1
|
Luo D, Tan L, Huang X, Lai M, Shi H, Li J, Chen X, Xu J, Guo W. Functions of nonsuicidal self-injury and repeated nonsuicidal self-injury among adolescents: A moderating role of addictive features. J Psychiatr Res 2024; 175:251-258. [PMID: 38749299 DOI: 10.1016/j.jpsychires.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/27/2023] [Accepted: 04/25/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE The high prevalence and addictive features of nonsuicidal self-injury (NSSI) in adolescents have been documented, but the role of addictive features in the process from NSSI functions to behaviour remains unclear. The major aim of this study was to investigate the effect of addictive features on NSSI functions and the severity of repeated NSSI. METHODS A total of 10,781 students from primary and middle schools in Chengdu and Karamay were invited to participate in the online cross-sectional survey, and 10,501 completed the survey. Two self-report questionnaires, the Ottawa Self-Injury Inventory (OSI) and the Adolescent Self-Harm Scale (ASHS), were used to collect data from all participants. RESULTS Among the students, 23.45% and 6.64% reported having engaged in NSSI at least once or at least five times in the past year. Being a girl, being an only child, and being in a single-parent family were significantly associated with more severe NSSI. Addictive features have high value for predicting repeated NSSI. In addition to their significant independent/direct additive effects, addictive features mediated and moderated the relationship between NSSI functions and increased severity of NSSI in adolescents. DISCUSSION AND CONCLUSIONS The findings suggest that addictive features play a critical role in the development of repeated NSSI in adolescents, which indicates that addiction models may partially explain the mechanism underlying increased severity of NSSI. This may enhance understanding of the reasons for repeated NSSI and inform interventions for repeated NSSI among adolescents.
Collapse
Affiliation(s)
- Dan Luo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Tan
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Huang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingfeng Lai
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Shi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Jiajun Xu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Wanjun Guo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Ethridge SB, Smith MA. Estradiol and Mu opioid-mediated reward: The role of estrogen receptors in opioid use. ADDICTION NEUROSCIENCE 2023; 9:100139. [PMID: 38155959 PMCID: PMC10753849 DOI: 10.1016/j.addicn.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Opioid use and opioid use disorder are characterized by sex and gender differences, and some of these differences may be mediated by differences in the hormonal milieu within and across individuals. This review focuses on the role of ovarian hormones, and particularly estradiol, on the endogenous mu opioid receptor system. There is an abundance of data indicating that estradiol influences the activity of endogenous mu opioid peptides, the activation of mu opioid receptors, and the internalization and desensitization of mu opioid receptors. These effects have functional consequences on behaviors mediated by endogenous mu opioid receptor activity and on sensitivity to mu opioid agonists and antagonists. Recent behavioral data suggest these consequences extend to mu opioid reward, and preclinical studies report that estradiol decreases self-administration of mu opioid receptor agonists across a range of experimental conditions. Data collected in human laboratory studies suggest that estradiol may have functionally similar effects in clinical populations, and thus estrogen receptors may be a potential target in the development of novel therapeutics. This review summarizes data from cellular assays to clinical trials to explore how estradiol influences mu opioid receptor activity, as well as potential ways in which estrogen receptors may be targeted to address the problems of opioid use.
Collapse
Affiliation(s)
- Sarah B. Ethridge
- Department of Psychology, Program in Neuroscience, Davidson College, Davidson, NC, USA
| | - Mark A. Smith
- Department of Psychology, Program in Neuroscience, Davidson College, Davidson, NC, USA
| |
Collapse
|
3
|
Zhu Y, Xie SZ, Peng AB, Yu XD, Li CY, Fu JY, Shen CJ, Cao SX, Zhang Y, Chen J, Li XM. Distinct Circuits From the Central Lateral Amygdala to the Ventral Part of the Bed Nucleus of Stria Terminalis Regulate Different Fear Memory. Biol Psychiatry 2023:S0006-3223(23)01553-6. [PMID: 37678543 DOI: 10.1016/j.biopsych.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The ability to differentiate stimuli that predict fear is critical for survival; however, the underlying molecular and circuit mechanisms remain poorly understood. METHODS We combined transgenic mice, in vivo transsynaptic circuit-dissecting anatomical approaches, optogenetics, pharmacological methods, and electrophysiological recording to investigate the involvement of specific extended amygdala circuits in different fear memory. RESULTS We identified the projections from central lateral amygdala (CeL) protein kinase C δ (PKCδ)-positive neurons and somatostatin (SST)-positive neurons to GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons in the ventral part of the bed nucleus of stria terminalis (vBNST). Prolonged optogenetic activation or inhibition of the PKCδCeL-vBNST pathway specifically reduced context fear memory, whereas the SSTCeL-vBNST pathway mainly reduced tone fear memory. Intriguingly, optogenetic manipulation of vBNST neurons that received the projection from PKCδCeL neurons exerted bidirectional regulation of context fear, whereas manipulation of vBNST neurons that received the projection from SSTCeL neurons could bidirectionally regulate both context and tone fear memory. We subsequently demonstrated the presence of δ and κ opioid receptor protein expression within the CeL-vBNST circuits, potentially accounting for the discrepancy between prolonged activation of GABAergic circuits and inhibition of downstream vBNST neurons. Finally, administration of an opioid receptor antagonist cocktail on the PKCδCeL-vBNST or SSTCeL-vBNST pathway successfully restored context or tone fear memory reduction induced by prolonged activation of the circuits. CONCLUSIONS Together, these findings establish a functional role for distinct CeL-vBNST circuits in the differential regulation and appropriate maintenance of fear.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shi-Ze Xie
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ai-Bing Peng
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Dan Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Yu Fu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Jie Shen
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shu-Xia Cao
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiadong Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
DaSilva AF, Kim DJ, Lim M, Nascimento TD, Scott PJH, Smith YR, Koeppe RA, Zubieta JK, Kaciroti N. Effect of High-Definition Transcranial Direct Current Stimulation on Headache Severity and Central µ-Opioid Receptor Availability in Episodic Migraine. J Pain Res 2023; 16:2509-2523. [PMID: 37497372 PMCID: PMC10368121 DOI: 10.2147/jpr.s407738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Objective The current understanding of utilizing HD-tDCS as a targeted approach to improve headache attacks and modulate endogenous opioid systems in episodic migraine is relatively limited. This study aimed to determine whether high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) can improve clinical outcomes and endogenous µ-opioid receptor (µOR) availability for episodic migraineurs. Methods In a randomized, double-blind, and sham-controlled trial, 25 patients completed 10-daily 20-min M1 HD-tDCS, repeated Positron Emission Tomography (PET) scans with a selective agonist for µOR. Twelve age- and sex-matched healthy controls participated in the baseline PET/MRI scan without neuromodulation. The primary endpoints were moderate-to-severe (M/S) headache days and responder rate (≥50% reduction on M/S headache days from baseline), and secondary endpoints included the presence of M/S headache intensity and the use of rescue medication over 1-month after treatment. Results In a one-month follow-up, at initial analysis, both the active and sham groups exhibited no significant differences in their primary outcomes (M/S headache days and responder rates). Similarly, secondary outcomes (M/S headache intensity and the usage of rescue medication) also revealed no significant differences between the two groups. However, subsequent analyses showed that active M1 HD-tDCS, compared to sham, resulted in a more beneficial response predominantly in higher-frequency individuals (>3 attacks/month), as demonstrated by the interaction between treatment indicator and baseline frequency of migraine attacks on the primary outcomes. These favorable outcomes were also confirmed for the secondary endpoints in higher-frequency patients. Active treatment also resulted in increased µOR concentration compared to sham in the limbic and descending pain modulatory pathway. Our exploratory mediation analysis suggests that the observed clinical efficacy of HD-tDCS in patients with higher-frequency conditions might be potentially mediated through an increase in µOR availability. Conclusion The 10-daily M1 HD-tDCS can improve clinical outcomes in episodic migraineurs with a higher baseline frequency of migraine attacks (>3 attacks/month). This improvement may be, in part, facilitated by the increase in the endogenous µOR availability. Clinical Trial Registration www.ClinicalTrials.gov, identifier - NCT02964741.
Collapse
Affiliation(s)
- Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, Mass General Brigham, Newton-Wellesley Hospital, Newton, MA, USA
| | - Niko Kaciroti
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Gein SV, Bragina NA, Sharav'eva IL. Effect of Stress on the Production of Antibodies and IL-2, IL-4, and IFNγ Depending on the Time of Antigen Administration and Evaluation of the Role of Opioid Receptors. Bull Exp Biol Med 2023; 175:321-326. [PMID: 37563536 DOI: 10.1007/s10517-023-05860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 08/12/2023]
Abstract
The time of stress exposure relative to the moment of immunization affects the direction of the immunoregulatory effect of stress. In case of stress exposure preceding immunization, rotation stress stimulated the production of antibodies, while immobilization depressed it. After antigen injection, these types of stress had no significant effect on the formation of antibody-producing cells. Acute cold stress did not affect the number of antibody-forming cells before immunization, but stimulated the humoral response after it. At the same time, the effect of stress on the production of antibodies was leveled by blockade of opioid receptors with naloxone for rotation and immobilization, but was not canceled for acute cold stress. A similar pattern was revealed when analyzing the effect of stress exposure on cytokine production. Cold stress before antigen administration to mice had almost no effect on the production of IL-2, IL-4, IFNγ, while rotational and immobilization stress naloxone-dependently modulated the synthesis of IL-2 and IL-4. On the contrary, in animals subjected to stress after antigen administration, only cold stress significantly modulated the production of IL-2 and IL-4.
Collapse
Affiliation(s)
- S V Gein
- Institute of Ecology and Genetics of Microorganisms - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia.
