: 37857356 PMCID: PMC10641831 DOI: 10.1021/acs.jmedchem.3c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 10/21/2023]
Abstract
Oxytocin (OT) and vasopressin (VP) are related neuropeptides that regulate many biological processes. In humans, OT and VP act via four G protein-coupled receptors, OTR, V1aR, V1bR, and V2R (VPRs), which are associated with several disorders. To investigate the therapeutic potential of these receptors, particularly in the receptor-dense areas of the brain, molecular probes with a high temporal and spatial resolution are required. Such a spatiotemporal resolution can be achieved by incorporating photochromic moieties into OT and VP. Here, we report the design, synthesis, and (photo)pharmacological characterization of 12 OT- and VP-derived photoprobes using different modification strategies. Despite OT's and VP's sensitivity toward structural changes, we identified two photoprobes with good potency and photoswitch window for investigating the OTR and V1bR. These photoprobes should be of high value for producing cutting-edge photocontrollable peptide probes for the study of dynamic and kinetic receptor activation processes in specific regions of the brain.
Collapse
Affiliation(s)
- Ulrike Wirth
- Institute
of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Konstantin Raabe
- Institute
of Biological Chemistry, Department of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Predrag Kalaba
- Institute
of Biological Chemistry, Department of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Erik Keimpema
- Medical
University of Vienna, Center for Brain Research, Department of Molecular Neurosciences, Spitalgasse 4, 1090 Vienna, Austria
| | - Markus Muttenthaler
- Institute
of Biological Chemistry, Department of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, St. Lucia, 4072, Brisbane, Australia
| | - Burkhard König
- Institute
of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Rigney N, Campos-Lira E, Kirchner MK, Wei W, Belkasim S, Beaumont R, Singh S, de Vries GJ, Petrulis A. A vasopressin circuit that modulates sex-specific social interest and anxiety-like behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.564847. [PMID: 37986987 PMCID: PMC10659331 DOI: 10.1101/2023.11.06.564847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
One of the largest sex differences in brain neurochemistry is the male-biased expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate social brain. Despite the long-standing implication of AVP in social and anxiety-like behavior, the precise circuitry and anatomical substrate underlying its control are still poorly understood. By employing optogenetic manipulation of AVP cells within the bed nucleus of the stria terminalis (BNST), we have unveiled a central role for these cells in promoting social investigation, with a more pronounced role in males relative to females. These cells facilitate male social investigation and anxiety-like behavior through their projections to the lateral septum (LS), an area with the highest density of sexually-dimorphic AVP fibers. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated stimulation-mediated increases in these behaviors. Together, these findings establish a distinct BNST AVP → LS V1aR circuit that modulates sex-specific social interest and anxiety-like behavior.
Collapse
|
24
|
Athota P, Nguyen NM, Schaal VL, Jagadesan S, Guda C, Yelamanchili SV, Pendyala G. Novel RNA-Seq Signatures Post-Methamphetamine and Oxycodone Use in a Model of HIV-Associated Neurocognitive Disorders. Viruses 2023; 15:1948. [PMID: 37766354 PMCID: PMC10534928 DOI: 10.3390/v15091948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In the 21st century, the effects of HIV-associated neurocognitive disorders (HAND) have been significantly reduced in individuals due to the development of antiretroviral therapies (ARTs). However, the growing epidemic of polysubstance use (PSU) has led to concern for the effects of PSU on HIV-seropositive individuals. To effectively treat individuals affected by HAND, it is critical to understand the biological mechanisms affected by PSU, including the identification of novel markers. To fill this important knowledge gap, we used an in vivo HIV-1 Transgenic (HIV-1 Tg) animal model to investigate the effects of the combined use of chronic methamphetamine (METH) and oxycodone (oxy). A RNA-Seq analysis on the striatum-a brain region that is primarily targeted by both HIV and drugs of abuse-identified key differentially expressed markers post-METH and oxy exposure. Furthermore, ClueGO analysis and Ingenuity Pathway Analysis (IPA) revealed crucial molecular and biological functions associated with ATP-activated adenosine receptors, neuropeptide hormone activity, and the oxytocin signaling pathway to be altered between the different treatment groups. The current study further reveals the harmful effects of chronic PSU and HIV infection that can subsequently impact neurological outcomes in polysubstance users with HAND.
