1
|
Kim WS, Heo DW, Maeng J, Shen J, Tsogt U, Odkhuu S, Zhang X, Cheraghi S, Kim SW, Ham BJ, Rami FZ, Sui J, Kang CY, Suk HI, Chung YC. Deep Learning-based Brain Age Prediction in Patients With Schizophrenia Spectrum Disorders. Schizophr Bull 2024; 50:804-814. [PMID: 38085061 PMCID: PMC11283195 DOI: 10.1093/schbul/sbad167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS The brain-predicted age difference (brain-PAD) may serve as a biomarker for neurodegeneration. We investigated the brain-PAD in patients with schizophrenia (SCZ), first-episode schizophrenia spectrum disorders (FE-SSDs), and treatment-resistant schizophrenia (TRS) using structural magnetic resonance imaging (sMRI). STUDY DESIGN We employed a convolutional network-based regression (SFCNR), and compared its performance with models based on three machine learning (ML) algorithms. We pretrained the SFCNR with sMRI data of 7590 healthy controls (HCs) selected from the UK Biobank. The parameters of the pretrained model were transferred to the next training phase with a new set of HCs (n = 541). The brain-PAD was analyzed in independent HCs (n = 209) and patients (n = 233). Correlations between the brain-PAD and clinical measures were investigated. STUDY RESULTS The SFCNR model outperformed three commonly used ML models. Advanced brain aging was observed in patients with SCZ, FE-SSDs, and TRS compared to HCs. A significant difference in brain-PAD was observed between FE-SSDs and TRS with ridge regression but not with the SFCNR model. Chlorpromazine equivalent dose and cognitive function were correlated with the brain-PAD in SCZ and FE-SSDs. CONCLUSIONS Our findings indicate that there is advanced brain aging in patients with SCZ and higher brain-PAD in SCZ can be used as a surrogate marker for cognitive dysfunction. These findings warrant further investigations on the causes of advanced brain age in SCZ. In addition, possible psychosocial and pharmacological interventions targeting brain health should be considered in early-stage SCZ patients with advanced brain age.
Collapse
Affiliation(s)
- Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Da-Woon Heo
- Department of Artificial Intelligence, Korea University, Seoul, Korea
| | - Junyeong Maeng
- Department of Artificial Intelligence, Korea University, Seoul, Korea
| | - Jie Shen
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Psychiatry, Yanbian University, Medical School, Yanji, China
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Soyolsaikhan Odkhuu
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Xuefeng Zhang
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sahar Cheraghi
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chae Yeong Kang
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Heung-Il Suk
- Department of Artificial Intelligence, Korea University, Seoul, Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
2
|
Cerantonio A, Citrigno L, Greco BM, De Benedittis S, Passarino G, Maletta R, Qualtieri A, Montesanto A, Spadafora P, Cavalcanti F. The Role of Mitochondrial Copy Number in Neurodegenerative Diseases: Present Insights and Future Directions. Int J Mol Sci 2024; 25:6062. [PMID: 38892250 PMCID: PMC11172615 DOI: 10.3390/ijms25116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative diseases are progressive disorders that affect the central nervous system (CNS) and represent the major cause of premature death in the elderly. One of the possible determinants of neurodegeneration is the change in mitochondrial function and content. Altered levels of mitochondrial DNA copy number (mtDNA-CN) in biological fluids have been reported during both the early stages and progression of the diseases. In patients affected by neurodegenerative diseases, changes in mtDNA-CN levels appear to correlate with mitochondrial dysfunction, cognitive decline, disease progression, and ultimately therapeutic interventions. In this review, we report the main results published up to April 2024, regarding the evaluation of mtDNA-CN levels in blood samples from patients affected by Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The aim is to show a probable link between mtDNA-CN changes and neurodegenerative disorders. Understanding the causes underlying this association could provide useful information on the molecular mechanisms involved in neurodegeneration and offer the development of new diagnostic approaches and therapeutic interventions.
Collapse
Affiliation(s)
- Annamaria Cerantonio
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Luigi Citrigno
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Beatrice Maria Greco
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, CZ, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, CZ, Italy
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| |
Collapse
|
3
|
Chatterjee I, Chatterjee S. Investigating the symptomatic and morphological changes in the brain based on pre and post-treatment: A critical review from clinical to neuroimaging studies on schizophrenia. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
4
|
Liu C, Kim WS, Shen J, Tsogt U, Kang NI, Lee KH, Chung YC. Altered Neuroanatomical Signatures of Patients With Treatment-Resistant Schizophrenia Compared to Patients With Early-Stage Schizophrenia and Healthy Controls. Front Psychiatry 2022; 13:802025. [PMID: 35664476 PMCID: PMC9158464 DOI: 10.3389/fpsyt.2022.802025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background The relationship between brain structural changes and cognitive dysfunction in schizophrenia is strong. However, few studies have investigated both neuroanatomical abnormalities and cognitive dysfunction in treatment-resistant schizophrenia (TRS). We examined neuroanatomical markers and cognitive function between patients with TRS or early-stage schizophrenia (ES-S) and healthy controls (HCs). Relationships between neuroanatomical markers and cognitive function in the patient groups were also investigated. Methods A total of 46 and 45 patients with TRS and ES-S and 61 HCs underwent structural magnetic resonance imaging (MRI) brain scanning and comprehensive cognitive tests. MRI scans were analyzed using the FreeSurfer to investigate differences in cortical surface area (CSA), cortical thickness (CT), cortical volume (CV), and subcortical volume (SCV) among the groups. Four cognitive domains (attention, verbal memory, executive function, and language) were assessed. Comparisons of neuroanatomical and cognitive function results among the three groups were performed. Results A widespread reduction in CT was observed in patients with TRS compared to HCs, but differences in cortical thinning between TRS and ES-S patients were mainly limited to the inferior frontal gyrus and insula. Several subcortical structures (accumbens, amygdala, hippocampus, putamen, thalamus and ventricles) were significantly altered in TRS patients compared to both ES-S patients and HCs. Performance in the verbal memory domain was significantly worse in TRS patients compared to ES-S patients. A positive relationship between the thickness of the left middle temporal gyrus and the composite score for language was identified in patients with ES-S. Conclusions Our findings suggest significant cognitive impairment and reductions in CT and SCV in individuals with TRS compared to those with ES-S and HCs. These abnormalities could act as biomarkers for earlier identification of TRS.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Woo-Sung Kim
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Jie Shen
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Uyanga Tsogt
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Nam-In Kang
- Department of Psychiatry, Maeumsarang Hospital, Wanju, South Korea
| | - Keon-Hak Lee
- Department of Psychiatry, Maeumsarang Hospital, Wanju, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
5
|
Fountoulakis KN, Stahl SM. The effect of first- and second-generation antipsychotics on brain morphology in schizophrenia: A systematic review of longitudinal magnetic resonance studies with a randomized allocation to treatment arms. J Psychopharmacol 2022; 36:428-438. [PMID: 35395911 DOI: 10.1177/02698811221087645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Schizophrenia manifests as loss of brain volume in specific areas in a progressive nature and an important question concerns whether long-term treatment with medications contributes to this. The aim of the current PRISMA systematic review was to search for prospective studies involving randomization to treatment. PROSPERO ID: CRD42020197874. The MEDLINE/PUBMED was searched and it returned 2638 articles; 3 were fulfilling the inclusion criteria. A fourth was published later; they included 359 subjects, of whom 86 were healthy controls, while the rest were first-episode patients, with 91 under olanzapine, 93 under haloperidol, 48 under risperidone, 5 under paliperidone, 6 under ziprasidone, and 30 under placebo. Probably one-third of patients were suffering from a psychotic disorder other than schizophrenia. The consideration of their results suggested that there is no significant difference between these medications concerning their effects on brain structure and also in comparison to healthy subjects. There does not seem to be any strong support to the opinion that medications that treat psychosis cause loss of brain volume in patients with schizophrenia. On the contrary, the data might imply the possible presence of a protective effect for D2, 5-HT2, and NE alpha-2 antagonists (previously called SGAs). However, the literature is limited and focused research in large study samples is essential to clarify the issue, since important numerical differences do exist. The possibility of the results and their heterogeneity to be artifacts secondary to a modification of magnetic resonance imaging (MRI) signal by antipsychotics should not be easily rejected until relevant data are available.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stephen M Stahl