- Perm State National Research University, Perm, Russia.
| | - N A Bragina
- Institute of Ecology and Genetics of Microorganisms - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
- Perm State National Research University, Perm, Russia
| | - I L Sharav'eva
- Institute of Ecology and Genetics of Microorganisms - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
6
|
Nascimento TD, Kim DJ, Chrabol C, Lim M, Hu XS, DaSilva AF. Management of Episodic Migraine with Neuromodulation: A Case Report. Dent Clin North Am 2023; 67:157-171. [PMID: 36404076 DOI: 10.1016/j.cden.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Migraine is a highly prevalent neurovascular disorder that affects approximately 15% of the global population. Migraine attacks are a complex cascade of neurologic events that lead to debilitating symptoms and are often associated with inhibitory behavior. The constellation of severe signs and symptoms during the ictal phase (headache attack) makes migraine the third most common cause of disability globally in both sexes under the age of 50. Misuse of pharmaceuticals, such as opiates, can lead to devastating outcomes and exacerbation of pain and headache attacks. A safe and well-tolerated non-pharmacological research approach is high-definition transcranial direct current stimulation over the M1.
Collapse
Affiliation(s)
- Thiago D Nascimento
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Dajung J Kim
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Conrad Chrabol
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Manyoel Lim
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Xiao-Su Hu
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Alexandre F DaSilva
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Uncariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors. Bioorg Chem 2022; 130:106257. [DOI: 10.1016/j.bioorg.2022.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
8
|
Saanijoki T, Kantonen T, Pekkarinen L, Kalliokoski K, Hirvonen J, Malén T, Tuominen L, Tuulari JJ, Arponen E, Nuutila P, Nummenmaa L. Aerobic Fitness Is Associated with Cerebral μ-Opioid Receptor Activation in Healthy Humans. Med Sci Sports Exerc 2022; 54:1076-1084. [PMID: 35195103 DOI: 10.1249/mss.0000000000002895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Central μ-opioid receptors (MORs) modulate affective responses to physical exercise. Individuals with higher aerobic fitness report greater exercise-induced mood improvements than those with lower fitness, but the link between cardiorespiratory fitness and the MOR system remains unresolved. Here we tested whether maximal oxygen uptake (V̇O2peak) and physical activity level are associated with cerebral MOR availability and whether these phenotypes predict endogenous opioid release after a session of exercise. METHODS We studied 64 healthy lean men who performed a maximal incremental cycling test for V̇O2peak determination, completed a questionnaire assessing moderate-to-vigorous physical activity (MVPA; in minutes per week), and underwent positron emission tomography with [11C]carfentanil, a specific radioligand for MOR. A subset of 24 subjects underwent additional positron emission tomography scan also after a 1-h session of moderate-intensity exercise and 12 of them also after a bout of high-intensity interval training. RESULTS Higher self-reported MVPA level predicted greater opioid release after high-intensity interval training, and both V̇O2peak and MVPA level were associated with a larger decrease in cerebral MOR binding after aerobic exercise in the ventral striatum, orbitofrontal cortex, and insula. That is, more trained individuals showed greater opioid release acutely after exercise in brain regions especially relevant for reward and cognitive processing. Fitness was not associated with MOR availability. CONCLUSIONS We conclude that regular exercise training and higher aerobic fitness may induce neuroadaptation within the MOR system, which might contribute to improved emotional and behavioral responses associated with long-term exercise.
Collapse
Affiliation(s)
| | | | | | | | | | - Tuulia Malén
- Turku PET Centre, University of Turku, Turku, FINLAND
| | | | | | | | | | | |
Collapse
|
9
|
Han J, Andreu V, Langreck C, Pekarskaya EA, Grinnell SG, Allain F, Magalong V, Pintar J, Kieffer BL, Harris AZ, Javitch JA, Hen R, Nautiyal KM. Mu opioid receptors on hippocampal GABAergic interneurons are critical for the antidepressant effects of tianeptine. Neuropsychopharmacology 2022; 47:1387-1397. [PMID: 34593976 PMCID: PMC9117297 DOI: 10.1038/s41386-021-01192-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/28/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
Tianeptine is an atypical antidepressant used in Europe to treat patients who respond poorly to selective serotonin reuptake inhibitors (SSRIs). The recent discovery that tianeptine is a mu opioid receptor (MOR) agonist has provided a potential avenue for expanding our understanding of antidepressant treatment beyond the monoamine hypothesis. Thus, our studies aim to understand the neural circuits underlying tianeptine's antidepressant effects. We show that tianeptine induces rapid antidepressant-like effects in mice after as little as one week of treatment. Critically, we also demonstrate that tianeptine's mechanism of action is distinct from fluoxetine in two important aspects: (1) tianeptine requires MORs for its chronic antidepressant-like effect, while fluoxetine does not, and (2) unlike fluoxetine, tianeptine does not promote hippocampal neurogenesis. Using cell-type specific MOR knockouts we further show that MOR expression on GABAergic cells-specifically somatostatin-positive neurons-is necessary for the acute and chronic antidepressant-like responses to tianeptine. Using central infusion of tianeptine, we also implicate the ventral hippocampus as a potential site of antidepressant action. Moreover, we show a dissociation between the antidepressant-like phenotype and other opioid-like phenotypes resulting from acute tianeptine administration such as analgesia, conditioned place preference, and hyperlocomotion. Taken together, these results suggest a novel entry point for understanding what circuit dysregulations may occur in depression, as well as possible targets for the development of new classes of antidepressant drugs.
Collapse
Affiliation(s)
- Jaena Han
- Department of Biology, Columbia University, New York, NY, 10027, USA
| | - Valentine Andreu
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA
| | - Cory Langreck
- Department of Pharmacology, Columbia University, New York, NY, 10027, USA
| | - Elizabeth A Pekarskaya
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA
| | - Steven G Grinnell
- Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Florence Allain
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada
| | - Valerie Magalong
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA
| | - John Pintar
- Department of Neuroscience & Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Brigitte L Kieffer
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jonathan A Javitch
- Department of Pharmacology, Columbia University, New York, NY, 10027, USA
- Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - René Hen
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Katherine M Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
10
|
Ballantyne JC, Sullivan MD. Is Chronic Pain a Disease? THE JOURNAL OF PAIN 2022; 23:1651-1665. [PMID: 35577236 DOI: 10.1016/j.jpain.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
It was not until the twentieth century that pain was considered a disease. Before that it was managed medically as a symptom. The motivations for declaring chronic pain a disease, whether of the body or of the brain, include increasing its legitimacy as clinical problem and research focus worthy of attention from healthcare and research organizations alike. But 1 problem with disease concepts is that having a disease favors medical solutions and tends to reduce patient participation. We argue that chronic pain, particularly chronic primary pain (recently designated a first tier pain diagnosis in International Diagnostic Codes 11), is a learned state that is not intransigent even if it has biological correlates. Chronic pain is sometimes a symptom, and may sometimes be its own disease. But here we question the value of a disease focus for much of chronic pain for which patient involvement is essential, and which may need a much broader societal approach than is suggested by the disease designation. PERSPECTIVE: This article examines whether designating chronic pain a disease of the body or brain is helpful or harmful to patients. Can the disease designation help advance treatment, and is it needed to achieve future therapeutic breakthrough? Or does it make patients over-reliant on medical intervention and reduce their engagement in the process of recovery?
Collapse
Affiliation(s)
- Jane C Ballantyne
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Mark D Sullivan
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
11
|
Kim S, Lee J, Boone D. Protective and Risk Factors at the Intersection of Chronic Pain, Depression, Anxiety, and Somatic Amplification: A Latent Profile Approach. J Pain Res 2022; 15:1107-1121. [PMID: 35450061 PMCID: PMC9018014 DOI: 10.2147/jpr.s340382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Research indicates a complex nexus between chronic pain, depression, anxiety, and somatic amplification (PDAS) symptoms, marked by high rates of co-morbidity and mutually maintaining mechanisms. Although recent frameworks have attempted to explain co-occurrence rates of pain and other comorbid disorders, the interrelations between PDAS and their impacts on pain outcomes have not been adequately examined with a person-centered approach. Using nationally representative data, this study assessed the heterogeneity in PDAS symptomatology and examined links among risk and protective factors in different profiles. Methods Data were derived from 1027 participants in the National Survey of Midlife Development in the United States (MIDUS) who completed telephone interviews or self-report measures that assessed PDAS, various sources of social supports (family, friends, spouses/partners, religion, coworkers, and supervisors), and the number of healthcare visits. Results We found heterogeneity in symptom severity rather than symptom type across classes over time. Regardless of comorbidity severity, people reported similar levels of somatic symptoms, which may help clinicians more effectively diagnose comorbidity issues among chronic pain patients. As PDAS symptomatology increased by group, the perceived levels of social support decreased. Membership in a higher symptom severity class was associated with being female, younger age, and an increase in medical, but not mental health visits. Limitations Limitations included the use of a cross-sectional design, reliance on self-report measures, and a sample largely comprised of Whites. Conclusion PDAS co-occurs across classes, which may relate to shared risk and protective factors. This study lays the foundation to investigate similar questions for overlapping symptoms that occur during the same period, which would shed light on whether—among middle to older age adults—these disorders are attributable to a common mechanism and if they may inform transdiagnostic treatments.