Collapse
Affiliation(s)
- Pranavi Athota
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
| | - Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
| | - Sankarasubramanian Jagadesan
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
| | - Chittibabu Guda
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
- National Strategic Research Institute, Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
- National Strategic Research Institute, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, Omaha, NE 68198, USA
| |
Collapse
|
25
|
Warren AM, Grossmann M, Christ-Crain M, Russell N. Syndrome of Inappropriate Antidiuresis: From Pathophysiology to Management. Endocr Rev 2023; 44:819-861. [PMID: 36974717 PMCID: PMC10502587 DOI: 10.1210/endrev/bnad010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
Hyponatremia is the most common electrolyte disorder, affecting more than 15% of patients in the hospital. Syndrome of inappropriate antidiuresis (SIAD) is the most frequent cause of hypotonic hyponatremia, mediated by nonosmotic release of arginine vasopressin (AVP, previously known as antidiuretic hormone), which acts on the renal V2 receptors to promote water retention. There are a variety of underlying causes of SIAD, including malignancy, pulmonary pathology, and central nervous system pathology. In clinical practice, the etiology of hyponatremia is frequently multifactorial and the management approach may need to evolve during treatment of a single episode. It is therefore important to regularly reassess clinical status and biochemistry, while remaining alert to potential underlying etiological factors that may become more apparent during the course of treatment. In the absence of severe symptoms requiring urgent intervention, fluid restriction (FR) is widely endorsed as the first-line treatment for SIAD in current guidelines, but there is considerable controversy regarding second-line therapy in instances where FR is unsuccessful, which occurs in around half of cases. We review the epidemiology, pathophysiology, and differential diagnosis of SIAD, and summarize recent evidence for therapeutic options beyond FR, with a focus on tolvaptan, urea, and sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Annabelle M Warren
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| | - Mathis Grossmann
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel 4031, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Nicholas Russell
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| |
Collapse
|
26
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
27
|
Baxter A, Karaskiewicz CL, Campbell LA, Kinnally EL, Ferrer E, Seelke AHM, Freeman SM, Bales KL. Parental experience is linked with lower vasopressin receptor 1a binding and decreased postpartum androgens in titi monkeys. J Neuroendocrinol 2023; 35:e13304. [PMID: 37267441 PMCID: PMC10521943 DOI: 10.1111/jne.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Parenting induces many neurological and behavioral changes that enable parents to rear offspring. Vasopressin plays an important role in this process via its effects on cognition, affect, and neuroplasticity, and in some cases, via interactions with decreased parental androgens. Thus far, the role of these hormones has been primarily studied in rodents. To address this gap, we explored vasopressin receptors and androgens in titi monkeys, a pair-bonding and biparental primate species. In Studies 1 and 2, we used receptor autoradiography to correlate arginine vasopressin receptor 1a (AVPR1a) binding in the hippocampus (Study 1, n = 10) and the rest of the forebrain (Study 2, n = 23) with parental status, parental experience, parity, infant carrying, and pair affiliation. We found that parents exhibited lower AVPR1a binding than non-parents throughout most brain regions assessed, with especially strong effects in the hippocampus (β = -.61), superior colliculus (β = -.88), lateral septum (β = -.35), and medial preoptic area (β = -.29). The other measures of parental experience also tended to be negatively associated with AVPR1a binding across different brain regions. In Study 3 (n = 44), we compared pre- and postpartum urinary androgen levels in parents and non-parents and found that mothers exhibited a sustained androgen decrease across 3-4 months postpartum (relative to 3 months prepartum; β ranged from -.72 to -.62 for different comparisons). For males, we found that multiparous fathers exhibited decreased androgen levels at 1-2 weeks postpartum (β = -.25) and at 3-4 months postpartum (β = -.40) compared to the prepartum, indicating both immediate and long-term reductions with subsequent paternal experience. Together, the results of this study suggest that decreases in AVPR1a binding and circulating androgens are associated with parental behavior and physiology in titi monkeys.
Collapse
Affiliation(s)
- Alexander Baxter
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Chloe L. Karaskiewicz
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Lindsey A. Campbell
- California National Primate Research Center
- Department of Animal Biology, University of California, Davis
| | - Erin L. Kinnally
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Emilio Ferrer
- Department of Psychology, University of California, Davis
| | - Adele H. M. Seelke
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Sara M. Freeman
- California National Primate Research Center
- Utah State University, Department of Biology
| | - Karen L. Bales
- Department of Psychology, University of California, Davis
- California National Primate Research Center
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis
| |
Collapse
|
28
|
Effects of Group Size on Behavior, Reproduction, and mRNA Expression in Brains of Brandt's Voles. Brain Sci 2023; 13:brainsci13020311. [PMID: 36831854 PMCID: PMC9954483 DOI: 10.3390/brainsci13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
For social animals, a moderate group size is greatly important to maintain their reproductive success. However, the underlying neurobiological mechanism of group size on behavior and reproduction has rarely been investigated. In this study, we examined the effects of group size (1, 2, 4 pairs of adult male and female voles raised per cage) on behavior and reproduction. Meanwhile, the mRNA expression of stress and reproduction response-related genes in male brains was detected. We found that Brandt's voles (Lasiopodomys brandtii) in the large-sized group fight more severely than those in the small-sized group. Meanwhile, male voles were more anxious than females. The average number of embryos and litters per female in the medium-sized group was significantly higher than that of large-sized group. In male voles, stress- or reproduction-response mRNA expressions were more related to final group size or final density due to death caused by fighting. Our results indicated that a moderate group size was beneficial to the reproductive output of Brandt's voles. Our study highlights the combined effects of stress- or reproduction-related gene expression or behavior in regulating the fitness of voles with different group sizes.