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.,Department of Psychiatry, Cambridge University, Cambridge, UK
| |
Collapse
|
6
|
Fountoulakis KN, Moeller HJ, Kasper S, Tamminga C, Yamawaki S, Kahn R, Tandon R, Correll CU, Javed A. The report of the joint WPA/CINP workgroup on the use and usefulness of antipsychotic medication in the treatment of schizophrenia. CNS Spectr 2020; 26:1-25. [PMID: 32594935 DOI: 10.1017/s1092852920001546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This is a report of a joint World Psychiatric Association/International College of Neuropsychopharmacology (WPA/CINP) workgroup concerning the risk/benefit ratio of antipsychotics in the treatment of schizophrenia. It utilized a selective but, within topic, comprehensive review of the literature, taking into consideration all the recently discussed arguments on the matter and avoiding taking sides when the results in the literature were equivocal. The workgroup's conclusions suggested that antipsychotics are efficacious both during the acute and the maintenance phase, and that the current data do not support the existence of a supersensitivity rebound psychosis. Long-term treated patients have better overall outcome and lower mortality than those not taking antipsychotics. Longer duration of untreated psychosis and relapses are modestly related to worse outcome. Loss of brain volume is evident already at first episode and concerns loss of neuropil volume rather than cell loss. Progression of volume loss probably happens in a subgroup of patients with worse prognosis. In humans, antipsychotic treatment neither causes nor worsens volume loss, while there are some data in favor for a protective effect. Schizophrenia manifests 2 to 3 times higher mortality vs the general population, and treatment with antipsychotics includes a number of dangers, including tardive dyskinesia and metabolic syndrome; however, antipsychotic treatment is related to lower mortality, including cardiovascular mortality. In conclusion, the literature strongly supports the use of antipsychotics both during the acute and the maintenance phase without suggesting that it is wise to discontinue antipsychotics after a certain period of time. Antipsychotic treatment improves long-term outcomes and lowers overall and specific-cause mortality.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans-Jurgen Moeller
- Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Siegfried Kasper
- Universitätsklinik für Psychiatrie und Psychotherapie, Medizinische Universität Wien, Vienna, Austria
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Rene Kahn
- Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rajiv Tandon
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Christoph U Correll
- Department of Psychiatry, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Afzal Javed
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Pakistan Psychiatric Research Centre, Fountain House, Lahore, Pakistan
| |
Collapse
|
7
|
Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020; 46:484-495. [PMID: 31755955 PMCID: PMC7147598 DOI: 10.1093/schbul/sbz119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
8
|
Palaniyappan L. Inefficient neural system stabilization: a theory of spontaneous resolutions and recurrent relapses in psychosis. J Psychiatry Neurosci 2019; 44:367-383. [PMID: 31245961 PMCID: PMC6821513 DOI: 10.1503/jpn.180038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
A striking feature of psychosis is its heterogeneity. Presentations of psychosis vary from transient symptoms with no functional consequence in the general population to a tenacious illness at the other extreme, with a wide range of variable trajectories in between. Even among patients with schizophrenia, who are diagnosed on the basis of persistent deterioration, marked variation is seen in response to treatment, frequency of relapses and degree of eventual recovery. Existing theoretical accounts of psychosis focus almost exclusively on how symptoms are initially formed, with much less emphasis on explaining their variable course. In this review, I present an account that links several existing notions of the biology of psychosis with the variant clinical trajectories. My aim is to incorporate perspectives of systems neuroscience in a staging framework to explain the individual variations in illness course that follow the onset of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- From the Department of Psychiatry and Robarts Research Institute, University of Western Ontario and Lawson Health Research Institute, London, Ont., Canada
| |
Collapse
|
9
|
Moran JK, Michail G, Heinz A, Keil J, Senkowski D. Long-Range Temporal Correlations in Resting State Beta Oscillations are Reduced in Schizophrenia. Front Psychiatry 2019; 10:517. [PMID: 31379629 PMCID: PMC6659128 DOI: 10.3389/fpsyt.2019.00517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/01/2019] [Indexed: 01/26/2023] Open
Abstract
Symptoms of schizophrenia (SCZ) are likely to be generated by genetically mediated synaptic dysfunction, which contribute to large-scale functional neural dysconnectivity. Recent electrophysiological studies suggest that this dysconnectivity is present not only at a spatial level but also at a temporal level, operationalized as long-range temporal correlations (LRTCs). Previous research suggests that alpha and beta frequency bands have weaker temporal stability in people with SCZ. This study sought to replicate these findings with high-density electroencephalography (EEG), enabling a spatially more accurate analysis of LRTC differences, and to test associations with characteristic SCZ symptoms and cognitive deficits. A 128-channel EEG was used to record eyes-open resting state brain activity of 23 people with SCZ and 24 matched healthy controls (HCs). LRTCs were derived for alpha (8-12 Hz) and beta (13-25 Hz) frequency bands. As an exploratory analysis, LRTC was source projected using sLoreta. People with SCZ showed an area of significantly reduced beta-band LRTC compared with HCs over bilateral posterior regions. There were no between-group differences in alpha-band activity. Individual symptoms of SCZ were not related to LRTC values nor were cognitive deficits. The study confirms that people with SCZ have reduced temporal stability in the beta frequency band. The absence of group differences in the alpha band may be attributed to the fact that people had, in contrast to previous studies, their eyes open in the current study. Taken together, our study confirms the utility of LRTC as a marker of network instability in people with SCZ and provides a novel empirical perspective for future examinations of network dysfunction salience in SCZ research.
Collapse
Affiliation(s)
- James K. Moran
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georgios Michail
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Keil
- Biological Psychology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Daniel Senkowski
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Jędrak P, Krygier M, Tońska K, Drozd M, Kaliszewska M, Bartnik E, Sołtan W, Sitek EJ, Stanisławska-Sachadyn A, Limon J, Sławek J, Węgrzyn G, Barańska S. Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts. Metab Brain Dis 2017; 32:1237-1247. [PMID: 28508341 PMCID: PMC5504138 DOI: 10.1007/s11011-017-0026-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by mutations in the huntingtin gene. Involvement of mitochondrial dysfunctions in, and especially influence of the level of mitochondrial DNA (mtDNA) on, development of this disease is unclear. Here, samples of blood from 84 HD patients and 79 controls, and dermal fibroblasts from 10 HD patients and 9 controls were analysed for mtDNA levels. Although the type of mitochondrial haplogroup had no influence on the mtDNA level, and there was no correlation between mtDNA level in leukocytes in HD patients and various parameters of HD severity, some considerable differences between HD patients and controls were identified. The average mtDNA/nDNA relative copy number was significantly higher in leukocytes, but lower in fibroblasts, of symptomatic HD patients relative to the control group. Moreover, HD women displayed higher mtDNA levels in leukocytes than HD men. Because this is the largest population analysed to date, these results might contribute to explanation of discrepancies between previously published studies concerning levels of mtDNA in cells of HD patients. We suggest that the size of the investigated population and type of cells from which DNA is isolated could significantly affect results of mtDNA copy number estimation in HD. Hence, these parameters should be taken into consideration in studies on mtDNA in HD, and perhaps also in other diseases where mitochondrial dysfunction occurs.