Collapse
Affiliation(s)
- ShinYe Kim
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, USA
- Correspondence: ShinYe Kim Email
| | - Jaehoon Lee
- Department of Educational Psychology, Leadership, and Counseling, Texas Tech University, Lubbock, TX, USA
| | - Dianna Boone
- Center for Behavioral Health, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| |
Collapse
|
12
|
Intermittent Dorsal Root Ganglion Stimulation Is as Efficacious as Standard Continuous Dosing in Treating Chronic Pain: Results From a Randomized Controlled Feasibility Trial. Neuromodulation 2022; 25:989-997. [DOI: 10.1016/j.neurom.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
|
13
|
Fatkin T, Moore SK, Okst K, Creedon TB, Samawi F, Fredericksen AK, Roll D, Oxnard A, Lê Cook B, Schuman-Olivier Z. Feasibility and acceptability of mindful recovery opioid use care continuum (M-ROCC): A concurrent mixed methods study. J Subst Abuse Treat 2021; 130:108415. [PMID: 34118705 PMCID: PMC8478704 DOI: 10.1016/j.jsat.2021.108415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
As opioid overdose deaths increase, buprenorphine/naloxone (B/N) treatment is expanding, yet almost half of patients are not retained in B/N treatment. Mindfulness-based interventions (MBIs) designed to promote non-judgmental awareness of present moment experience may be complementary to B/N treatment and offer the potential to enhance retention by reducing substance use and addressing comorbid symptoms. In this pilot study, we examined the feasibility and acceptability of the Mindful Recovery OUD Care Continuum (M-ROCC), a trauma-informed, motivationally sensitive, 24-week MBI. Participants (N = 18) were adults with Opioid Use Disorder prescribed B/N. The study team conducted assessments of satisfaction, mindfulness levels, and home practice, as well as qualitative interviews at 4 and 24-weeks. M-ROCC was feasible in a sample with high rates of childhood trauma and comorbid psychiatric diagnoses with 89% of participants retained at 4-weeks and 72% at 24-weeks. Positive qualitative interview responses and a high rate of participants willing to refer a friend (100%) demonstrates program acceptability. Participant mindfulness increased from baseline to 24-weeks (β = 0.24, p = 0.001, d = 0.51), and increases were correlated with informal mindfulness practice frequency (r = 0.7, p < 0.01). Although limited by small sample size, this pilot study highlights the feasibility and acceptability of integrating MBIs into standard primary care Office-Based Opioid Treatment (OBOT) among a population with substantial trauma history.
Collapse
Affiliation(s)
- Thomas Fatkin
- Cambridge Health Alliance, Cambridge, MA, United States of America.
| | - Sarah K Moore
- Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America.
| | - Kayley Okst
- Cambridge Health Alliance, Cambridge, MA, United States of America.
| | - Timothy B Creedon
- Harvard Medical School, Boston, MA, United States of America; Cambridge Health Alliance, Cambridge, MA, United States of America.
| | - Farah Samawi
- Cambridge Health Alliance, Cambridge, MA, United States of America.
| | | | - David Roll
- Harvard Medical School, Boston, MA, United States of America; Cambridge Health Alliance, Cambridge, MA, United States of America.
| | - Alexandra Oxnard
- Harvard Medical School, Boston, MA, United States of America; Cambridge Health Alliance, Cambridge, MA, United States of America.
| | - Benjamin Lê Cook
- Harvard Medical School, Boston, MA, United States of America; Cambridge Health Alliance, Cambridge, MA, United States of America.
| | - Zev Schuman-Olivier
- Harvard Medical School, Boston, MA, United States of America; Cambridge Health Alliance, Cambridge, MA, United States of America; Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America.
| |
Collapse
|
14
|
Yamada A, Sugimura M, Kuramoto T. Genetic polymorphism of bovine beta-casein gene in Japanese dairy farm herds. Anim Sci J 2021; 92:e13644. [PMID: 34626147 PMCID: PMC9286554 DOI: 10.1111/asj.13644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate beta‐casein polymorphism among 320 Japanese cows sampled from eight dairy farms. We used a newly‐developed genotyping method that involved collecting DNA from hairs and a Cycleave polymerase chain reaction (PCR) assay to detect the A1, A2, and B variants. Results revealed the presence of five genotypes (A1A1, A2A2, A1A2, A1B, and A2B). We found that the most common genotype was A2A2 (0.42), followed by A1A2 (0.39) and A1A1 (0.11). The A1B and A2B genotypes were less frequent (<0.05). The frequencies of alleles A1, A2, and B were calculated to be 0.32, 0.64, and 0.04, respectively. Our study is the first to show the current status of beta‐casein polymorphisms in Japanese dairy farms. Given the adverse effects of A1 beta‐casein on human health, attempts have been made to develop herds consisting solely of A2A2 cows. Our study provides a reference for improving cow populations in Japanese dairy farms. The Cycleave PCR‐based assay we developed here can be used for rapid and reliable genotyping of bovine beta‐casein.
Collapse
Affiliation(s)
- Asaha Yamada
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Miyu Sugimura
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
15
|
Pica V, Stuknytė M, Masotti F, De Noni I, Cattaneo S. Model infant biscuits release the opioid-acting peptides milk β-casomorphins and gluten exorphins after in vitro gastrointestinal digestion. Food Chem 2021; 362:130262. [PMID: 34118509 DOI: 10.1016/j.foodchem.2021.130262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022]
Abstract
Infant biscuits (IBs) are commonly used during the complementary feeding of infants from the 6th month of life. They contain wheat flour and dairy ingredients, which can release the opioid-acting peptides β-casomorphins (BCMs) and gluten exorphins (GEs) after gastrointestinal digestion. In the present study, five model IBs were prepared with or without gluten and different powdered milk derivatives in the formulations. IBs were digested simulating an in vitro static gastrointestinal digestion for infants aged 6-12 months. BCMs and GEs were identified and quantified by UPLC/HR-MS. The amounts of BCM7 and the GE A5 were related to the β-CN and gluten content of the formulations. To date, levels of BCMs and GEs in digests of IBs have not been reported in literature. This work represents an in vitro investigation regarding the release of opioid-acting peptides in IBs. It could add additional knowledge on complementary foods for infant health.
Collapse
Affiliation(s)
- Valentina Pica
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Milda Stuknytė
- Unitech COSPECT - University Technological Platforms Office, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Fabio Masotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy.
| | - Stefano Cattaneo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
16
|
Aberrant Early in Life Stimulation of the Stress-Response System Affects Emotional Contagion and Oxytocin Regulation in Adult Male Mice. Int J Mol Sci 2021; 22:ijms22095039. [PMID: 34068684 PMCID: PMC8126076 DOI: 10.3390/ijms22095039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Results over the last decades have provided evidence suggesting that HPA axis dysfunction is a major risk factor predisposing to the development of psychopathological behaviour. This susceptibility can be programmed during developmental windows of marked neuroplasticity, allowing early-life adversity to convey vulnerability to mental illness later in life. Besides genetic predisposition, also environmental factors play a pivotal role in this process, through embodiment of the mother's emotions, or via nutrients and hormones transferred through the placenta and the maternal milk. The aim of the current translational study was to mimic a severe stress condition by exposing female CD-1 mouse dams to abnormal levels of corticosterone (80 µg/mL) in the drinking water either during the last week of pregnancy (PreCORT) or the first one of lactation (PostCORT), compared to an Animal Facility Rearing (AFR) control group. When tested as adults, male mice from PostCORT offspring and somewhat less the PreCORT mice exhibited a markedly increased corticosterone response to acute restraint stress, compared to perinatal AFR controls. Aberrant persistence of adolescence-typical increased interest towards novel social stimuli and somewhat deficient emotional contagion also characterised profiles in both perinatal-CORT groups. Intranasal oxytocin (0 or 20.0 µg/kg) generally managed to reduce the stress response and restore a regular behavioural phenotype. Alterations in density of glucocorticoid and mineralocorticoid receptors, oxytocin and µ- and κ-opioid receptors were found. Changes differed as a function of brain areas and the specific age window of perinatal aberrant stimulation of the HPA axis. Present results provided experimental evidence in a translational mouse model that precocious adversity represents a risk factor predisposing to the development of psychopathological behaviour.
Collapse
|
17
|
Yazdanfar N, Farnam A, Sadigh-Eteghad S, Mahmoudi J, Sarkaki A. Enriched environment and social isolation differentially modulate addiction-related behaviors in male offspring of morphine-addicted dams: The possible role of μ-opioid receptors and ΔFosB in the brain reward pathway. Brain Res Bull 2021; 170:98-105. [PMID: 33592274 DOI: 10.1016/j.brainresbull.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
Prenatal opioids exposure negatively affects the neurobehavioral abilities of children born from dependence dams. Adolescent housing conditions can buffer the detrimental impacts of early life experiences or contradictory can worsen individual psychosocial functions. The present study investigated the effects of maternal morphine dependence and different rearing conditions on behaviors and protein expression in brain reward circuits of male pups. Female Wistar rats a week before conception, during pregnancy and lactation were injected twice daily with escalating doses of morphine or saline. On a postnatal day 21, male pups were weaned and subjected to three different environments for two months: standard (STD), isolated (ISO), or enriched environment (EE). The anxiety and drug-related reward were measured using elevated plus maze, open field test, and conditioned place preference. Western blotting was used to determine the protein level of ΔFosB and μ-opioid receptor proteins in the striatum and the midbrain of male offspring, respectively. Results showed that maternal morphine administration dramatically increased anxiety-like and morphine place preference behaviors in offspring. Also, ISO condition aggravated these behavioral outcomes. While, rearing in EE could attenuate anxiety and morphine conditioning in pups. At molecular levels, maternal morphine exposure and social isolation markedly increased both of ΔFosB and μ-opioid receptor proteins expression. However, rearing in the EE declined ΔFosB protein expression. Together, these findings help to elucidate long lasting impacts of early life morphine exposure and rearing environment on the behavioral and molecular profile of addicted individuals.
