1
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Nag TC. Accumulation of autophagosomes in aging human photoreceptor cell synapses. Exp Eye Res 2025; 251:110240. [PMID: 39800286 DOI: 10.1016/j.exer.2025.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria. It is not known how the damaged mitochondria are handled by photoreceptor cells with aging. This study examined donor human retinas (age: 56-94 years; N = 12) by transmission electron microscopy to find mitochondrial dynamics and status of autophagy in macular photoreceptor cells. Observations were compared between the relatively lower age (56-78 years) and aged retinas (80-94 years). Mitochondrial fusion was predominant in photoreceptor inner segments (ellipsoids), but rarely seen in the synaptic terminals. Also, fusion became widespread with progressive aging in ellipsoids (12% and 21% between rods and cones at tenth decade, respectively). More importantly, it was found that the photoreceptor synaptic mitochondria altered significantly with aging (swelling and loss of cristae), compared to those in ellipsoids that became dark and condensed. The damaged synaptic mitochondria were sequestered inside autophagosomes, whose frequency was higher in aged photoreceptors, being 34% in cone and 24% in rod terminals, at tenth decade. However, autolysosomes/residual bodies were rare, and thus the aged photoreceptor synaptic terminals harboured many autophagosomes, the possible reasons for which are discussed. Such age-related altered mitochondrial population and defective autophagy in synaptic terminals may influence photoreceptor survival in late aging.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Jiang X, Liu C, Zhang Q, Lv Y, Lu C, Su W, Zhou J, Zhang H, Gong H, Liu Y, Yuan S, Chen Y, Qu D. Strategic delivery of rapamycin and ranibizumab with intravitreal hydrogel depot disrupts multipathway-driven angiogenesis loop for boosted wAMD therapy. J Control Release 2025; 377:239-255. [PMID: 39528095 DOI: 10.1016/j.jconrel.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Autophagic dysfunction-induced deterioration of the retinal microenvironment drives the progression of wet age-related macular degeneration (wAMD). The efficacy of single-target anti-VEGF antibodies in treating wAMD has long been suboptimal due to the intricate interplay between autophagy dysfunction, oxidative stress, and angiogenesis. Here, we introduce an intravitreal hydrogel depot, named Rab&Rapa-M@G, consisting of rapamycin-loaded microemulsion (Rapa-M, an mTOR inhibitor), ranibizumab (anti-VEGF antibody), and a thermosensitive hydrogel matrix. A single intravitreal injection of Rab&Rapa-M@G can sustainably deliver Rapa-M and ranibizumab to the retinal pigment epithelium for at least 14 days. This formulation significantly improves retinal autophagic flux homeostasis and reduces oxidative stress injury in wAMD mice by modulating the AMPK/mTOR/HIF-1α/VEGF and AMPK/ROS/HO-1/VEGF pathways. Consequently, it synergistically disrupts the "autophagic dysfunction-oxidative stress-angiogenesis" loop, leading to a remarkable reduction in choroidal neovascularization area and retinal damage compared to ranibizumab alone. Notably, the sequential administration of ranibizumab and Rab&Rapa-M@G further enhances the overall anti-wAMD efficacy, achieved through sequential delivery of Rab and Rapa, allowing for a more precise grasp of the treatment window. In conclusion, this hydrogel depot design, with its sequential and sustained delivery of mTOR inhibitors and anti-VEGF antibodies, offers a promising strategy for multi-target synergistic therapy in wAMD.