Collapse
Affiliation(s)
- Paulina Jędrak
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Krygier
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Drozd
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Kaliszewska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Witold Sołtan
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
| | - Emilia J Sitek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jarosław Sławek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
11
|
Roughead EE, Pratt NL, Kalisch Ellett LM, Ramsay EN, Barratt JD, Morris P, Killer G. Posttraumatic Stress Disorder, Antipsychotic Use and Risk of Dementia in Veterans. J Am Geriatr Soc 2017; 65:1521-1526. [DOI: 10.1111/jgs.14837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Elizabeth E. Roughead
- Quality Use of Medicines and Pharmacy Research Centre School of Pharmacy and Medical Sciences Sansom Institute University of South Australia Adelaide Australia
| | - Nicole L. Pratt
- Quality Use of Medicines and Pharmacy Research Centre School of Pharmacy and Medical Sciences Sansom Institute University of South Australia Adelaide Australia
| | - Lisa M. Kalisch Ellett
- Quality Use of Medicines and Pharmacy Research Centre School of Pharmacy and Medical Sciences Sansom Institute University of South Australia Adelaide Australia
| | - Emmae N. Ramsay
- Quality Use of Medicines and Pharmacy Research Centre School of Pharmacy and Medical Sciences Sansom Institute University of South Australia Adelaide Australia
| | - John D. Barratt
- Quality Use of Medicines and Pharmacy Research Centre School of Pharmacy and Medical Sciences Sansom Institute University of South Australia Adelaide Australia
| | - Philip Morris
- Australian and New Zealand Mental Health Association Gold Coast Australia
- Bond University Gold Coast Australia
| | | |
Collapse
|
12
|
Huhtaniska S, Jääskeläinen E, Hirvonen N, Remes J, Murray GK, Veijola J, Isohanni M, Miettunen J. Long-term antipsychotic use and brain changes in schizophrenia - a systematic review and meta-analysis. Hum Psychopharmacol 2017; 32. [PMID: 28370309 DOI: 10.1002/hup.2574] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The association between long-term antipsychotic treatment and changes in brain structure in schizophrenia is unclear. Our aim was to conduct a systematic review and a meta-analysis on long-term antipsychotic effects on brain structures in schizophrenia focusing on studies with at least 2 years of follow-up between MRI scans. DESIGN Studies were systematically collected using 4 databases, and we also contacted authors for unpublished data. We calculated correlations between antipsychotic dose and/or type and brain volumetric changes and used random effect meta-analysis to study correlations by brain area. RESULTS Thirty-one publications from 16 samples fulfilled our inclusion criteria. In meta-analysis, higher antipsychotic exposure associated statistically significantly with parietal lobe decrease (studies, n = 4; r = -.14, p = .013) and with basal ganglia increase (n = 4; r = .10, p = .044). Most of the reported correlations in the original studies were statistically nonsignificant. There were no clear differences between typical and atypical exposure and brain volume change. The studies were often small and highly heterogeneous in their methods and seldom focused on antipsychotic medication and brain changes as the main subject. CONCLUSIONS Antipsychotic medication may associate with brain structure changes. More long-term follow-up studies taking into account illness severity measures are needed to make definitive conclusions.
Collapse
Affiliation(s)
- Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Erika Jääskeläinen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Noora Hirvonen
- Information Studies, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Jukka Remes
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Juha Veijola
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Matti Isohanni
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
13
|
Abstract
This article reviews the results of longitudinal studies on frontal brain volume reduction in patients with schizophrenia spectrum disorders and focuses on the relationship with antipsychotic treatment. Based on a systematic literature search all studies were included in which results on changes of brain volumes over a longer period of time were correlated with antipsychotic treatment dose and disease severity. The findings indicate that there is evidence for grey and white matter volume changes of the frontal brain, which cannot be explained by the severity of the disease alone but are also very likely a manifestation of long-term effects of antipsychotics. Whether second generation antipsychotics have an advantage compared to first generation antipsychotics is currently unclear. Considering the contribution of antipsychotics to the changes in brain structure, which seem to depend on cumulative dosage and can exert adverse effects on neurocognition, negative and positive symptoms and psychosocial functioning, the guidelines for antipsychotic long-term drug treatment should be reconsidered. This is the reason why we and others recommend prescribing the lowest dose necessary to control symptoms. In non-schizophrenic psychiatric disorders, antipsychotics should be used only with great caution after a careful risk-benefit assessment. Moreover, treatment approaches which can help to minimize antipsychotic medication or even administer them only selectively are of increasing importance.
Collapse
|
14
|
Rethinking psychopharmacotherapy: The role of treatment context and brain plasticity in antidepressant and antipsychotic interventions. Neurosci Biobehav Rev 2015; 60:51-64. [PMID: 26616735 DOI: 10.1016/j.neubiorev.2015.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Emerging evidence indicates that treatment context profoundly affects psychopharmacological interventions. We review the evidence for the interaction between drug application and the context in which the drug is given both in human and animal research. We found evidence for this interaction in the placebo response in clinical trials, in our evolving knowledge of pharmacological and environmental effects on neural plasticity, and in animal studies analyzing environmental influences on psychotropic drug effects. Experimental placebo research has revealed neurobiological trajectories of mechanisms such as patients' treatment expectations and prior treatment experiences. Animal research confirmed that "enriched environments" support positive drug effects, while unfavorable environments (low sensory stimulation, low rates of social contacts) can even reverse the intended treatment outcome. Finally we provide recommendations for context conditions under which psychotropic drugs should be applied. Drug action should be steered by positive expectations, physical activity, and helpful social and physical environmental stimulation. Future drug trials should focus on fully controlling and optimizing such drug×environment interactions to improve trial sensitivity and treatment outcome.
Collapse
|
15
|
Vita A, De Peri L, Deste G, Barlati S, Sacchetti E. The Effect of Antipsychotic Treatment on Cortical Gray Matter Changes in Schizophrenia: Does the Class Matter? A Meta-analysis and Meta-regression of Longitudinal Magnetic Resonance Imaging Studies. Biol Psychiatry 2015; 78:403-12. [PMID: 25802081 DOI: 10.1016/j.biopsych.2015.02.008] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/01/2015] [Accepted: 02/05/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Deficits in cortical gray matter (GM) have been found in patients with schizophrenia, with evidence of progression over time. The aim of this study was to determine the role of potential moderators of such changes, in particular of the amount and type of antipsychotic medication intake. METHODS Longitudinal magnetic resonance imaging studies comparing changes in the volume of cortical GM over time between patients with schizophrenia and healthy control subjects published between January 1, 1983, and March 31, 2014, were analyzed. Hedges' g was calculated for each study and volume changes from baseline to follow-up were analyzed. Meta-regression statistics were applied to investigate the role of potential moderators of the effect sizes. RESULTS Eighteen studies involving 1155 patients with schizophrenia and 911 healthy control subjects were included. Over time, patients with schizophrenia showed a significantly higher loss of total cortical GM volume. This was related to cumulative antipsychotic intake during the interval between scans in the whole study sample. Subgroup meta-analyses of studies on patients treated with second-generation antipsychotics and first-generation antipsychotics revealed a different and contrasting moderating role of medication intake on cortical GM changes: more progressive GM loss correlated with higher mean daily antipsychotic intake in patients treated with at least one first-generation antipsychotic and less progressive GM loss with higher mean daily antipsychotic intake in patients treated only with second-generation antipsychotics. CONCLUSIONS These findings add useful information to the controversial debate on the brain structural effects of antipsychotic medication and may have both clinical relevance and theoretical implications.
