1
|
Su L, Dong X, Peng J, Cheng H, Craig NJ, Hu B, Li JY. Segmentation of beach plastic fragments' contours based on self-organizing map and multi-shape descriptors: A rapid indication of fragmentation and wearing types. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135564. [PMID: 39173392 DOI: 10.1016/j.jhazmat.2024.135564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Environmental plastic fragments have been verified as byproducts of large plastic and its secondary pollutants including micro and nanoplastics. There are few quantitative studies available, but their contours have values for the weathering mechanisms. We used geometric descriptors, fractal dimensions, and Fourier descriptors to characterize field and artificial polyethylene and polypropylene samples as a means of investigating the contour characteristics. It provides a methodological framework for contour classification. Unsupervised classification was performed using self-organizing neural networks with size-invariance parameters. We revealed the isometric phenomenon of plastic fragments during fragmentation, i.e., that the degree of contour rounding and complexity increase and decrease, respectively, with decreasing fragment size. With an average error rate of 8.9 %, we can distinguish artificial samples from field samples. It was also validated by the difference in Carbonyl Index between groups. We propose a two-stage process for plastic fragmentation and give three types of contour features which were key in the description of fragmented contours, i.e., size, complexity, and rounding. Our work will improve the accuracy of characterizations regarding the weathering and fragmentation processes of certain kinds of plastic fragments. The contour parameters also have the potential to be applied in more realistic scenarios and varied polymers.
Collapse
Affiliation(s)
- Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xinyue Dong
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Junjie Peng
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hong Cheng
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Nicholas J Craig
- School of Biosciences, the University of Melbourne, Parkville 3010, Victoria, Australia
| | - Bo Hu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Juan-Ying Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Cheung CKH, Not C. Early signs of plastic degradation and fragmentation: A 40-day study in marine environments. MARINE POLLUTION BULLETIN 2024; 207:116809. [PMID: 39126776 DOI: 10.1016/j.marpolbul.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Conventional plastics are widely present in the ocean as marine plastic debris. This in-situ study investigates the degradability and fragmentation of seven common conventional plastics (PET, PVC, PS, EPS, PP, HDPE, and LDPE) in natural marine environments over a 40-day period. All plastics showed significant chemical changes and oscillating plastic oxidation levels, indicating the synergistic processes of oxidation and removal of oxidation products. Polystyrenes and polymers with heteroatoms showed the largest degradation potentials, while pure polyolefins exhibited the highest fragmentation risks. SEM images suggest potentials of EPS and pure polyolefins in generating microplastic fragments, and polymers with heteroatoms in generating nanoplastic fragments. PS did not exhibit any surface degradation signs, potentially due to enhanced crystallinity through oxidation. The findings highlight the need for reduced usage of EPS and pure polyolefins which are commonly applied as disposable utensils and food packaging, and prioritized cleanup of these polymers to reduce microplastic pollution in the environment.
Collapse
Affiliation(s)
- Coco Ka Hei Cheung
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong; The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Christelle Not
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong; The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
3
|
Aniśko J, Kosmela P, Cichocka J, Andrzejewski J, Barczewski M. How the Dimensions of Plant Filler Particles Affect the Oxidation-Resistant Characteristics of Polyethylene-Based Composite Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4825. [PMID: 39410396 PMCID: PMC11478149 DOI: 10.3390/ma17194825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
This study analyzed the possibility of using plant-originated waste materials (black and green tea dust) as functional polyethylene fillers. The dependence between the size of the filler particles and their antioxidant potential is discussed. Six fractions were selected: below 50 µm, 50-100 µm, 100-200 µm, 200-400 µm, 400-630 µm and 630-800 µm. Significant differences between the effect of particle size and the antioxidant properties of black and green tea were found using the extraction method to analyze antioxidant activity (DPPH method) and total phenolic content (Folin-Ciocalteu method), suggesting a higher potential for using green tea as a filler with antioxidant properties, as well as the benefits of finer active filler distribution. Biomass waste fillers were mixed with low-density polyethylene LDPE SEB 853 I'm Green®, Braskem. Those samples were oxidized at 100 °C for 5 and 15 days to investigate the radical scavenging properties of fillers in composites. Fourier transform infrared spectroscopic studies show that the addition of both types of filler prevents the thermo-oxidation of polyethylene for 5 days. After 15 days, all samples except the BTW 400-630 and 630-800 µm exhibited oxidation. The mechanical properties of the LDPE and its' composites were tested, and we noted an increased brittleness of neat LDPE after thermal oxidation. The addition of black tea particles above 100 µm in size prevents this behavior.
Collapse
Affiliation(s)
- Joanna Aniśko
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (J.A.); (M.B.)
| | - Paulina Kosmela
- Department of Polymer Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Joanna Cichocka
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Jacek Andrzejewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (J.A.); (M.B.)
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (J.A.); (M.B.)
| |
Collapse
|
4
|
Akyildiz SH, Fiore S, Bruno M, Sezgin H, Yalcin-Enis I, Yalcin B, Bellopede R. Release of microplastic fibers from synthetic textiles during household washing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124455. [PMID: 38942274 DOI: 10.1016/j.envpol.2024.124455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Textile materials are one of the primary sources of microplastic pollution. The washing procedure is by far the most significant way that textile products release microplastic fibers (MPFs). Therefore, in this study, the effects of various textile raw materials (A acrylic, PA polyamide, PET polyester, RPET recycled polyester and PP polypropylene), fabric construction properties (woven, knitted), thickness and basis weight values on MPFs release at different washing stages (pre-washing, soaping/rinsing) were examined separately. To mimic the most popular home washing procedures, a 10-min pre-wash and a 35-min soaping/rinsing phase at 40 °C were selected for the washing procedure. Utilizing the Image J program on macroscopic images captured by a high-resolution SL. R camera, the microfibers collected by filtering the water have been visually counted. According to the results, knitted fabrics released fewer MPFs than woven fabrics, with the woven acrylic sample (A3-w) exhibiting the highest release (2405 MPFs). The number of MPFs increased along with the thickness and weight of the fabric. Recycled polyester was found to release more MPFs than virgin polyester under the same conditions (1193 MPFs vs. 908 MPFs). This study demonstrates how recycled polyester, although initially an environmentally beneficial solution, can eventually become detrimental to the environment. Furthermore, it is known that the pre-washing procedure-which is optional-releases a lot more MPFs than the soaping and rinsing procedures, and that stopping this procedure will drastically lower the amount of MPFs incorporated into the water.
Collapse
Affiliation(s)
- Sinem Hazal Akyildiz
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy; Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey; Department of Textile Engineering, Marmara University, Istanbul, Turkey
| | - Silvia Fiore
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy.
| | - Martina Bruno
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - Hande Sezgin
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Bahattin Yalcin
- Department of Inorganic Chemistry, Marmara University, Istanbul, Turkey
| | - Rossana Bellopede
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
5
|
Wang L, He Y, Zhu Y, Zhang J, Zheng S, Huang W. Impact of the hydrated functional zone on the adsorption of ciprofloxacin to microplastics under the influence of UV aging. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39234686 DOI: 10.1080/09593330.2024.2398812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
The inevitable UV aging of microplastics (MPs) is one of the key factors affecting their interaction with antibiotics. In this study, polyethylene (PE) and polystyrene (PS) MPs were aged with UV irradiation. The adsorption isotherms and kinetics of ciprofloxacin (CIP) to virgin and aged MPs were investigated through various models, and the effects of pH on the adsorption amount were explored. Characterization revealed that the surfaces of aged MPs became rougher, and the hydrophilicity increased. These aged MPs were still in the early stage of aging on the basis of their carbonyl index (CI) (<0.2) and O/C (<0.04) values. The adsorption isotherms indicated that the adsorption mechanism of aged PE was different from that of virgin PE. Compared with virgin PE, the adsorption amount of aged PE increased by 87.80-95.45%, and the adsorption rate decreased by 65.52-80.74%. However, aging did not significantly affect the equilibrium adsorption amount or adsorption rate of aged PS. The external diffusion rate (Kext) (about 2.29-0.36 h-1) was almost 30 times greater than the internal diffusion rate (Kint) in the film-pore mass transfer (FPMT) model, indicating that CIP adsorption rate was dominated by external diffusion. A hydrated functional zone is thought to form around aged MPs, thus changing the adsorption mechanism and adsorption amount of aged PE. Therefore, more attention should be given to alterations in the hydrated functional zone in the early stage of MPs aging.
