1
|
Fontana BD, Norton WHJ, Parker MO. Environmental enrichment reduces adgrl3.1-Related anxiety and attention deficits but not impulsivity. Behav Brain Res 2025; 479:115346. [PMID: 39571939 DOI: 10.1016/j.bbr.2024.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Environmental factors play a role in the development and severity of neuropsychiatric disorders. Externalizing disorders are characterized by disruptive, impulsive, and often aggressive behaviors, including difficulties with self-control, rule-breaking, and a tendency to act out in ways that may harm oneself or others. Externalizing disorders frequently co-occur with internalizing disorders, such as anxiety. Individuals experiencing both externalizing/internalizing disorders are often among the most likely to seek healthcare services, as this co-occurrence is associated with more severe symptomatology and greater functional impairment. Here, we investigated the impact of environmental enrichment (EE) on adgrl3.1, a gene associated with impulsivity and attention deficits in zebrafish (Danio rerio). This gene encodes a receptor involved in cell adhesion and signaling and has been linked to susceptibility to externalizing disorders. Zebrafish were reared in either standard or enriched environments (from 15 days-post fertilization), and attention, impulsivity, and anxiety-related phenotypes were assessed at adult stages (4 months-post fertilization) using the open field test and a 5-choice serial reaction time task. EE mitigated anxiety-related behaviors in adgrl3.1 knockouts, normalizing locomotor patterns and decreasing thigmotaxis. Although attention deficits were reduced in adgrl3.1-/- fish reared in EE, impulsive behaviors were not. Together, these findings suggest that while environmental enrichment (EE) mitigates externalizing and internalizing symptoms in adgrl3.1 mutants, impulsivity remains less responsive to EE used in this study, indicating its distinct resistance to modulation.
Collapse
Affiliation(s)
- Barbara D Fontana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Brazil.
| | - William H J Norton
- Department of Genetics, Genomics and Cancer Science, University of Leicester, Leicester LE1 7RH, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
2
|
Mamedova DI, Nedogreeva OA, Manolova AO, Ovchinnikova VO, Kostryukov PA, Lazareva NA, Moiseeva YV, Tret'yakova LV, Kvichansky AA, Onufriev MV, Aniol VA, Novikova MR, Gulyaeva NV, Stepanichev MY. The impact of long-term isolation on anxiety, depressive-like and social behavior in aging Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) male rats. Sci Rep 2024; 14:28135. [PMID: 39548293 PMCID: PMC11568175 DOI: 10.1038/s41598-024-79677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Aging is a complex process associated with multimorbidity. Hypertension, one of widespread states, is among main causes of age-related alterations in behavior, emotionality and sociability. We studied the effects of long-term isolated housing on anxiety, depressive-like and social behavior as well as changes in the adrenocortical and sympathetic systems in the aging normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Ten-month-old male rats of both strains were subjected to 90-day isolated or group housing. Surprisingly, social isolation induced only mild effect on anxiety without influencing other affective-related behaviors. No effects of isolated housing on sociability or social novelty preferences were revealed. Despite the adrenal gland hypertrophy in the SHRs, corticosterone levels remained stable within the period of isolation but the expression of nuclear glucocorticoid receptor (Nr3c1) mRNA in the adrenals was lower in the SHR as compared to WKY rats. Pre-existing hypertension, associated with SHR genotype, did not significantly contribute to the effects of social isolation. The data suggest that the aged WKY and SHR rats are relatively resilient to chronic social stress associated with isolated housing.
Collapse
Affiliation(s)
- Diana I Mamedova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga A Nedogreeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Anna O Manolova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Viktoria O Ovchinnikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A Kostryukov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia A Lazareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Yulia V Moiseeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Liya V Tret'yakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Kvichansky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Victor A Aniol
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Margarita R Novikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street, 5A, Moscow, 117485, Russia.
| |
Collapse
|
3
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre AS, Polesskaya O, Richards JB, Solberg Woods LC, Gancarz AM, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. Sci Rep 2024; 14:4182. [PMID: 38378969 PMCID: PMC10879139 DOI: 10.1038/s41598-024-53943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n = 200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n = 64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (ii) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
4
|
Ferreira FS, Junior OVR, Dos Santos TM, Silveira JS, Deniz BF, Alves VS, Coutinho-Silva R, Savio LEB, Wyse ATS. Effect of Quinolinic Acid on Behavior, Morphology, and Expression of Inflammatory/oxidative Status in Rats' Striatum: Is Coenzyme Q 10 a Good Protector? Neurotox Res 2023; 41:559-570. [PMID: 37515718 DOI: 10.1007/s12640-023-00656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/20/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Quinolinic acid (QUIN) is a toxic compound with pro-oxidant, pro-inflammatory, and pro-apoptotic actions found at high levels in the central nervous system (CNS) in several pathological conditions. Due to the toxicity of QUIN, it is important to evaluate strategies to protect against the damage caused by this metabolite in the brain. In this context, coenzyme Q10 (CoQ10) is a provitamin present in the mitochondria with a protective role in cells through several mechanisms of action. Based on these, the present study was aimed at evaluating the possible neuroprotective role of CoQ10 against damage caused by QUIN in the striatum of young Wistar rats. Twenty-one-day-old rats underwent a 10-day pretreatment with CoQ10 or saline (control) intraperitoneal injections and on the 30th day of life received QUIN intrastriatal or saline (control) administration. The animals were submitted to behavior tests or euthanized, and the striatum was dissected to neurochemical studies. Results showed that CoQ10 was able to prevent behavioral changes (the open field, object recognition, and pole test tasks) and neurochemical parameters (alteration in the gene expression of IL-1β, IL-6, SOD, and GPx, as well as in the immunocontent of cytoplasmic Nrf2 and nuclear p-Nf-κβ) caused by QUIN. These findings demonstrate the promising therapeutic effects of CoQ10 against QUIN toxicity.
Collapse
Affiliation(s)
- Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Osmar Vieira Ramires Junior
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil.
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre A, Polesskaya O, Richards JB, Woods LCS, Gancarz A, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547228. [PMID: 37503161 PMCID: PMC10369912 DOI: 10.1101/2023.06.30.547228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects to mimic the genetic variability found in the human population. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n=200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n=64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (iI) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P. King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Connor D. Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Anthony M. George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B. Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H. Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Balikci A, May-Benson TA, Aracikul Balikci AF, Tarakci E, Ikbal Dogan Z, Ilbay G. Evaluation of Ayres Sensory Integration ® Intervention on Sensory Processing and Motor Function in a Child with Rubinstein-Taybi Syndrome: A Case Report. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2023; 16:11795476221148866. [PMID: 36760339 PMCID: PMC9903040 DOI: 10.1177/11795476221148866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023]
Abstract
The Rubinstein-Taybi Syndrome (RSTS) literature is limited about sensory integration, which is a foundational neurological function of the central nervous system that may affect the development of cognitive, social, and motor skills. The aim of this case report was to investigate the effects of Ayres Sensory Integration® (ASI) intervention on processing and integrating sensations, motor functions and parental goals of 3-year-old child with RSTS. Analysis of assessment data reviewed before and after treatment. Assessment collected by interview, Sensory Profile (SP), Sensory Processing Measure-Preschool (SPM-P) Home, Peabody Developmental Motor Scales-2 (PDMS-2), Gross Motor Function Measurement-88 (GMFM-88), and Gross Motor Function Classification System (GMFCS). Progress toward goals and objectives was measured with Goal Attainment Scale (GAS). ASI intervention was implemented 3 times per week for 8 weeks. At pre-intervention, SP and SPM-P Home revealed prominent sensory processing and integration difficulties in this case. PDMS-2 scores indicated the child was far behind his peers in fine and gross motor areas. In addition, systematic observations determined that the child's GMFCS level was III. After 8 weeks of ASI intervention significant improvements were found in parent reports of sensory processing in the areas of vestibular, tactile, and oral functioning on the Sensory Profile. Gains in functional motor skills were found on the GMFM-88 and the GMFCS. Consistent with these results, significant gains at or above expected levels of performance were found on GAS goals which reflected the family's main concerns for social participation, feeding, play, and movement. There are limited studies on sensory processing and integration in children with RSTS. This case report identified sensory processing and integration difficulties for the first time in a child with RSTS. Results also provide preliminary support for the positive effects of ASI intervention on sensory processing, functional motor skills, and parental goals of a child with RSTS.
Collapse
Affiliation(s)
- Aymen Balikci
- Faculty of Health Sciences, Department of Occupational Therapy, Fenerbahçe University, İstanbul, Turkey
| | | | - Ayse Firdevs Aracikul Balikci
- Anadolu University, eşiltepe, Yeşiltepe Mahallesi, Anadolu Üniversitesi, Yunus Emre Kampüsü Rektörlük Binası, Tepebaş, Eskisehir, Eskisehir, Turkey
| | - Ela Tarakci
- Faculty of Health Sciences, Department of Occupational Therapy, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Zeynep Ikbal Dogan
- Faculty of Medicine, Department of Physiology, Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey
| | - Gul Ilbay
- Faculty of Medicine, Department of Physiology, Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey
| |
Collapse
|
7
|
Rearing in an Enriched Environment Ameliorates the ADHD-like Behaviors of Lister Hooded Rats While Suppressing Neuronal Activities in the Medial Prefrontal Cortex. Cells 2022; 11:cells11223649. [PMID: 36429076 PMCID: PMC9688563 DOI: 10.3390/cells11223649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In addition to genetic factors, environmental factors play a role in the pathogenesis of attention deficit/hyperactivity disorder (ADHD). This study used Lister hooded rats (LHRs) as ADHD model animals to evaluate the effects of environmental factors. Male LHR pups were kept in four rearing conditions from postnatal day 23 (4 rats in a standard cage; 12 rats in a large flat cage; and 4 or 12 rats in an enriched environment [EE]) until 9 weeks of age. EE rearing but not rearing in a large flat cage decreased the activity of LHRs in the open field test that was conducted for 7 consecutive days. In the drop test, most rats reared in an EE remained on a disk at a height, whereas most rats reared in a standard cage fell off. RNA sequencing revealed that the immediate-early gene expression in the medial prefrontal cortex of LHRs reared in an EE was reduced. cFos-expressing neurons were reduced in number in LHRs reared in an EE. These results suggest that growing in an EE improves ADHD-like behaviors and that said improvement is due to the suppression of neuronal activity in the mPFC.