Collapse
Affiliation(s)
- Antonio Vita
- University of Brescia, School of Medicine; Department of Mental Health, Spedali Civili Hospital, Brescia, Italy.
| | | | - Giacomo Deste
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Emilio Sacchetti
- University of Brescia, School of Medicine; Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| |
Collapse
|
16
|
Sharma AN, Ligade SS, Sharma JN, Shukla P, Elased KM, Lucot JB. GLP-1 receptor agonist liraglutide reverses long-term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats. Metab Brain Dis 2015; 30:519-27. [PMID: 25023888 DOI: 10.1007/s11011-014-9591-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Mood disorder patients that are on long-term atypical antipsychotics treatment frequently experience metabolic dysfunctions. In addition to this, accumulating evidences points to increased risk of structural abnormalities, brain volume changes, altered neuroplasticity and behavioral depression with long-term antipsychotics use. However, there is paucity of preclinical evidences for long-term antipsychotic associated depression-like behavior. The objectives of the present study were: (1) to evaluate influence of long-term antipsychotic (olanzapine) treatment on rat behavior in forced swim test (FST) as a model for depression and; (2) to examine impact of glucagon-like peptide 1 (GLP-1) receptor agonist liraglutide - an antidiabetic medication for type II diabetes, on long-term olanzapine associated metabolic and behavioral changes in rats. Daily olanzapine treatment (0.5 mg/kg; p.o.) for 8-9 weeks significantly increased body weights, food and water intake, plasma cholesterol and triglycerides and immobility time in FST with parallel reduction in plasma HDL cholesterol levels. These results points to development of metabolic abnormalities and depression-like behavior with long-term olanzapine treatment. Acute liraglutide (50 μg/kg; i.p.) and imipramine (10 mg/kg, i. p.) treatment per se significantly decreased duration of immobility in FST compared to vehicle treated rats. Additionally, 3-week liraglutide treatment (50 μg/kg; i.p., daily) partially reversed metabolic abnormalities and depression-like behavior with long-term olanzapine-treatment in rats. None of these treatment regimens affected locomotor behavior of rats. In summary, add-on GLP-1 receptor agonists promise novel alternatives to counteract long-term antipsychotics associated behavioral and metabolic complications.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- Department of Pharmacology, S.T.E.S.s Smt. Kashibai Navale College of Pharmacy, Kondhwa (Bk), Pune, MS, 411048, India,
| | | | | | | | | | | |
Collapse
|
17
|
Elmorsy E, Smith PA. Bioenergetic disruption of human micro-vascular endothelial cells by antipsychotics. Biochem Biophys Res Commun 2015; 460:857-62. [PMID: 25824037 DOI: 10.1016/j.bbrc.2015.03.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 03/21/2015] [Indexed: 01/16/2023]
Abstract
Antipsychotics (APs) are widely used medications, however these are not without side effects such as disruption of blood brain barrier function (BBB). To investigate this further we have studied the chronic effects of the typical APs, chlorpromazine (CPZ) and haloperidol (HAL) and the atypical APs, risperidone (RIS) and clozapine (CLZ), on the bioenergetics of human micro-vascular endothelial cells (HBVECs) of the BBB. Alamar blue (AB) and ATP assays showed that these APs impair bioenergenesis in HBVECs in a concentration and time dependent manner. However since these effects were incomplete they suggest a population of cell bioenergetically heterogeneous, an idea supported by the bistable nature by which APs affected the mitochondrial transmembrane potential. CPZ, HAL and CLZ inhibited the activity of mitochondrial complexes I and III. Our data demonstrates that at therapeutic concentrations, APs can impair the bioenergetic status of HBVECs, an action that help explains the adverse side effects of these drugs when used clinically.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- School of Life Science, University of Nottingham Medical School, Queens Medical Centre, Nottinghamshire, NG7 2UH, UK; Departments of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Egypt
| | - Paul A Smith
- School of Life Science, University of Nottingham Medical School, Queens Medical Centre, Nottinghamshire, NG7 2UH, UK.
| |
Collapse
|
18
|
Marrus N, Bell M, Luby JL. Psychotropic Medications and Their Effect on Brain Volumes in Childhood Psychopathology. ACTA ACUST UNITED AC 2014; 19:1-8. [PMID: 28701856 DOI: 10.1521/capn.2014.19.2.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Marisa Bell
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 2012; 17:1206-27. [PMID: 22584864 DOI: 10.1038/mp.2012.47] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the introduction of chlorpromazine and throughout the development of the new-generation antipsychotic drugs (APDs) beginning with clozapine, the D(2) receptor has been the target for the development of APDs. Pharmacologic actions to reduce neurotransmission through the D(2) receptor have been the only proven therapeutic mechanism for psychoses. A number of novel non-D(2) mechanisms of action of APDs have been explored over the past 40 years but none has definitively been proven effective. At the same time, the effectiveness of treatments and range of outcomes for patients are far from satisfactory. The relative success of antipsychotics in treating positive symptoms is limited by the fact that a substantial number of patients are refractory to current medications and by their lack of efficacy for negative and cognitive symptoms, which often determine the level of functional impairment. In addition, while the newer antipsychotics produce fewer motor side effects, safety and tolerability concerns about weight gain and endocrinopathies have emerged. Consequently, there is an urgent need for more effective and better-tolerated antipsychotic agents, and to identify new molecular targets and develop mechanistically novel compounds that can address the various symptom dimensions of schizophrenia. In recent years, a variety of new experimental pharmacological approaches have emerged, including compounds acting on targets other than the dopamine D(2) receptor. However, there is still an ongoing debate as to whether drugs selective for singe molecular targets (that is, 'magic bullets') or drugs selectively non-selective for several molecular targets (that is, 'magic shotguns', 'multifunctional drugs' or 'intramolecular polypharmacy') will lead to more effective new medications for schizophrenia. In this context, current and future drug development strategies can be seen to fall into three categories: (1) refinement of precedented mechanisms of action to provide drugs of comparable or superior efficacy and side-effect profiles to existing APDs; (2) development of novel (and presumably non-D(2)) mechanism APDs; (3) development of compounds to be used as adjuncts to APDs to augment efficacy by targeting specific symptom dimensions of schizophrenia and particularly those not responsive to traditional APD treatment. In addition, efforts are being made to determine if the products of susceptibility genes in schizophrenia, identified by genetic linkage and association studies, may be viable targets for drug development. Finally, a focus on early detection and early intervention aimed at halting or reversing progressive pathophysiological processes in schizophrenia has gained great influence. This has encouraged future drug development and therapeutic strategies that are neuroprotective. This article provides an update and critical review of the pharmacology and clinical profiles of current APDs and drugs acting on novel targets with potential to be therapeutic agents in the future.
Collapse
Affiliation(s)
- S Miyamoto
- Department of Neuropsychiatry, St Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | |
Collapse
|
20
|
Rizig MA, McQuillin A, Ng A, Robinson M, Harrison A, Zvelebil M, Hunt SP, Gurling HM. A gene expression and systems pathway analysis of the effects of clozapine compared to haloperidol in the mouse brain implicates susceptibility genes for schizophrenia. J Psychopharmacol 2012; 26:1218-30. [PMID: 22767372 DOI: 10.1177/0269881112450780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clozapine has markedly superior clinical properties compared to other antipsychotic drugs but the side effects of agranulocytosis, weight gain and diabetes limit its use. The reason why clozapine is more effective is not well understood. We studied messenger RNA (mRNA) gene expression in the mouse brain to identify pathways changed by clozapine compared to those changed by haloperidol so that we could identify which changes were specific to clozapine. Data interpretation was performed using an over-representation analysis (ORA) of gene ontology (GO), pathways and gene-by-gene differences. Clozapine significantly changed gene expression in pathways related to neuronal growth and differentiation to a greater extent than haloperidol; including the microtubule-associated protein kinase (MAPK) signalling and GO terms related to axonogenesis and neuroblast proliferation. Several genes implicated genetically or functionally in schizophrenia such as frizzled homolog 3 (FZD3), U2AF homology motif kinase 1 (UHMK1), pericentriolar material 1 (PCM1) and brain-derived neurotrophic factor (BDNF) were changed by clozapine but not by haloperidol. Furthermore, when compared to untreated controls clozapine specifically regulated transcripts related to the glutamate system, microtubule function, presynaptic proteins and pathways associated with synaptic transmission such as clathrin cage assembly. Compared to untreated controls haloperidol modulated expression of neurotoxic and apoptotic responses such as NF-kappa B and caspase pathways, whilst clozapine did not. Pathways involving lipid and carbohydrate metabolism and appetite regulation were also more affected by clozapine than by haloperidol.