Collapse
|
29
|
Rafaqat S, Rafaqat S, Rafaqat S. The Role of Major Biomarkers of Stress in Atrial Fibrillation: A Literature Review. J Innov Card Rhythm Manag 2023; 14:5355-5364. [PMID: 36874560 PMCID: PMC9983621 DOI: 10.19102/icrm.2023.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/19/2022] [Indexed: 03/07/2023] Open
Abstract
Numerous studies have reported that physical or emotional stress can provoke atrial fibrillation (AF) or vice versa, which suggests a potential link between exposure to external stressors and AF. This review article sought to describe in detail the relationship between major stress biomarkers and the pathogenesis of AF and presents up-to-date knowledge on the role of physiological and psychological stress in AF patients. For this purpose, this review article contends that plasma cortisol is linked to a greater risk of AF. A previous study has investigated the association between increased copeptin levels and paroxysmal AF (PAF) in rheumatic mitral stenosis and reported that copeptin concentration was not independently associated with AF duration. Reduced levels of chromogranin were measured in patients with AF. Furthermore, the dynamic activity of antioxidant enzymes, including catalase as well as superoxide dismutase, was examined in PAF patients during a period of <48 h. Malondialdehyde activity, serum high-sensitivity C-reactive protein, and high mobility group box 1 protein concentrations were significantly greater in patients with persistent AF or PAF compared to controls. Pooled data from 13 studies confirmed a significant reduction in the risk of AF related to the administration of vasopressin. Other studies have revealed the mechanism of action of heat shock proteins (HSPs) in preventing AF and also discussed the therapeutic potential of HSP-inducing compounds in clinical AF. More research is required to detect other biomarkers of stress, which have not been reported in the pathogenesis of AF. Further studies are required to identify their mechanism of action and drugs to manage these biomarkers of stress in AF patients, which might help to reduce the prevalence of AF globally.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Simon Rafaqat
- Department of Business, Forman Christian College (A Chartered University), Lahore, Punjab, Pakistan
| |
Collapse
|
30
|
Clarke L, Zyga O, Pineo-Cavanaugh PL, Jeng M, Fischbein NJ, Partap S, Katznelson L, Parker KJ. Socio-behavioral dysfunction in disorders of hypothalamic-pituitary involvement: The potential role of disease-induced oxytocin and vasopressin signaling deficits. Neurosci Biobehav Rev 2022; 140:104770. [PMID: 35803395 PMCID: PMC10999113 DOI: 10.1016/j.neubiorev.2022.104770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Disorders involving hypothalamic and pituitary (HPIT) structures-including craniopharyngioma, Langerhans cell histiocytosis, and intracranial germ cell tumors-can disrupt brain and endocrine function. An area of emerging clinical concern in patients with these disorders is the co-occurring socio-behavioral dysfunction that persists after standard hormone replacement therapy. Although the two neuropeptides most implicated in mammalian social functioning (oxytocin and arginine vasopressin) are of hypothalamic origin, little is known about how disease-induced damage to HPIT structures may disrupt neuropeptide signaling and, in turn, impact patients' socio-behavioral functioning. Here we provide a clinical primer on disorders of HPIT involvement and a review of neuropeptide signaling and socio-behavioral functioning in relevant animal models and patient populations. This collective evidence suggests that neuropeptide signaling disruptions contribute to socio-behavioral deficits experienced by patients with disorders of HPIT involvement. A better understanding of the biological underpinnings of patients' socio-behavioral symptoms is now needed to enable the development of the first targeted pharmacological strategies by which to manage patients' socio-behavioral dysfunction.
Collapse
Affiliation(s)
- Lauren Clarke
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Olena Zyga
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Psalm L Pineo-Cavanaugh
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Michael Jeng
- Department of Pediatrics (Hematology/Oncology Division), Stanford University, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Nancy J Fischbein
- Department of Radiology, Stanford University, 450 Quarry Rd, Suite 5659, Palo Alto, CA 94304, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences (Child Neurology Division), Stanford University, 750 Welch Road, Suite 317, Palo Alto, CA 94304, USA
| | - Laurence Katznelson
- Departments of Neurosurgery and Medicine (Endocrinology Division), Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA; Department of Comparative Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav Sci (Basel) 2022; 12:262. [PMID: 36004833 PMCID: PMC9405013 DOI: 10.3390/bs12080262] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In modern society, there has been a rising trend of depression and anxiety. This trend heavily impacts the population's mental health and thus contributes significantly to morbidity and, in the worst case, to suicides. Modern medicine, with many antidepressants and anxiolytics at hand, is still unable to achieve remission in many patients. The pathophysiology of depression and anxiety is still only marginally understood, which encouraged researchers to focus on neuropeptides, as they are a vast group of signaling molecules in the nervous system. Neuropeptides are involved in the regulation of many physiological functions. Some act as neuromodulators and are often co-released with neurotransmitters that allow for reciprocal communication between the brain and the body. Most studied in the past were the antidepressant and anxiolytic effects of oxytocin, vasopressin or neuropeptide Y and S, or Substance P. However, in recent years, more and more novel neuropeptides have been added to the list, with implications for the research and development of new targets, diagnostic elements, and even therapies to treat anxiety and depressive disorders. In this review, we take a close look at all currently studied neuropeptides, their related pathways, their roles in stress adaptation, and the etiology of anxiety and depression in humans and animal models. We will focus on the latest research and information regarding these associated neuropeptides and thus picture their potential uses in the future.
Collapse
Affiliation(s)
- Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Ivan Grgac
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| |
Collapse
|
32
|
Medina C, Krawczyk MC, Millan J, Blake MG, Boccia MM. Oxytocin-Cholinergic Central Interaction: Implications for Non-Social Memory Formation. Neuroscience 2022; 497:73-85. [PMID: 35752429 DOI: 10.1016/j.neuroscience.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Oxytocin (OT) and vasopressin (AVP) are two closely related neuropeptides implicated in learning and memory processes, anxiety, nociception, addiction, feeding behavior and social information processing. Regarding learning and memory, OT has induced long-lasting impairment in different behaviors, while the opposite was observed with AVP. We have previously evaluated the effect of peripheral administration of OT or its antagonist (AOT) on the inhibitory avoidance response of mice and on the modulation of cholinergic mechanisms. Here, we replicate and validate those results, but this time through central administration of neuropeptides, considering their poor passage through the blood-brain barrier (BBB). When we delivered OT (0.10 ng/mouse) and its antagonist (0.10 ng/mouse) through intracerebroventricular (ICV) injections, the neuropeptide impaired and AOT enhanced the behavioral performance on an inhibitory avoidance response evaluated 48 h after training in a dose-dependent manner. On top of that, we investigated a possible central interaction between OT and the cholinergic system. Administration of anticholinesterases inhibitors with access to the central nervous system (CNS), the activation of muscarinic acetylcholine (Ach) receptors and the increase of evoked ACh release using linopirdine (Lino) (3-10 µg/kg, IP), reversed the impairment of retention performance induced by OT. Besides, either muscarinic or nicotinic antagonists with unrestricted access to the CNS reduced the magnitude of the performance-facilitating effect of AOT's central infusion. We suggest that OT might induce a cholinergic hypofunction state, resulting in an impairment of IA memory formation, a process for which the cholinergic system is crucially necessary.