Collapse
|
8
|
Corredor K, Duran J, Herrera-Isaza L, Forero S, Quintanilla J, Gomez A, Martínez GS, Cardenas FP. Behavioral effects of environmental enrichment on male and female wistar rats with early life stress experiences. Front Physiol 2022; 13:837661. [PMID: 36225294 PMCID: PMC9548697 DOI: 10.3389/fphys.2022.837661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to adverse childhood experiences or early life stress experiences (ELSs) increase the risk of non-adaptive behaviors and psychopathology in adulthood. Environmental enrichment (EE) has been proposed to minimize these effects. The vast number of methodological variations in animal studies underscores the lack of systematicity in the studies and the need for a detailed understanding of how enrichment interacts with other variables. Here we evaluate the effects of environmental enrichment in male and female Wistar rats exposed to adverse early life experiences (prenatal, postnatal, and combined) on emotional (elevated plus maze), social (social interaction chamber), memory (Morris water maze) and flexibility tasks. Our results—collected from PND 51 to 64—confirmed: 1) the positive effect of environmental enrichment (PND 28–49) on anxiety-like behaviors in animals submitted to ELSs. These effects depended on type of experience and type of enrichment: foraging enrichment reduced anxiety-like behaviors in animals with prenatal and postnatal stress but increased them in animals without ELSs. This effect was sex-dependent: females showed lower anxiety compared to males. Our data also indicated that females exposed to prenatal and postnatal stress had lower anxious responses than males in the same conditions; 2) no differences were found for social interactions; 3) concerning memory, there was a significant interaction between the three factors: A significant interaction for males with prenatal stress was observed for foraging enrichment, while physical enrichment was positive for males with postnatal stress; d) regarding cognitive flexibility, a positive effect of EE was found in animals exposed to adverse ELSs: animals with combined stress and exposed to physical enrichment showed a higher index of cognitive flexibility than those not exposed to enrichment. Yet, within animals with no EE, those exposed to combined stress showed lower flexibility than those exposed to both prenatal stress and no stress. On the other hand, animals with prenatal stress and exposed to foraging-type enrichment showed lower cognitive flexibility than those with no EE. The prenatal stress-inducing conditions used here 5) did not induced fetal or maternal problems and 6) did not induced changes in the volume of the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
- K. Corredor
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
- Centro de Investigación en Biomodelos, Bogotá, Colombia
| | - J.M. Duran
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | - L. Herrera-Isaza
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | - S. Forero
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | - J.P. Quintanilla
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | - A. Gomez
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | | | - F. P. Cardenas
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
- *Correspondence: F. P. Cardenas,
| |
Collapse
|
9
|
Raony Í, Domith I, Lourenco MV, Paes-de-Carvalho R, Pandolfo P. Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110555. [PMID: 35346791 DOI: 10.1016/j.pnpbp.2022.110555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has recently been implicated in several psychiatric conditions related to monoaminergic dysfunction, such as schizophrenia, substance use disorders, and mood disorders. Although attention-deficit/hyperactivity disorder (ADHD) is also related to changes in monoaminergic neurotransmission, studies that assess whether TAAR1 participates in the neurobiology of ADHD are lacking. We hypothesized that TAAR1 plays an important role in ADHD and might represent a potential therapeutic target. Here, we investigate if TAAR1 modulates behavioral phenotypes in Spontaneously Hypertensive Rats (SHR), the most validated animal model of ADHD, and Wistar Kyoto rats (WKY, used as a control strain). Our results showed that TAAR1 is downregulated in ADHD-related brain regions in SHR compared with WKY. While intracerebroventricular (i.c.v.) administration of the selective TAAR1 antagonist EPPTB impaired cognitive performance in SHR, i.c.v. administration of highly selective TAAR1 full agonist RO5256390 decreased motor hyperactivity, novelty-induced locomotion, and induced an anxiolytic-like behavior. Overall, our findings show that changes in TAAR1 levels/activity underlie behavior in SHR, suggesting that TAAR1 plays a role in the neurobiology of ADHD. Although additional confirmatory studies are required, TAAR1 might be a potential pharmacological target for individuals with this disorder.
Collapse
Affiliation(s)
- Ícaro Raony
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Roberto Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Pablo Pandolfo
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil.
| |
Collapse
|
10
|
Schmitz F, Ferreira FS, Silveira JS, V. R. Júnior O, T. S. Wyse A. Effects of methylphenidate after a long period of discontinuation include changes in exploratory behavior and increases brain activities of Na+,K+-ATPase and acetylcholinesterase. Neurobiol Learn Mem 2022; 192:107637. [DOI: 10.1016/j.nlm.2022.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
|
11
|
Herrera-Morales WV, Ramírez-Lugo L, Cauich-Kumul R, Murillo-Rodríguez E, Núñez-Jaramillo L. Personalization of pharmacological treatments for ADHD: Why it is advisable and possible options to achieve it. Curr Top Med Chem 2022; 22:1236-1249. [DOI: 10.2174/1568026622666220509155413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Attention-deficit hyperactivity disorder is a neurodevelopmental disorder diagnosed primarily in children, although it is also present in adults. Patients present inattention, impulsivity, and hyperactivity symptoms that create difficulties in their daily lives. Pharmacological treatment with stimulants or non-stimulants is used most commonly to reduce ADHD symptoms. Although generally effective and safe, pharmacological treatments have different effects among patients, including lack of response and adverse reactions. The reasons for these differences are not fully understood, but they may derive from the highly diverse etiology of ADHD. Strategies to guide optimal pharmacological treatment selection on the basis of individual patients’ physiological markers are being developed. In this review, we describe the main pharmacological ADHD treatments used and their main drawbacks. We present alternatives under study that would allow the customization of pharmacological treatments to overcome these drawbacks and achieve more reliable improvement of ADHD symptoms.
Collapse
Affiliation(s)
- Wendy Verónica Herrera-Morales
- Departamento de Ciencias Médicas. División de Ciencias de la Salud. Universidad de Quintana Roo. Chetumal, Quintana Roo. México
| | - Leticia Ramírez-Lugo
- Instituto de Fisiología Celular. Universidad Nacional Autónoma de México. Ciudad de México. México
| | - Roger Cauich-Kumul
- Departamento de Ciencias Farmaceúticas. División de Ciencias de la Salud. Universidad de Quintana Roo. Chetumal, Quintana Roo. México
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas. Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab Mérida, México
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México
| | - Luis Núñez-Jaramillo
- Departamento de Ciencias Médicas. División de Ciencias de la Salud. Universidad de Quintana Roo. Chetumal, Quintana Roo. México
| |
Collapse
|
12
|
Kubrusly RCC, da Rosa Valli T, Ferreira MNMR, de Moura P, Borges-Martins VPP, Martins RS, Ferreira DDP, Sathler MF, de Melo Reis RA, Ferreira GC, Manhães AC, Dos Santos Pereira M. Caffeine Improves GABA Transport in the Striatum of Spontaneously Hypertensive Rats (SHR). Neurotox Res 2021; 39:1946-1958. [PMID: 34637050 DOI: 10.1007/s12640-021-00423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
The spontaneously hypertensive rat (SHR) is an excellent animal model that mimics the behavioral and neurochemical phenotype of attention-deficit/hyperactivity disorder (ADHD). Here, we characterized the striatal GABA transport of SHR and investigated whether caffeine, a non-selective antagonist of adenosine receptors, could influence GABAergic circuitry. For this purpose, ex vivo striatal slices of SHR and Wistar (control strain) on the 35th postnatal day were dissected and incubated with [3H]-GABA to quantify the basal levels of uptake and release. SHR exhibited a reduced [3H]-GABA uptake and release, suggesting a defective striatal GABAergic transport system. GAT-1 appears to be the primary transporter for [3H]-GABA uptake in SHR striatum, as GAT-1 selective blocker, NO-711, completely abolished it. We also verified that acute exposure of striatal slices to caffeine improved [3H]-GABA uptake and release in SHR, whereas Wistar rats were not affected. GABA-uptake increase and cAMP accumulation promoted by caffeine was reverted by A1R activation with N6-cyclohexyl adenosine (CHA). As expected, the pharmacological blockade of cAMP-PKA signaling by H-89 also prevented caffeine-mediated [3H]-GABA uptake increment. Interestingly, a single caffeine exposure did not affect GAT-1 or A1R protein density in SHR, which was not different from Wistar protein levels, suggesting that the GAT-1-dependent transport in SHR has a defective functional activity rather than lower protein expression. The current data support that caffeine regulates GAT-1 function and improves striatal GABA transport via A1R-cAMP-PKA signaling, specifically in SHR. These results reinforce that caffeine may have therapeutic use in disorders where the GABA transport system is impaired.