Collapse
Affiliation(s)
- Lin Wang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yang He
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yanhong Zhu
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Jianqiang Zhang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shijie Zheng
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Wen Huang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Rahman E, BinAhmed S, Keyes P, Alberg C, Godfreey-Igwe S, Haugstad G, Xiong B. Nanoscale Abrasive Wear of Polyethylene: A Novel Approach To Probe Nanoplastic Release at the Single Asperity Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13845-13855. [PMID: 38874627 DOI: 10.1021/acs.est.3c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
There is a growing concern that nanoplastic pollution may pose planetary threats to human and ecosystem health. However, a quantitative and mechanistic understanding of nanoplastic release via nanoscale mechanical degradation of bulk plastics and its interplay with photoweathering remains elusive. We developed a lateral force microscope (LFM)-based nanoscratch method to investigate mechanisms of nanoscale abrasive wear of low-density polyethylene (LDPE) surfaces by a single sand particle (simulated by a 300 nm tip) under environmentally relevant load, sliding motion, and sand size. For virgin LDPE, we found plowing as the dominant wear mechanism (i.e., deformed material pushed around the perimeter of scratch). After UVA-weathering, the wear mechanism of LDPE distinctively shifted to cutting wear (i.e., deformed material detached and pushed to the end of scratch). The shift in the mechanism was quantitatively described by a new parameter, which can be incorporated into calculating the NP release rate. We determined a 10-fold higher wear rate due to UV weathering. We also observed an unexpected resistance to initiate wear for UV-aged LDPE, likely due to nanohardness increase induced by UV. For the first time, we report 0.4-4 × 10-3 μm3/μm sliding distance/μN applied load as an initial approximate nanoplastic release rate for LDPE. Our novel findings reveal nanoplastic release mechanisms in the environment, enabling physics-based prediction of the global environmental inventory of nanoplastics.
Collapse
Affiliation(s)
- Ehsanur Rahman
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Sara BinAhmed
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Phoebe Keyes
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Claire Alberg
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Stacy Godfreey-Igwe
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 33 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, 100 Union St. SE, Minneapolis, Minnesota 55455, United States
| | - Boya Xiong
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Barthelemy N, Mermillod-Blondin F, Krause S, Simon L, Mimeau L, Devers A, Vidal JP, Datry T. The Duration of Dry Events Promotes PVC Film Fragmentation in Intermittent Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12621-12632. [PMID: 38954776 DOI: 10.1021/acs.est.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The majority of microplastics (MPs) found in the environment originate from plastic fragmentation occurring in the environment and are influenced by environmental factors such as UV irradiation and biotic interactions. However, the effects of river drying on plastic fragmentation remain unknown, despite the global prevalence of watercourses experiencing flow intermittence. This study investigates, through laboratory experiments, the coupled effects of drying duration and UV irradiation on PVC film fragmentation induced by artificial mechanical abrasion. This study shows that PVC film fragmentation increases with drying duration through an increase in the abundance and size of formed MPs as well as mass loss from the initial plastic item, with significant differences for drying durations >50% of the experiment duration. The average abundance of formed MPs in treatments exposed to severe drying duration was almost two times higher than in treatments nonexposed to drying. Based on these results, we developed as a proof of concept an Intermittence-Based Plastic Fragmentation Index that may provide insights into plastic fragmentation occurring in river catchments experiencing large hydrological variability. The present study suggests that flow intermittence occurring in rivers and streams can lead to increasing plastic fragmentation, unraveling new insights into plastic pollution in freshwater systems.
Collapse
Affiliation(s)
- Nans Barthelemy
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne F-69622, France
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | | | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Laurent Simon
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne F-69622, France
| | - Louise Mimeau
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Alexandre Devers
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Jean-Philippe Vidal
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Thibault Datry
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| |
Collapse
|
8
|
Kaizuka M, Sato H, Ozaki Y, Sato H. Visualization of Recrystallization Induced by Ultraviolet Degradation of a Polypropylene Film Using Raman Imaging. APPLIED SPECTROSCOPY 2024; 78:517-522. [PMID: 38441132 DOI: 10.1177/00037028241235233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Raman images were constructed for polypropylene (PP) films before and after ultraviolet (UV) irradiation (100 mW, 248-436 nm) for 10 h using several intensity ratios of Raman bands that are sensitive to crystallization of PP. In the images of PP films before the irradiation the intensity ratios are nearly uniform for the films but for those of the PP films after the irradiation, the ratios become large with a mottled pattern, indicating that recrystallization occurs in the PP films upon the irradiation of the UV light. The UV-irradiated PP films show worm-like shaped structures in few micrometer order representing the recrystallization of PP. The temperature gradient of PP is low (273 K), and thus, it is very likely that due to UV energy and polymer fragmentation, PP molecules become more mobile and some parts of molecular chains in amorphous parts of PP molecules lead to their rearrangement and recrystallization. In this study, we demonstrate that Raman imaging clearly detects subtle changes in the crystallinity with a micrometer order structure which morphological images cannot observe.
Collapse
Affiliation(s)
- Mizuki Kaizuka
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Nada, Kobe, Hyogo, Japan
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Nada, Kobe, Hyogo, Japan
| | - Hidetoshi Sato
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| |
Collapse
|
9
|
Jansen MAK, Andrady AL, Bornman JF, Aucamp PJ, Bais AF, Banaszak AT, Barnes PW, Bernhard GH, Bruckman LS, Busquets R, Häder DP, Hanson ML, Heikkilä AM, Hylander S, Lucas RM, Mackenzie R, Madronich S, Neale PJ, Neale RE, Olsen CM, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Robinson SA, Robson TM, Rose KC, Solomon KR, Andersen MPS, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Young AR, Zepp RG, Zhu L. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 2024; 23:629-650. [PMID: 38512633 DOI: 10.1007/s43630-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Collapse
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - Alkiviadis F Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastazia T Banaszak
- Unidad Académica Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | | | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Roy Mackenzie
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Cape Horn International Center CHIC, Puerto Williams, Chile
| | - Sasha Madronich
- UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Ozone and Water Vapor Division, NOAA ESRL Global Monitoring Laboratory, Boulder, CO, USA
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T Matthew Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, Ambleside, UK
- Organismal & Evolutionary Ecology, Viikki Plant Science Centre, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Sulzberger
- Retired From Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Richard G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - Liping Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
10
|
Nakatani H, Yamashiro K, Uchiyama T, Motokucho S, Dao ATN, Kim HJ, Yagi M, Kyozuka Y. Effect of Copper Antifouling Paint on Marine Degradation of Polypropylene: Uneven Distribution of Microdebris between Nagasaki Port and Goto Island, Japan. Molecules 2024; 29:1173. [PMID: 38474685 DOI: 10.3390/molecules29051173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Microplastics (MP) encompass not only plastic products but also paint particles. Marine microdebris, including MP, was retrieved from five sampling stations spanning Nagasaki-Goto island and was classified into six types, primarily consisting of MP (A), Si-based (B), and Cu-based (C) paint particles. Type-A particles, i.e., MP, were exceedingly small, with 74% of them having a long diameter of 25 µm or less. The vertical distribution of type C, containing cuprous oxide, exhibited no depth dependence, with its dominant size being less than 7 μm. It was considered that the presence of type C was associated with a natural phenomenon of MP loss. To clarify this, polypropylene (PP) samples containing cuprous oxide were prepared, and their accelerated degradation behavior was studied using a novel enhanced degradation method employing a sulfate ion radical as an initiator. Infrared spectroscopy revealed the formation of a copper soap compound in seawater. Scanning electron microscopy/energy-dispersive X-ray spectroscopy analysis indicated that the chemical reactions between Cl- and cuprous oxide produced Cu+ ions. The acceleration of degradation induced by the copper soap formed was studied through the changes in the number of PP chain scissions, revealing that the presence of type-C accelerated MP degradation.