Collapse
Affiliation(s)
- C Medina
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - J Millan
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M G Blake
- Instituto de Fisiología y Biofísica (IFIBIO UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Taylor JH, Walton JC, McCann KE, Norvelle A, Liu Q, Vander Velden JW, Borland JM, Hart M, Jin C, Huhman KL, Cox DN, Albers HE. CRISPR-Cas9 editing of the arginine-vasopressin V1a receptor produces paradoxical changes in social behavior in Syrian hamsters. Proc Natl Acad Sci U S A 2022; 119:e2121037119. [PMID: 35512092 PMCID: PMC9171636 DOI: 10.1073/pnas.2121037119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Studies from a variety of species indicate that arginine–vasopressin (AVP) and its V1a receptor (Avpr1a) play a critical role in the regulation of a range of social behaviors by their actions in the social behavior neural network. To further investigate the role of AVPRs in social behavior, we performed CRISPR-Cas9–mediated editing at the Avpr1a gene via pronuclear microinjections in Syrian hamsters (Mesocricetus auratus), a species used extensively in behavioral neuroendocrinology because they produce a rich suite of social behaviors. Using this germ-line gene-editing approach, we generated a stable line of hamsters with a frame-shift mutation in the Avpr1a gene resulting in the null expression of functional Avpr1as. Avpr1a knockout (KO) hamsters exhibited a complete lack of Avpr1a-specific autoradiographic binding throughout the brain, behavioral insensitivity to centrally administered AVP, and no pressor response to a peripherally injected Avpr1a-specific agonist, thus confirming the absence of functional Avpr1as in the brain and periphery. Contradictory to expectations, Avpr1a KO hamsters exhibited substantially higher levels of conspecific social communication (i.e., odor-stimulated flank marking) than their wild-type (WT) littermates. Furthermore, sex differences in aggression were absent, as both male and female KOs exhibited more aggression toward same-sex conspecifics than did their WT littermates. Taken together, these data emphasize the importance of comparative studies employing gene-editing approaches and suggest the startling possibility that Avpr1a-specific modulation of the social behavior neural network may be more inhibitory than permissive.
Collapse
Affiliation(s)
- Jack H. Taylor
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - James C. Walton
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Katharine E. McCann
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Alisa Norvelle
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Qian Liu
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, GA 30303
| | - Jacob W. Vander Velden
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Johnathan M. Borland
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Michael Hart
- Institute for Biomedical Science, Georgia State University, Atlanta, GA 30303
| | - Chengliu Jin
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, GA 30303
| | - Kim L. Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - H. Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
34
|
Crespi B, Procyshyn T, Mokkonen M. Natura Non Facit Saltus: The Adaptive Significance of Arginine Vasopressin in Human Affect, Cognition, and Behavior. Front Behav Neurosci 2022; 16:814230. [PMID: 35586834 PMCID: PMC9108674 DOI: 10.3389/fnbeh.2022.814230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Hormones coordinate internal bodily systems with cognition, affect, and behavior, and thereby influence aspects of social interactions including cooperation, competition, isolation, and loneliness. The adaptive significance and contextuality of oxytocin (OXT) and testosterone (T) have been well-studied, but a unified theory and evolutionary framework for understanding the adaptive functions of arginine vasopressin (AVP) remain undeveloped. We propose and evaluate the hypothesis that AVP mediates adaptive variation in the presence and strength of social and sociosexual salience, attention and behavior specifically in situations that involve combinations of cooperation with conflict or competition. This hypothesis can help to explain the ancestral, original functions of AVP-like peptides, and their continuity with the current roles of AVP, for humans, in male-male competition, male-male reciprocity, male-to-female pair bonding, female-female interactions, social integration, and social attention and anxiety. In this context, social isolation and loneliness may be mediated by reduced abilities or interests in navigation of social opportunities and situations, due in part to low AVP levels or reactivity, and in part to reductions in levels of OXT-mediated social reward.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Tanya Procyshyn
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mika Mokkonen
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Biology, Kwantlen Polytechnic University, Surrey, BC, Canada
| |
Collapse
|
35
|
Arakawa H, Higuchi Y. Exocrine scent marking: Coordinative role of arginine vasopressin in the systemic regulation of social signaling behaviors. Neurosci Biobehav Rev 2022; 136:104597. [PMID: 35248677 DOI: 10.1016/j.neubiorev.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Arginine vasopressin (AVP) is a neurohypophysial hormone that coordinatively regulates central socio-emotional behavior and peripheral control of antidiuretic fluid homeostasis. Most mammals, including rodents, utilize exocrine or urine-contained scent marking as a social signaling tool that facilitates social adaptation. The exocrine scent marking behavior is postulated to fine-tune sensory and cognitive abilities to recognize key social features via exocrine/urinary olfactory cues and subsequently control exocrine deposition or urinary marking through the mediation of osmotic fluid balance. AVP is implicated as a major player in controlling both recognition and signaling responses. This review provides constructive hypotheses on the coordinative processes of the AVP neurohypophysial circuits in the systemic regulations of fluid control and social-communicative behavior, via the expression of exocrine scent marking, and further emphasizes a potential role of AVP in a common mechanism underlying social communication in rodents.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan.