Collapse
Affiliation(s)
| | | | | | - Pâmella de Moura
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil
| | | | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil
- Laboratório de Neurobiologia Celular E Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Ricardo Augusto de Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética E Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Dos Santos Pereira
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil.
- Laboratório de Neurofisiologia Molecular, Departamento de Biologia Básica E Oral, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
13
|
Asadi E, Khodagholi F, Asadi S, Mohammadi Kamsorkh H, Kaveh N, Maleki A. Quality of early-life maternal care predicts empathy-like behavior in adult male rats: Linking empathy to BDNF gene expression in associated brain regions. Brain Res 2021; 1767:147568. [PMID: 34192516 DOI: 10.1016/j.brainres.2021.147568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
Empathy is the ability to experience a shared affective state as others. It enhances group living and manifests itself as helping behavior towards a distressed person. It also can flourish by nurturing. Recent findings suggest that rodents exhibit empathy-like behavior towards their conspecifics. However, the role of early-life experiences (e.g., maternal care) is not clear on the development of empathy-like behavior. Moreover, brain-derived neutrophilic factor (BDNF) is a pivotal protein in modulating the brain's function and behaviors. Evidence suggests that the expression of the BDNF gene can be affected by the quality of maternal care. In this study, we questioned whether variation in maternal care modulates empathy-like behavior of male rats in adulthood. Additionally, gene expression of BDNF was measured in the amygdala, hippocampus, insula, anterior cingulate cortex, prefrontal cortex, and striatum in these adult male rats. Based on the pattern of maternal care, the offspring were divided into high maternal care (HMC) and low maternal care (LMC) groups. We confirmed that the early-life experience of HMC significantly promoted the empathy-like behavior of rats in adulthood compared to LMC. In terms of gene expression, the HMC group consistently had higher BDNF gene expression in all studied regions, except anterior cingulate cortex which groups were not different. Taken together, it suggests that maternal care in infancy predicts empathy-like behavior in adulthood and differences in BDNF gene expression in different brain regions may reflect the underlying mechanism.
Collapse
Affiliation(s)
- Ehsan Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sareh Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Neda Kaveh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Kantak KM, Stots C, Mathieson E, Bryant CD. Spontaneously Hypertensive Rat substrains show differences in model traits for addiction risk and cocaine self-administration: Implications for a novel rat reduced complexity cross. Behav Brain Res 2021; 411:113406. [PMID: 34097899 PMCID: PMC8265396 DOI: 10.1016/j.bbr.2021.113406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Forward genetic mapping of F2 crosses between closely related substrains of inbred rodents - referred to as a reduced complexity cross (RCC) - is a relatively new strategy for accelerating the pace of gene discovery for complex traits, such as drug addiction. RCCs to date were generated in mice, but rats are thought to be optimal for addiction genetic studies. Based on past literature, one inbred Spontaneously Hypertensive Rat substrain, SHR/NCrl, is predicted to exhibit a distinct behavioral profile as it relates to cocaine self-administration traits relative to another substrain, SHR/NHsd. Direct substrain comparisons are a necessary first step before implementing an RCC. We evaluated model traits for cocaine addiction risk and cocaine self-administration behaviors using a longitudinal within-subjects design. Impulsive-like and compulsive-like traits were greater in SHR/NCrl than SHR/NHsd, as were reactivity to sucrose reward, sensitivity to acute psychostimulant effects of cocaine, and cocaine use studied under fixed-ratio and tandem schedules of cocaine self-administration. Compulsive-like behavior correlated with the acute psychostimulant effects of cocaine, which in turn correlated with cocaine taking under the tandem schedule. Compulsive-like behavior also was the best predictor of cocaine seeking responses. Heritability estimates indicated that 22 %-40 % of the variances for the above phenotypes can be explained by additive genetic factors, providing sufficient genetic variance to conduct genetic mapping in F2 crosses of SHR/NCrl and SHR/NHsd. These results provide compelling support for using an RCC approach in SHR substrains to uncover candidate genes and variants that are of relevance to cocaine use disorders.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| | - Carissa Stots
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Camron D Bryant
- Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
15
|
Leão AHFF, Meurer YSR, Freitas TA, Medeiros AM, Abílio VC, Izídio GS, Conceição IM, Ribeiro AM, Silva RH. Changes in the mesocorticolimbic pathway after low dose reserpine-treatment in Wistar and Spontaneously Hypertensive Rats (SHR): Implications for cognitive deficits in a progressive animal model for Parkinson's disease. Behav Brain Res 2021; 410:113349. [PMID: 33971246 DOI: 10.1016/j.bbr.2021.113349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Reserpine (RES) is an irreversible inhibitor of VMAT2 used to study Parkinson's disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low dose of reserpine was proposed as a model capable of emulating progressive neurochemical, motor and non-motor impairments in PD. Conversely, compared to Wistar rats, Spontaneously Hypertensive Rats (SHR) are resistant to motor changes induced by repeated treatment with a low dose of RES. However, such resistance has not yet been investigated for RES-induced non-motor impairments. We aimed to assess whether SHR would have differential susceptibility to the object recognition deficit induced by repeated low-dose reserpine treatment. We submitted male Wistar and SHR rats to repeated RES treatment (15 s.c. injections of 0.1 mg/kg, every other day) and assessed object memory acquisition and retrieval 48 h after the 6th RES injection (immediately before the appearance of motor impairments). Only RES Wistar rats displayed memory impairment after reserpine treatment. On the other hand, untreated SHR rats displayed object recognition memory deficit, but RES treatment restored such deficits. We also performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last RES injection. In a different set of animals submitted to the same treatment, we quantified DA, 5-HT and products of lipid peroxidation in the prefrontal cortex (PFC) and hippocampus (HPC). SHR presented increased constitutive levels of DA in the PFC and reduced immunoreactivity to TH in the medial PFC and dorsal HPC. Corroborating the behavioral findings, RES treatment restored those constitutive alterations in SHR. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potentially relevant targets to the study of susceptibility to diseases related to dopaminergic alterations.
Collapse
Affiliation(s)
- Anderson H F F Leão
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ywlliane S R Meurer
- Memory and Cognition Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Thalma A Freitas
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil; Laboratory of Pharmacology, Group of Toxin Action Mode (MATx), Butantan Institute, São Paulo, Brazil
| | - André M Medeiros
- Center of Health and Biological Sciences, Universidade Federal Rural do Semi-árido, Mossoró, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Geison S Izídio
- Laboratory of Behavioral Genetics, Department of Cellular Biology, Embryology and Genetics, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Isaltino M Conceição
- Laboratory of Pharmacology, Group of Toxin Action Mode (MATx), Butantan Institute, São Paulo, Brazil
| | | | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. The environmental enrichment model revisited: A translatable paradigm to study the stress of our modern lifestyle. Eur J Neurosci 2021; 55:2359-2392. [PMID: 33638921 DOI: 10.1111/ejn.15160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 01/31/2023]
Abstract
Mounting evidence shows that physical activity, social interaction and sensorimotor stimulation provided by environmental enrichment (EE) exert several neurobehavioural effects traditionally interpreted as enhancements relative to standard housing (SH) conditions. However, this evidence rather indicates that SH induces many deficits, which could be ameliorated by exposing animals to an environment vaguely mimicking some features of their wild habitat. Rearing rodents in social isolation (SI) can aggravate such deficits, which can be restored by SH or EE. It is not surprising, therefore, that most preclinical stress models have included severe and unnatural stressors to produce a stress response prominent enough to be distinguishable from SH or SI-frequently used as control groups. Although current stress models induce a stress-related phenotype, they may fail to represent the stress of our urban lifestyle characterized by SI, poor housing and working environments, sedentarism, obesity and limited access to recreational activities and exercise. In the following review, we discuss the stress of living in urban areas and how exposures to and performing activities in green environments are stress relievers. Based on the commonalities between human and animal EE, we discuss how models of housing conditions (e.g., SI-SH-EE) could be adapted to study the stress of our modern lifestyle. The housing conditions model might be easy to implement and replicate leading to more translational results. It may also contribute to accomplishing some ethical commitments by promoting the refinement of procedures to model stress, diminishing animal suffering, enhancing animal welfare and eventually reducing the number of experimental animals needed.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica.,Instituto de Investigaciones en Salud, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
17
|
Developmental effects of environmental enrichment on selective and auditory sustained attention. Psychoneuroendocrinology 2020; 111:104479. [PMID: 31704636 DOI: 10.1016/j.psyneuen.2019.104479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
Environmental enrichment (EE) has been used as a positive manipulation in different disease models. However, there is conflicting evidence reported in the literature about the effects of EE. Additionally, the time period that would be most beneficial in implementing environmental enrichment as an intervention is not clear. Our study aimed to systematically compare the prenatal, juvenile, mid-adolescence, and adulthood developmental trajectory to further the understanding of enriched environment's effects on selective and auditory sustained attention, corresponding to behavioral (conceived) and physiological-reflexive (non-conceived) measures. Rats were exposed for 21 days to enriched environment during various developmental periods and compared to age-matched controls. All groups were tested for long-term effects (at postnatal day 120 and onward) on selective and sustained attention. We found that the exposure to enriched environment during mid-adolescence has yielded the most significant and long-term pattern of effects, including selective and auditory sustained attention performance, increased foraging-like behavior and a significant decrease in corticosterone level. Similarly, the exposure to EE at juvenile period improved selective attention, increased foraging-like behavior, and reduced anxiety levels as reflected in the open field as well as in low corticosterone levels. These results specify a crucial period along the developmental trajectory for applying environmental enrichment. Mid-adolescence is suggested, in future basic and translational studies, as the sensitive time period that induces the most beneficial and long-term effects of EE on attention. The current findings suggest that the exposure to EE during mid-adolescence should be further considered and studied as behavioral alternative intervention, or as adjuvant behavioral therapy, aimed to decrease the probability to develop ADHD in post-adolescence period. This suggestion is highly relevant due to the debate regarding the pros and cons of screens usage (e.g. Facebook, online games, etc.) during early life that decreases environmental enrichment, especially, direct social interaction.