Collapse
Affiliation(s)
- Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yanli Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Chen Lu
- The first affiliated hospital of Nanjing medical university, Nanjing 210000, China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jing Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huiling Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Songtao Yuan
- The first affiliated hospital of Nanjing medical university, Nanjing 210000, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
4
|
Lakkaraju A, Boya P, Csete M, Ferrington DA, Hurley JB, Sadun AA, Shang P, Sharma R, Sinha D, Ueffing M, Brockerhoff SE. How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration. Exp Eye Res 2024; 251:110219. [PMID: 39716681 DOI: 10.1016/j.exer.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024]
Abstract
Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the "Mitochondria, Lysosomes, and other Organelle Interactions" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Patricia Boya
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | | | - Deborah A Ferrington
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Shang
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susan E Brockerhoff
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Chen J, Liu Z, Zhu Y, Li Z, Wen Y, Chen D, Liang J, Xiao Y, Leng Y, Zhuo Y. Integrative multiomic analysis unveils the molecular nexus of mitochondrial dysfunction in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 249:110141. [PMID: 39490725 DOI: 10.1016/j.exer.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Mitochondrial dysfunction is linked to age-related macular degeneration (AMD), but its mechanisms and related molecular networks remain unclear. We explored the association between mitochondrial-related genes and AMD by integrating multiomic data. We acquired summary-level data on mitochondrial-related protein abundance, gene expression, and gene methylation from quantitative trait locus studies. Genetic associations with AMD were sourced from the International Age-related Macular Degeneration Genomics Consortium (discovery), FinnGen (replication), and UK Biobank (replication) studies. We used summary-data-based Mendelian randomization to assess the correlations between mitochondrial-related gene molecular characteristics and AMD. Furthermore, colocalization analysis was performed to ascertain if the detected signal pairings had a common causative genetic variation. Mitochondrial-related gene NFKB1 demonstrated a protective role in AMD (tier 1 evidence), whereas HSPA1A and HSPA1B genes were also associated with decreased AMD risk (tier 2 evidence). The methylation of cg09390974 and cg15409712 in NFKB1 was associated with increased NFKB1 expression, consistent with the protective effect on AMD risk, whereas inverse associations were observed between gene methylation and gene expression for HSPA1B (cg04835051 and cg16372051), supporting the risk roles of methylation in AMD. At circulating protein level, genetically predicted higher levels of HSPA1A (odds ratio [OR] 0.28, 95% confidence interval [CI] 0.19-0.41, P < 0.001), HSPA1B (OR 0.13, 95% CI 0.06-0.27, P < 0.001), and NFKB1 (OR 0.43, 95% CI 0.27-0.68, P < 0.001) were inversely associated with AMD risk. These associations were corroborated in the colocalization analysis. We identified AMD-linked mitochondrial-related genes, potentially improving the understanding of its pathophysiological mechanisms and aiding the identification of novel pharmaceutical targets.
Collapse
Affiliation(s)
- Jianqi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, Guangdong Province, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, Guangdong Province, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, Guangdong Province, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, Guangdong Province, China
| | - Yuwen Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, Guangdong Province, China
| | - Danna Chen
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
| | - Jingying Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, Guangdong Province, China
| | - Yue Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, Guangdong Province, China
| | - Yunxia Leng
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
6
|
Hultgren NW, Petcherski A, Torriano S, Komirisetty R, Sharma M, Zhou T, Burgess BL, Ngo J, Osto C, Shabane B, Shirihai OS, Kelesidis T, Williams DS. Productive infection of the retinal pigment epithelium by SARS-CoV-2: Initial effects and consideration of long-term consequences. PNAS NEXUS 2024; 3:pgae500. [PMID: 39712068 PMCID: PMC11660945 DOI: 10.1093/pnasnexus/pgae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 12/24/2024]
Abstract
As the SARS-CoV-2 coronavirus continues to evolve and infect the global population, many individuals are likely to suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Manifestations of PASC include vision symptoms, but little is known about the ability of SARS-CoV-2 to infect and impact the retinal cells. Here, we demonstrate that SARS-CoV-2 can infect and perturb the retinal pigment epithelium (RPE) in vivo, after intranasal inoculation of a transgenic mouse model of SARS-CoV-2 infection, and in cell culture. Separate lentiviral studies showed that SARS-CoV-2 Spike protein mediates viral entry and replication in RPE cells, while the Envelope and ORF3a proteins induce morphological changes. Infection with major variants of SARS-CoV-2 compromised the RPE barrier function and phagocytic capacity. It also caused complement activation and production of cytokines and chemokines, resulting in an inflammatory response that spread across the RPE layer. This inflammatory signature has similarities to that associated with the onset of age-related macular degeneration (AMD), a major cause of human blindness, resulting from RPE pathology that eventually leads to photoreceptor cell loss. Thus, our findings suggest that post-acute sequelae of SARS-CoV-2 infection of the RPE may have long-term implications for vision, perhaps comparable to the increased occurrence of AMD found among individuals infected by HIV, but with greater public health consequences due to the much larger number of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Nan W Hultgren