| | - Yuki Higuchi
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| |
Collapse
|
36
|
Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110478. [PMID: 34801611 DOI: 10.1016/j.pnpbp.2021.110478] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022]
Abstract
Depression is one of the most prevalent forms of mental disorders and is the most common cause of disability in the Western world. Besides, the harmful effects of stress-related mood disorders on the patients themselves, they challenge the health care system with enormous social and economic impacts. Due to the high proportion of patients not responding to existing drugs, finding new treatment strategies has become an important topic in neurobiology, and there is much evidence that neuropeptides are not only involved in the physiology of stress but may also be clinically important. Based on preclinical trial data, new neuropharmaceutical candidates may target neuropeptides and their receptors and are expected to be essential and valuable tools in the treatment of psychiatric disorders. In the current article, we have summarized data obtained from animal models of depressive disorder and transgenic mouse models. We also focus on previously published research data of clinical studies on corticotropin-releasing hormone (CRH), galanin (GAL), neuropeptide Y (NPY), neuropeptide S (NPS), Oxytocin (OXT), vasopressin (VP), cholecystokinin (CCK), and melanin-concentrating hormone (MCH) stress research fields.
Collapse
|
37
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
38
|
Aspesi D, Choleris E. Neuroendocrine underpinning of social recognition in males and females. J Neuroendocrinol 2022; 34:e13070. [PMID: 34927288 DOI: 10.1111/jne.13070] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022]
Abstract
Social recognition is an essential skill for the expression of appropriate behaviors towards conspecifics in most social species. Several studies point to oxytocin (OT) and arginine vasopressin (AVP) as key mediators of social recognition in males and females. However, sex differences in social cognitive behaviors highlight an important interplay between OT, AVP and the sex steroids. Estrogens facilitate social recognition by regulating OT action in the hypothalamus and that of OT receptor in the medial amygdala. The role of OT in these brain regions appears to be essential for social recognition in both males and females. Conversely, social recognition in male rats and mice is more dependent on AVP release in the lateral septum than in females. The AVP system comprises a series of highly sexually dimorphic brain nuclei, including the bed nucleus of the stria terminalis, the amygdala and the lateral septum. Various studies suggest that testosterone and its metabolites, including estradiol, influence social recognition in males by modulating the activity of the AVP at V1a receptor. Intriguingly, both estrogens and androgens can affect social recognition very rapidly, through non-genomic mechanisms. In addition, the androgen metabolites, namely 3α-diol and 3β-diol, may also have an impact on social behaviors either by interacting with the estrogen receptors or through other mechanisms. Overall, the regulation of OT and AVP by sex steroids fine tunes social recognition and the behaviors that depend upon it (e.g., social bond, hierarchical organization, aggression) in a sex-dependent manner. Elucidating the sex-dependent interaction between sex steroids and neuroendocrine systems is essential for understanding sex differences in the normal and abnormal expression of social behaviors.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
39
|
Yao S, Kendrick KM. Effects of Intranasal Administration of Oxytocin and Vasopressin on Social Cognition and Potential Routes and Mechanisms of Action. Pharmaceutics 2022; 14:323. [PMID: 35214056 PMCID: PMC8874551 DOI: 10.3390/pharmaceutics14020323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Acute and chronic administration of intranasal oxytocin and vasopressin have been extensively utilized in both animal models and human preclinical and clinical studies over the last few decades to modulate various aspects of social cognition and their underlying neural mechanisms, although effects are not always consistent. The use of an intranasal route of administration is largely driven by evidence that it permits neuropeptides to penetrate directly into the brain by circumventing the blood-brain barrier, which has been considered relatively impermeable to them. However, this interpretation has been the subject of considerable debate. In this review, we will focus on research in both animal models and humans, which investigates the different potential routes via which these intranasally administered neuropeptides may be producing their various effects on social cognition. We will also consider the contribution of different methods of intranasal application and additionally the importance of dose magnitude and frequency for influencing G protein-coupled receptor signaling and subsequent functional outcomes. Overall, we conclude that while some functional effects of intranasal oxytocin and vasopressin in the domain of social cognition may result from direct penetration into the brain following intranasal administration, others may be contributed by the neuropeptides either entering the peripheral circulation and crossing the blood-brain barrier and/or producing vagal stimulation via peripheral receptors. Furthermore, to complicate matters, functional effects via these routes may differ, and both dose magnitude and frequency can produce very different functional outcomes and therefore need to be optimized to produce desired effects.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Keith Maurice Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
40
|
Neves CN, Pillay N. Sociability, but not spatial memory, is correlated with regional brain volume variation in the striped mouse Rhabdomys spp. Behav Brain Res 2022; 417:113567. [PMID: 34508770 DOI: 10.1016/j.bbr.2021.113567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/02/2022]
Abstract
Local environmental conditions associated with different geographic areas may elicit variations in behavioural responses in animals, leading to concomitant differences in functional brain region volumes. We investigated the behavioural correlates of hippocampus and amygdala volumes in three sister taxa of the murid rodent genus Rhabdomys, occurring in different environments. We used a Barnes maze to test spatial memory, dyadic encounters to test social behaviour, and histological brain sections to calculate hippocampus and amygdala volumes. Arid-occurring R. pumilio made fewer errors and had shorter latencies in locating the escape tunnel compared to moist grassland-occurring R. d. dilectus and R. d. chakae in two probe trials, 48 and 96 h after the last learning trial. R. pumilio was more amicable than the R. dilectus subspecies in intra-specific dyadic encounters. R. pumilio had larger hippocampus and amygdala volumes than the other species. Smaller amygdala volumes were correlated with longer latencies in females for probe trial 1, but males showed similar latencies regardless of taxon. Higher amicability scores were correlated with larger amygdala volumes in all taxa. Higher amicability scores were correlated with larger hippocampus volumes in R. pumilio and R. d. chakae but smaller hippocampus volumes in R. d. dilectus. Correlative relationships between spatial memory and amygdala volume appeared 48 h, but not 96 h, after the last learning trial. Local environmental conditions may influence spatial navigation, but social correlates drive regional brain size within cryptic striped mouse taxa.