Collapse
|
18
|
Ball NJ, Mercado E, Orduña I. Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment. Front Psychol 2019; 10:466. [PMID: 30894830 PMCID: PMC6414413 DOI: 10.3389/fpsyg.2019.00466] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
The beneficial effects of enriched environments have been established through a long history of research. Enrichment of the living conditions of captive animals in the form of larger cages, sensory stimulating objects, and opportunities for social interaction and physical exercise, has been shown to reduce emotional reactivity, ameliorate abnormal behaviors, and enhance cognitive functioning. Recently, environmental enrichment research has been extended to humans, in part due to growing interest in its potential therapeutic benefits for children with neurodevelopmental disorders (NDDs). This paper reviews the history of enriched environment research and the use of enriched environments as a developmental intervention in studies of both NDD animal models and children. We argue that while environmental enrichment may sometimes benefit children with NDDs, several methodological factors need to be more closely considered before the efficacy of this approach can be adequately evaluated, including: (i) operationally defining and standardizing enriched environment treatments across studies; (ii) use of control groups and better control over potentially confounding variables; and (iii) a comprehensive theoretical framework capable of predicting when and how environmental enrichment will alter the trajectory of NDDs.
Collapse
Affiliation(s)
- Natalie J Ball
- Neural and Cognitive Plasticity Laboratory, Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Eduardo Mercado
- Neural and Cognitive Plasticity Laboratory, Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Itzel Orduña
- Department of School and Counseling Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
19
|
Nishigaki R, Yokoyama Y, Shimizu Y, Marumoto R, Misumi S, Ueda Y, Ishida A, Shibuya Y, Hida H. Monosodium glutamate ingestion during the development period reduces aggression mediated by the vagus nerve in a rat model of attention deficit-hyperactivity disorder. Brain Res 2018; 1690:40-50. [DOI: 10.1016/j.brainres.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 01/29/2023]
|
20
|
Aujnarain AB, Luo OD, Taylor N, Lai JKY, Foster JA. Effects of exercise and enrichment on behaviour in CD-1 mice. Behav Brain Res 2018; 342:43-50. [PMID: 29339005 DOI: 10.1016/j.bbr.2018.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
A host of scholarly work has characterized the positive effects of exercise and environmental enrichment on behaviour and cognition in animal studies. The purpose of this study was to investigate the uptake and longitudinal impact of exercise and enrichment on the behavioural phenotype of male and female CD-1 mice. CD-1 mice housed in standard (STD) or exercise and enrichment (EE) conditions post-weaning were tested in the 3-chamber sociability test, open field, and elevated plus maze and exercise activity was monitored throughout the enrichment protocol. Male and female EE mice both showed reduced anxiety and activity in the open field and elevated plus maze relative to sex-matched STD mice. EE altered social behaviours in a sex-specific fashion, with only female EE mice showing increased social preference relative to female STD mice and a preference for social novelty only present in male EE mice. This sexual dimorphism was not observed to be a product of exercise uptake, as CD-1 mice of both sexes demonstrated a consistent trend of wheel rotation frequencies. These findings suggest the importance of considering variables such as sex and strain on experimental design variables in future work on environmental enrichment.
Collapse
Affiliation(s)
- Amiirah B Aujnarain
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Owen D Luo
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Taylor
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan K Y Lai
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Jane A Foster
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada; Department of Psychiatry, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Purinergic system in psychiatric diseases. Mol Psychiatry 2018; 23:94-106. [PMID: 28948971 DOI: 10.1038/mp.2017.188] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.
Collapse
|
22
|
Blockade of α2-adrenergic receptors in prelimbic cortex: impact on cocaine self-administration in adult spontaneously hypertensive rats following adolescent atomoxetine treatment. Psychopharmacology (Berl) 2017; 234:2897-2909. [PMID: 28730282 PMCID: PMC5693724 DOI: 10.1007/s00213-017-4681-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/25/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder demonstrated that chronic methylphenidate treatment during adolescence increased cocaine self-administration established during adulthood under a progressive ratio (PR) schedule. Compared to vehicle, chronic atomoxetine treatment during adolescence failed to increase cocaine self-administration under a PR schedule in adult SHR. OBJECTIVES We determined if enhanced noradrenergic transmission at α2-adrenergic receptors within prefrontal cortex contributes to this neutral effect of adolescent atomoxetine treatment in adult SHR. METHODS Following treatment from postnatal days 28-55 with atomoxetine (0.3 mg/kg) or vehicle, adult male SHR and control rats from Wistar-Kyoto (WKY) and Wistar (WIS) strains were trained to self-administer 0.3 mg/kg cocaine. Self-administration performance was evaluated under a PR schedule of cocaine delivery following infusion of the α2-adrenergic receptor antagonist idazoxan (0 and 10-56 μg/side) directly into prelimbic cortex. RESULTS Adult SHR attained higher PR break points and had greater numbers of active lever responses and infusions than WKY and WIS. Idazoxan dose-dependently increased PR break points and active lever responses in SHR following adolescent atomoxetine vs. vehicle treatment. Behavioral changes were negligible after idazoxan pretreatment in SHR following adolescent vehicle or in WKY and WIS following adolescent atomoxetine or vehicle. CONCLUSIONS α2-Adrenergic receptor blockade in prelimbic cortex of SHR masked the expected neutral effect of adolescent atomoxetine on adult cocaine self-administration behavior. Moreover, greater efficacy of acute idazoxan challenge in adult SHR after adolescent atomoxetine relative to vehicle is consistent with the idea that chronic atomoxetine may downregulate presynaptic α2A-adrenergic autoreceptors in SHR.
Collapse
|
23
|
Decreased environmental complexity during development impairs habituation of reinforcer effectiveness of sensory stimuli. Behav Brain Res 2017; 337:53-60. [PMID: 28943426 DOI: 10.1016/j.bbr.2017.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 02/03/2023]
Abstract
Previous research has shown that rats reared in simple/impoverished environments demonstrate greater repetitive responding for sensory reinforcers (e.g., light onset). Moreover, the brains of these rats are abnormally developed, compared to brains of rats reared in more complex/enriched environments. Repetitive behaviors are commonly observed in individuals with developmental disorders. Some of these repetitive behaviors could be maintained by the reinforcing effects of the sensory stimulation that they produce. Therefore, rearing rats in impoverished conditions may provide an animal model for certain repetitive behaviors associated with developmental disorders. We hypothesize that in rats reared in simple/impoverished environments, the normal habituation process to sensory reinforcers is impaired, resulting in high levels of repetitive behaviors. We tested the hypothesis using an operant sensory reinforcement paradigm in rats reared in simple/impoverished (IC), standard laboratory (SC), and complex/enrichened conditions (EC, treatments including postnatal handling and environmental enrichment). Results show that the within-session habituation of the reinforcer effectiveness of light onset was slower in the IC and SC rats than in the EC rats. A dishabituation challenge indicated that within-session decline of responses was due to habituation and not motor fatigue or sensory adaptation. In conclusion, rearing rats in simple/impoverished environments, and comparing them to rats reared in more complex/enriched environments, may constitute a useful approach for studying certain repetitive behaviors associated with developmental disorders.
Collapse
|
24
|
Tsai ML, Kozłowska A, Li YS, Shen WL, Huang ACW. Social factors affect motor and anxiety behaviors in the animal model of attention-deficit hyperactivity disorders: A housing-style factor. Psychiatry Res 2017; 254:290-300. [PMID: 28501734 DOI: 10.1016/j.psychres.2017.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/04/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
The present study examines whether housing style (e.g., single housing, same-strain-grouped housing, and different-strain-grouped housing) and rat strain (e.g., spontaneous hypertension rats [SHR] and Wistar-Kyoto rats [WKY]) mediate motor function and anxiety behavior in the open field task. From week 4 through week 10 following birth, the rats were measured 30min for locomotor activity and anxiety once per week in the open field task. The SHR rats exhibited hyperactivity in total distance traveled and movement time to form the animal model of ADHD. The SHR rats spent more time inside the square and crossed the inside-outside line more often than the WKY rats, indicating the SHR rats exhibited less anxiety behavior. The different-strain-grouped housing style (but neither the same-strain-grouped housing style nor the single housing style) decreased total distance traveled and facilitated anxiety behavior. The motor function was negatively correlated with anxiety behavior for SHR rats but not for WKY rats. Housing styles had a negative correlation between motor function and anxiety behavior. The present findings provide some insights regarding how social factors (such as housing style) affect motor function and anxiety behavior related to ADHD in a clinical setting.