Collapse
Affiliation(s)
- Hisayuki Nakatani
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kaito Yamashiro
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Taishi Uchiyama
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Suguru Motokucho
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Anh Thi Ngoc Dao
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsuharu Yagi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yusaku Kyozuka
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
11
|
Nakatani H, Narizumi S, Okubo S, Motokucho S, Dao ATN, Kim HJ, Yagi M, Kyozuka Y, Miura S, Josyula KV. Study on the onset mechanism of bio-blister degradation of polyolefin by diatom attachment in seawater. Sci Rep 2024; 14:3902. [PMID: 38366080 PMCID: PMC10873352 DOI: 10.1038/s41598-024-54668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
It is essential to develop a mechanism for lowering the molecular weight of polyolefins to achieve biodegradation in seawater. In this study, a polypropylene/polylactic acid blend sample was first subjected to photodegradation pretreatment, and it was confirmed that in pure water, the acid generated promotes the polypropylene degradation (autoxidation), while in alkaline seawater, the promotion was inhibited by a neutralization reaction. In the autoxidation of polyolefins in alkaline seawater, aqueous Cl- was also the inhibitor. However, we found that autoxidation could be initiated even in seawater by lowering the pH and using dissociation of ClOH (called blister degradation). The blister degradation mechanism enabled autoxidation, even in seawater, by taking advantage of the ability of diatoms to secrete transparent exopolymer particles (TEP) to prevent direct contact between the surface layer of polyolefins and alkaline seawater. We named blister degradation in seawater with diatoms as bio-blister degradation and confirmed its manifestation using linear low-density polyethylene (LLDPE)/starch samples by SEM, IR, DSC and GPC analysis.
Collapse
Affiliation(s)
- Hisayuki Nakatani
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machiachi, Nagasaki, 852-8521, Japan.
| | - Shun Narizumi
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Seiya Okubo
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Suguru Motokucho
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machiachi, Nagasaki, 852-8521, Japan
| | - Anh Thi Ngoc Dao
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Mitsuharu Yagi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yusaku Kyozuka
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machiachi, Nagasaki, 852-8521, Japan
| | - Shigenobu Miura
- BioLogiQ Japan LLC, 3-9-10-347, Takaidohigashi, Suginami, Tokyo, 1680072, Japan
| | - Kanth V Josyula
- BioLogiQ, Inc., 3834 Professional Way, Idaho Falls, ID, 83402, USA
| |
Collapse
|
12
|
George M, Nallet F, Fabre P. A threshold model of plastic waste fragmentation: New insights into the distribution of microplastics in the ocean and its evolution over time. MARINE POLLUTION BULLETIN 2024; 199:116012. [PMID: 38232651 DOI: 10.1016/j.marpolbul.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Plastic pollution in the aquatic environment has been assessed for many years by ocean waste collection expeditions around the globe or by river sampling. While the total amount of plastic produced worldwide is well documented, the amount of plastic found in the ocean, the distribution of particles on its surface and its evolution over time are still the subject of much debate. In this article, we propose a general fragmentation model, postulating the existence of a critical size below which particle fragmentation becomes extremely unlikely. In the frame of this model, an abundance peak appears for sizes around 1 mm, in agreement with real environmental data. Using, in addition, a realistic exponential waste feed to the ocean, we discuss the relative impact of fragmentation and feed rates, and the temporal evolution of microplastics (MP) distribution. New conclusions on the temporal trend of MP pollution are drawn.
Collapse
Affiliation(s)
- Matthieu George
- Laboratoire Charles-Coulomb, UMR 5221 CNRS, Université de Montpellier, Campus Triolet, Place Eugène-Bataillon - CC069, F-34095, Montpellier Cedex 5, France
| | - Frédéric Nallet
- Centre de recherche Paul-Pascal, UMR 5031 CNRS, Université de Bordeaux, 115 avenue du Docteur-Schweitzer, F-33600 Pessac, France
| | - Pascale Fabre
- Laboratoire Charles-Coulomb, UMR 5221 CNRS, Université de Montpellier, Campus Triolet, Place Eugène-Bataillon - CC069, F-34095, Montpellier Cedex 5, France.
| |
Collapse
|
13
|
Steiner T, Leitner LC, Zhang Y, Möller JN, Löder MGJ, Greiner A, Laforsch C, Freitag R. Detection and specific chemical identification of submillimeter plastic fragments in complex matrices such as compost. Sci Rep 2024; 14:2282. [PMID: 38280916 PMCID: PMC10821947 DOI: 10.1038/s41598-024-51185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/01/2024] [Indexed: 01/29/2024] Open
Abstract
Research on the plastic contamination of organic fertilizer (compost) has largely concentrated on particles and fragments > 1 mm. Small, submillimeter microplastic particles may be more hazardous to the environment. However, research on their presence in composts has been impeded by the difficulty to univocally identify small plastic particles in such complex matrices. Here a method is proposed for the analysis of particles between 0.01 and 1.0 mm according to number, size, and polymer type in compost. As a first demonstration of its potential, the method is used to determine large and small microplastic in composts from eight municipal compost producing plants: three simple biowaste composters, four plants processing greenery and cuttings and one two-stage biowaste digester-composter. While polyethylene, PE, tends to dominate among fragments > 1 mm, the microplastic fraction contained more polypropylene, PP. Whereas the contamination with PE/PP microplastic was similar over the investigated composts, only composts prepared from biowaste contained microplastic with a signature of biodegradable plastic, namely poly(butylene adipate co-terephthalate), PBAT. Moreover, in these composts PBAT microplastic tended to form the largest fraction. When the bulk of residual PBAT in the composts was analyzed by chloroform extraction, an inverse correlation between the number of particles > 0.01 mm and the total extracted amount was seen, arguing for breakdown into smaller particles, but not necessarily a mass reduction. PBAT oligomers and monomers as possible substrates for subsequent biodegradation were not found. Remaining microplastic will enter the environment with the composts, where its subsequent degradability depends on the local conditions and is to date largely uninvestigated.
Collapse
Affiliation(s)
- Thomas Steiner
- Process Biotechnology, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | | | - Yuanhu Zhang
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany
| | - Julia N Möller
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Martin G J Löder
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Andreas Greiner
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany
| | | | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|
14
|
Bai R, Li Z, Liu Q, Liu Q, Cui J, He W. The reciprocity principle in mulch film deterioration and microplastic generation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:8-15. [PMID: 38050906 DOI: 10.1039/d3em00402c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Plastic film mulching stands as a globally employed agricultural technology pivotal to agricultural progress. Nevertheless, the environmental degradation of plastic mulch films underscores their role as a major source of secondary plastic pollutants, particularly microplastics. While a growing body of research has drawn attention to the rising issue of microplastic pollution and its environmental implications stemming from the use of plastic mulch films, there remains a significant knowledge gap regarding the kinetics and rate-limiting mechanisms governing the generation of microplastics during processes driven by plastic photodegradation. Moreover, a comprehensive quantification of the connection between mulch deterioration and the behavior of microplastic release and accumulation has yet to be fully realized. In this study, a kinetic equation was formulated to characterize the degradation of plastic mulch films and the subsequent release and accumulation of microplastics under light exposure. The results demonstrate that with increasing irradiation time, the change in the release rate exhibits a bell-shaped Gaussian probability distribution, while the cumulative alteration of microplastics follows a Gaussian distribution. Remarkably, once the exposure time reaches μ + 3σ, the accumulation plateaus at 99.7%. This research establishes a theoretical framework for the prospective assessment of plastic mulch lifespan and its environmental repercussions. Moreover, the findings provide valuable insights for optimizing plastic mulch design and devising strategies to mitigate microplastic pollution.