Collapse
Affiliation(s)
- Neda Yazdanfar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Farnam
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Sarkaki
- The Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Meier IM, Eikemo M, Leknes S. The Role of Mu-Opioids for Reward and Threat Processing in Humans: Bridging the Gap from Preclinical to Clinical Opioid Drug Studies. CURRENT ADDICTION REPORTS 2021; 8:306-318. [PMID: 34722114 PMCID: PMC8550464 DOI: 10.1007/s40429-021-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Opioid receptors are widely expressed in the human brain. A number of features commonly associated with drug use disorder, such as difficulties in emotional learning, emotion regulation and anhedonia, have been linked to endogenous opioid signalling. Whereas chronic substance use and misuse are thought to alter the function of the mu-opioid system, the specific mechanisms are not well understood. We argue that understanding exogenous and endogenous opioid effects in the healthy human brain is an essential foundation for bridging preclinical and clinical findings related to opioid misuse. Here, we will examine psychopharmacological evidence to outline the role of the mu-opioid receptor (MOR) system in the processing of threat and reward, and discuss how disruption of these processes by chronic opioid use might alter emotional learning and reward responsiveness. RECENT FINDINGS In healthy people, studies using opioid antagonist drugs indicate that the brain's endogenous opioids downregulate fear reactivity and upregulate learning from safety. At the same time, endogenous opioids increase the liking of and motivation to engage with high reward value cues. Studies of acute opioid agonist effects indicate that with non-sedative doses, drugs such as morphine and buprenorphine can mimic endogenous opioid effects on liking and wanting. Disruption of endogenous opioid signalling due to prolonged opioid exposure is associated with some degree of anhedonia to non-drug rewards; however, new results leave open the possibility that this is not directly opioid-mediated. SUMMARY The available human psychopharmacological evidence indicates that the healthy mu-opioid system contributes to the regulation of reward and threat processing. Overall, endogenous opioids can subtly increase liking and wanting responses to a wide variety of rewards, from sweet tastes to feelings of being connected to close others. For threat-related processing, human evidence suggests that endogenous opioids inhibit fear conditioning and reduce the sensitivity to aversive stimuli, although inconsistencies remain. The size of effects reported in healthy humans are however modest, clearly indicating that MORs play out their role in close concert with other neurotransmitter systems. Relevant candidate systems for future research include dopamine, serotonin and endocannabinoid signalling. Nevertheless, it is possible that endogenous opioid fine-tuning of reward and threat processing, when unbalanced by e.g. opioid misuse, could over time develop into symptoms associated with opioid use disorder, such as anhedonia and depression/anxiety.
Collapse
Affiliation(s)
- Isabell M. Meier
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Marie Eikemo
- Department of Psychology, University of Oslo, Blindern, 0317 Oslo, Norway
| | - Siri Leknes
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Department of Psychology, University of Oslo, Blindern, 0317 Oslo, Norway
| |
Collapse
|
19
|
van der Venne P, Balint A, Drews E, Parzer P, Resch F, Koenig J, Kaess M. Pain sensitivity and plasma beta-endorphin in adolescent non-suicidal self-injury. J Affect Disord 2021; 278:199-208. [PMID: 32961416 DOI: 10.1016/j.jad.2020.09.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/24/2020] [Accepted: 09/07/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Beta-endorphin (BE) has been suggested to play a central role as to why people engage in NSSI. To our knowledge, no study has systematically assessed this potential relationship in adolescents with NSSI. METHODS 94 adolescents with NSSI (according to DSM-5 criteria) and 35 healthy controls (HC) were enrolled. All participants received heat pain stimulation, with pain threshold and tolerance measured in °C. Plasma BE levels were assessed. Sociodemographic and clinical characteristics were obtained via semi-structured interviews and self-report questionnaires. RESULTS Adolescents with NSSI showed increased pain thresholds (t(127)=2.071, p=.040), lower pain intensity (t(114)==2.122, p=.036) and lower plasma BE levels (t127==3.182, p=.002) compared to HC. Groups did not differ on pain tolerance (t(127)=0.911, p=.364). Greater pain threshold correlated positively with borderline personality disorder (BPD) symptoms (r=0.182, p=.039), while pain intensity (r=-0.206, p=.033) and BE levels (r=-0.246, p=.007) correlated negatively with depression severity. No significant relationship was found between pain threshold and plasma BE (r=-0.013, p=.882). LIMITATIONS Future studies should implement repeated plasma BE measures to assess BE release in association with pain in NSSI. Validity of plasma BE measures compared to central measures should be considered. Assessing the association between pain sensitivity (PS) and BE in a naturalistic setting presents a promising avenue for future research in NSSI. CONCLUSIONS Findings support both reduced PS and basal opioid deficiency as independent biological correlates and potential risk-factors for NSSI. Further longitudinal and experimental studies are needed to investigate the role of BE levels and PS as well as their potential association.
Collapse
Affiliation(s)
- Patrice van der Venne
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Andrea Balint
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Elisa Drews
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Peter Parzer
- Clinic for Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Franz Resch
- Clinic for Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Julian Koenig
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Michael Kaess
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Hajmirzaeyian A, Chamanara M, Rashidian A, Shakyba S, Nassireslami E, Akhavan-Sigari R. Melatonin attenuated the behavioral despair induced by acute neurogenic stress through blockade of N-methyl D-aspartate receptors in mice. Heliyon 2021; 7:e05900. [PMID: 33490672 PMCID: PMC7810776 DOI: 10.1016/j.heliyon.2021.e05900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 12/31/2020] [Indexed: 01/24/2023] Open
Abstract
It has been well documented that administration of melatonin could reveal antidepressant-like effect in rodents. However, the protective effect of melatonin on stress-induced depression/anxiety and its underlying mechanism is yet to be understood. In this regard, in the current study, acute foot-shock stress (FSS) was used to evaluate the antidepressant-like effect of melatonin on neurogenic stress-induced depression in mice. Behavioral evaluation was done by using the forced swimming test (FST) and Open-field test (OFT). Melatonin, MK-801, and ketamine (NMDA receptor antagonists), and NMDA (NMDA receptor agonist) were used to elucidate any association between melatonin and NMDA pathway in behavioral despair induced by acute-FSS. Applying acute-FSS to mice significantly induced depressant-like behavior in FST without any significant impact on locomotor activity in the OFT. We observed that melatonin (dose-dependently) significantly improved the depressant-like effect of FSS, but it did not impact the locomotion in animals. Acute injection of MK-801 at sub-effective doses (0.01 mg/kg) or ketamine (0.1 mg/kg) potentiated the antidepressant-like effect of a sub-effective dose of melatonin. However, the sub-effective dose of NMDA (30 mg/kg) abolished the protective effect of melatonin on the behavioral profile of stressed animals. Our results could reflect the antidepressant-like effect of melatonin on neurogenic stress-induced depressive behaviors in mice. Also, our results showed that NMDA receptors could be involved in the antidepressant-like effect of melatonin.
Collapse
Affiliation(s)
- Arwin Hajmirzaeyian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Shakyba
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
A mu-opioid feedback model of human social behavior. Neurosci Biobehav Rev 2020; 121:250-258. [PMID: 33359094 DOI: 10.1016/j.neubiorev.2020.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Since the discovery of pain relieving and rewarding properties of opiates such as morphine or heroin, the human mu-opioid system has been a target for medical research on pain processing and addiction. Indeed, pain and pleasure act mutually inhibitory on each other and the mu-opioid system has been suggested as an underlying common neurobiological mechanism. Recently, research interest extended the role of the endogenous mu-opioid system beyond the hedonic value of pain and pleasure towards human social-emotional behavior. Here we propose a mu-opioid feedback model of social behavior. This model is based upon recent findings of opioid modulation of human social learning, bonding and empathy in relation to affiliative and protective tendencies. Fundamental to the model is that the mu-opioid system reinforces socially affiliative or protective behavior in response to positive and negative social experiences with long-term consequences for social behavior and health. The functional implications for stress, anxiety, depression and attachment behaviors are discussed.
Collapse
|
22
|
Johnson KVA, Burnet PWJ. Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci 2020; 21:32. [PMID: 32698770 PMCID: PMC7374917 DOI: 10.1186/s12868-020-00583-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent research has revealed that the community of microorganisms inhabiting the gut affects brain development, function and behaviour. In particular, disruption of the gut microbiome during critical developmental windows can have lasting effects on host physiology. Both antibiotic exposure and germ-free conditions impact the central nervous system and can alter multiple aspects of behaviour. Social impairments are typically displayed by antibiotic-treated and germ-free animals, yet there is a lack of understanding of the underlying neurobiological changes. Since the μ-opioid, oxytocin and vasopressin systems are key modulators of mammalian social behaviour, here we investigate the effect of experimentally manipulating the gut microbiome on the expression of these pathways. Results We show that social neuropeptide signalling is disrupted in germ-free and antibiotic-treated mice, which may contribute to the behavioural deficits observed in these animal models. The most notable finding is the reduction in neuroreceptor gene expression in the frontal cortex of mice administered an antibiotic cocktail post-weaning. Additionally, the changes observed in germ-free mice were generally in the opposite direction to the antibiotic-treated mice. Conclusions Antibiotic treatment when young can impact brain signalling pathways underpinning social behaviour and pain regulation. Since antibiotic administration is common in childhood and adolescence, our findings highlight the potential adverse effects that antibiotic exposure during these key neurodevelopmental periods may have on the human brain, including the possible increased risk of neuropsychiatric conditions later in life. In addition, since antibiotics are often considered a more amenable alternative to germ-free conditions, our contrasting results for these two treatments suggest that they should be viewed as distinct models.
Collapse
Affiliation(s)
- Katerina V A Johnson
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK. .,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
23
|
Emery MA, Akil H. Endogenous Opioids at the Intersection of Opioid Addiction, Pain, and Depression: The Search for a Precision Medicine Approach. Annu Rev Neurosci 2020; 43:355-374. [PMID: 32109184 PMCID: PMC7646290 DOI: 10.1146/annurev-neuro-110719-095912] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.