Collapse
Affiliation(s)
- Mie A Rizig
- Molecular Psychiatry Laboratory, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Antipsychotic induced alteration of growth and proteome of rat neural stem cells. Neurochem Res 2012; 37:1649-59. [PMID: 22528831 DOI: 10.1007/s11064-012-0768-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/19/2012] [Accepted: 03/27/2012] [Indexed: 01/19/2023]
Abstract
Neural stem cells (NSCs) play a crucial role in the development and maturation of the central nervous system and therefore have the potential to target by therapeutic agents for a wide variety of diseases including neurodegenerative and neuropsychiatric illnesses. It has been suggested that antipsychotic drugs have significant effects on NSC activities. However, the molecular mechanisms underlying antipsychotic-induced changes of NSC activities, particularly growth and protein expression, are largely unknown. NSCs were treated with either haloperidol (HD; 3 μM), risperidone (RS; 3 μM) or vehicle (DMSO) for 96 h. Protein expression profiles were studied through a proteomics approach. RS promoted and HD inhibited the growth of NSCs. Proteomics analysis revealed that 15 protein spots identified as 12 unique proteins in HD-, and 20 protein spots identified as 14 proteins in RS-treated groups, were differentially expressed relative to control. When these identified proteins were compared between the two drug-treated groups, 2 proteins overlapped leaving 10 HD-specific and 12 RS-specific proteins. Further comparison of the overlapped altered proteins of 96 h treatment with the neuroleptics-induced overlapped proteins at 24 h time interval (Kashem et al. [40] in Neurochem Int 55:558-565, 2009) suggested that overlapping altered proteins expression at 24 h was decreased (17 proteins i.e. 53 % of total expressed proteins) with the increase of time (96 h) (2 proteins; 8 % of total expressed proteins). This result indicated that at early stage both drugs showed common mode of action but the action was opposite to each other while administration was prolonged. The opposite morphological pattern of cellular growth at 96 h has been associated with dominant expression of oxidative stress and apoptosis cascades in HD, and activation of growth regulating metabolic pathways in RS treated cells. These results may explain RS induced repairing of neural damage caused by a wide variety of neural diseases including schizophrenia.
Collapse
|
22
|
Bellon A, Krebs MO, Jay TM. Factoring neurotrophins into a neurite-based pathophysiological model of schizophrenia. Prog Neurobiol 2011; 94:77-90. [DOI: 10.1016/j.pneurobio.2011.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 01/02/2023]
|
23
|
Nishimura A. Are lectin positive spherical deposits detected in the molecular layer of the hippocampal formation related with neuronal apoptosis? THE JOURNAL OF MEDICAL INVESTIGATION 2011; 57:183-90. [PMID: 20847517 DOI: 10.2152/jmi.57.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Previously, multi-lectin positive spherical shaped deposits were detected in the hippocampal formation of degenerative demented and schizophrenic brains and reported they possessed some possibility as a predominant tool of postmortem diagnosis, more detected in schizophrenia cases than age-matched control cases. Multi-fluorescent immunohistochemical and lectin histochemical method and immuno electron microscope method were performed on 51 forensic autopsied brains containing 16 cases of schizophrenia. In multi-fluorescent staining, partial disrupted nucleus with decreased staining properties by mean of SYBR green were detected, and lectin and single strand DNA were co-stained in the portion of partial disrupted nucleus. In immuno electron microscope method, lectin positive structures were also detected in the portion of partial disrupted nucleus. These neurons were suspected in the process of apoptosis by their distinguishable features. Some experimental studies were reported that a kind of therapeutic products of major tranquillizers induced neuron apoptosis in dentate gyrus. As the lectin positive spherical shaped deposits were detected in not only 5 schizophrenia cases without drug treatment but also in 11 schizophrenia cases with drug treatment in this study, they might be detected as the intrinsic pathological change of schizophrenia. The lectin positive spherical shaped deposits detected in the hippocampal formation were suspected as the histopathological marker of the postmortem diagnosis for schizophrenia. Further examination for specifying group of neurons detected them in and initiated apoptosis are necessitated.
Collapse
Affiliation(s)
- Akiyoshi Nishimura
- Department of Forensic Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokusshima, Japan
| |
Collapse
|
24
|
Dean CE. Psychopharmacology: a house divided. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1-10. [PMID: 20828593 DOI: 10.1016/j.pnpbp.2010.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/18/2010] [Accepted: 08/27/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Psychopharmacology and psychiatry during the past 50 years have focused on the specificity model in which it is assumed that psychiatric disorders are specific entities which should respond to drugs with specific mechanisms of action. However, the validity of this model has been challenged by the approval of multiple drugs for the same disorder, as well as the approval of single agents for a variety of disorders which have little in common. As an example of this unacknowledged paradigm shift, I will examine the foundation for using antipsychotics in the treatment of depression. METHODS An extensive literature search of studies investigating various mechanisms of actions of antipsychotics and antidepressants with the goal of identifying neurochemical processes common to both. RESULTS The neurochemical differences in these classes of drugs appear to be profound, although several processes are common in both, including some degree of neuroprotection and changes in the epigenome. Whether these common features have any effect on clinical outcome remains in doubt. CONCLUSIONS While psychopharmacology and psychiatry remain largely committed to the specificity model, it appears that clinicians are prescribing on a dimensional model wherein symptoms are being treated with a variety of drugs, regardless of the diagnosis.
Collapse
Affiliation(s)
- Charles E Dean
- Department of Psychiatry, University of Minnesota School of Medicine, Tardive Dyskinesia Assessment Clinic, Minneapolis Veterans Administration Medical Center, One Veterans Drive, Minneapolis, MN 55417, United States.
| |
Collapse
|
25
|
Baharnoori M, Bartholomeusz C, Boucher AA, Buchy L, Chaddock C, Chiliza B, Föcking M, Fornito A, Gallego JA, Hori H, Huf G, Jabbar GA, Kang SH, El Kissi Y, Merchán-Naranjo J, Modinos G, Abdel-Fadeel NA, Neubeck AK, Ng HP, Novak G, Owolabi O, Prata DP, Rao NP, Riecansky I, Smith DC, Souza RP, Thienel R, Trotman HD, Uchida H, Woodberry KA, O'Shea A, DeLisi LE. The 2nd Schizophrenia International Research Society Conference, 10-14 April 2010, Florence, Italy: summaries of oral sessions. Schizophr Res 2010; 124:e1-62. [PMID: 20934307 PMCID: PMC4182935 DOI: 10.1016/j.schres.2010.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 01/06/2023]
Abstract
The 2nd Schizophrenia International Research Society Conference, was held in Florence, Italy, April 10-15, 2010. Student travel awardees served as rapporteurs of each oral session and focused their summaries on the most significant findings that emerged from each session and the discussions that followed. The following report is a composite of these reviews. It is hoped that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research.