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Anton Petcherski
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Simona Torriano
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Ravikiran Komirisetty
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Madhav Sharma
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tianli Zhou
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Barry L Burgess
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Jennifer Ngo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Corey Osto
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Orian S Shirihai
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine; Molecular Biology Institute; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Yang S, Yu F, Yang M, Ni H, Bu W, Yin H, Yang J, Wang W, Zhai D, Wu X, Ma N, Li T, Hao H, Ran J, Song T, Li D, Yoshida S, Lu Q, Yang Y, Zhou J, Liu M. CYLD Maintains Retinal Homeostasis by Deubiquitinating ENKD1 and Promoting the Phagocytosis of Photoreceptor Outer Segments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404067. [PMID: 39373352 PMCID: PMC11615780 DOI: 10.1002/advs.202404067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is essential for retinal homeostasis. Dysregulation of the phagocytotic process is associated with irreversible retinal degenerative diseases. However, the molecular mechanisms underlying the phagocytic activity of RPE cells remain elusive. In an effort to uncover proteins orchestrating retinal function, the cylindromatosis (CYLD) deubiquitinase is identified as a critical regulator of photoreceptor outer segment phagocytosis. CYLD-deficient mice exhibit abnormal retinal structure and function. Mechanistically, CYLD interacts with enkurin domain containing protein 1 (ENKD1) and deubiquitinates ENKD1 at lysine residues K141 and K242. Deubiquitinated ENKD1 interacts with Ezrin, a membrane-cytoskeleton linker, and stimulates the microvillar localization of Ezrin, which is essential for the phagocytic activity of RPE cells. These findings thus reveal a crucial role for the CYLD-ENKD1-Ezrin axis in regulating retinal homeostasis and may have important implications for the prevention and treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Song Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Fan Yu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Mulin Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Hua Ni
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Weiwen Bu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Hanxiao Yin
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Jia Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Weishu Wang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Denghui Zhai
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Xuemei Wu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Nan Ma
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Te Li
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Huijie Hao
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Ting Song
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Sei Yoshida
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Quanlong Lu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jun Zhou
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
8
|
Jung R, Kempf M, Righetti G, Nasser F, Kühlewein L, Stingl K, Stingl K. Age-dependencies of the electroretinogram in healthy subjects. Doc Ophthalmol 2024; 149:99-113. [PMID: 39251480 PMCID: PMC11442549 DOI: 10.1007/s10633-024-09991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE The purpose of this study was to evaluate the age-dependency of amplitudes and implicit times in the electroretinograms (ERGs) of healthy individuals and provide clinicians and researchers with a reference for a variety of stimulus paradigms. DESIGN AND METHODS Full-field electroretinography was conducted on 73 healthy participants aged 14-73 using an extended ISCEV standard protocol that included an additional 9 Hz flicker stimulus for assessing rod function and special paradigms for isolated On-Off and S-cone responses. Correlation coefficients and best-fit regression models for each parameter's age-dependency were calculated. RESULTS Dark-adapted ERGs, in particular, displayed notable age-related alterations. The attenuation and delay of the b-wave with higher age were most significant in the dark-adapted, rod-driven 0.001 cd s/m2 flash ERG. The age-dependent reduction of the a-wave amplitude was strongest in the standard dark-adapted 3 cd s/m2 flash condition. Cone-driven, light-adapted responses to either flash or flicker stimuli displayed comparatively small alterations at higher age. S-cone function tended to diminish at an early age, but the effect was not significant in the whole population. CONCLUSION The results suggest that rod and cone function decline at different rates with age, with rods being generally more affected by aging. Nonetheless, response amplitudes displayed a wide variability across the whole sample.