Collapse
Affiliation(s)
- Michael A Emery
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
24
|
Nikbakhtzadeh M, Borzadaran FM, Zamani E, Shabani M. Protagonist Role of Opioidergic System on Post-Traumatic Stress Disorder and Associated Pain. Psychiatry Investig 2020; 17:506-516. [PMID: 32492768 PMCID: PMC7324730 DOI: 10.30773/pi.2020.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Post-traumatic stress disorder (PTSD) and chronic pain often co-occur. Studies have shown an interaction between pain and PTSD. In this narrative review, we aim to support conducting comprehensive studies by describing PTSD, pain and determining whether opioidergic system, its agonist and antagonist manipulation could positively or negatively affect PTSD symptoms and concurrent pain. METHODS Term searches was done in Google Scholar, Scopus, ScienceDirect, Web of Science and PubMed databases as well as hand searching in key resource journals from 1979-2019. RESULTS There are a lot of contradictions and disputes when endogenous opioidergic system and opioidergic antagonist system are studied in PTSD patients. Exogenous morphine administration in PTSD patients can decrease the symptoms of PTSD but it doesn't have a pain reduction effect to an acceptable level. Beta-endorphin as an endogenous opioid is effective in pain reduction in the moment of events but after minutes to hours, the endorphins withdrawal syndrome leads to exaggerated intrusive thoughts and flashbacks of PTSD, which exacerbate the pain. It has also been shown that naloxone, as an opioidergic antagonist, can reduce or increase the PTSD symptoms and its associated pain. CONCLUSION Data suggest different roles of opioidergic system and their antagonist in pain control and mood in PTSD. However, further investigations need to be done in order to reveal the role of endogenous opioidergic system and opioidergic antagonist system as a mediator in PTSD patients suffering from acute or chronic pain.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Mohtashami Borzadaran
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Zamani
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Park JY, Cheong MC, Cho JY, Koo HS, Paik YK. A novel functional cross-interaction between opioid and pheromone signaling may be involved in stress avoidance in Caenorhabditis elegans. Sci Rep 2020; 10:7524. [PMID: 32371913 PMCID: PMC7200713 DOI: 10.1038/s41598-020-64567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Upon sensing starvation stress, Caenorhabditis elegans larvae (L2d) elicit two seemingly opposing behaviors to escape from the stressful condition: food-seeking roaming mediated by the opioid peptide NLP-24 and dauer formation mediated by pheromones. Because opioid and pheromone signals both originate in ASI chemosensory neurons, we hypothesized that they might act sequentially or competitively to avoid starvation stress. Our data shows that NPR-17 opioid receptor signaling suppressed pheromone biosynthesis and the overexpression of opioid genes disturbed dauer formation. Likewise, DAF-37 pheromone receptor signaling negatively modulated nlp-24 expression in the ASI neurons. Under short-term starvation (STS, 3 h), both pheromone and opioid signaling were downregulated in gpa-3 mutants. Surprisingly, the gpa-3;nlp-24 double mutants exhibited much higher dauer formation than seen in either of the single mutants. Under long-term starvation (LTS, >24 h), the stress-activated SKN-1a downregulated opioid signaling and then enhanced dauer formation. Both insulin and serotonin stimulated opioid signaling, whereas NHR-69 suppressed opioid signaling. Thus, GPA-3 and SKN-1a are proposed to regulate cross-antagonistic interaction between opioids and pheromones in a cell-specific manner. These regulatory functions are suggested to be exerted via the selective interaction of GPA-3 with NPR-17 and site-specific SKN-1 binding to the promoter of nlp-24 to facilitate stress avoidance.
Collapse
Affiliation(s)
- Jun Young Park
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Mi Cheong Cheong
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young-Ki Paik
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
26
|
Summer A, Di Frangia F, Ajmone Marsan P, De Noni I, Malacarne M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit Rev Food Sci Nutr 2020; 60:3705-3723. [PMID: 32033519 DOI: 10.1080/10408398.2019.1707157] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genetic variant A1 of bovine β-casein (β-Cn) presents a His residue at a position 67 of the mature protein. This feature makes the Ile66-His67 bond more vulnerable to enzymatic cleavage, determining the release of the peptide β-Cn f(60-66), named β-casomorphin 7 (BCM7). BCM7 is an opioid-agonist for μ receptors, and it has been hypothesized to be involved in the development of different non-transmissible diseases in humans. In the last decade, studies have provided additional results on the potential health impact of β-Cn A1 and BCM7. These studies, here reviewed, highlighted a relation between the consumption of β-Cn A1 (and its derivative BCM7) and the increase of inflammatory response as well as discomfort at the gastrointestinal level. Conversely, the role of BCM7 and the effects of ingestion of β-Cn A1 on the onset or worsening of other non-transmissible diseases as caused or favored by still need proof of evidence. Overall, the reviewed literature demonstrates that the "β-Cn A1/BCM7 issue" remains an intriguing but not exhaustively explained topic in human nutrition. On this basis, policies in favor of breeding for β-Cn variants not releasing BCM7 and consumption of "A1-like" milk appear not yet sound for a healthier and safer nutrition.
Collapse
Affiliation(s)
- Andrea Summer
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| | | | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA) and Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Massimo Malacarne
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| |
Collapse
|
27
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
28
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
29
|
Carrero JP, Kaigler KF, Hartshorn GH, Fadel JR, Wilson MA. Mu opioid receptor regulation of glutamate efflux in the central amygdala in response to predator odor. Neurobiol Stress 2019; 11:100197. [PMID: 31832510 PMCID: PMC6888766 DOI: 10.1016/j.ynstr.2019.100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The amygdala plays an important role in the responses to predator threat. Glutamatergic processes in amygdala regulate the behavioral responses to predator stress, and we have found that exposure to ferret odor activates glutamatergic neurons of the basolateral amygdala [BLA] which are known to project to the central amygdala [CeA]. Therefore, we tested if predator stress would increase glutamate release in the rat CeA using in vivo microdialysis, while monitoring behavioral responses during a 1 h exposure to ferret odor. Since injections of mu opioid receptor [MOR] agonists and antagonists into the CeA modulate behavioral responses to predator odor, we locally infused the MOR agonist DAMGO or the MOR antagonist CTAP into the CeA during predator stress to examine effects on glutamate efflux and behavior. We found that ferret odor exposure increased glutamate, but not GABA, efflux in the CeA, and this effect was attenuated by tetrodotoxin. Interestingly, increases in glutamate efflux elicited by ferret odor exposure were blocked by infusion of CTAP, but CTAP did not alter the behavioral responses during predator stress. DAMGO alone enhanced glutamate efflux, but did not modulate glutamate efflux during predator stress. These studies demonstrate that ferret odor exposure, like other stressors, enhances glutamate efflux in the CeA. Further, they suggest that activation of MOR in the CeA may help shape the defensive response to predator odor and other threats.
Collapse
Affiliation(s)
- Jeffrey Parrilla Carrero
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Kris F. Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - George H. Hartshorn
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| |
Collapse
|
30
|
|
31
|
da Cruz KR, Ianzer D, Turones LC, Reis LL, Camargo-Silva G, Mendonça MM, da Silva ES, Pedrino GR, de Castro CH, Costa EA, Xavier CH. Behavioral effects evoked by the beta globin-derived nonapeptide LVV-H6. Peptides 2019; 115:59-68. [PMID: 30890354 DOI: 10.1016/j.peptides.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023]
Abstract
LVV-hemorphin-6 (LVV-h6) is bioactive peptide and is a product of the degradation of hemoglobin. Since LVV-h6 effects are possibly mediated by opioid or AT4/IRAP receptors, we hypothesized that LVV-h6 would modify behavior. We evaluated whether LVV-h6 affects: i) anxiety-like behavior and locomotion; ii) depression-like behavior; iii) cardiovascular and neuroendocrine reactivity to emotional stress. Male Wistar rats ( ± 300 g) received LVV-h6 (153 nmol/kg i.p.) or vehicle (NaCl 0.9% i.p.). We used: i) open field (OF) test for locomotion; ii) elevated plus maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) for depression-like behavior and iv) air jet for cardiovascular and neuroendocrine reactivity to stress. Diazepam (2 mg/kg i.p.) and imipramine (15 mg/kg i.p.) were used as positive control for EPM and FST, respectively. To evaluate the LVV-h6 mechanisms, we used: the antagonist of oxytocin (OT) receptors (atosiban - ATS 1 and 0.1 mg/kg i.p.); the inhibitor of tyrosine hydroxylase (Alpha-methyl-p-tyrosine - AMPT 200 mg/kg i.p.) to investigate the involvement of catecholaminergic paths; and the antagonist of opioid receptors (naltrexone - NTX 0.3 mg/kg s.c.). We found that LVV-h6: i) evoked anxiolytic-like effect; ii) evoked antidepressant-like effect in the FST; and iii) did not change the locomotion, neuroendocrine and cardiovascular responses to stress. The LVV-h6 anxiolytic-like effect was not reverted by ATS and AMPT. However, the antidepressant effects were reverted only by NTX. Hence, our findings demonstrate that LVV-h6 modulates anxiety-like behavior by routes that are not oxytocinergic, catecholaminergic or opioid. The antidepressant-like effects of LVV-h6 rely on opioid pathways.