Collapse
Affiliation(s)
- Moogeh Baharnoori
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montreal, Quebec, Canada H4H 1R3, phone (514) 761-6131 ext 3346,
| | - Cali Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Level 2-3, Alan Gilbert Building, 161 Barry St, Carlton South, Victoria 3053, Australia, phone +61 3 8344 1878, fax +61 3 9348 0469,
| | - Aurelie A. Boucher
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown NSW 2050, Australia, phone +61 (0)2 9351 0948, fax +61 (0)2 9351 0652,
| | - Lisa Buchy
- Douglas Hospital Research Centre, 6875 LaSalle Blvd, Verdun, Québec, Canada, H4H 1R3 phone: 514-761-6131 x 3386, fax: 514-888-4064,
| | - Christopher Chaddock
- PO67, Section of Neuroimaging, Division of Psychological Medicine, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, phone 020 7848 0919, mobile 07734 867854 fax 020 7848 0976,
| | - Bonga Chiliza
- Department of Psychiatry, University of Stellenbosch, Tygerberg, 7505, South Africa, phone: +27 (0)21 9389227, fax +27 (0)21 9389738,
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland, phone +353 1 809 3857, fax +353 1 809 3741,
| | - Alex Fornito
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Downing Site, Downing St, Cambridge, UK, CB2 3EB, phone +44 (0) 1223 764670, fax +44 (0) 1223 336581,
| | - Juan A. Gallego
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd St, Glen Oaks, NY 11004, phone 718-470-8177, fax 718-343-1659,
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, JAPAN, phone: +81 42 341 2711; fax: +81 42 346 1744,
| | - Gisele Huf
- National Institute of Quality Control in Health - Oswaldo Cruz Foundation.Av. Brasil 4365 Manguinhos Rio de Janeiro RJ BRAZIL 21045-900, phone + 55 21 38655112, fax + 55 21 38655139,
| | - Gul A. Jabbar
- Clinical Research Coordinator, Harvard Medical School Department of Psychiatry, 940 Belmont Street 2-B, Brockton, MA 02301, office (774) 826-1624, cell (845) 981-9514, fax (774) 286-1076,
| | - Shi Hyun Kang
- Seoul National Hospital, 30-1 Junggok3-dong Gwangjin-gu, Seoul, 143-711, Korea, phone +82-2-2204-0326, fax +82-2-2204-0394,
| | - Yousri El Kissi
- Psychiatry department, Farhat Hached Hospital. Ibn Jazzar Street, 4002 Sousse. Tunisia. phone + 216 98468626, fax + 216 73226702,
| | - Jessica Merchán-Naranjo
- Adolescent Unit. Department of Psychiatry. Hospital General Universitario Gregorio Marañón. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain. C/Ibiza 43, C.P:28009, phone +34 914265005, fax +34 914265004,
| | - Gemma Modinos
- Department of Psychosis Studies (PO67), Institute of Psychiatry, King's College London, King's Health Partners, De Crespigny Park, SE5 8AF London, United Kingdo, phone +44 (0)20 78480917, fax +44 (0)20 78480976,
| | - Nashaat A.M. Abdel-Fadeel
- Minia University, Egypt, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, phone 617 953 0414, fax 617-998-5007, ,
| | - Anna-Karin Neubeck
- Project Manager at Karolinska Institute, Skinnarviksringen 12, 117 27 Stockholm, Sweden, phone +46708777908,
| | - Hsiao Piau Ng
- Singapore Bioimaging Consortium, A*STAR, Singapore; Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, phone 857-544-0192, fax 617-525-6150,
| | - Gabriela Novak
- University of Toronto, Medical Sciences Building, Room 4345, 1 King's College Circle, Toronto, Ontario, M5S 1A8, phone (416) 946-8219, fax (416) 971-2868,
| | - Olasunmbo.O. Owolabi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Science University of Ilorin, Ilorin, Nigeria, phone +2348030764811,
| | - Diana P. Prata
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK, phone +44(0)2078480917, fax +44(0)2078480976,
| | - Naren P. Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029 Karnataka, India, phone +91 9448342379,
| | - Igor Riecansky
- Address: Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia, phone +421-2-52 92 62 76, fax +421-2-52 96 85 16,
| | - Darryl C. Smith
- 3336 Mt Pleasant St. NW #2, Washington, DC 20010, phone 202.494.3892,
| | - Renan P. Souza
- Centre for Addiction and Mental Health 250 College St R31 Toronto - Ontario - Canada M5T1R8, phone +14165358501 x4883, fax +14169794666,
| | - Renate Thienel
- Postdoctoral Research Fellow, PRC Brain and Mental Health, University of Newcastle, Mc Auley Centre Level 5, Mater Hospital, Edith Street, Waratah NSW 2298, phone +61 (2) 40335636,
| | - Hanan D. Trotman
- 36 Eagle Row, Atlanta, GA 30322, phone 404-727-8384, fax 404-727-1284,
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Psychopharmacology Research Program, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, phone +81.3.3353.1211(x62454), fax +81.3.5379.0187,
| | - Kristen A. Woodberry
- Landmark Center 2 East, 401 Park Drive, Boston, MA 02215, phone 617-998-5022, fax 617-998-5007,
| | - Anne O'Shea
- Coordinator of reports. Harvard Medical School, VA Boston Healthcare System, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1374, anne_o’
| | - Lynn E. DeLisi
- VA Boston Healthcare System and Harvard Medical School, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1355, fax 774-826-2721
| |
Collapse
|
26
|
Abstract
BACKGROUND People with schizophrenia are often found to have smaller brains and larger brain ventricles than normal, but the role of antipsychotic medication remains unclear. METHOD We conducted a systematic review of magnetic resonance imaging (MRI) studies. We included longitudinal studies of brain changes in patients taking antipsychotic drugs and we examined studies of antipsychotic-naive patients for comparison purposes. RESULTS Fourteen out of 26 longitudinal studies showed a decline in global brain or grey-matter volume or an increase in ventricular or cerebrospinal fluid (CSF) volume during the course of drug treatment, including the largest studies conducted. The frontal lobe was most consistently affected, but overall changes were diffuse. One large study found different degrees of volume loss with different antipsychotics, and another found that volume changes were associated with taking medication compared with taking none. Analyses of linear associations between drug exposure and brain volume changes produced mixed results. Five out of 21 studies of patients who were drug naive, or had only minimal prior treatment, showed some differences from controls in volumes of interest. No global differences were reported in three studies of drug-naive patients with long-term illness. Studies of high-risk groups have not demonstrated differences from controls in global or lobar brain volumes. CONCLUSIONS Some evidence points towards the possibility that antipsychotic drugs reduce the volume of brain matter and increase ventricular or fluid volume. Antipsychotics may contribute to the genesis of some of the abnormalities usually attributed to schizophrenia.
Collapse
Affiliation(s)
- J Moncrieff
- Department of Mental Health Sciences, University College London, UK.
| | | |
Collapse
|
27
|
Beninger RJ, Baker TW, Florczynski MM, Banasikowski TJ. Regional Differences in the Action of Antipsychotic Drugs: Implications for Cognitive Effects in Schizophrenic Patients. Neurotox Res 2010; 18:229-43. [DOI: 10.1007/s12640-010-9178-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 01/04/2023]
|
28
|
Moncrieff J. Challenging conventional models of psychiatric drug therapy: an alternative patient-centered approach. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.09.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern psychopharmacology is based on the presumption that psychiatric drugs work by helping to correct an underlying abnormal brain state, or a chemical imbalance. For this article, i have termed this the disease-centered model of psychiatric drug action. Educational and advertising campaigns that have promoted this notion have resulted in soaring rates of use of drugs such as antidepressants and antipsychotics. However, drug action has not always been understood in these terms. This article challenges the disease-centered model of psychiatric drug action, and presents an alternative drug-centered view. The drug-centered model is based on the understanding that psychiatric drugs have psychoactive properties. They produce altered, drug-induced states in the individuals who take them, which may suppress the symptoms of mental disorders. Greater knowledge regarding the drug-induced effects of psychiatric drugs would help patients and prescribers to assess the pros and cons of drug treatment more accurately, and to use drugs more effectively. Further implications of this view are discussed.