Collapse
Affiliation(s)
- Runhao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Zhen Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jixiao Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
- Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
- Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
15
|
Nakatani H, Uchiyama T, Motokucho S, Dao ATN, Kim HJ, Yagi M, Kyozuka Y. Differences in the Residual Behavior of a Bumetrizole-Type Ultraviolet Light Absorber during the Degradation of Various Polymers. Polymers (Basel) 2024; 16:293. [PMID: 38276701 PMCID: PMC10819654 DOI: 10.3390/polym16020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The alteration of an ultraviolet light absorber (UVA: UV-326) in polymers (PP, HDPE, LDPE, PLA, and PS) over time during degradation was studied using an enhanced degradation method (EDM) involving sulfate ion radicals in seawater. The EDM was employed to homogeneously degrade the entire polymer samples containing the UVA. The PP and PS samples containing 5-phr (phr: per hundred resin) UVA films underwent rapid whitening, characterized by the formation of numerous grooves or crushed particles. Notably, the UVA loss rate in PS, with the higher glass transition temperature (Tg), was considerably slower. The behavior of crystalline polymers, with the exception of PS, was analogous in terms of the change in UVA loss rate over the course of degradation. The significant increase in the initial loss rate observed during EDM degradation was due to microplasticization. A similar increase in microplasticization rate occurred with PS; however, the intermolecular interaction between UVA and PS did not result in as pronounced an increase in loss rate as observed in other polymers. Importantly, the chemical structure of UVA remained unaltered during EDM degradation. These findings revealed that the primary cause of UVA loss was leaching from the polymer matrix.
Collapse
Affiliation(s)
- Hisayuki Nakatani
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.U.); (S.M.); (A.T.N.D.)
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
| | - Taishi Uchiyama
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.U.); (S.M.); (A.T.N.D.)
| | - Suguru Motokucho
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.U.); (S.M.); (A.T.N.D.)
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
| | - Anh Thi Ngoc Dao
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.U.); (S.M.); (A.T.N.D.)
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (H.-J.K.); (M.Y.)
| | - Mitsuharu Yagi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (H.-J.K.); (M.Y.)
| | - Yusaku Kyozuka
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
| |
Collapse
|
16
|
Saito J, Katte Y, Nagato EG. The molecular level degradation state of drift plastics in the Sea of Japan coastline. MARINE POLLUTION BULLETIN 2023; 197:115707. [PMID: 37883812 DOI: 10.1016/j.marpolbul.2023.115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Polyethylene (PE) and polyethylene terephthalate (PET) are among the most abundant plastics polluting the oceans. However, their environmental fate depends on how they have been weathered. Due to its unique geography, the Sea of Japan is a pollution hotspot where plastics accumulate. In this study, the structures of plastics, having drifted into the Sea of Japan coastline environment, were analyzed with a particular focus on examining polymer crystallization and carbonyl formation; two factors which influence microplastic formation and the adsorption of contaminants onto plastic surfaces. PE in the coastal environment did not show evidence of crystallization, although carbonyl formation did increase. By contrast, PET bottles were shown to not be uniform in structure, with unaged bottles being less crystalline in the neck component compared to the body. Because of this difference, in environmental PET bottles, it was the bottle neck that showed increases in crystallization and carbonyl group formation.
Collapse
Affiliation(s)
- Junya Saito
- Shimane University, Faculty of Life and Environmental Science, 690-8504 Matsue, Japan
| | - Yasuharu Katte
- Shimane University, Faculty of Life and Environmental Science, 690-8504 Matsue, Japan
| | - Edward G Nagato
- Shimane University, Faculty of Life and Environmental Science, 690-8504 Matsue, Japan.
| |
Collapse
|
17
|
Nagato EG, Noothalapati H, Kogumasaka C, Kakii S, Hossain S, Iwasaki K, Takai Y, Shimasaki Y, Honda M, Hayakawa K, Yamamoto T, Archer SDJ. Differences in microplastic degradation in the atmosphere and coastal water environment from two island nations: Japan and New Zealand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122011. [PMID: 37302783 DOI: 10.1016/j.envpol.2023.122011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Microplastics are subject to environmental forces that can change polymer organization on a molecular scale. However, it is not clear to what extent these changes occur in the environment and whether microplastics in the atmospheric and water environment differ. Here we identify structural differences between microplastics in the atmosphere and water environment from Japan and New Zealand, representing two archipelagos differing in their proximity to nearby countries and highly populated areas. We first highlight the propensity for smaller microplastics to arrive via air masses from the Asian continent to the Japan Sea coastal area, while New Zealand received larger, locally derived microplastics. Analyses of polyethylene in the Japanese atmosphere indicate that microplastics transported to the Japanese coastal areas were more crystalline than polyethylene particles in the water, suggesting that the plastics arriving by air were relatively more aged and brittle. By contrast, polypropylene particles in New Zealand waters were more degraded than the microplastic particles in the air. Due to the lack of abundance, both polyethylene and polypropylene could not be analyzed for both countries. Nevertheless, these findings show the structural variation in microplastics between environments in markedly different real-world locations, with implications for the toxic potential of these particles.
Collapse
Affiliation(s)
- Edward G Nagato
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan.
| | | | - Chihiro Kogumasaka
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Sota Kakii
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Sarwar Hossain
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Keita Iwasaki
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Yuki Takai
- Animal and Marine Bioresources Sciences, Kyushu University, Itoshima, Japan
| | - Yohei Shimasaki
- Animal and Marine Bioresources Sciences, Kyushu University, Itoshima, Japan
| | - Masato Honda
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Tatsuyuki Yamamoto
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Stephen D J Archer
- School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
18
|
Yu Y, Craig N, Su L. A Hidden Pathway for Human Exposure to Micro- and Nanoplastics-The Mechanical Fragmentation of Plastic Products during Daily Use. TOXICS 2023; 11:774. [PMID: 37755784 PMCID: PMC10538053 DOI: 10.3390/toxics11090774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
In numerous environmental compartments around the world, the existence of micro- and nanoplastics (MNPs) in the environment has been verified. A growing number of studies have looked at the interaction between MNPs and human activities due to the risks they may pose to humans. Exposure pathways are key factors in measuring MNPs risks. However, current research largely ignores the contribution of mechanical fragmentation pathways to MNPs exposure during the daily use of plastic products. Our critical review demonstrated the research gap between MNP fragmentation and risk assessments via a network analysis. The release of fragmented MNPs and their properties were also described at various scales, with emphasis on environmental stressors and mechanical fragmentation. In the scenarios of daily use, plastic products such as food packaging and clothing provide acute pathways of MNPs exposure. The release tendency of those products (up to 102 mg MNPs) are several orders of magnitude higher than MNPs abundances in natural compartments. Despite the limited evidence available, waste recycling, landfill and municipal activities represented long-term pathways for MNPs fragmentation and point sources of MNPs pollution in environmental media. Assessing the health effects of the fragmentation process, unfortunately, is further hampered by the current absence of human exposure impact assessments for secondary MNPs. We proposed that future studies should integrate aging evaluation into risk assessment frameworks and establish early warning signs of MNPs released from plastic products.