Collapse
Affiliation(s)
- Kellen Rosa da Cruz
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Danielle Ianzer
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Larissa Córdova Turones
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lilian Liz Reis
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gabriel Camargo-Silva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Michelle Mendanha Mendonça
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elder Sales da Silva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos Henrique de Castro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson Alves Costa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos H Xavier
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
32
|
Depression as a Neuroendocrine Disorder: Emerging Neuropsychopharmacological Approaches beyond Monoamines. Adv Pharmacol Sci 2019; 2019:7943481. [PMID: 30719038 PMCID: PMC6335777 DOI: 10.1155/2019/7943481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023] Open
Abstract
Depression is currently recognized as a crucial problem in everyday clinical practice, in light of ever-increasing rates of prevalence, as well as disability, morbidity, and mortality related to this disorder. Currently available antidepressant drugs are notoriously problematic, with suboptimal remission rates and troubling side-effect profiles. Their mechanisms of action focus on the monoamine hypothesis for depression, which centers on the disruption of serotonergic, noradrenergic, and dopaminergic neurotransmission in the brain. Nevertheless, views on the pathophysiology of depression have evolved notably, and the comprehension of depression as a complex neuroendocrine disorder with important systemic implications has sparked interest in a myriad of novel neuropsychopharmacological approaches. Innovative pharmacological targets beyond monoamines include glutamatergic and GABAergic neurotransmission, brain-derived neurotrophic factor, various endocrine axes, as well as several neurosteroids, neuropeptides, opioids, endocannabinoids and endovanilloids. This review summarizes current knowledge on these pharmacological targets and their potential utility in the clinical management of depression.
Collapse
|
33
|
Zajecka JM, Stanford AD, Memisoglu A, Martin WF, Pathak S. Buprenorphine/samidorphan combination for the adjunctive treatment of major depressive disorder: results of a phase III clinical trial (FORWARD-3). Neuropsychiatr Dis Treat 2019; 15:795-808. [PMID: 31040679 PMCID: PMC6459143 DOI: 10.2147/ndt.s199245] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The endogenous opioid system is a fundamental regulator of mood in humans. Previously reported clinical trials have demonstrated the efficacy of the investigational agent buprenorphine/samidorphan (BUP/SAM) combination, an opioid-system modulator, for the adjunctive treatment of major depressive disorder. We present here a third phase III study of different design. METHODS Adult patients with major depressive disorder and inadequate response to antidepressant therapy were enrolled in this double-blind, placebo-controlled, placebo run-in study to evaluate the efficacy, safety, and tolerability of adjunctive BUP/SAM 2 mg/2 mg. Patients with baseline Hamilton Depression Rating Scale score $20 received double-blind placebo in addition to background antidepressant therapy for 4 weeks. Nonresponders were randomized to receive adjunctive BUP/SAM 2 mg/2 mg or placebo for 6 weeks. The primary end point was change in Montgomery-Åsberg Depression Rating Scale (MADRS)-10 total score from randomization at baseline to the end of the 6-week treatment period. RESULTS Least-squares mean change in MADRS-10 score at end of treatment was -4.8 (SE 0.67) in the BUP/SAM 2 mg/2 mg group and -4.6 (SE 0.66) in the placebo group (mean difference -0.3 [SE 0.95], P=0.782). There were no differences in MADRS-based response or remission rates. Overall, 42.9% of the BUP/SAM 2 mg/2 mg group and 34.5% of the placebo group experienced at least one treatment-emergent adverse event during the 6-week treatment period, most of which were mild or moderate in severity. There were no clinically important changes in laboratory parameters, weight, or vital signs and no evidence of abuse potential during treatment or opiate-withdrawal symptoms post treatment. CONCLUSION Efficacy results in FORWARD-3 measured by change in MADRS-10 score did not meet the primary end point, but postbaseline improvement in MADRS-10 in the BUP/SAM 2 mg/2 mg group was consistent with that seen in previously reported trials. BUP/SAM 2 mg/2 mg was well tolerated.
Collapse
Affiliation(s)
- John M Zajecka
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA, .,Psychiatric Medicine Associates, LLC, Skokie, IL, USA,
| | | | - Asli Memisoglu
- Department of Biostatistics, Alkermes, Inc., Waltham, MA, USA
| | | | - Sanjeev Pathak
- Department of Clinical Research, Alkermes, Inc., Waltham, MA, USA
| |
Collapse
|
34
|
Ferré G, Czaplicki G, Demange P, Milon A. Structure and dynamics of dynorphin peptide and its receptor. VITAMINS AND HORMONES 2019; 111:17-47. [DOI: 10.1016/bs.vh.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother 2018; 105:1205-1222. [PMID: 30021357 DOI: 10.1016/j.biopha.2018.05.086] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/09/2022] Open
Abstract
The brain is a vital organ, susceptible to alterations under genetic influences and environmental experiences. Social isolation (SI) acts as a stressor which results in alterations in reactivity to stress, social behavior, function of neurochemical and neuroendocrine system, physiological, anatomical and behavioral changes in both animal and humans. During early stages of life, acute or chronic SIS has been proposed to show signs and symptoms of psychiatric and neurological disorders such as anxiety, depression, schizophrenia, epilepsy and memory loss. Exposure to social isolation stress induces a variety of endocrinological changes including the activation of hypothalamic-pituitary-adrenal (HPA) axis, culminating in the release of glucocorticoids (GCs), release of catecholamines, activation of the sympatho-adrenomedullary system, release of Oxytocin and vasopressin. In several regions of the central nervous system (CNS), SIS alters the level of neurotransmitter such as dopamine, serotonin, gamma aminobutyric acid (GABA), glutamate, nitrergic system and adrenaline as well as leads to alteration in receptor sensitivity of N-methyl-D-aspartate (NMDA) and opioid system. A change in the function of oxidative and nitrosative stress (O&NS) mediated mitochondrial dysfunction, inflammatory factors, neurotrophins and neurotrophicfactors (NTFs), early growth response transcription factor genes (Egr) and C-Fos expression are also involved as a pathophysiological consequences of SIS which induce neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Imran Khan
- Department of Pharmacy, Kohat University of Science and Technology, 26000 Kohat, KPK, Pakistan; Drug Detoxification Health Welfare Research Center, Bannu, KPK, Pakistan
| | - Muhammad Zubair
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, PR China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Yang Y, Wu J, Li H, Ye S, Xu X, Cheng L, Zhu L, Peng Z, Feng Z. Prospective investigation of intravenous patient-controlled analgesia with hydromorphone or sufentanil: impact on mood, opioid adverse effects, and recovery. BMC Anesthesiol 2018; 18:37. [PMID: 29636011 PMCID: PMC5894128 DOI: 10.1186/s12871-018-0500-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Background Radical surgery for colorectal cancer, associated with moderate to severe postoperative pain, needs multimodal analgesia with opioid for analgesia. Despite considerable advancements, the psychological implications and other side effects with opioid remain substantially unresolved. This study aimed to investigate the impact on mood, side effects relative to opioid, and recovery of the patients with hydromorphone or sufentanil intravenous patient-controlled analgesia (IV-PCA) in a multimodal perioperative analgesia regimen undergoing radical surgery for colorectal cancer. Methods Eighty patients undergoing elective laparoscopic or open radical surgery for colorectal cancer under general anesthesia were randomized to receive postoperative IV-PCA with either sufentanil (group S) or hydromorphone (group H). All patients received additionally flurbiprofen axetil 50 mg 30 min before the end of surgery and wound infiltration with 10 ml of 0.75% ropivacaine at the end of surgery. The primary endpoint was mood changes at 48 and 96 h after surgery. The secondary endpoints were the incidence of opioid-related adverse effects, recovery results and patient satisfaction after surgery. Results Seventy-two patients completed the study finally. There were no significant differences between the two groups with respect to preoperative parameters, surgical and anesthetic characteristics (P > 0.05). No obvious significant differences were observed in VAS score (at rest and during mobilization) and rescue analgesics use (P > 0.05). Compared with group S, the anger scores in the group H at 48 h and 96 h after surgery were significantly lower (P = 0.012 and 0.005; respectively), but the incidences of pruritus and nausea were higher (P = 0.028 and 0.008; respectively). There were no significant differences in the incidences of vomiting, respiratory depression, dizziness, Ramsay score, and hemodynamic changes between the two groups (P > 0.05). Moreover, there were no significant differences in the time to gastrointestinal recovery, time to drainage tube removal, time to walk, hospital stay after surgery and patient satisfaction between the two groups (P > 0.05). Conclusions Under the similar analgesia effect with different opoiods postoperatively, hydromorphone IV-PCA resulted in an improved mood, however, a higher occurrence of pruritus and nausea while compared to sufentanil IV-PCA in a multimodal perioperative analgesia regimen. Both regimens of opioid with IV-PCA may serve as promising candidates for good postoperative pain management, and provide with similar postoperative recovery for the patients undergoing radical surgery for colorectal cancer. Trial registration This study was registered with the Chinese Clinical Trial Registry on September 20, 2015 (URL: http://www.chictr.org.cn. Registry number: ChiCTR-IPR-15007112).
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.,Department of Anesthesiology, Taizhou Hospital, Linhai, Zhejiang, People's Republic of China
| | - Jianping Wu
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.,Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing College, Jiaxing, Zhejiang, People's Republic of China
| | - Huiling Li
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Sujuan Ye
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Xiaoying Xu
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ling Cheng
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lina Zhu
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Zhiyou Peng
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Zhiying Feng
- Department of Anesthesiology & Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
37
|
Pecina M, Zubieta JK. Expectancy Modulation of Opioid Neurotransmission. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 138:17-37. [PMID: 29681324 PMCID: PMC6314670 DOI: 10.1016/bs.irn.2018.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Expectancies are powerful modulators of cognitive and emotional experiences, as well as the neurobiological responses linked to these processes. In medicine, placebo effects are a clear example of how expectancies activate opioid neurotransmission in a treatment context, leading to the experience of analgesia and the improvement of emotional states, among other symptoms. Molecular neuroimaging techniques using positron emission tomography (PET) and the selective μ-opioid receptor tracer [11C]carfentanil have significantly contributed to our understanding of the neurobiological systems involved in the formation of placebo effects. This line of research has described neural and neurotransmitter networks implicated in placebo effects and provided the technical tools to examine inter-individual differences in the function of placebo responsive mechanisms. As a consequence, the capacity to activate endogenous opioid networks during the administration of placebos has been linked to the concept of resiliency mechanisms, partially determined by genetic factors, and uncovered by the cognitive emotional integration of the expectations created by the therapeutic environment and its maintenance through learning mechanisms. This evidence has contributed to the understanding of the biological bases of the cognitive and psychological mechanisms implicated in the response to treatments, and opened up new opportunities for drug development and the enhancement of treatment responses. Further, delineation of these processes within and across diseases is critical to understand neural systems that could be enhanced to promote symptomatic improvement and modify disease progression.