Collapse
Affiliation(s)
- Meng-Li Tsai
- Department of Biomechatronic Engineering, National Ilan University, Yilan, Taiwan
| | - Anna Kozłowska
- Department of Human Physiology, Faculty of Medical Sciences; University of Warmia and Mazury, Olsztyn, Poland
| | - Yu-Sheng Li
- Department of Biomechatronic Engineering, National Ilan University, Yilan, Taiwan
| | - Wen-Ling Shen
- Department of Biomechatronic Engineering, National Ilan University, Yilan, Taiwan
| | | |
Collapse
|
25
|
Ragaeva DS, Tikhonova MA, Petrova OM, Igonina TN, Rozkova IN, Brusentsev EY, Amstislavskaya TG, Amstislavsky SY. Neonatal reflexes and behavior in hypertensive rats of ISIAH strain. Physiol Behav 2017; 175:22-30. [PMID: 28341233 DOI: 10.1016/j.physbeh.2017.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/10/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is one of the most common diseases in humans, and there is a special concern on the consequences of maternal hypertensive conditions for the health of newborns. An inherited stress-induced arterial hypertension (ISIAH) rat strain has been selected but only a few studies have addressed behavior in these rats. Body weight, neurodevelopmental reflexes, and neuronal density in the hippocampus were compared in ISIAH and normotensive WAG rats during their suckling period. Systolic and diastolic blood pressure (SBP, DBP), adult rat performance in the open field (OF), elevated plus maze (EPM), and novel object recognition (NOR) tests were evaluated at the age of 12-14weeks old. Body weight in pups did not differ significantly during the suckling period, while adult ISIAH rats were heavier than age-matched WAG rats and possessed the increased SBP and DBP. ISIAH pups were developmentally more advanced than WAG as indicated by grasp reflex and negative geotaxis reaction scores. This was associated with higher neuronal density in CA1 and CA3 hippocampal areas in ISIAH pups on postnatal day 6 as compared to WAG rats. Adult ISIAH rats demonstrated an increased locomotor and exploratory activity in the OF and EPM tests as well as low levels of anxiety. The NOR test revealed no significant difference in recognition but confirmed higher exploratory activity in ISIAH rats compared to WAG rats. The results indicate that hypertensive ISIAH rats feature accelerated development during their suckling period, and as adults, they are more active and less anxious than normotensive WAG rats.
Collapse
Affiliation(s)
- Diana S Ragaeva
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Maria A Tikhonova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga M Petrova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatjana N Igonina
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Irina N Rozkova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Eugeny Yu Brusentsev
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey Ya Amstislavsky
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia.
| |
Collapse
|
26
|
Naaijen J, Bralten J, Poelmans G, Glennon JC, Franke B, Buitelaar JK. Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism. Transl Psychiatry 2017; 7:e999. [PMID: 28072412 PMCID: PMC5545734 DOI: 10.1038/tp.2016.273] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/13/2016] [Accepted: 11/27/2016] [Indexed: 02/02/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) often co-occur. Both are highly heritable; however, it has been difficult to discover genetic risk variants. Glutamate and GABA are main excitatory and inhibitory neurotransmitters in the brain; their balance is essential for proper brain development and functioning. In this study we investigated the role of glutamate and GABA genetics in ADHD severity, autism symptom severity and inhibitory performance, based on gene set analysis, an approach to investigate multiple genetic variants simultaneously. Common variants within glutamatergic and GABAergic genes were investigated using the MAGMA software in an ADHD case-only sample (n=931), in which we assessed ASD symptoms and response inhibition on a Stop task. Gene set analysis for ADHD symptom severity, divided into inattention and hyperactivity/impulsivity symptoms, autism symptom severity and inhibition were performed using principal component regression analyses. Subsequently, gene-wide association analyses were performed. The glutamate gene set showed an association with severity of hyperactivity/impulsivity (P=0.009), which was robust to correcting for genome-wide association levels. The GABA gene set showed nominally significant association with inhibition (P=0.04), but this did not survive correction for multiple comparisons. None of single gene or single variant associations was significant on their own. By analyzing multiple genetic variants within candidate gene sets together, we were able to find genetic associations supporting the involvement of excitatory and inhibitory neurotransmitter systems in ADHD and ASD symptom severity in ADHD.
Collapse
Affiliation(s)
- J Naaijen
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Noord 10 (Huispost 126), Nijmegen 6525 EZ, The Netherlands. E-mail:
| | - J Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands,Karakter Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Santos CM, Peres FF, Diana MC, Justi V, Suiama MA, Santana MG, Abílio VC. Peripubertal exposure to environmental enrichment prevents schizophrenia-like behaviors in the SHR strain animal model. Schizophr Res 2016; 176:552-559. [PMID: 27338757 DOI: 10.1016/j.schres.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a highly disabling mental disorder, in which genetics and environmental factors interact culminating in the disease. The treatment of negative symptoms and cognitive deficits with antipsychotics is currently inefficient and is an important field of research. Environmental enrichment (EE) has been suggested to improve some cognitive deficits in animal models of various psychiatric disorders. In this study, we aimed to evaluate a possible beneficial effect of early and long-term exposure to EE on an animal model of schizophrenia, the SHR strain. Young male Wistar rats (control strain) and SHRs (21 post-natal days) were housed for 6weeks in two different conditions: in large cages (10 animals per cage) containing objects of different textures, forms, colors and materials that were changed 3 times/week (EE condition) or in standard cages (5 animals per cage - Control condition). Behavioral evaluations - social interaction (SI), locomotion, prepulse inhibition of startle (PPI) and spontaneous alternation (SA) - were performed 6weeks after the end of EE. SHRs presented deficits in PPI (a sensorimotor impairment), SI (mimicking the negative symptoms) and SA (a working memory deficit), and also hyperlocomotion (modeling the positive symptoms). EE was able to reduce locomotion and increase PPI in both strains, and to prevent the working memory deficit in SHRs. EE also increased the number of neurons in the CA1 and CA3 of the hippocampus. In conclusion, EE can be a potential nonpharmacological strategy to prevent some behavioral deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Camila Mauricio Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Fernanda Fiel Peres
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Mariana Cepollaro Diana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Veronica Justi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Mayra Akimi Suiama
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Marcela Gonçalves Santana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Vanessa Costhek Abílio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| |
Collapse
|
28
|
Majdak P, Grogan EL, Gogola JV, Sorokina A, Tse S, Rhodes JS. The impact of maternal neglect on genetic hyperactivity. Behav Brain Res 2016; 313:282-292. [PMID: 27449202 DOI: 10.1016/j.bbr.2016.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Early environmental conditions are increasingly appreciated as critical in shaping behavior and cognition. Evidence suggests that stressful rearing environments can have an enduring impact on behaviors in adulthood, but few studies have explored the possibility that rearing environment could exacerbate genetic hyperactivity disorders. Uncovering a strong environmental influence on the transmission of hyperactivity could provide novel avenues for translational research. Recently we developed a selectively bred High-Active line of mice to model ADHD, providing a unique resource to address the question of environmental transmission. The High-Active line demonstrates transgenerational hyperactivity, but the influence of the postnatal environment (i.e. maternal care provided by dams) on hyperactivity had not been systemically quantified. This study employed a cross-fostering method to simultaneously address 1) whether High-Active and Control pups are provided with similar levels of care in the early environment, and 2) whether any differences in rearing environment influence hyperactive behavior. High-Active dams demonstrated impairment in all measures of maternal competence relative to Controls, which reduced survival rates and significantly reduced the body mass of offspring in early life and at weaning. While the deteriorated postnatal environment provided by High-Active dams was ultimately sufficient to depress Control activity, the hyperactivity of High-Active offspring remained unaffected by fostering condition. These data not only confirm the power of genetics to influence hyperactivity across generations, but also provide evidence that early rearing environments may not have a significant impact on the extreme end of hyperactive phenotypes.
Collapse
Affiliation(s)
- Petra Majdak
- The Neuroscience Program, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA; The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA.
| | - Elizabeth L Grogan
- The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Joseph V Gogola
- The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Anastassia Sorokina
- The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Stephen Tse
- The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Justin S Rhodes
- The Neuroscience Program, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA; The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA; Department of Psychology, University of Illinois, 603 E. Daniel Street, Champaign, IL 61820, USA
| |
Collapse
|
29
|
Methylphenidate Causes Behavioral Impairments and Neuron and Astrocyte Loss in the Hippocampus of Juvenile Rats. Mol Neurobiol 2016; 54:4201-4216. [PMID: 27324900 DOI: 10.1007/s12035-016-9987-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022]
Abstract
Although the use, and misuse, of methylphenidate is increasing in childhood and adolescence, there is little information about the consequences of this psychostimulant chronic use on brain and behavior during development. The aim of the present study was to investigate hippocampus biochemical, histochemical, and behavioral effects of chronic methylphenidate treatment to juvenile rats. Wistar rats received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9 % saline solution (controls), once a day, from the 15th to the 45th day of age. Results showed that chronic methylphenidate administration caused loss of astrocytes and neurons in the hippocampus of juvenile rats. BDNF and pTrkB immunocontents and NGF levels were decreased, while TNF-α and IL-6 levels, Iba-1 and caspase 3 cleaved immunocontents (microglia marker and active apoptosis marker, respectively) were increased. ERK and PKCaMII signaling pathways, but not Akt and GSK-3β, were decreased. SNAP-25 was decreased after methylphenidate treatment, while GAP-43 and synaptophysin were not altered. Both exploratory activity and object recognition memory were impaired by methylphenidate. These findings provide additional evidence that early-life exposure to methylphenidate can have complex effects, as well as provide new basis for understanding of the biochemical and behavioral consequences associated with chronic use of methylphenidate during central nervous system development.