Collapse
Affiliation(s)
- Yang Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Nicholas Craig
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lei Su
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| |
Collapse
|
19
|
Foetisch A, Filella M, Watts B, Bragoni M, Bigalke M. After the sun: a nanoscale comparison of the surface chemical composition of UV and soil weathered plastics. MICROPLASTICS AND NANOPLASTICS 2023; 3:18. [PMID: 37547699 PMCID: PMC10400702 DOI: 10.1186/s43591-023-00066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 08/08/2023]
Abstract
Once emitted into the environment, macro- (MaP), micro- (MP) and nanoplastics (NP) are exposed to environmental weathering. Yet, the effects of biogeochemical weathering factors occurring in the soil environment are unknown. As the transport, fate, and toxicity of MP and NP depend directly on their surface properties, it is crucial to characterize their transformation in soils to better predict their impact and interactions in this environment. Here, we used scanning transmission x-ray micro spectroscopy to characterize depth profiles of the surface alteration of environmental plastic debris retrieved from soil samples. Controlled weathering experiments in soil and with UV radiation were also performed to investigate the individual effect of these weathering factors on polymer surface alteration. The results revealed a weathered surface on a depth varying between 1 µm and 100 nm in PS, PET and PP environmental plastic fragments naturally weathered in soil. Moreover, the initial step of surface fragmentation was observed on a PS fragment, providing an insight on the factors and processes leading to the release of MP and NP in soils. The comparison of environmental, soil incubated (for 1 year) and UV weathered samples showed that the treatments led to different surface chemical modifications. While the environmental samples showed evidence of alteration involving oxidation processes, the UV weathered samples did not reveal oxidation signs at the surface but only decrease in peak intensities (indicating decrease of the number of chemical C bonds). After a one-year incubation of samples in soil no clear aging effects were observed, indicating that the aging of polymers can be slow in soils. Supplementary Information The online version contains supplementary material available at 10.1186/s43591-023-00066-2.
Collapse
Affiliation(s)
- Alexandra Foetisch
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland
| | - Benjamin Watts
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Maeva Bragoni
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Moritz Bigalke
- Institute of Applied Geoscience, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany
| |
Collapse
|
20
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
21
|
Astner AF, Gillmore AB, Yu Y, Flury M, DeBruyn JM, Schaeffer SM, Hayes DG. Formation, behavior, properties and impact of micro- and nanoplastics on agricultural soil ecosystems (A Review). NANOIMPACT 2023; 31:100474. [PMID: 37419450 DOI: 10.1016/j.impact.2023.100474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.
Collapse
Affiliation(s)
- Anton F Astner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Yingxue Yu
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Markus Flury
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America.
| |
Collapse
|
22
|
Soccalingame L, Palazot M, Kedzierski M, Bruzaud S. Sunlight and marine weathering of poly(oxymethylene): Evolution of the physico-chemical properties. MARINE POLLUTION BULLETIN 2023; 193:115070. [PMID: 37302204 DOI: 10.1016/j.marpolbul.2023.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023]
Abstract
Plastic pollution is now an environmental problem that affects all environmental compartments. The study of plastic degradation in terrestrial, marine and other freshwater environments is emerging. Research is mainly focused on plastic fragmentation into microplastics. In this contribution, an engineering polymer, poly(oxymethylene) (POM), was studied under different weathering conditions using physico-chemical characterization techniques. A POM homopolymer and a POM copolymer were characterized by electron microscopy, tensile tests, DSC, infrared spectroscopy and rheometry tests after climatic and marine weathering or artificial UV/water spray cycles. Natural climatic conditions were the most favorable for POM degradation, especially under solar UV, as evidenced by the strong fragmentation into microplastics when subjected to artificial UV cycles. The evolution of properties with exposure time was found to be non-linear under natural conditions, in contrast to artificial conditions. Two main stages of degradation were evidenced by the correlation between strain at break and carbonyl indices.
Collapse
Affiliation(s)
- Lata Soccalingame
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France.
| | - Maialen Palazot
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Mikäel Kedzierski
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Stéphane Bruzaud
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| |
Collapse
|
23
|
Hingant M, Mallarino S, Conforto E, Dubillot E, Barbier P, Bringer A, Thomas H. Artificial weathering of plastics used in oyster farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161638. [PMID: 36649774 DOI: 10.1016/j.scitotenv.2023.161638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With the omnipresence of plastic litter from oyster farming in marine coastal areas, the objective of this work was to better understand the weathering of plastics used in this field, focusing on oyster spat collectors. During their use, around fifteen years, collectors made of polypropylene (PP) undergo numerous degradations, alternatively submerged, emerged in seawater, and stored outdoor until the next cycle. They weaken, crack, break, end up fragmenting and disseminated in the environment as microplastics associated to persistent organic pollutants. In this work, a comparison of 55 months of in situ weathering with five months of artificial weathering in air or in artificial seawater in a homemade UV chamber was conducted to better understand the mechanisms involved. Chemical, thermal and surface characterizations of virgin and weathered samples were conducted using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Environmental Scanning Electron Microscopy (ESEM). After 55 months of in situ weathering, collectors were notably damaged with large fissures and loss of microplastics (MPs) associated with an increase of carbonyl index values and a decrease of melting temperatures and crystallinity rates. Considering only UV irradiation, five months of artificial weathering at 30 °C under continuous irradiation of 6.9 W/m2 under UV lamps (295-400 nm) reproduced approximately 4.4 months of natural sunlight. Artificial weathering confirmed that photooxidation by combined effects of UV rays and oxygen was the main weathering mechanism and was reduced in seawater. These results help to understand the mechanisms involved in the weathering of these collectors in the marine environment and provide valuable information for industrials and professionals. Our study suggests a better storage away from UV rays and a reduction of the duration of use compared to current practices.
Collapse
Affiliation(s)
- Marion Hingant
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Stéphanie Mallarino
- Laboratoire des Sciences de l'Ingénieur pour l'Environnemen (LaSIE), UMR 7356 CNRS - La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Egle Conforto
- Laboratoire des Sciences de l'Ingénieur pour l'Environnemen (LaSIE), UMR 7356 CNRS - La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Emmanuel Dubillot
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Pierrick Barbier
- Centre pour l'Aquaculture, la Pêche et l'Environnement de Nouvelle-Aquitaine (CAPENA), Prise de Terdoux, 17480 Le Château d'Oléron, France
| | - Arno Bringer
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France; Qualyse, 5 Allée de l'Océan, 17000 La Rochelle, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| |
Collapse
|
24
|
Nakatani H, Ohshima Y, Uchiyama T, Motokucho S, Dao ATN, Kim HJ, Yagi M, Kyozuka Y. Rapid oxidative fragmentation of polypropylene with pH control in seawater for preparation of realistic reference microplastics. Sci Rep 2023; 13:4247. [PMID: 36918647 PMCID: PMC10015029 DOI: 10.1038/s41598-023-31488-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Various tiny plastic particles were retrieved from the sea and studied using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis to prepare realistic reference microplastics (MP). Most of the MP exhibited a diameter of < 20 × 10-6 m and 0.1-0.2 molar ratios of oxygen to carbon atoms (O/C), indicating that they primarily comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS). It took a long time to reproduce such O/C ratios in standard laboratory weathering methods. For example, degrading of 30 × 30 × 0.060 mm PP film required 75 days for the 0.1 ratio, even with an advanced oxidation process (AOP) using a sulfate radical anion (SO4·-) initiator in distilled water at 65 °C. However, seawater drastically improved the PP degradation performance of AOP under a weak acid condition to achieve the 0.1 ratio of PP film in only 15 days. The combination of seawater and the SO4·- initiator accelerated the degradation process and showed that the MP's size could be controlled according to the degradation time.