Collapse
MESH Headings
- Analgesia/psychology
- Brain/diagnostic imaging
- Brain/metabolism
- Brain/physiology
- Depressive Disorder, Major/diagnostic imaging
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Health Knowledge, Attitudes, Practice
- Humans
- Nociception/physiology
- Personality/physiology
- Placebo Effect
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/physiology
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Marta Pecina
- University of Pittsburgh, Pittsburgh, PA, United States.
| | - Jon-Kar Zubieta
- University Neuropsychiatric Institute, University of Utah Health Sciences Center, Salt Lake City, UT, United States
| |
Collapse
|
38
|
The peripheral corticotropin-releasing factor (CRF)-induced analgesic effect on somatic pain sensitivity in conscious rats: involving CRF, opioid and glucocorticoid receptors. Inflammopharmacology 2018; 26:305-318. [DOI: 10.1007/s10787-018-0445-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
|
39
|
Colonnello V, Petrocchi N, Farinelli M, Ottaviani C. Positive Social Interactions in a Lifespan Perspective with a Focus on Opioidergic and Oxytocinergic Systems: Implications for Neuroprotection. Curr Neuropharmacol 2018; 15:543-561. [PMID: 27538784 PMCID: PMC5543675 DOI: 10.2174/1570159x14666160816120209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/05/2016] [Accepted: 08/14/2016] [Indexed: 12/19/2022] Open
Abstract
In recent years, a growing interest has emerged in the beneficial effects of positive social interactions on health. The present work aims to review animal and human studies linking social interactions and health throughout the lifespan, with a focus on current knowledge of the possible mediating role of opioids and oxytocin. During the prenatal period, a positive social environment contributes to regulating maternal stress response and protecting the fetus from exposure to maternal active glucocorticoids. Throughout development, positive social contact with the caregiver acts as a “hidden regulator” and promotes infant neuroaffective development. Postnatal social neuroprotection interventions involving caregiver–infant physical contact seem to be crucial for rescuing preterm infants at risk for neurodevelopmental disorders. Attachment figures and friendships in adulthood continue to have a protective role for health and brain functioning, counteracting brain aging. In humans, implementation of meditative practices that promote compassionate motivation and prosocial behavior appears beneficial for health in adolescents and adults. Human and animal studies suggest the oxytocinergic and opioidergic systems are important mediators of the effects of social interactions. However, most of the studies focus on a specific phase of life (i.e., adulthood). Future studies should focus on the role of opioids and oxytocin in positive social interactions adopting a lifespan perspective.
Collapse
Affiliation(s)
- Valentina Colonnello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna. Italy
| | | | | | | |
Collapse
|
40
|
Discovery of endogenous opioid systems: what it has meant for the clinician's understanding of pain and its treatment. Pain 2017; 158:2290-2300. [DOI: 10.1097/j.pain.0000000000001043] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
42
|
Frontal-Brainstem Pathways Mediating Placebo Effects on Social Rejection. J Neurosci 2017; 37:3621-3631. [PMID: 28264983 DOI: 10.1523/jneurosci.2658-16.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/22/2022] Open
Abstract
Placebo treatments can strongly affect clinical outcomes, but research on how they shape other life experiences and emotional well-being is in its infancy. We used fMRI in humans to examine placebo effects on a particularly impactful life experience, social pain elicited by a recent romantic rejection. We compared these effects with placebo effects on physical (heat) pain, which are thought to depend on pathways connecting prefrontal cortex and periaqueductal gray (PAG). Placebo treatment, compared with control, reduced both social and physical pain, and increased activity in the dorsolateral prefrontal cortex (dlPFC) in both modalities. Placebo further altered the relationship between affect and both dlPFC and PAG activity during social pain, and effects on behavior were mediated by a pathway connecting dlPFC to the PAG, building on recent work implicating opioidergic PAG activity in the regulation of social pain. These findings suggest that placebo treatments reduce emotional distress by altering affective representations in frontal-brainstem systems.SIGNIFICANCE STATEMENT Placebo effects are improvements due to expectations and the socio-medical context in which treatment takes place. Whereas they have been extensively studied in the context of somatic conditions such as pain, much less is known of how treatment expectations shape the emotional experience of other important stressors and life events. Here, we use brain imaging to show that placebo treatment reduces the painful feelings associated with a recent romantic rejection by recruiting a prefrontal-brainstem network and by shifting the relationship between brain activity and affect. Our findings suggest that this brain network may be important for nonspecific treatment effects across a wide range of therapeutic approaches and mental health conditions.
Collapse
|
43
|
Esch T, Winkler J, Auwärter V, Gnann H, Huber R, Schmidt S. Neurobiological Aspects of Mindfulness in Pain Autoregulation: Unexpected Results from a Randomized-Controlled Trial and Possible Implications for Meditation Research. Front Hum Neurosci 2017; 10:674. [PMID: 28184192 PMCID: PMC5266722 DOI: 10.3389/fnhum.2016.00674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 01/22/2023] Open
Abstract
Background: Research has demonstrated that short meditation training may yield higher pain tolerance in acute experimental pain. Our study aimed at examining underlying mechanisms of this alleged effect. In addition, placebo research has shown that higher pain tolerance is mediated via endogenous neuromodulators: experimental inhibition of opioid receptors by naloxone antagonized this effect. We performed a trial to discern possible placebo from meditation-specific effects on pain tolerance and attention. Objectives: It was proposed that (i) meditation training will increase pain tolerance; (ii) naloxone will inhibit this effect; (iii) increased pain tolerance will correlate with improved attention performance and mindfulness. Methods: Randomized-controlled, partly blinded trial with 31 healthy meditation-naïve adults. Pain tolerance was assessed by the tourniquet test, attention performance was measured by Attention Network Test (ANT), self-perceived mindfulness by Freiburg Mindfulness Inventory. 16 participants received a 5-day meditation training, focusing on body/breath awareness; the control group (N = 15) received no intervention. Measures were taken before the intervention and on 3 consecutive days after the training, with all participants receiving either no infusion, naloxone infusion, or saline infusion (blinded). Blood samples were taken in order to determine serum morphine and morphine glucuronide levels by applying liquid chromatography-tandem mass spectrometry analysis. Results: The meditation group produced fewer errors in ANT. Paradoxically, increases in pain tolerance occurred in both groups (accentuated in control), and correlated with reported mindfulness. Naloxone showed a trend to decrease pain tolerance in both groups. Plasma analyses revealed sporadic morphine and/or morphine metabolite findings with no discernable pattern. Discussion: Main objectives could not be verified. Since underlying study goals had not been made explicit to participants, on purpose (framing effects toward a hypothesized mindfulness-pain tolerance correlation were thus avoided, trainees had not been instructed how to 'use' mindfulness, regarding pain), the question remains open whether lack of meditation effects on pain tolerance was due to these intended 'non-placebo' conditions, cultural effects, or other confounders, or on an unsuitable paradigm. Conclusion: Higher pain tolerance through meditation could not be confirmed.
Collapse
Affiliation(s)
- Tobias Esch
- Division of Integrative Health Promotion, Coburg University of Applied SciencesCoburg, Germany; School of Medicine, Faculty of Health, Witten/Herdecke UniversityWitten, Germany; Institute for General Medicine, University Hospital Essen, University of Duisburg-EssenEssen, Germany
| | - Jeremy Winkler
- Department of Psychosomatic Medicine, Medical Center, Medical Faculty, University of Freiburg Freiburg, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Medical Faculty, University of Freiburg Freiburg, Germany
| | - Heike Gnann
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Medical Faculty, University of Freiburg Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Medical Center, Medical Faculty, University of Freiburg Freiburg, Germany
| | - Stefan Schmidt
- Department of Psychosomatic Medicine, Medical Center, Medical Faculty, University of FreiburgFreiburg, Germany; Institute for Transcultural Health Studies, European University ViadrinaFrankfurt (Oder), Germany
| |
Collapse
|
44
|
Carpenter RW, Wood PK, Trull TJ. Comorbidity of Borderline Personality Disorder and Lifetime Substance Use Disorders in a Nationally Representative Sample. J Pers Disord 2016; 30:336-50. [PMID: 25893556 DOI: 10.1521/pedi_2015_29_197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Borderline personality disorder (BPD) is comorbid with substance use disorders (SUDs). However, most epidemiological work on BPD and SUDs has collapsed nonalcohol substances into a drug use disorder indicator, potentially obscuring patterns of association between BPD and individal SUDs. Using a nationally representative sample (National Epidemiologic Survey on Alcohol and Related Conditions; N = 34,481), the authors examined the association between lifetime BPD and nine lifetime SUDs. First, the authors examined the bivariate association of BPD and each SUD. BPD was associated with all nine SUDs. Second, they added relevant covariates (demographic variables, additional psychopathology) to each model. Seven SUDs remained significant. Finally, to account for shared variance across SUDs, the authors conducted a multivariate logistic regression with the nine SUDs and covariates as predictors. Alcohol, cocaine, and opiate use disorder were the only significant SUD predictors, indicating a unique association between BPD and these three SUDs. Future research should explore factors involved in the association of BPD with these specific SUDs.