Collapse
Affiliation(s)
- Candice Nikita Neves
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, 1 Jan Smuts Ave, Private Bag 3, Johannesburg 2050, South Africa
| | - Neville Pillay
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, 1 Jan Smuts Ave, Private Bag 3, Johannesburg 2050, South Africa.
| |
Collapse
|
41
|
Jiang S, Wang YQ, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. J Inflamm Res 2022; 15:363-379. [PMID: 35079222 PMCID: PMC8776728 DOI: 10.2147/jir.s345108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background As a severe complication of sepsis, sepsis-associated encephalopathy (SAE) usually manifests as impaired learning and memory ability in survivors. Previous studies have reported that environmental enrichment (EE) can increase the learning and memory ability in different brain injury models. However, there has been no research on the possible positive effect of EE on SAE. Aim The present study aimed to test the effect of EE on SAE-induced impairment of learning and memory and its related mechanisms. Methods A Morris water maze test (MWM) was used to evaluate the learning and memory ability of SAE rats that received EE housing or not. The expression of vasopressin (VP) was assessed using immunofluorescence microscopy and enzyme-linked immunosorbent assays (ELISAs). The synthesis of VP in the supraoptic nucleus (SON) was determined using quantitative real-time reverse transcription-PCR analysis. Moreover, inflammatory markers and brain-derived neurotrophic factor (BDNF) were detected using ELISA. Results The results showed that SAE induced a decreased learning and memory ability, while EE reversed this impairment. EE also enhanced the synthesis and secretion of VP in the SON. Blocking the action of VP in the hippocampus interrupted the EE-induced amelioration of learning and memory impairment. Moreover, EE induced changes to the levels of BDNF and cytokines in the hippocampus and these effects were mediated by VP binding to the VP receptor 1a. Conclusion Our findings demonstrated that the enhanced synthesis and secretion of VP in the SON are a key determinant responsible for EE-induced alleviation of learning and memory deficits caused by SAE.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Correspondence: Shan Jiang, Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, No. 2 Ying Hua Yuan East Street, Beijing, 100029, People’s Republic of China, Tel +86 10 84205288, Fax +86 10 64217749, Email
| | - Yong-Qiang Wang
- Department of Ophthalmology, the Sunshine Union Hospital, Weifang, Shandong, 261071, People’s Republic of China
| | - Yifei Tang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Dan Guo
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
42
|
Suchak V, Sathyanath S, Kakunje A. Neuropeptides in psychiatry. ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2022. [DOI: 10.4103/amhs.amhs_91_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Tanaka K, Besson V, Rivagorda M, Oury F, Marazzi G, Sassoon DA. Paternally expressed gene 3 (Pw1/Peg3) promotes sexual dimorphism in metabolism and behavior. PLoS Genet 2022; 18:e1010003. [PMID: 35025875 PMCID: PMC8791484 DOI: 10.1371/journal.pgen.1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/26/2022] [Accepted: 12/20/2021] [Indexed: 01/06/2023] Open
Abstract
The paternally expressed gene 3 (Pw1/Peg3) is a mammalian-specific parentally imprinted gene expressed in stem/progenitor cells of the brain and endocrine tissues. Here, we compared phenotypic characteristics in Pw1/Peg3 deficient male and female mice. Our findings indicate that Pw1/Peg3 is a key player for the determination of sexual dimorphism in metabolism and behavior. Mice carrying a paternally inherited Pw1/Peg3 mutant allele manifested postnatal deficits in GH/IGF dependent growth before weaning, sex steroid dependent masculinization during puberty, and insulin dependent fat accumulation in adulthood. As a result, Pw1/Peg3 deficient mice develop a sex-dependent global shift of body metabolism towards accelerated adiposity, diabetic-like insulin resistance, and fatty liver. Furthermore, Pw1/Peg3 deficient males displayed reduced social dominance and competitiveness concomitant with alterations in the vasopressinergic architecture in the brain. This study demonstrates that Pw1/Peg3 provides an epigenetic context that promotes male-specific characteristics through sex steroid pathways during postnatal development. Pw1/Peg3 is under parental specific epigenetic regulation. We propose that Pw1/Peg3 confers a selective advantage in mammals by regulating sexual dimorphism. To address this question, we examined the consequences of Pw1/Peg3 loss of function in mice in an age- and sex-dependent context and found that Pw1/Peg3 mutants display reduced sexual dimorphism in growth, metabolism and behaviors. Our findings support the intralocus sexual conflict model of genomic imprinting where it contributes in sexual differentiation. Furthermore, our observations provide a unifying role of sex steroid signaling as a common property of Pw1/Peg3 expressing stem/progenitor cells and differentiated endocrine cells, both of which remain proliferative in response to gonadal hormones in adult life.