Collapse
|
30
|
Hansen F, Pandolfo P, Galland F, Torres FV, Dutra MF, Batassini C, Guerra MC, Leite MC, Gonçalves CA. Methylglyoxal can mediate behavioral and neurochemical alterations in rat brain. Physiol Behav 2016; 164:93-101. [PMID: 27235733 DOI: 10.1016/j.physbeh.2016.05.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Abstract
Diabetes is associated with loss of cognitive function and increased risk for Alzheimer's disease (AD). Advanced glycation end products (AGEs) are elevated in diabetes and AD and have been suggested to act as mediators of the cognitive decline observed in these pathologies. Methylglyoxal (MG) is an extremely reactive carbonyl compound that propagates glycation reactions and is, therefore, able to generate AGEs. Herein, we evaluated persistent behavioral and biochemical parameters to explore the hypothesis that elevated exogenous MG concentrations, induced by intracerebroventricular (ICV) infusion, lead to cognitive decline in Wistar rats. A high and sustained administration of MG (3μmol/μL; subdivided into 6days) was found to decrease the recognition index of rats, as evaluated by the object-recognition test. However, MG was unable to impair learning-memory processes, as shown by the habituation in the open field (OF) and Y-maze tasks. Moreover, a single high dose of MG induced persistent alterations in anxiety-related behavior, diminishing the anxiety-like parameters evaluated in the OF test. Importantly, MG did not alter locomotion behavior in the different tasks performed. Our biochemical findings support the hypothesis that MG induces persistent alterations in the hippocampus, but not in the cortex, related to glyoxalase 1 activity, AGEs content and glutamate uptake. Glial fibrillary acidic protein and S100B content, as well as S100B secretion (astroglial-related parameters of brain injury), were not altered by ICV MG administration. Taken together, our data suggest that MG interferes directly in brain function and that the time and the levels of exogenous MG determine the different features that can be seen in diabetic patients.
Collapse
Affiliation(s)
- Fernanda Hansen
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil.
| | - Pablo Pandolfo
- Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brazil
| | - Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Felipe Vasconcelos Torres
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Márcio Ferreira Dutra
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Cristiane Batassini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Maria Cristina Guerra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Lach G, Bicca MA, Hoeller AA, Santos ECDS, Costa APR, de Lima TCM. Short-term enriched environment exposure facilitates fear extinction in adult rats: The NPY-Y1 receptor modulation. Neuropeptides 2016; 55:73-8. [PMID: 26490304 DOI: 10.1016/j.npep.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
Neuropeptides have an important role in several psychiatric conditions. Among them, neuropeptide Y (NPY) seems to be essential to modulate some features of stress-related disorders. Post-traumatic stress disorder (PTSD), characterized by inappropriate fear generalization to safe situations may be modulated by NPY manipulation since this neuropeptide is involved in the promotion of coping with stress. Experimentally, coping strategies have been obtained after exposure in enriched environment (EE) rather than standard one. Thus, in the present study we aimed to assess whether short-term EE situation and NPY-Y1 receptor (Y1r) modulation may affect the extinction of contextual fear conditioning, an experimental approach to PTSD. Here we show that EE-rats have the contextual fear extinction facilitated, and this facilitation was reverted by central infusion of BIBO3304, a nonpeptide Y1r antagonist. In addition, protein analysis revealed an upregulation of hippocampal Y1r in conditioned EE-rats, but no changes were observed in EE-rats that were not conditioned. Our results demonstrated that protective properties of EE on fear extinction can be regulated, at least in part, by activation of NPY-signaling through Y1r within hippocampus, an area that plays a major role in contextual memories. Overall, the activation of Y1r is important to promote better and faster perception of self-location (context), and to reduce fear generalization in rats exposed to EE.
Collapse
Affiliation(s)
- Gilliard Lach
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil.
| | - Maira Assunção Bicca
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Alexandre Ademar Hoeller
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil; Postgraduate Program in Medical Science, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Evelyn Cristina da Silva Santos
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Ana Paula Ramos Costa
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | | |
Collapse
|
32
|
Homberg JR, Kyzar EJ, Stewart AM, Nguyen M, Poudel MK, Echevarria DJ, Collier AD, Gaikwad S, Klimenko VM, Norton W, Pittman J, Nakamura S, Koshiba M, Yamanouchi H, Apryatin SA, Scattoni ML, Diamond DM, Ullmann JFP, Parker MO, Brown RE, Song C, Kalueff AV. Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. Expert Opin Drug Discov 2015; 11:11-25. [DOI: 10.1517/17460441.2016.1115834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evan J Kyzar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
| | | | | | | | - David J Echevarria
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Adam D Collier
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Siddharth Gaikwad
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Neuroscience Graduate Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Viktor M Klimenko
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Pavlov Physiology Department, Institute of Experimental Medicine, St. Petersburg, Russia
| | - William Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Julian Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Shun Nakamura
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mamiko Koshiba
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Departments of Pediatrics and Biochemistry, Saitama University Medical School, Saitama, Japan
| | - Hideo Yamanouchi
- Departments of Pediatrics and Biochemistry, Saitama University Medical School, Saitama, Japan
| | | | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | - David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Research and Development Service, J.A. Haley Veterans Hospital, Tampa, FL, USA
| | - Jeremy FP Ullmann
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Neuroscience Graduate Hospital, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allan V Kalueff
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Institute of Chemical Technology and Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
33
|
Botanas CJ, Lee H, de la Peña JB, Dela Peña IJ, Woo T, Kim HJ, Han DH, Kim BN, Cheong JH. Rearing in an enriched environment attenuated hyperactivity and inattention in the Spontaneously Hypertensive Rats, an animal model of Attention-Deficit Hyperactivity Disorder. Physiol Behav 2015; 155:30-7. [PMID: 26656767 DOI: 10.1016/j.physbeh.2015.11.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/17/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder, characterized by symptoms of hyperactivity, inattention, and impulsivity. It is commonly treated with psychostimulants that typically begins during childhood and lasts for an extended period of time. However, there are concerns regarding the consequences of chronic psychostimulant treatment; thus, there is a growing search for an alternative management for ADHD. One non-pharmacological management that is gaining much interest is environmental enrichment. Here, we investigated the effects of rearing in an enriched environment (EE) on the expression of ADHD-like symptoms in the Spontaneously Hypertensive Rats (SHRs), an animal model of ADHD. SHRs were reared in EE or standard environment (SE) from post-natal day (PND) 21 until PND 49. Thereafter, behavioral tests that measure hyperactivity (open field test [OFT]), inattention (Y-maze task), and impulsivity (delay discounting task) were conducted. Additionally, electroencephalography (EEG) was employed to assess the effects of EE on rat's brain activity. Wistar-Kyoto (WKY) rats, the normotensive counterpart of the SHRs, were used to determine whether the effects of EE were specific to a particular genetic background. EE improved the performance of the SHRs and WKY rats in the OFT and Y-maze task, but not the delay discounting task. Interestingly, EE induced significant EEG changes in WKY rats, but not in the SHRs. These findings show that rearing environment may play a role in the expression of ADHD-like symptoms in the SHRs and that EE may be considered as a putative complementary approach in managing ADHD symptoms.
Collapse
Affiliation(s)
- Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Hyelim Lee
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Taeseon Woo
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Medical School, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Clinical Research Institute, Seoul National University Hospital, 28 Yungundong, Chongrogu, Seoul 110-744, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
34
|
D-amphetamine improves attention performance in adolescent Wistar, but not in SHR rats, in a two-choice visual discrimination task. Psychopharmacology (Berl) 2015; 232:3269-86. [PMID: 26037943 DOI: 10.1007/s00213-015-3974-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/24/2015] [Indexed: 01/30/2023]
Abstract
The validity of spontaneous hypertensive rat (SHR) as a model of attention deficit hyperactivity disorder (ADHD) has been explored by comparing SHR with Wistar rats in a test of attention, the two-choice visual discrimination task (2-CVDT). Animals were 4-5 weeks old during the training phase of the experiment and 6-7 weeks old during the testing phase in which they were tested with D-amphetamine, a stimulant drug used for the treatment of ADHD. As compared to Wistar, SHR showed a slightly better attention performance, a slightly lower impulsivity level, and a lower general activity during the training phase, but these differences disappeared or lessened thereafter, during the testing phase. D-amphetamine (0.5, 1 mg/kg) improved attention performance in Wistar, but not in SHR, and did not modify impulsivity and activity in the two strains. In conclusion, the present study did not demonstrate that SHR represents a valid model of ADHD, since it did not show face validity regarding the behavioral symptoms of ADHD and predictive validity regarding the effect of a compound used for the treatment of ADHD. On the other hand, this study showed that the 2-CVDT may represent a suitable tool for evaluating in adolescent Wistar rats the effect on attention of compounds intended for the treatment of ADHD.
Collapse
|
35
|
Peres TV, Eyng H, Lopes SC, Colle D, Gonçalves FM, Venske DKR, Lopes MW, Ben J, Bornhorst J, Schwerdtle T, Aschner M, Farina M, Prediger RD, Leal RB. Developmental exposure to manganese induces lasting motor and cognitive impairment in rats. Neurotoxicology 2015. [PMID: 26215118 DOI: 10.1016/j.neuro.2015.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum.