Collapse
Affiliation(s)
- Joanna Moncrieff
- Senior Lecturer, Department of Mental Health Sciences, University College London, 67–73 Riding House Street, London, W1W 6EJ, UK
| |
Collapse
|
29
|
Hunsberger J, Austin DR, Henter ID, Chen G. The neurotrophic and neuroprotective effects of psychotropic agents. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877500 PMCID: PMC2804881 DOI: 10.31887/dcns.2009.11.3/jhunsberger] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that psychotropic agents such as mood stabilizers, antidepressants, and antipsychotics realize their neurotrophic/neuroprotective effects by activating the mitogen activated protein kinaselextracellular signal-related kinase, PI3-kinase, and winglesslglycogen synthase kinase (GSK) 3 signaling pathways. These agents also upregulate the expression of trophic/protective molecules such as brain-derived neurotrophic factor, nerve growth factor, B-cell lymphoma 2, serine-threonine kinase, and Bcl-2 associated athanogene 1, and inactivate proapoptotic molecules such as GSK-3, They also promote neurogenesis and are protective in models of neurodegenerative diseases and ischemia. Most if not all, of this evidence was collected from animal studies that used clinically relevant treatment regimens. Furthermore, human imaging studies have found that these agents increase the volume and density of brain tissue, as well as levels of N-acetyl aspartate and glutamate in selected brain regions. Taken together, these data suggest that the neurotrophic/neuroprotective effects of these agents have broad therapeutic potential in the treatment, not only of mood disorders and schizophrenia, but also neurodegenerative diseases and ischemia.
Collapse
Affiliation(s)
- Joshua Hunsberger
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, NIMH, NIH, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
30
|
Navari S, Dazzan P. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med 2009; 39:1763-1777. [PMID: 19338710 DOI: 10.1017/s0033291709005315] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The potential effects of antipsychotic drugs on brain structure represent a key factor in understanding neuroanatomical changes in psychosis. This review addresses two issues: (1) do antipsychotic medications induce changes in total or regional human brain volumes and (2) do such effects depend on antipsychotic type? METHOD A systematic review of studies reporting structural brain magnetic resonance imaging (MRI) measures: (1) directly in association with antipsychotic use; and (2) in patients receiving lifetime treatment with antipsychotics in comparison with drug-naive patients or healthy controls. We searched Medline and EMBASE databases using the medical subject heading terms: 'antipsychotics' AND 'brain' AND (MRI NOT functional). The search included studies published up to 31 January 2007. Wherever possible, we reported the effect size of the difference observed. RESULTS Thirty-three studies met our inclusion criteria. The results suggest that antipsychotics act regionally rather than globally on the brain. These volumetric changes are of a greater magnitude in association with typical than with atypical antipsychotic use. Indeed, there is evidence of a specific effect of antipsychotic type on the basal ganglia, with typicals specifically increasing the volume of these structures. Differential effects of antipsychotic type may also be present on the thalamus and the cortex, but data on these and other brain areas are more equivocal. CONCLUSIONS Antipsychotic treatment potentially contributes to the brain structural changes observed in psychosis. Future research should take into account these potential effects, and use adequate sample sizes, to allow improved interpretation of neuroimaging findings in these disorders.
Collapse
Affiliation(s)
- S Navari
- Division of Psychological Medicine and Psychiatry, Institute of Psychiatry, King's College London, UK.
| | | |
Collapse
|
31
|
Deng MY, McAlonan GM, Cheung C, Chiu CPY, Law CW, Cheung V, Sham PC, Chen EYH, Chua SE. A naturalistic study of grey matter volume increase after early treatment in anti-psychotic naïve, newly diagnosed schizophrenia. Psychopharmacology (Berl) 2009; 206:437-46. [PMID: 19641900 DOI: 10.1007/s00213-009-1619-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Anti-psychotic treatment appears to be associated with striatal volume increase, but how early this change occurs is still unknown. METHODS A single prospective cohort of 20 anti-psychotic-naïve patients, newly diagnosed with schizophrenia, underwent magnetic resonance imaging brain scan at baseline. This was repeated following up to 8 weeks of anti-psychotic treatment. Ten patients had repeat scan within only 3 weeks. The choice of anti-psychotic medication was naturalistic, i.e., clinician-led. Well-matched healthy individuals were also scanned to control for non-specific changes over a 3-week period. RESULTS After 3 weeks of anti-psychotic treatment, significant grey matter volume increase in the right caudate, superior and inferior frontal gyrus, precentral gyrus, and left inferior parietal lobule was noted. However, after 8 weeks of anti-psychotic treatment, volume increase in the right thalamus and bilateral cerebellum was observed. Significant grey matter reduction was detected in the left medial frontal gyrus at both 3- and 8-week intervals. CONCLUSIONS Early increase in striatal volume change occurs as early as 3 weeks after anti-psychotic treatment, whilst thalamic volume increase is apparent later, by 8 weeks of treatment. We speculate that drug-mediated neuroplasticity may provide a biomarker for clinical recovery.
Collapse
Affiliation(s)
- Michelle Y Deng
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pearce JM, Komoroski RA, Mrak RE. Phospholipid composition of postmortem schizophrenic brain by 31P NMR spectroscopy. Magn Reson Med 2009; 61:28-34. [PMID: 19097198 DOI: 10.1002/mrm.21820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cell membrane abnormalities due to changes in phospholipid (PL) composition and metabolism have been implicated in schizophrenia pathogenesis. That work has generally assessed membrane phospholipids from nonneural tissues such as erythrocytes and platelets. High-resolution (31)P NMR spectroscopy was used to characterize PLs of gray matter in postmortem brain for 20 schizophrenics, 20 controls, and 7 patients with other mental illnesses (psychiatric controls). Tissues from frontal, temporal, and occipital cortices were extracted with hexane-isopropanol, and (31)P NMR spectra were obtained in an organic-solvent system to resolve the major PL classes (based on headgroups) and subclasses (based on linkage at the sn - 1 position). Surprisingly, repeated-measures multivariate analysis of variance revealed no overall differences among the groups. There were no significant differences (P < .05) among the three groups for any individual PL subclass, including lysophospholipids. The sum of all phosphatidylethanolamine headgroups was significantly lower for schizophrenics than for controls or psychiatric controls in the frontal cortex. The present results are minimally correlated with previous results for aqueous PL metabolites on these same samples. The metabolite changes measured by in vivo (31)P MRS in schizophrenia do not appear to reflect PL concentration changes. The present results offer very little support for the phospholipid hypothesis of schizophrenia.
Collapse
Affiliation(s)
- John M Pearce
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | |
Collapse
|
33
|
Komoroski RA, Pearce JM, Mrak RE. 31P NMR spectroscopy of phospholipid metabolites in postmortem schizophrenic brain. Magn Reson Med 2008; 59:469-74. [PMID: 18306399 DOI: 10.1002/mrm.21516] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence has been accumulating that schizophrenia involves abnormalities in the composition and metabolism of cell membrane phospholipids (PLs) in the brain. In vivo 31P MRS has been used to measure the metabolic precursors and degradation products of PL metabolism in schizophrenia. Because in vivo line widths are substantially broader than in solution, only the broad phosphomonoester (PME) and phosphodiester bands, or partly resolved resonances of individual metabolites, are typically measured in vivo in the 31P spectrum. In addition to poor resolution, the relatively low signal-to-noise ratio (SNR) makes precise quantitation difficult. An alternative with substantially better resolution and precision for quantitation is high-resolution NMR spectroscopy of extracts of samples from postmortem brain. Here we determine absolute concentrations of the individual PL metabolites phosphocholine (pc), phosphoethanolamine (pe), glycerophosphocholine (gpc), and glycerophosphoethanolamine in aqueous extracts of tissue from frontal, temporal, and occipital cortex of postmortem brain for schizophrenics, controls, and patients with other mental illnesses (psychiatric controls [PC]) using high-resolution 31P NMR spectroscopy. For the complete groups, which included both males and females, there were no statistically significant differences for schizophrenics vs. controls for any of the four PL metabolites in any of the three brain regions. Trends (0.05 < P < 0.10) were noted for increased gpc in schizophrenia in all three regions. PC differed from both controls and schizophrenics in several measures. When only males were considered, gpc was significantly (P < 0.05) elevated in all three brain regions in schizophrenia.