Collapse
Affiliation(s)
- Karo Tanaka
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Vanessa Besson
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Manon Rivagorda
- Hormonal Regulation of Brain Development and Functions, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Franck Oury
- Hormonal Regulation of Brain Development and Functions, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - David A. Sassoon
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
- * E-mail:
| |
Collapse
|
44
|
Abstract
The oxytocin receptor plays a significant role in peripheral regulation of parturition and lactation. Given this important role, multiple drug discovery programs have been conducted to develop agonists and antagonists for peripheral activity. The role of the oxytocin receptor in the central nervous system is also significant, promoting social interaction, trust, and empathy in humans. As such, molecules that can access the central nervous system and target the oxytocin receptor are of significant interest. Due to the role of the oxytocin receptor in regulating social function and psychological well-being, agonists of this receptor have considerable promise for the treatment of numerous neuropsychiatric conditions. The poor pharmacokinetic properties and blood-brain barrier penetration of peptide-based molecules means nonpeptide compounds have more commonly been the focus for central nervous system activity. This chapter aims to summarize the current standing of peptide and nonpeptide drug discovery for antagonists and agonists of the oxytocin receptor and focusses on centrally active nonpeptidic agonists.
Collapse
|
45
|
A Combined Administration of Testosterone and Arginine Vasopressin Affects Aggressive Behavior in Males. Brain Sci 2021; 11:brainsci11121623. [PMID: 34942928 PMCID: PMC8699569 DOI: 10.3390/brainsci11121623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Aggressive behavior is modulated by many factors, including personality and cognition, as well as endocrine and neural changes. To study the potential effects on the reaction to provocation, which was realized by an ostensible opponent subtracting money from the participant, we administered testosterone (T) and arginine vasopressin (AVP) or a respective placebo (PL). Forty males underwent a functional magnetic resonance imaging session while performing a provocation paradigm. We investigated differential hormone effects and the potential influence of Machiavellian traits on punishment choices (monetary subtractions by the participant) in the paradigm. Participants in the T/AVP group subtracted more money when they were not provoked but showed increased activation in the inferior frontal gyrus and inferior parietal lobule during feedback compared to PL. Higher Machiavellian traits significantly increased punishing behavior independent of provocation only in this group. The pilot study shows that T/AVP affects neural and behavioral responses during a provocation paradigm while personality characteristics, such as Machiavellian trait patterns, specifically interact with hormonal influences (T/AVP) and their effects on behavior.
Collapse
|
46
|
Lago TR, Brownstein MJ, Page E, Beydler E, Manbeck A, Beale A, Roberts C, Balderston N, Damiano E, Pineles SL, Simon N, Ernst M, Grillon C. The novel vasopressin receptor (V1aR) antagonist SRX246 reduces anxiety in an experimental model in humans: a randomized proof-of-concept study. Psychopharmacology (Berl) 2021; 238:2393-2403. [PMID: 33970290 PMCID: PMC8376758 DOI: 10.1007/s00213-021-05861-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE Arginine vasopressin (AVP) is a neuropeptide that modulates both physiological and emotional responses to threat. Until recently, drugs that target vasopressin receptors (V1a) in the human central nervous system were unavailable. The development of a novel V1a receptor antagonist, SRX246, permits the experimental validation of vasopressin's role in the regulation of anxiety and fear in humans. OBJECTIVES Here, we examined the effects of SRX246 in a proof-of-concept translational paradigm of fear (phasic response to imminent threat) and anxiety (prolonged response to potential threat). METHODS Healthy volunteers received both SRX246 and placebo in a randomized, double-blind, counter-balanced order separated by a 5-7-day wash-out period. Threat consisted of unpleasant electric shocks. The "NPU" threat test probed startle reactivity during predictable threat (i.e., fear-potentiated startle) and unpredictable threat (i.e., anxiety-potentiated startle). RESULTS As predicted, SRX246 decreased anxiety-potentiated startle independent of fear-potentiated startle. CONCLUSIONS As anxiety-potentiated startle is elevated in anxiety and trauma-associated disorders and decreased by traditional anxiolytics such as SSRIs and benzodiazepines, the V1a receptor is a promising novel treatment target.
Collapse
Affiliation(s)
- Tiffany R Lago
- National Institute of Mental Health, Bethesda, MD, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- Boston University School of Medicine, Boston, MA, USA.