Collapse
|
45
|
McGonigle CE, Nentwig TB, Wilson DE, Rhinehart EM, Grisel JE. β-endorphin regulates alcohol consumption induced by exercise restriction in female mice. Alcohol 2016; 53:51-60. [PMID: 27286936 DOI: 10.1016/j.alcohol.2016.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Animal models have long been used to study the mechanisms underlying the complex association between alcohol and stress. Female mice prevented from running on a home-cage activity wheel increase voluntary ethanol consumption. β-endorphin is an endogenous opioid involved in negatively regulating the stress response and has also been implicated in the risk for excessive drinking. The present study investigates the role of β-endorphin in moderating free-choice consumption of ethanol in response to a blocked activity wheel. Female, transgenic mice with varying levels of the opioid peptide were given daily 2-h access to 20% ethanol with rotations on a running wheel blocked on alternate days. Subjects with low β-endorphin exhibited enhanced stress sensitivity by self-administering larger quantities of ethanol on days when wheel running was prevented. β-endorphin levels did not influence voluntary activity on the running wheel. There were genotypic differences in plasma corticosterone levels as well as corticotropin-releasing hormone mRNA content in multiple brain regions associated with the stress response in these free drinking and running subjects. Susceptibility to stress is enhanced in female mice with low levels of β-endorphin, and better understanding of the role for this opioid in mitigating the response to stressors may aid in the development of interventions and treatments for excessive use of alcohol in women.
Collapse
|
46
|
Haj-Mirzaian A, Kordjazy N, Ostadhadi S, Amiri S, Haj-Mirzaian A, Dehpour A. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors. Can J Physiol Pharmacol 2016; 94:599-612. [DOI: 10.1139/cjpp-2015-0429] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.
Collapse
Affiliation(s)
- Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Sattar Ostadhadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - AhmadReza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| |
Collapse
|
47
|
Effects of acute and chronic social defeat stress are differentially mediated by the dynorphin/kappa-opioid receptor system. Behav Pharmacol 2016; 26:654-63. [PMID: 26110224 DOI: 10.1097/fbp.0000000000000155] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence indicates that kappa-opioid receptors (KORs) and their endogenous ligand, dynorphin (DYN), can play important roles in regulating the effects of stress. Here, we examined the role of KOR systems in the molecular and behavioral effects of acute (1-day) and chronic (10-day) social defeat stress (SDS) in mice. We found that acute SDS increased DYN mRNA levels within the nucleus accumbens, a key element of brain dopamine (DA) systems. In contrast, chronic SDS produced long-lasting decreases in DYN mRNA levels. We then examined whether disruption of KOR function would affect development of SDS-induced depressive-like behaviors, as measured in the intracranial self-stimulation and social interaction tests. Ablation of KORs from DA transporter-expressing neurons delayed the development of SDS-induced anhedonia in the intracranial self-stimulation test, suggesting increased stress resilience. However, administration of the long-lasting KOR antagonist JDTic (30 mg/kg, intraperitoneally) before the SDS regimen did not affect anhedonia, suggesting that disruption of KOR function outside DA systems can oppose stress resilience. Social avoidance behavior measured after the 10-day SDS regimen was not altered by ablation of KORs in DA transporter-expressing neurons or by JDTic administration before testing. Our findings indicate that KORs expressed in DA systems regulate the effects of acute, but not chronic, social stress.
Collapse
|
48
|
Logan RW, Wynne O, Maglakelidze G, Zhang C, O'Connell S, Boyadjieva NI, Sarkar DK. β-Endorphin neuronal transplantation into the hypothalamus alters anxiety-like behaviors in prenatal alcohol-exposed rats and alcohol-non-preferring and alcohol-preferring rats. Alcohol Clin Exp Res 2016; 39:146-57. [PMID: 25623413 DOI: 10.1111/acer.12611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol exposure has adverse effects on stress physiology and behavioral reactivity. This is suggested to be due, in part, to the effect of alcohol on β-endorphin (β-EP)-producing neurons in the hypothalamus. In response to stress, β-EP normally provides negative feedback to the hypothalamic-pituitary-adrenal axis and interacts with other neurotransmitter systems in the amygdala to regulate behavior. We examined whether β-EP neuronal function in the hypothalamus reduces the corticosterone response to acute stress, attenuates anxiety-like behaviors, and modulates alcohol drinking in rats. METHODS To determine whether β-EP neuronal transplants modulate the stress response, anxiety behavior, and alcohol drinking, we implanted differentiated β-EP neurons into the paraventricular nucleus (PVN) of the hypothalamus of normal, prenatal alcohol-exposed, and alcohol-preferring (P) and alcohol-non-preferring (NP) rats. We then assessed corticosterone levels in response to acute restraint stress and other markers of stress response in the brain and anxiety-like behaviors in the elevated plus maze and open-field assays. RESULTS We showed that β-EP neuronal transplants into the PVN reduced the peripheral corticosterone response to acute stress and attenuated anxiety-like behaviors. Similar transplants completely reduced the hypercorticosterone response and elevated anxiety behaviors in prenatal alcohol-exposed adult rats. Moreover, we showed that β-EP reduced anxiety behavior in P rats with minimal effects on alcohol drinking during and following restraint stress. CONCLUSIONS These data further establish a role of β-EP neurons in the hypothalamus for regulating physiological stress response and anxiety behavior and resemble a potential novel therapy for treating stress-related psychiatric disorders in prenatal alcohol-exposed children and those genetically predisposed to increased alcohol consumption.
Collapse
Affiliation(s)
- Ryan W Logan
- Endocrine Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; University of Pittsburgh Medical Center, Department of Psychiatry, Translational Neuroscience Program, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
49
|
Prossin AR, Koch AE, Campbell PL, Barichello T, Zalcman SS, Zubieta JK. Acute experimental changes in mood state regulate immune function in relation to central opioid neurotransmission: a model of human CNS-peripheral inflammatory interaction. Mol Psychiatry 2016; 21:243-51. [PMID: 26283642 PMCID: PMC4720915 DOI: 10.1038/mp.2015.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 01/18/2023]
Abstract
Although evidence shows depressed moods enhance risk for somatic diseases, molecular mechanisms underlying enhanced somatic susceptibility are ill-defined. Knowledge of these molecular mechanisms will inform development of treatment and prevention strategies across comorbid depressive and somatic illnesses. Existing evidence suggests that interleukin-18 (IL-18; an IL-1 family cytokine) is elevated in depression and implicated in pathophysiology underlying comorbid medical illnesses. We previously identified strong associations between baseline IL-18 and μ-opioid receptor availability in major depressive disorder (MDD) volunteers. Combined with the evidence in animal models, we hypothesized that experimental mood induction would change IL-18, the extent proportional to opioid neurotransmitter release. Using the Velten technique in a [(11)C]carfentanil positron emission tomography neuroimaging study, we examined the impact of experimentally induced mood (sad, neutral) on plasma IL-18 and relationships with concurrent changes in the central opioid neurotransmission in 28 volunteers (healthy, MDD). Results showed mood induction impacted IL-18 (F2,25=12.2, P<0.001), sadness increasing IL-18 (T27=2.6, P=0.01) and neutral mood reducing IL-18 (T27=-4.1, P<0.001). In depressed volunteers, changes in IL-18 were more pronounced (F2,25=3.6, P=0.03) and linearly proportional to sadness-induced μ-opioid activation (left ventral pallidum, bilateral anterior cingulate cortices, right hypothalamus and bilateral amygdala). These data demonstrate that dynamic changes of a pro-inflammatory IL-1 superfamily cytokine, IL-18, and its relationship to μ-opioid neurotransmission in response to experimentally induced sadness. Further testing is warranted to delineate the role of neuroimmune interactions involving IL-18 in enhancing susceptibility to medical illness (that is, diabetes, heart disease and persistent pain states) in depressed individuals.
Collapse
Affiliation(s)
- A R Prossin
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA,Department of Psychiatry and Behavioral Sciences, University of Texas Health Sciences Center at Houston, 1941 East Road, BBSB #2308, Houston, TX 77054, USA. E-mail:
| | - A E Koch
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA,Medical Service, Veteran's Administration Ann Arbor, Ann Arbor, MI, USA
| | - P L Campbell
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T Barichello
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA,Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - S S Zalcman
- Department of Psychiatry, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - J-K Zubieta
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
50
|
Li W, Sun H, Chen H, Yang X, Xiao L, Liu R, Shao L, Qiu Z. Major Depressive Disorder and Kappa Opioid Receptor Antagonists. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2016; 1:4-16. [PMID: 27213169 PMCID: PMC4871611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Major depressive disorder (MDD) is a common psychiatric disease worldwide. The clinical use of tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs) and selective serotonin reuptake inhibitors (SSRIs)/serotonin-norepinephrine reuptake inhibitor (SNRIs) for this condition have been widely accepted, but they were challenged by unacceptable side-effects, potential drug-drug interactions (DDIs) or slow onset/lack of efficacy. The endogenous opioid system is involved in stress and emotion regulatory processes and its role in MDD has been implicated. Although several KOR antagonists including JDTic and PF-04455242 were discontinued in early clinical trials, ALKS 5461 and CERC-501(LY-2456302) survived and entered into Phase-III and Phase-II trials, respectively. Considering the efficacy and safety of early off-label use of buprenorphine in the management of the treatment-resistant depression (TRD), it will be not surprising to predict the potential success of ALKS 5461 (a combination of buprenorphine and ALKS-33) in the near future. Moreover, CERC-501 will be expected to be available as monotherapy or adjuvant therapy with other first-line antidepressants in the treatment of TRD, if ongoing clinical trials continue to provide positive benefit-risk profiles. Emerging new researches might bring more drug candidates targeting the endogenous opioid system to clinical trials to address current challenges in MDD treatment in clinical practice.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Hao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Xicheng Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Li Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University,Corresponding Author: Liming Shao, Ph.D., Department of Medicinal Chemistry, School of Pharmacy, at Fudan University, 826 Zhangheng Road, Zhangjiang Hitech Park, Pudong, Shanghai 201203, China;
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University
| |
Collapse
|