Collapse
Affiliation(s)
- Ronja Jung
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany.
| | - Melanie Kempf
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
- Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | - Giulia Righetti
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
| | - Fadi Nasser
- University Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Laura Kühlewein
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
- Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | - Krunoslav Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
| |
Collapse
|
9
|
Pietzuch M, Mantel I, Ambresin A, Tappeiner C, Nagyova D, Donati G, Pfister IB, Schild C, Garweg JG. Intravitreal Dexamethasone as a Rescue for Anti-Vascular Endothelial Growth Factor Therapy in Neovascular Age-Related Macular Degeneration with Persistent Disease Activity and High Treatment Demand. J Ocul Pharmacol Ther 2024; 40:361-369. [PMID: 38117666 DOI: 10.1089/jop.2023.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Purpose: To assess the impact of switching to, or adding, an intravitreal dexamethasone implant (Dex; Ozurdex®) in anti-vascular endothelial growth factor (VEGF) therapy on disease stability and treatment intervals in eyes with neovascular age-related macular degeneration (nAMD) and persistent disease activity and high treatment demand. Methods: This retrospective noncomparative multicenter longitudinal case series included pseudophakic eyes with nAMD and persistent retinal fluid despite regular anti-VEGF therapy (ranibizumab or aflibercept) that received at least 1 intravitreal Dex implant. Visual acuity, central retinal thickness (CRT), and intraocular pressure were recorded before, and after, the addition of Dex to anti-VEGF therapy. Results: Sixteen eyes of 16 patients met the inclusion criteria of persistent fluid despite anti-VEGF therapy, under treatment intervals of ≤7 weeks in 14 instances. Patients were 80.9 ± 7.4 years old and had received 25.5 ± 17.4 anti-VEGF injections before Dex over a period of 36.4 ± 21.9 months before switching. The treatment interval increased from 5.5 ± 3.2 weeks between the last anti-VEGF and first Dex injection to 11.7 ± 7.3 weeks thereafter (P = 0.022). CRT remained stable (385.3 ± 152.1, 383.9 ± 129.7, and 458.3 ± 155.2 μm before switching as well as 12 and 24 months after switching; P = 0.78 and P = 0.36, respectively). An insignificant mean short-term early increase in visual acuity was not sustained over time. Conclusions: The addition of Dex resulted in a relevant and sustained increase in treatment intervals, whereas CRT and visual acuity remained stable in these difficult-to-treat eyes. It may be discussed whether inflammation or other steroid-responsive factors play a significant role in cases of nAMD with nonsatisfactory responses to anti-VEGF.
Collapse
Affiliation(s)
- Marlena Pietzuch
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases, Berner Augenklinik, Bern, Switzerland
- Department of Ophthalmology, Bern University Hospital, Bern, Switzerland
| | - Irmela Mantel
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | - Aude Ambresin
- Swiss Visio Clinic Montchoisi, Lausanne, Switzerland
| | - Christoph Tappeiner
- Department of Ophthalmology, Pallas Kliniken, Olten, Switzerland
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Medical Faculty, University of Bern, Bern, Switzerland
| | - Dana Nagyova
- Department of Ophthalmology, Pallas Kliniken, Olten, Switzerland
| | - Guy Donati
- Centre Ophtalmologique de la Colline, Hirshlanden Clinics and Clinique d'Ophtalmologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Isabel B Pfister
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases, Berner Augenklinik, Bern, Switzerland
| | - Christin Schild
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases, Berner Augenklinik, Bern, Switzerland
| | - Justus G Garweg
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases, Berner Augenklinik, Bern, Switzerland
- Department of Ophthalmology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
10
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 PMCID: PMC11699537 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
11
|
Yu Y, Wang G, Liu Y, Meng Z. Potential application of traditional Chinese medicine in age-related macular degeneration-focusing on mitophagy. Front Pharmacol 2024; 15:1410998. [PMID: 38828456 PMCID: PMC11140084 DOI: 10.3389/fphar.2024.1410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Retinal pigment epithelial cell and neuroretinal damage in age-related macular degeneration (AMD) can lead to serious visual impairments and blindness. Studies have shown that mitophagy, a highly specialized cellular degradation system, is implicated in the pathogenesis of AMD. Mitophagy selectively eliminates impaired or non-functioning mitochondria via several pathways, such as the phosphatase and tensin homolog-induced kinase 1/Parkin, BCL2-interacting protein 3 and NIP3-like protein X, FUN14 domain-containing 1, and AMP-activated protein kinase pathways. This has a major impact on the maintenance of mitochondrial homeostasis. Therefore, the regulation of mitophagy could be a promising therapeutic strategy for AMD. Traditional Chinese medicine (TCM) uses natural products that could potentially prevent and treat various diseases, such as AMD. This review aims to summarize recent findings on mitophagy regulation pathways and the latest progress in AMD treatment targeting mitophagy, emphasizing methods involving TCM.