| | | | - Emily Page
- National Institute of Mental Health, Bethesda, MD, USA
| | - Emily Beydler
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Alexis Beale
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Nicholas Balderston
- National Institute of Mental Health, Bethesda, MD, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Eve Damiano
- Azevan Pharmaceuticals Inc, Bethlehem, PA, USA
| | - Suzanne L Pineles
- Boston University School of Medicine, Boston, MA, USA
- National Center, PTSD At VA Boston Healthcare System, Boston, MA, USA
| | - Neal Simon
- Azevan Pharmaceuticals Inc, Bethlehem, PA, USA
- Lehigh University, Bethelhem, PA, USA
| | - Monique Ernst
- National Institute of Mental Health, Bethesda, MD, USA
| | | |
Collapse
|
47
|
Lv J, Hua SJ, Wu XF, Ding YJ, Zhang CL, Sun FJ. REMOVED: Antidiuretic hormone associates with the cognitive memory in small-cell lung cancer patients. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2021. [DOI: 10.1016/j.crbeha.2021.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Vollebregt O, Koyama E, Zai CC, Shaikh SA, Lisoway AJ, Kennedy JL, Beitchman JH. Evidence for association of vasopressin receptor 1A promoter region repeat with childhood onset aggression. J Psychiatr Res 2021; 140:522-528. [PMID: 34161896 DOI: 10.1016/j.jpsychires.2021.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/19/2021] [Accepted: 05/21/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Childhood onset aggression can cause major suffering to affected families and is associated with many negative outcomes in the child's later life, including poor academic performance, adolescent delinquency, drug abuse, depression and antisocial personality disorder. Currently available prevention and intervention strategies have limited efficacy, but a better understanding of underlying genetic and neurobiological factors can lead to more effective prevention and treatment strategies, through genetic screening programs and novel therapies. METHOD This study examined the RS1 (n = 299 aggression, n = 192 controls) and RS3 (n = 291 aggression, n = 189 controls) microsatellite repeats within the promoter region of the vasopressin receptor 1A gene (AVPR1A) and their association with extreme childhood aggression, as assessed by the Child Behavior Checklist (CBCL), as well as the Teacher Report Form (TRF) and Youth Self Report (YSR). Binary logistic regression was used to model the relationship between microsatellite length and childhood aggression. Age and sex were used as covariates. RESULTS Logistic regression revealed a nominally significant association between one specific RS3 repeat and non-aggressive status. No association was found for any of the RS1 repeats. In a separate model, grouping repeats into short and long, carriers of long RS3 repeats were nominally significantly associated with non-aggressive status. CONCLUSIONS These findings suggest a role for AVPR1A and its RS3 microsatellite in extreme childhood aggression and could lead to a better understanding of the biological pathways of aggressive behavior. However, independent replication and further research into the functionality of studied genetic variants is required.
Collapse
Affiliation(s)
- Olav Vollebregt
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Faculty of Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Emiko Koyama
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sajid A Shaikh
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Amanda J Lisoway
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Joseph H Beitchman
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Hu B, Boyle CA, Lei S. Roles of PLCβ, PIP 2 , and GIRK channels in arginine vasopressin-elicited excitation of CA1 pyramidal neurons. J Cell Physiol 2021; 237:660-674. [PMID: 34287874 DOI: 10.1002/jcp.30535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Arginine vasopressin (AVP) is a hormone exerting vasoconstrictive and antidiuretic action in the periphery and serves as a neuromodulator in the brain. Although the hippocampus receives vasopressinergic innervation and AVP has been shown to facilitate the excitability of CA1 pyramidal neurons, the involved ionic and signaling mechanisms have not been determined. Here we found that AVP excited CA1 pyramidal neurons by activation of V1a receptors. Functions of G proteins and phospholipase Cβ (PLCβ) were required for AVP-elicited excitation of CA1 pyramidal neurons, whereas intracellular Ca2+ release and protein kinase C were unnecessary. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) was required for AVP-elicited excitation of CA1 pyramidal neurons. AVP augmented the input resistance and increased the time constants of CA1 pyramidal neurons. AVP induced an inward current in K+ -containing intracellular solution, whereas no inward currents were observed with Cs+ -containing intracellular solution. AVP-sensitive currents showed inward rectification with a reversal potential close to the K+ reversal potential, suggesting the involvement of inwardly rectifying K+ channels. AVP-induced currents were sensitive to the micromolar concentration of Ba2+ and tertiapin-Q, whereas application of ML 133, a selective Kir2 channel blocker had no effects, suggesting that AVP excited CA1 pyramidal neurons by depressing G protein-gated inwardly rectifying K+ channels. Activation of V1a receptors in the CA1 region facilitated glutamatergic transmission onto subicular pyramidal neurons, suggesting that AVP modulates network activity in the brain. Our results may provide one of the cellular and molecular mechanisms to explain the in vivo physiological functions of AVP.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
50
|
Szeleczky Z, Szakács Z, Bozó É, Baska F, Vukics K, Lévai S, Temesvári K, Vass E, Béni Z, Krámos B, Magdó I, Szántay C, Kóti J, Domány-Kovács K, Greiner I, Bata I. Synthesis and Characterization of New V 1A Antagonist Compounds: The Separation of Four Atropisomeric Stereoisomers. J Med Chem 2021; 64:10445-10468. [PMID: 34255509 DOI: 10.1021/acs.jmedchem.1c00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new class of selective vasopressin receptor 1A (V1A) antagonists was identified, where "methyl-scan" was performed around the benzene ring of the 5-hydroxy-triazolobenzazepine core. This led to the synthesis of two 10-methyl derivatives, each possessing a chiral axis and a stereogenic center. The four atropisomeric stereoisomers (involving two enantiomer pairs and atropisomeric diastereomers) could be successfully isolated and spectroscopically characterized. According to the in vitro pharmacological profiles of the compounds, the human V1A receptor has a strong preference toward the isomers having an aR axial chirality, the most active isomer being the aR,5S isomer. Furthermore, the structure-activity relationships obtained for the isomers and for the newly synthesized analogues could be tentatively explained by an in silico study.
Collapse
Affiliation(s)
- Zsolt Szeleczky
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Zoltán Szakács
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Éva Bozó
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Ferenc Baska
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | | | - Sándor Lévai
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | | | - Elemér Vass
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Zoltán Béni
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Balázs Krámos
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Ildikó Magdó
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Csaba Szántay
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - János Kóti
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | | | - István Greiner
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Imre Bata
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| |
Collapse
|