Collapse
Affiliation(s)
- Hisayuki Nakatani
- Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan. .,Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yuina Ohshima
- Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Taishi Uchiyama
- Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Suguru Motokucho
- Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.,Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Anh Thi Ngoc Dao
- Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Mitsuharu Yagi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yusaku Kyozuka
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
25
|
The measurement of food safety and security risks associated with micro- and nanoplastic pollution. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
26
|
Reineccius J, Schönke M, Waniek JJ. Abiotic Long-Term Simulation of Microplastic Weathering Pathways under Different Aqueous Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:963-975. [PMID: 36584307 DOI: 10.1021/acs.est.2c05746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are one of the most abundant and widespread anthropogenic pollutants worldwide. In addition to the global spread and threats of plastic to native species by carrying toxic substances, its slow degradation rate and resulting long retention time in the environment constitute a problem that is still poorly understood. In this study, five of the most manufactured plastic types were weathered under simulated beach conditions for 18 months in freshwater, brackish water, and seawater. Those included polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). PP was the first polymer type that fragmented after 9 months of weathering and influenced the pH of the surrounding water. Molecular surface changes were detected for all polymers, just after the first week. Hydroxyl bonds were one of the first groups incorporated into the polymers, weakening 2-3 weeks later. Carbonyl groups were also measured early, but with significantly different developments with time between the polymer types. Differences in degradation rates were proven between the water media, with the fastest degradation in seawater compared to brackish water and freshwater for PE and PP. These results are consistent with previous findings on MPs aged under environmental conditions and provide initial long-term observations of MP degradation pathways under simulated environmental conditions. These findings are valuable for assessing the fate and hazards of MPs in aquatic systems.
Collapse
Affiliation(s)
- Janika Reineccius
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, Rostock 18119, Germany
| | - Mischa Schönke
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, Rostock 18119, Germany
| | - Joanna J Waniek
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, Rostock 18119, Germany
| |
Collapse
|
27
|
Budhiraja V, Mušič B, Krzan A. Magnetic Extraction of Weathered Tire Wear Particles and Polyethylene Microplastics. Polymers (Basel) 2022; 14:5189. [PMID: 36501583 PMCID: PMC9740573 DOI: 10.3390/polym14235189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Magnetic extraction offers a rapid and low-cost solution to microplastic (MP) separation, in which we magnetize the hydrophobic surface of MPs to separate them from complex environmental matrices using magnets. We synthesized a hydrophobic Fe-silane based nanocomposite (Fe@SiO2/MDOS) to separate MPs from freshwater. Pristine and weathered, polyethylene (PE) and tire wear particles (TWP) of different sizes were used in the study. The weathering of MPs was performed in an accelerated weathering chamber according to ISO 4892-2:2013 standards that mimic natural weathering conditions. The chemical properties and morphology of the Fe@SiO2/MDOS, PE and TWP were confirmed by Fourier transform infrared spectroscopy and Scanning electron microscopy, respectively. The thermal properties of PE and TWP were evaluated by Thermogravimetric analysis. Using 1.00 mg of Fe@SiO2/MDOS nanocomposite, 2.00 mg of pristine and weathered PE were extracted from freshwater; whereas, using the same amount of the nanocomposite, 7.92 mg of pristine TWP and 6.87 mg of weathered TWP were extracted. The retrieval of weathered TWP was 13% less than that of pristine TWP, which can be attributed to the increasing hydrophilicity of weathered TWP. The results reveal that the effectiveness of the magnetic separation technique varies among different polymer types and their sizes; the weathering of MPs also influences the magnetic separation efficiency.
Collapse
Affiliation(s)
- Vaibhav Budhiraja
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia
| | - Andrej Krzan
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Nakatani H, Ohshima Y, Uchiyama T, Suguru M. Degradation and fragmentation behavior of polypropylene and polystyrene in water. Sci Rep 2022; 12:18501. [PMID: 36323804 PMCID: PMC9630436 DOI: 10.1038/s41598-022-23435-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The polystyrene (PS) retrieved from the beach exhibited no change in surface texture. In contrast to it, the retrieved polypropylene (PP) had a rumpled surface texture. Highly reactive sulfate radical generated by K2S2O8 was employed as degradation initiator of PP and PS, and their degradation behavior was studied in water. The PS carbonyl index value gradually went up down, and its molecular weight (MW) curve discontinuously shifted to a lower MW with the increase of the degradation time unlike the PP. It was found that the PP microplastic production rate was approximately three time higher than the PS from weight ratio dependence on degradation time. The higher microplastic production rate of PP arose from its crystallizability. The voids were produced by change in specific volume occurring by chemi-crystallization and then provoked the cracks leading to quick fragmentation. The SEM photographs suggested that the PP microplastic size facilely reached nm order by the cracking around lamella.
Collapse
Affiliation(s)
- Hisayuki Nakatani
- grid.174567.60000 0000 8902 2273Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki, 852-8521 Japan
| | - Yuina Ohshima
- grid.174567.60000 0000 8902 2273Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki, 852-8521 Japan
| | - Taishi Uchiyama
- grid.174567.60000 0000 8902 2273Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki, 852-8521 Japan
| | - Motokucho Suguru
- grid.174567.60000 0000 8902 2273Polymeri Materials Laboratory, Chemistry and Materials Program, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki, 852-8521 Japan
| |
Collapse
|
29
|
Truchet DM, Ardusso MG, Forero-López AD, Rimondino GN, Buzzi NS, Malanca F, Spetter CV, Fernández-Severini MD. Tracking synthetic microdebris contamination in a highly urbanized estuary through crabs as sentinel species: An ecological trait-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155631. [PMID: 35508238 DOI: 10.1016/j.scitotenv.2022.155631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Synthetic microdebris (particles of <5 mm) are a worldwide concern because they can affect the community structure of the aquatic ecosystems, organisms, and even food webs. For the biomonitoring of synthetic microdebris (especially microplastics, MPs), mainly benthic invertebrates are used, but crabs have been less studied in the literature. We studied the synthetic microdebris contamination in water, sediments, and three representative intertidal crabs (Neohelice granulata, Cyrtograpsus angulatus and Leptuca uruguayensis) with different lifestyles from the Bahía Blanca estuary, Argentina. The results obtained show the presence of cotton-polyamide (PA), polyethylene (PE), and polyethylene terephthalate (PET) in surface waters. In sediments, we identified cellulose modified (CE), polyester (PES), polyethylene (PE), and alkyd resin, while in crabs, cotton-PA and CE were the predominant ones. The MPs abundance ranged from 8 to 68 items L-1 in surface water, from 971 to 2840 items Kg-1 in sediments, and from 0 to 2.58 items g-1 ww for the three species of crabs. Besides, paint sheets ranged from 0 to 17 in the total samples, with Cr, Mo, Ti, Pb, Cu, Al, S, Ba and Fe on their surface. There were significant differences between the microdebris abundances in the abiotic matrices but not among crabs species. The ecological traits of the different crabs helped to understand the accumulation of synthetic microdebris, an important characteristic when determining the choice of a good biomonitor.
Collapse
Affiliation(s)
- D M Truchet
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - M G Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - N S Buzzi
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina
| | - F Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - M D Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
30
|
|
31
|
In situ laboratory for plastic degradation in the Red Sea. Sci Rep 2022; 12:11956. [PMID: 35831329 PMCID: PMC9279475 DOI: 10.1038/s41598-022-15310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Degradation and fragmentation of plastics in the environment are still poorly understood. This is partly caused by the lack of long-term studies and methods that determine weathering duration. We here present a novel study object that preserves information on plastic age: microplastic (MP) resin pellets from the wreck of the SS Hamada, a ship that foundered twenty-nine years ago at the coast of Wadi el Gemal national park, Egypt. Its sinking date enabled us to precisely determine how long MP rested in the wreck and a nearby beach, on which part of the load was washed off. Pellets from both sampling sites were analyzed by microscopy, X-ray tomography, spectroscopy, calorimetry, gel permeation chromatography, and rheology. Most pellets were made of low-density polyethylene, but a minor proportion also consisted of high-density polyethylene. MP from inside the wreck showed no signs of degradation compared to pristine reference samples. Contrary, beached plastics exhibited changes on all structural levels, which sometimes caused fragmentation. These findings provide further evidence that plastic degradation under saltwater conditions is comparatively slow, whereas UV radiation and high temperatures on beaches are major drivers of that process. Future long-term studies should focus on underlying mechanisms and timescales of plastic degradation.