Collapse
Affiliation(s)
- Yujia Yu
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gaofeng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhaoru Meng
- School of Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
13
|
Sun GF, Qu XH, Jiang LP, Chen ZP, Wang T, Han XJ. The mechanisms of natural products for eye disorders by targeting mitochondrial dysfunction. Front Pharmacol 2024; 15:1270073. [PMID: 38725662 PMCID: PMC11079200 DOI: 10.3389/fphar.2024.1270073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
The human eye is susceptible to various disorders that affect its structure or function, including glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitochondrial dysfunction has been identified as a critical factor in the pathogenesis and progression of eye disorders, making it a potential therapeutic target in the clinic. Natural products have been used in traditional medicine for centuries and continue to play a significant role in modern drug development and clinical therapeutics. Recently, there has been a surge in research exploring the efficacy of natural products in treating eye disorders and their underlying physiological mechanisms. This review aims to discuss the involvement of mitochondrial dysfunction in eye disorders and summarize the recent advances in the application of natural products targeting mitochondria. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products.
Collapse
Affiliation(s)
- Gui-Feng Sun
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Xin-Hui Qu
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Zhi-Ping Chen
- Department of Critical Care Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
14
|
Carozza G, Zerti D, Tisi A, Ciancaglini M, Maccarrone M, Maccarone R. An overview of retinal light damage models for preclinical studies on age-related macular degeneration: identifying molecular hallmarks and therapeutic targets. Rev Neurosci 2024; 35:303-330. [PMID: 38153807 DOI: 10.1515/revneuro-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial disease leading to progressive and irreversible retinal degeneration, whose pathogenesis has not been fully elucidated yet. Due to the complexity and to the multiple features of the disease, many efforts have been made to develop animal models which faithfully reproduce the overall AMD hallmarks or that are able to mimic the different AMD stages. In this context, light damage (LD) rodent models of AMD represent a suitable and reliable approach to mimic the different AMD forms (dry, wet and geographic atrophy) while maintaining the time-dependent progression of the disease. In this review, we comprehensively reported how the LD paradigms reproduce the main features of human AMD. We discuss the capability of these models to broaden the knowledge in AMD research, with a focus on the mechanisms and the molecular hallmarks underlying the pathogenesis of the disease. We also critically revise the remaining challenges and future directions for the use of LD models.
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Ciancaglini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
15
|
Iliescu DA, Ghita AC, Ilie LA, Voiculescu SE, Geamanu A, Ghita AM. Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics (Basel) 2024; 14:764. [PMID: 38611677 PMCID: PMC11011935 DOI: 10.3390/diagnostics14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The imagistic evaluation of non-neovascular age-related macular degeneration (AMD) is crucial for diagnosis, monitoring progression, and guiding management of the disease. Dry AMD, characterized primarily by the presence of drusen and retinal pigment epithelium atrophy, requires detailed visualization of the retinal structure to assess its severity and progression. Several imaging modalities are pivotal in the evaluation of non-neovascular AMD, including optical coherence tomography, fundus autofluorescence, or color fundus photography. In the context of emerging therapies for geographic atrophy, like pegcetacoplan, it is critical to establish the baseline status of the disease, monitor the development and expansion of geographic atrophy, and to evaluate the retina's response to potential treatments in clinical trials. The present review, while initially providing a comprehensive description of the pathophysiology involved in AMD, aims to offer an overview of the imaging modalities employed in the evaluation of non-neovascular AMD. Special emphasis is placed on the assessment of progression biomarkers as discerned through optical coherence tomography. As the landscape of AMD treatment continues to evolve, advanced imaging techniques will remain at the forefront, enabling clinicians to offer the most effective and tailored treatments to their patients.