Collapse
Affiliation(s)
- Tanara V Peres
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Helena Eyng
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Samantha C Lopes
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Dirleise Colle
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe M Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora K R Venske
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Mark W Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Juliana Ben
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Julia Bornhorst
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rui D Prediger
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rodrigo B Leal
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
36
|
Zubedat S, Aga-Mizrachi S, Cymerblit-Sabba A, Ritter A, Nachmani M, Avital A. Methylphenidate and environmental enrichment ameliorate the deleterious effects of prenatal stress on attention functioning. Stress 2015; 18:280-8. [PMID: 25783195 DOI: 10.3109/10253890.2015.1023790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Either pre- or post-natal environmental factors seem to play a key role in brain and behavioral development and to exert long-term effects. Increasing evidence suggests that exposure to prenatal stress (PS) leads to motor and learning deficits and elevated anxiety, while enriched environment (EE) shows protective effects. The dopaminergic system is also sensitive to environmental life circumstances and affects attention functioning, which serves as the preliminary gate to cognitive processes. However, the effects of methylphenidate (MPH) on the dopaminergic system and attentional functioning, in the context of these life experiences, remain unclear. Therefore, we aimed to examine the effects of EE or PS on distinct types of attention, along with possible effects of MPH exposure. We found that PS impaired selective attention as well as partial sustained attention, while EE had beneficial effects. Both EE and MPH ameliorated the deleterious effects of PS on attention functioning. Considering the possible psychostimulant effect of MPH, we examined both anxiety-like behavior as well as motor learning. We found that PS had a clear anxiogenic effect, whereas EE had an anxiolytic effect. Nevertheless, the treatment with both MPH and/or EE recovered the deleterious effects of PS. In the motor-learning task, the PS group showed superior performance while MPH led to impaired motor learning. Performance decrements were prevented in both the PS + MPH and EE + MPH groups. This study provides evidence that peripubertal exposure to EE (by providing enhanced sensory, motor, and social opportunities) or MPH treatments might be an optional therapeutic intervention in preventing the PS long-term adverse consequences.
Collapse
Affiliation(s)
- Salman Zubedat
- a Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine , Technion - Israel Institute of Technology , Haifa , Israel and
| | - Shlomit Aga-Mizrachi
- a Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine , Technion - Israel Institute of Technology , Haifa , Israel and
| | - Adi Cymerblit-Sabba
- a Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine , Technion - Israel Institute of Technology , Haifa , Israel and
| | - Ami Ritter
- a Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine , Technion - Israel Institute of Technology , Haifa , Israel and
| | - Maayan Nachmani
- a Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine , Technion - Israel Institute of Technology , Haifa , Israel and
| | - Avi Avital
- a Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine , Technion - Israel Institute of Technology , Haifa , Israel and
- b Emek Medical Center , Afula , Israel
| |
Collapse
|
37
|
Akkerman S, Prickaerts J, Bruder AK, Wolfs KHM, De Vry J, Vanmierlo T, Blokland A. PDE5 inhibition improves object memory in standard housed rats but not in rats housed in an enriched environment: implications for memory models? PLoS One 2014; 9:e111692. [PMID: 25372140 PMCID: PMC4221101 DOI: 10.1371/journal.pone.0111692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
Drug effects are usually evaluated in animals housed under maximally standardized conditions. However, it is assumed that an enriched environment (EE) more closely resembles human conditions as compared to maximally standardized laboratory conditions. In the present study, we examined the acute cognition enhancing effects of vardenafil, a PDE5 inhibitor, which stimulates protein kinase G/CREB signaling in cells, in three different groups of male Wistar rats tested in an object recognition task (ORT). Rats were either housed solitarily (SOL) or socially (SOC) under standard conditions, or socially in an EE. Although EE animals remembered object information longer in the vehicle condition, vardenafil only improved object memory in SOL and SOC animals. While EE animals had a heavier dorsal hippocampus, we found no differences between experimental groups in total cell numbers in the dentate gyrus, CA2-3 or CA1. Neither were there any differences in markers for pre- and postsynaptic density. No changes in PDE5 mRNA- and protein expression levels were observed. Basal pCREB levels were increased in EE rats only, whereas β-catenin was not affected, suggesting specific activation of the MAP kinase signaling pathway and not the AKT pathway. A possible explanation for the inefficacy of vardenafil could be that CREB signaling is already optimally stimulated in the hippocampus of EE rats. Since previous data has shown that acute PDE5 inhibition does not improve memory performance in humans, the use of EE animals could be considered as a more valid model for testing cognition enhancing drugs.
Collapse
Affiliation(s)
- Sven Akkerman
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Ann K. Bruder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kevin H. M. Wolfs
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Jochen De Vry
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical research institute, Hasselt University, Hasselt, Belgium
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Musser ED, Hawkey E, Kachan-Liu SS, Lees P, Roullet JB, Goddard K, Steiner RD, Nigg JT. Shared familial transmission of autism spectrum and attention-deficit/hyperactivity disorders. J Child Psychol Psychiatry 2014; 55:819-27. [PMID: 24444366 PMCID: PMC4211282 DOI: 10.1111/jcpp.12201] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND To determine whether familial transmission is shared between autism spectrum disorders and attention-deficit/hyperactivity disorder, we assessed the prevalence, rates of comorbidity, and familial transmission of both disorders in a large population-based sample of children during a recent 7 year period. METHODS Study participants included all children born to parents with the Kaiser Permanente Northwest (KPNW) Health Plan between 1 January 1998 and 31 December 2004 (n = 35,073). Children and mothers with physician-identified autism spectrum disorders (ASD) and/or attention-deficit/hyperactivity disorder (ADHD) were identified via electronic medical records maintained for all KPNW members. RESULTS Among children aged 6-12 years, prevalence was 2.0% for ADHD and 0.8% for ASD; within those groups, 0.2% of the full sample (19% of the ASD sample and 9.6% of the ADHD sample) had co-occurring ASD and ADHD, when all children were included. When mothers had a diagnosis of ADHD, first born offspring were at 6-fold risk of ADHD alone (OR = 5.02, p < .0001) and at 2.5-fold risk of ASD alone (OR = 2.52, p < .01). Results were not accounted for by maternal age, child gestational age, child gender, and child race. CONCLUSIONS Autism spectrum disorders shares familial transmission with ADHD. ADHD and ASD have a partially overlapping diathesis.
Collapse
Affiliation(s)
- Erica D. Musser
- Oregon Health & Science University, Sam Jackson Park Road, Portland, Oregon, USA, University of Oregon, Eugene, Oregon, USA
| | - Elizabeth Hawkey
- Oregon Health & Science University, Sam Jackson Park Road, Portland, Oregon, USA
| | | | - Paul Lees
- Kaiser Permanente Northwest, Portland, Oregon, USA
| | | | | | - Robert D. Steiner
- Marshfield Clinic Research Foundation, University of Wisconsin, Marshfield, Wiscosin, USA
| | - Joel T. Nigg
- Oregon Health & Science University, Sam Jackson Park Road, Portland, Oregon, USA
| |
Collapse
|
39
|
Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M, Pessoa-Pureur R. Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 2014; 281:2061-73. [DOI: 10.1111/febs.12762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/03/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Carolina G. Fernandes
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Márcio F. Dutra
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Biologia Celular, Embriologia e Genética; Centro Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC Brasil
| | - Pablo Pandolfo
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Neurobiologia; Instituto de Biologia; Universidade Federal Fluminense; Niterói RJ Brasil
| | - Fernanda Ferreira
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Bárbara O. de Lima
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Lisiane Porciúncula
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Moacir Wajner
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| |
Collapse
|
40
|
van Steijn DJ, Oerlemans AM, de Ruiter SW, van Aken MAG, Buitelaar JK, Rommelse NNJ. Are parental autism spectrum disorder and/or attention-deficit/Hyperactivity disorder symptoms related to parenting styles in families with ASD (+ADHD) affected children? Eur Child Adolesc Psychiatry 2013; 22:671-81. [PMID: 23564208 DOI: 10.1007/s00787-013-0408-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
An understudied and sensitive topic nowadays is that even subthreshold symptoms of autism spectrum disorder (ASD) and attention-deficit/Hyperactivity disorder (ADHD) in parents may relate to their parenting styles. The aim of this study was to explore the influence of (the combined) effect of child diagnosis (ASD or ASD + ADHD affected/unaffected children) and parental ASD and/or ADHD on parenting styles. Ninety-six families were recruited with one child with a clinical ASD (+ADHD) diagnosis, and one unaffected sibling. Parental ASD and ADHD symptoms were assessed using self-report. The Parenting Styles Dimensions Questionnaire (PSDQ) self- and spouse-report were used to measure the authoritative, authoritarian, and permissive parenting styles. Fathers and mothers scored significantly higher than the norm data of the PSDQ on the permissive style regarding affected children, and lower on the authoritative and authoritarian parenting style for affected and unaffected children. Self- and spouse-report correlated modestly too strongly. Higher levels of paternal (not maternal) ADHD symptoms were suboptimally related to the three parenting styles. Further, two parent-child pathology interaction effects were found, indicating that fathers with high ADHD symptoms and mothers with high ASD symptoms reported to use a more permissive parenting style only towards their unaffected child. The results highlight the negative effects of paternal ADHD symptoms on parenting styles within families with ASD (+ADHD) affected offspring and the higher permissiveness towards unaffected offspring specifically when paternal ADHD and/or maternal ASD symptoms are high. Parenting training in these families may be beneficial for the well-being of all family members.