Collapse
|
32
|
Duan J, Li Y, Gao J, Cao R, Shang E, Zhang W. ROS-mediated photoaging pathways of nano- and micro-plastic particles under UV irradiation. WATER RESEARCH 2022; 216:118320. [PMID: 35339969 DOI: 10.1016/j.watres.2022.118320] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) generation is considered as an important photoaging mechanism of microplastics (MPs) and nanoplastics (NPs). To elucidate the ROS-induced MP/NP aging processes in water under UV365 irradiation, we examined the effects of surface coatings, polymer types and grain sizes on ROS generation and photoaging intermediates. Bare polystyrene (PS) NPs generated hydroxyl radicals (•OH) and singlet oxygen (1O2), while coated PS NPs (carboxyl-modified PS (PS-COOH), amino-modified PS (PS-NH2)) and PS MPs generated fewer ROS due to coating scavenging or size effects. Polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate and polycarbonate MPs only generated •OH. For aromatic polymers, •OH addition preferentially occurred at benzene rings to form monohydroxy polymers. Excess •OH resulted in H abstraction, CC scission and phenyl ring opening to generate aliphatic ketones, esters, aldehydes, and aromatic ketones. For coated PS NPs, •OH preferentially attacked the surface coatings to result in decarboxylation and deamination reactions. For aliphatic polymers, •OH attack resulted in the formation of carbonyl groups from peracid, aldehyde or ketone via H abstraction and CC scission. Moreover, 1O2 might participate in phenyl ring opening for PS NPs and coating degradation for coated PS NPs. This study facilitates understanding the ROS-induced weathering process of NPs/MPs in water under UV irradiation.
Collapse
Affiliation(s)
- Jiajun Duan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Jianan Gao
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Runzi Cao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| |
Collapse
|
33
|
Deng H, Su L, Zheng Y, Du F, Liu QX, Zheng J, Zhou Z, Shi H. Crack Patterns of Environmental Plastic Fragments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6399-6414. [PMID: 35510873 DOI: 10.1021/acs.est.1c08100] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Secondary microplastics usually come from the breakdown of larger plastics due to weathering and environmental stress cracking of plastic wastes. In the present study, 5013 plastic fragments were collected from coastal beaches, estuary dikes, and lake banks in China. The fragment sizes ranged from 0.2 to 17.1 cm, and the dominant polymers were polypropylene and polyethylene. Cracks were observed on the surfaces of 49-56% of the fragments. Based on the extracted crack images, we proposed a general crack pattern system including four crack types with specific definitions, abbreviations, and symbols. The two-dimensional spectral analysis of the cracks suggests that the first three patterns showed good regularity and supported the rationality of the pattern system. Some crack metrics (e.g., line density) were closely correlated with the carbonyl index and additives (e.g., phthalate esters) of fragments. For crack investigation in field, we proposed a succinct protocol, in which five crack ranks were established to directly characterize the degree of cracking based on the line density values. The system was successfully applied to distinguish the differences in crack features at two representative sites, which indicates that crack pattern is a useful tool to describe the morphological changes of plastic surfaces in the environment.
Collapse
Affiliation(s)
- Hua Deng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yifan Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Fangni Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Quan-Xing Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jia Zheng
- Shimadzu China Co. Ltd., Shanghai 200233, China
| | - Zhiwei Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
34
|
Yang Y, Li Z, Yan C, Chadwick D, Jones DL, Liu E, Liu Q, Bai R, He W. Kinetics of microplastic generation from different types of mulch films in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152572. [PMID: 34954175 DOI: 10.1016/j.scitotenv.2021.152572] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 05/21/2023]
Abstract
Upon environmental weathering, plastic materials form smaller sized microplastics, of which the contamination in agricultural fields is of significant importance and increasing social concern. Plastic mulch films are considered a major source of agricultural soil microplastic pollution. However, the mechanism and kinetics of microplastic formation from plastic mulch films were rarely understood. In this study, the rate of microplastic generation from typical mulch films, such as oxodegradable, biodegradable, and conventional non-degradable (polyethylene, PE) mulch films, were quantified in soil under simulated UV irradiation. Results showed that microplastic formation was more rapid from biodegradable mulch film, followed sequentially by oxodegradable mulch film, white PE mulch film, and black PE mulch film. The kinetics of microplastic generation strictly followed the Schwarzchild's law, with exponential growth at indexes between 1.6309 and 2.0502 in the microplastic generation model. At a cumulative UV irradiation of 2.1 MJ/m2, the average quantity of microplastics released from biodegradable, oxodegradable, and white and black non-degradable mulch films were 475, 266, 163, 147 particles/cm2, respectively; with particle sizes largely distributed within 0.02-0.10 mm range. Concurrent increase in crystallinity and surface erosion of the mulch films were observed upon UV irradiation, which further determined the accessibility and activity of the materials to photo-oxidation (reflected as HI indexes), therefore played a critical role on the quantity and size ranges of microplastic debris.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Zhen Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Dave Chadwick
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Enke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Runhao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
35
|
Born MP, Brüll C. From model to nature - A review on the transferability of marine (micro-) plastic fragmentation studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151389. [PMID: 34808157 DOI: 10.1016/j.scitotenv.2021.151389] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Microplastic research has experienced almost exponential growth in publications and proceeded faster than ever throughout the last years. This increase comes with a downside in terms of missing standardizations and definitions especially concerning experiments. Furthermore, incomparability and lacking transferability of fragmentation studies onto the marine environment still hinder more realistic extrapolations and accurate numerical models. This review offers a first approach to tackle this problem by converting studies into comparable dimensions by rating their experimental settings and comparing them to in-situ values, thus, assisting future research with an unbiased and fast tool to assess the applicability of studies for their calculations. For this purpose, the main influencing factors for the environmental fragmentation of plastics were identified, ranked in terms of their impact, and, subsequently, applied to 49 setups of peer-reviewed studies. The average transferability into nature of the considered laboratory studies is 41%. Unconsidered implementation of proper mechanical wear by water and sediment movement into the test setups of around 80% of all reviewed studies explains this value. However, other parameters like UV radiation implementation, also pose an obstacle in about 50% of the laboratory studies. Nevertheless, even the reviewed in-situ fragmentation studies revealed problems in transferability in some of the weathering components caused by the fixation of the samples. This review indicates that the current database on plastic fragmentation is most likely not reliable enough for robust extrapolations or numerical models. A set of recommendations for test settings is proposed to improve upcoming experiments' quality and comparability.
Collapse
Affiliation(s)
- Maximilian P Born
- Institute of Hydraulic Engineering and Water Resources Management, RWTH-Aachen University, Germany.
| | - Catrina Brüll
- Institute of Hydraulic Engineering and Water Resources Management, RWTH-Aachen University, Germany
| |
Collapse
|
36
|
Pizarro-Ortega CI, Dioses-Salinas DC, Fernández Severini MD, Forero López AD, Rimondino GN, Benson NU, Dobaradaran S, De-la-Torre GE. Degradation of plastics associated with the COVID-19 pandemic. MARINE POLLUTION BULLETIN 2022; 176:113474. [PMID: 35231785 PMCID: PMC8866080 DOI: 10.1016/j.marpolbul.2022.113474] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). Numerous studies have reported the occurrence of PPE in the marine environment. However, their degradation in the environment and consequences are poorly understood. Studies have reported that face masks, the most abundant type of PPE, are significant sources of microplastics due to their fibrous microstructure. The fibrous material (mostly consisting of polypropylene) exhibits physical changes in the environment, leading to its fracture and detachment of microfibers. Most studies have evaluated PPE degradation under controlled laboratory conditions. However, in situ degradation experiments, including the colonization of PPE, are largely lacking. Although ecotoxicological studies are largely lacking, the first attempts to understand the impact of MPs released from face masks showed various types of impacts, such as fertility and reproduction deficiencies in both aquatic and terrestrial organisms.