Collapse
Affiliation(s)
- Richard A Komoroski
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | |
Collapse
|
34
|
Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP. Mitochondrial involvement in psychiatric disorders. Ann Med 2008; 40:281-95. [PMID: 18428021 PMCID: PMC3098560 DOI: 10.1080/07853890801923753] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent findings of mitochondrial abnormalities in brains from subjects with neurological disorders have led to a renewed search for mitochondrial abnormalities in psychiatric disorders. A growing body of evidence suggests that there is mitochondrial dysfunction in schizophrenia, bipolar disorder, and major depressive disorder, including evidence from electron microscopy, imaging, gene expression, genotyping, and sequencing studies. Specific evidence of dysfunction such as increased common deletion and decreased gene expression in mitochondria in psychiatric illnesses suggests that direct examination of mitochondrial DNA from postmortem brain cells may provide further details of mitochondrial alterations in psychiatric disorders.
Collapse
Affiliation(s)
- Ling Shao
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nesvåg R, Lawyer G, Varnäs K, Fjell AM, Walhovd KB, Frigessi A, Jönsson EG, Agartz I. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008; 98:16-28. [PMID: 17933495 DOI: 10.1016/j.schres.2007.09.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 09/03/2007] [Accepted: 09/12/2007] [Indexed: 11/18/2022]
Abstract
Morphological abnormalities of the cerebral cortex have been reported in a number of MRI-studies in schizophrenia. Uncertainty remains regarding cause, mechanism and progression of the alterations. It has been suggested that antipsychotic medication reduces total gray matter volumes, but results are inconsistent. In the present study differences in regional cortical thickness between 96 patients with a DSM-IV diagnosis of schizophrenia (n=81) or schizoaffective disorder (n=15) and 107 healthy subjects (mean age 42 years, range 17-57 years) were investigated using MRI and computer image analysis. Cortical thickness was estimated as the shortest distance between the gray/white matter border and the pial surface at numerous points across the entire cortical mantle. The influence of age and antipsychotic medication on variation in global and regional cortical thickness was explored. Thinner cortex among patients than controls was found in prefrontal and temporal regions of both hemispheres, while parietal and occipital regions were relatively spared. Some hemispheric specificity was noted, as regions of the prefrontal cortex were more affected in the right hemisphere, and regions of the temporal cortex in the left hemisphere. No significant interaction effect of age and diagnostic group on variation in cortical thickness was demonstrated. Among patients, dose or type of antipsychotic medication did not affect variation in cortical thickness. The results from this hitherto largest study on the topic show that prefrontal and temporal cortical thinning in patients with schizophrenia compared to controls is as pronounced in older as in younger subjects. The lack of significant influence from antipsychotic medication supports that regional cortical thinning is an inherent feature of the neurobiological disease process in schizophrenia.
Collapse
Affiliation(s)
- Ragnar Nesvåg
- Department of Psychiatric Research, Diakonhjemmet Hospital, and Institute of Psychiatry, University of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Thomas EA. Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol 2007; 34:109-28. [PMID: 17220533 DOI: 10.1385/mn:34:2:109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 11/30/1999] [Accepted: 06/21/2006] [Indexed: 02/05/2023]
Abstract
Despite great progress in antipsychotic drug research, the molecular mechanisms by which these drugs work have remained elusive. High-throughput gene profiling methods have advanced this field by allowing the simultaneous investigation of hundreds to thousands of genes. However, different methodologies, choice of brain region, and drugs studied have made comparisons across different studies difficult. Because of the complexity of gene expression changes caused by drugs, teasing out the most relevant expression differences is a challenging task. One approach is to focus on gene expression changes that converge on the same systems that were previously deemed important to the pathology of psychiatric disorders. From the microarray studies performed on human postmortem brain samples from schizophrenics, the systems most implicated to be dysfunctional are synaptic machinery, oligodendrocyte/myelin function, and mitochondrial/ubiquitin metabolism. Drugs may act directly or indirectly to compensate for underlying pathological deficits in schizophrenia or via other mechanisms that converge on these pathways. Side effects, consisting of motor and metabolic dysfunction (which occur with typical and atypical drugs, respectively), also may be mediated by gene expression changes that have been reported in these studies. This article surveys both the convergent antipsychotic mechanisms and the genes that may be responsible for other effects elicited by antipsychotic drugs.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
37
|
Saldaña M, Bonastre M, Aguilar E, Marin C. Differential nigral expression of Bcl-2 protein family in chronically haloperidol and clozapine-treated rats: role in neurotoxicity and stereotyped behavior. Exp Neurol 2006; 203:302-8. [PMID: 17069804 DOI: 10.1016/j.expneurol.2006.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Tardive dyskinesia (TD) is a syndrome characterized by repetitive involuntary movements induced by the administration of typical neuroleptics such as haloperidol. TD generally persists after haloperidol withdrawal indicating that haloperidol produces long-lasting changes in brain function. In contrast to the typicals, atypical medications, such as clozapine, have very low rates of TD. The mechanisms underlying drug-induced TD are poorly understood. We have investigated the role of nigral expression of the bcl-2 family of proteins on haloperidol-induced neurotoxicity. Rats were treated for 21 days with the following drugs: haloperidol (1 mg/kg), clozapine (1 mg/kg) or saline. After a 3-day washout period, apomorphine-induced stereotyped behavior was scored. Western blotting was performed to evaluate the nigral expression of the dopamine transporter (DAT), bax, bcl-x(L) and bcl-2 proteins. Haloperidol administration, but not clozapine, increased stereotyped behavior (p<0.01) in association with a decrease in striatal DAT expression (p<0.05). Haloperidol and clozapine treatment significantly decreased the nigral expression of bax (p<0.05, p<0.01, respectively). Neither treatment modified bcx(L) expression. Haloperidol increased (p<0.05), whereas clozapine did not significantly modify the nigral expression of bcl-2. Our results suggest that the increase in bcl-2 expression in the haloperidol-treated animals might be a compensatory mechanism that may reflect cellular damage induced by haloperidol in the dopaminergic neurons in the pars compacta of the substantia nigra.
Collapse
Affiliation(s)
- M Saldaña
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
38
|
Pérez-Neri I, Ramírez-Bermúdez J, Montes S, Ríos C. Possible Mechanisms of Neurodegeneration in Schizophrenia. Neurochem Res 2006; 31:1279-94. [PMID: 17006758 DOI: 10.1007/s11064-006-9162-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/31/2006] [Indexed: 12/21/2022]
Abstract
Brain morphological alterations in schizophrenic patients have led to the neurodevelopmental hypothesis of schizophrenia. On the other hand, a progressive neurodegenerative process has also been suggested and some follow-up studies have shown progressive morphological changes in schizophrenic patients. Several neurotransmitter systems have been suggested to be involved in this disorder and some of them could lead to neuronal death under certain conditions. This review discusses some of the biochemical pathways that could lead to neurodegeneration in schizophrenia showing that neuronal death may have a role in the etiology or natural course of this disorder.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Tlalpan, 14269, Mexico City, Mexico
| | | | | | | |
Collapse
|