Collapse
Affiliation(s)
- Daphne J van Steijn
- Karakter Child and Adolescent Psychiatry University Centre, Reinier Postlaan 12, 6525 GC, Nijmegen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
41
|
The effects of rearing environment and chronic methylphenidate administration on behavior and dopamine receptors in adolescent rats. Brain Res 2013; 1527:67-78. [PMID: 23806775 DOI: 10.1016/j.brainres.2013.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022]
Abstract
Rearing young rodents in socially isolated or environmentally enriched conditions has been shown to affect numerous components of the dopamine system as well as behavior. Methylphenidate (MPH), a commonly used dopaminergic agent, may affect animals differently based on rearing environment. Here we examined the interaction between environment and chronic MPH treatment at clinically relevant doses, administered via osmotic minipump. Young Sprague Dawley rats (PND 21) were assigned to environmentally enriched, pair-housed, or socially isolated rearing conditions, and treated with either 0, 2, 4, or 8 mg/kg/day MPH for 3 weeks. At the end of the treatment period, animals were tested for locomotor activity and anxiety-like behavior. The densities of D1-like and D2-like receptors were measured in the striatum using in vitro receptor autoradiography. Locomotor activity and anxiety-like behavior were increased in isolated animals compared to pair-housed and enriched animals. The density of D1-like receptors was greater in isolated animals, but there were no differences between groups in D2-like receptor density. Finally, there were no effects of MPH administration on any reported measure. This study provides evidence for an effect of early rearing environment on the dopamine system and behavior, and also suggests that MPH administration may not have long-term consequences.
Collapse
|
42
|
Behavioral effects of combined environmental enrichment and chronic nicotine administration in male NMRI mice. Physiol Behav 2013; 114-115:65-76. [DOI: 10.1016/j.physbeh.2013.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/27/2012] [Accepted: 03/12/2013] [Indexed: 12/18/2022]
|
43
|
Match or Mismatch? Influence of Parental and Offspring ASD and ADHD Symptoms on the Parent–Child Relationship. J Autism Dev Disord 2012; 43:1935-45. [DOI: 10.1007/s10803-012-1746-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Cymerblit-Sabba A, Lasri T, Gruper M, Aga-Mizrachi S, Zubedat S, Avital A. Prenatal Enriched Environment improves emotional and attentional reactivity to adulthood stress. Behav Brain Res 2012; 241:185-90. [PMID: 23261873 DOI: 10.1016/j.bbr.2012.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/05/2012] [Accepted: 12/12/2012] [Indexed: 12/18/2022]
Abstract
Environmental factors seem to play a key role in brain and behavioral development, both in humans and animals. Different environmental manipulations, either pre- or post-natal, have been shown to exert long-term physiological and behavioral effects. While studies in the field of Enriched Environment mainly focus on the post weaning period and provide enrichment as a post adverse-experience manipulation, the preceding effects of prenatal Enriched Environment have rarely been investigated. In this study, we investigated the effects of prenatal Enriched Environment (through the entire pregnancy) followed by adulthood acute stress. In the prenatal Enriched Environment offspring, we found anxiety and depressive-like behaviors with poor attentional performance. Surprisingly, when prenatal Enriched Environment was followed by adulthood stress, we observed a dramatic restoration of these behavioral deficits. Our results suggest that prenatal Enriched Environment may substrate resiliency to adulthood stress.
Collapse
Affiliation(s)
- Adi Cymerblit-Sabba
- Bruce and Ruth Rappaport Faculty of Medicine, Behavioral Neuroscience Lab, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
45
|
van Steijn DJ, Richards JS, Oerlemans AM, de Ruiter SW, van Aken MAG, Franke B, Buitelaar JK, Rommelse NNJ. The co-occurrence of autism spectrum disorder and attention-deficit/hyperactivity disorder symptoms in parents of children with ASD or ASD with ADHD. J Child Psychol Psychiatry 2012; 53:954-63. [PMID: 22537103 DOI: 10.1111/j.1469-7610.2012.02556.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) share about 50-72% of their genetic factors, which is the most likely explanation for their frequent co-occurrence within the same patient or family. An additional or alternative explanation for the co-occurrence may be (cross-)assortative mating, e.g., the tendency to choose a partner that is similar or dissimilar to oneself. Another issue is that of parent-of-origin effect which refers to the possibility of parents differing in the relative quantity of risk factors they transmit to the offspring. The current study sets out to examine (cross-)assortative mating and (cross-)parent-of-origin effects of ASD and ADHD in parents of children with either ASD or ASD with ADHD diagnosis. METHODS In total, 121 families were recruited in an ongoing autism-ADHD family genetics project. Participating families consisted of parents and at least one child aged between 2 and 20 years, with either autistic disorder, Asperger disorder or PDD-NOS, and one or more biological siblings. All children and parents were carefully screened for the presence of ASD and ADHD. RESULTS No correlations were found between maternal and paternal ASD and ADHD symptoms. Parental ASD and ADHD symptoms were predictive for similar symptoms in the offspring, but with maternal hyperactive-impulsive symptoms, but not paternal symptoms, predicting similar symptoms in daughters. ASD pathology in the parents was not predictive for ADHD pathology in the offspring, but mother's ADHD pathology was predictive for offspring ASD pathology even when corrected for maternal ASD pathology. CONCLUSIONS Cross-assortative mating for ASD and ADHD does not form an explanation for the frequent co-occurrence of these disorders within families. Given that parental ADHD is predictive of offspring' ASD but not vice versa, risk factors underlying ASD may overlap to a larger degree with risk factors underlying ADHD than vice versa. However, future research is needed to clarify this issue.
Collapse
Affiliation(s)
- Daphne J van Steijn
- Karakter, Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kostyunina NV, Loskutova LV. Peculiarities of latent inhibition formation in SHR rats in conditioned task of different complexity. Bull Exp Biol Med 2012; 153:1-4. [PMID: 22808479 DOI: 10.1007/s10517-012-1628-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of attention to irrelevant stimuli was studied in SHR rats using latent inhibition test. Latent inhibition was formed in two types of conditioned tasks with different levels of complexity and stress. Passive and active avoidance conditioning was preceded by preexposure to conditioned stimulus consisting of 20 and 100 non-reinforced presentations, respectively. Control Wistar rats demonstrated successful formation of latent inhibition in both tasks. SHR rats showed different degree of disruption of latent inhibition depending on the type of behavioral task. We assume that learning defect in these animals in respect to both novel and preexposed conditioned stimuli is associated with the lack of behavioral inhibition.
Collapse
Affiliation(s)
- N V Kostyunina
- Laboratory of Memory Regulation Mechanisms, Institute of Physiology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | | |
Collapse
|
47
|
A glass full of optimism: Enrichment effects on cognitive bias in a rat model of depression. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2012; 12:527-42. [DOI: 10.3758/s13415-012-0101-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Tamburella A, Micale V, Mazzola C, Salomone S, Drago F. The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur J Pharmacol 2012; 683:148-54. [PMID: 22426162 DOI: 10.1016/j.ejphar.2012.02.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/17/2012] [Accepted: 02/26/2012] [Indexed: 12/17/2022]
Abstract
This study was carried out to assess the behavioral effects of the non-psychostimulant drug atomoxetine, in rats prenatally-exposed to the organic compound trimethyltin chloride (TMT) and in spontaneously hypertensive rat (SHR), two rodent models of Attention Deficit/Hyperactivity Disorder (ADHD). At birth, neonatal reflexes (righting, cliff aversion, forelimb placing, forelimb grasping, bar holding and startle) had an earlier onset (i.e. percent of appearance) and completion (maximum appearance, i.e. 100% of the brood exhibiting each reflex) in prenatally TMT-exposed and SHR pups as compared to control groups. Two months after birth, TMT-exposed and SHR rats showed impaired cognitive performances in both the step-through passive avoidance test and the shuttle box active avoidance test. Atomoxetine (1, 3 and 6 mg/kg, i.p.), already at the lowest dose tested, improved learning and memory capacity of prenatally TMT-exposed rats and SHR; while methylphenidate (1, 3 and 6 mg/kg, i.p.), used here as positive control, elicited a significant cognitive enhancing effect only at the higher doses. In the open field test, both TMT-exposed rats and SHR displayed enhanced locomotor activity. Methylphenidate further increased locomotor activity in all groups, whereas atomoxetine reduced the enhanced locomotor activity of TMT-exposed rats and SHR down to the level of controls. These results suggest that prenatal TMT-exposure could be considered as a putative experimental model of ADHD and further support the effectiveness of atomoxetine in the ADHD pharmacotherapy. Furthermore, despite the similar effect of the two drugs on cognitive tasks, they exhibit distinct profiles of activity on locomotion, in ADHD models.
Collapse
Affiliation(s)
- Alessandra Tamburella
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, Catania University, Catania, Italy
| | | | | | | | | |
Collapse
|
49
|
Takuma K, Ago Y, Matsuda T. Preventive effects of an enriched environment on rodent psychiatric disorder models. J Pharmacol Sci 2011; 117:71-6. [PMID: 21881295 DOI: 10.1254/jphs.11r07cp] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Interplay between genetic and environmental factors plays a key role in psychiatric disorders, as well as other brain diseases, cancer, and metabolic syndrome. In accordance with epidemiological findings, animal studies have pointed out the importance of a variety of environmental factors, such as viral infection during pregnancy or infancy, early parental loss or separation, and physical or sexual abuse in early life, in the etiology of psychiatric disorders. Conversely, positive effects of environmental factors against the pathogenesis of psychiatric disorders are also demonstrated, in which most of the animals are exposed to an "enriched environment". This review summarizes recent progress of research in this field focusing on the preventive effects of an "enriched environment" against the expression of behavioral abnormalities in rodent models of psychiatric disorders.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | | | | |
Collapse
|
50
|
Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA. A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev 2011; 35:1363-96. [DOI: 10.1016/j.neubiorev.2011.02.015] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 02/01/2023]
|