Collapse
Affiliation(s)
| | | | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria (X5000HUA), Córdoba, Argentina
| | - Nsikak U Benson
- Department of Chemistry, Covenant University, Km 10 Idiroko Road, Ota, Nigeria
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|
37
|
Microplastics Generation Behavior of Polypropylene Films with Different Crystalline Structures under UV Irradiation. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Zvekic M, Richards LC, Tong CC, Krogh ET. Characterizing photochemical ageing processes of microplastic materials using multivariate analysis of infrared spectra. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:52-61. [PMID: 34904601 DOI: 10.1039/d1em00392e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microplastics in the environment are an emerging concern due to impacts on human and environmental health. In addition to direct effects on biota, microplastics influence the fate and distribution of trace organic contaminants through sorption and transport. Environmental weathering may influence the rate and extent of chemical sorption. Changes in the surface characteristics of four common plastics including low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS) were followed under the influence of both artificial light (UV-B) and natural sunlight for up to six months. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were collected at regular intervals. Principal component analysis (PCA) of the full dataset of UV-B weathered samples (n >500 spectra) simultaneously discriminated plastic type and extent of photochemical weathering. The magnitude of PCA scores correlated with exposure time and the loadings were consistent with surface chemistry changes including photooxidation. Projecting sunlight and UV-C exposed samples onto this PCA model demonstrated that similar chemical changes occurred, albeit at different rates. The results were compared to the carbonyl index (CI) with similar weathering trends indicating PP weathered at a faster initial rate than LDPE and HDPE. We propose that a multivariate approach is more widely applicable than CI as illustrated by PS, which lacked a stable reference peak. Kinetic analysis of the time series indicated that outdoor weathering occurred 5-12 times slower than the artificial exposure used here, depending on the plastic and the light source employed. The results provide unique insights into weathering processes and the photochemical age of naturally weathered plastics.
Collapse
Affiliation(s)
- Misha Zvekic
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada.
- Department of Chemistry, University of Victoria, PO Box 1700, Stn CSC, Victoria, British Columbia, Canada
| | - Larissa C Richards
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada.
- Department of Chemistry, University of Victoria, PO Box 1700, Stn CSC, Victoria, British Columbia, Canada
| | - Christine C Tong
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada.
| | - Erik T Krogh
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada.
- Department of Chemistry, University of Victoria, PO Box 1700, Stn CSC, Victoria, British Columbia, Canada
| |
Collapse
|
39
|
Julienne F, Lagarde F, Bardeau JF, Delorme N. Thin polyethylene (LDPE) films with controlled crystalline morphology for studying plastic weathering and microplastic generation. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Deshoulles Q, Gall M, Dreanno C, Arhant M, Priour D, Gac P. Chemical coupling between oxidation and hydrolysis in Polyamide 6 - A key aspect in the understanding of microplastic formation. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Deshoulles Q, Le Gall M, Dreanno C, Arhant M, Stoclet G, Priour D, Le Gac P. Origin of embrittlement in Polyamide 6 induced by chemical degradations: mechanisms and governing factors. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Difference in polypropylene fragmentation mechanism between marine and terrestrial regions. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04759-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractTwo kinds of marine polypropylene (M1-PP and M2-PP) and one land PP (L-PP) samples were collected from two beaches and land in Japan, respectively, to study the fragmentation mechanisms. Delamination was observed on both M1-PP and M2-PP surfaces. Moreover, there was no delamination but an abrasion patch structure on the surface of L-PP. The delamination was studied using an advanced oxidation process-degraded PP as the marine PP model. The number and shape of cracks varied with an increase in degradation time. The fluctuations in the values and ratios of the carbonyl index as well as the weight change ratio were due to repeated oxidation and delamination. We found that the delamination behavior depends on the oxidation state. Poly(oxyethylene)8 octylphenyl ether (POE8) surfactant treatment caused the delamination to speed up, which is a typical characteristic of polyolefin environmental stress cracking (ESC). These results reveal that delamination is based on ESC.Article Highlights
Two kinds of marine and one land polypropylene (PP) samples were collected from two beaches and land, respectively, to study the fragmentation mechanisms.
Delamination was observed on both of marine PP surfaces. Moreover, there was no delamination but an abrasion patch structure on the land PP surface.
We found that the delamination was based on environmental stress cracking mechanism by employing a marine PP model.
Collapse
|
43
|
Chapa-Rodríguez R, Avila-de la Rosa G, Pérez E. Thermal stability and ageing properties of PP–PE film modulated by nano-silica particles: comparison between dry and moist particles. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
44
|
Duan J, Bolan N, Li Y, Ding S, Atugoda T, Vithanage M, Sarkar B, Tsang DCW, Kirkham MB. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. WATER RESEARCH 2021; 196:117011. [PMID: 33743325 DOI: 10.1016/j.watres.2021.117011] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/14/2021] [Accepted: 03/03/2021] [Indexed: 05/21/2023]
Abstract
Weathering of microplastics (MPs, < 5 mm) in terrestrial and aquatic environments affects MP transport and distribution. This paper first summarizes the sources of MPs, including refuse in landfills, biowastes, plastic films, and wastewater discharge. Once MPs enter water and soil, they undergo different weathering processes. MPs can be converted into small molecules (e.g., oligomers and monomers), and may be completely mineralized under the action of free radicals or microorganisms. The rate and extent of weathering of MPs depend on their physicochemical properties and environmental conditions of the media to which they are exposed. In general, water dissipates heat better, and has a lower temperature, than land; thus, the weathering rate of MPs in the aquatic environment is slower than in the terrestrial environment. These weathering processes increase oxygen-containing functional groups and the specific surface area of MPs, which influence the sorption and aggregation that occur between weathered MPs and their co-existing constituents. More studies are needed to investigate the various weathering processes of diverse MPs under natural field conditions in soils, sediments, and aquatic environments, to understand the impact of weathered MPs in the environment.
Collapse
Affiliation(s)
- Jiajun Duan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Thilakshani Atugoda
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
45
|
Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JKH, Wu C, Lam PKS. Understanding plastic degradation and microplastic formation in the environment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116554. [PMID: 33529891 DOI: 10.1016/j.envpol.2021.116554] [Citation(s) in RCA: 415] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Plastic waste are introduced into the environment inevitably and their exposure in the environment causes deterioration in mechanical and physicochemical properties and leads to the formation of plastic fragments, which are considered as microplastics when their size is < 5 mm. In recent years, microplastic pollution has been reported in all kinds of environments worldwide and is considered a potential threat to the health of ecosystems and humans. However, knowledge on the environmental degradation of plastics and the formation of microplastics is still limited. In this review, potential hotspots for the accumulation of plastic waste were identified, major mechanisms and characterization methods of plastic degradation were summarized, and studies on the environmental degradation of plastics were evaluated. Future research works should further identify the key environmental parameters and properties of plastics affecting the degradation in order to predict the fate of plastics in different environments and facilitate the development of technologies for reducing plastic pollution. Formation and degradation of microplastics, including nanoplastics, should receive more research attention to assess their fate and ecological risks in the environment more comprehensively.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, University of Tehran, Karaj, 31587-77878, Iran; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aleksandra Tubić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - James K H Fang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
46
|
González-López ME, Martín del Campo AS, Robledo-Ortíz JR, Arellano M, Pérez-Fonseca AA. Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|