Collapse
Affiliation(s)
- Daniela Adriana Iliescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Ana Cristina Ghita
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Larisa Adriana Ilie
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
| | - Aida Geamanu
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| | - Aurelian Mihai Ghita
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| |
Collapse
|
16
|
Shahhossein-Dastjerdi S, Koina ME, Fatseas G, Arfuso F, Chan-Ling T. Autophagy and Exocytosis of Lipofuscin Into the Basolateral Extracellular Space of Human Retinal Pigment Epithelium From Fetal Development to Adolescence. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 38648041 PMCID: PMC11044829 DOI: 10.1167/iovs.65.4.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose To undertake the first ultrastructural characterization of human retinal pigment epithelial (RPE) differentiation from fetal development to adolescence. Methods Ten fetal eyes and three eyes aged six, nine, and 17 years were examined in the temporal retina adjacent to the optic nerve head by transmission electron microscopy. The area, number, and distribution of RPE organelles were quantified and interpreted within the context of adjacent photoreceptors, Bruch's membrane, and choriocapillaris maturation. Results Between eight to 12 weeks' gestation (WG), pseudostratified columnar epithelia with apical tight junctions differentiate to a simple cuboidal epithelium with random distribution of melanosomes and mitochondria. Between 12 to 26 WG, cells enlarge and show long apical microvilli and apicolateral junctional complexes. Coinciding with eye opening at 26 WG, melanosomes migrate apically whereas mitochondria distribute to perinuclear regions, with the first appearance of phagosomes, complex granules, and basolateral extracellular space (BES) formation. Significantly, autophagy and heterophagy, as evidenced by organelle recycling, and the gold standard of ultrastructural evidence for autophagy of double-membrane autophagosomes and mitophagosomes were evident from 32 WG, followed by basal infoldings of RPE cell membrane at 36 WG. Lipofuscin formation and deposition into the BES evident at six years increased at 17 years. Conclusions We provide compelling ultrastructural evidence that heterophagy and autophagy begins in the third trimester of human fetal development and that deposition of cellular byproducts into the extracellular space of RPE takes place via exocytosis. Transplanted RPE cells must also demonstrate the capacity to subserve autophagic and heterophagic functions for effective disease mitigation.
Collapse
Affiliation(s)
- Saeed Shahhossein-Dastjerdi
- Bosch Institute, The University of Sydney, Sydney, Australia
- Now at Cell, Tissue & Organ Bank, Forensic Medicine Research Centre, Tehran, Iran
| | - Mark E. Koina
- Department of Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra, Australia
| | - George Fatseas
- Bosch Institute, The University of Sydney, Sydney, Australia
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Crawley, Australia
| | | |
Collapse
|
17
|
Velmurugan S, Pauline R, Chandrashekar G, Kulanthaivel L, Subbaraj GK. Understanding the Impact of the Sirtuin 1 (SIRT1) Gene on Age-related Macular Degeneration: A Comprehensive Study. Niger Postgrad Med J 2024; 31:93-101. [PMID: 38826012 DOI: 10.4103/npmj.npmj_9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Age-related macular degeneration (AMD) is a prevalent and incurable condition affecting the central retina and posing a significant risk to vision, particularly in individuals over the age of 60. As the global population ages, the prevalence of AMD is expected to rise, leading to substantial socioeconomic impacts and increased healthcare costs. The disease manifests primarily in two forms, neovascular and non-neovascular, with genetic, environmental and lifestyle factors playing a pivotal role in disease susceptibility and progression. This review article involved conducting an extensive search across various databases, including Google Scholar, PubMed, Web of Science, ScienceDirect, Scopus and EMBASE, to compile relevant case-control studies and literature reviews from online published articles extracted using search terms related to the work. SIRT1, a key member of the sirtuin family, influences cellular processes such as ageing, metabolism, DNA repair and stress response. Its dysregulation is linked to retinal ageing and ocular conditions like AMD. This review discusses the role of SIRT1 in AMD pathology, its association with genetic variants and its potential as a biomarker, paving the way for targeted interventions and personalised treatment strategies. In addition, it highlights the findings of case-control studies investigating the relationship between SIRT1 gene polymorphisms and AMD risk. These studies collectively revealed a significant association between certain SIRT1 gene variants and AMD risk. Further studies with larger sample sizes are required to validate these findings. As the prevalence of AMD grows, understanding the role of SIRT1 and other biomarkers becomes increasingly vital for improving diagnosis, treatment and, ultimately, patient outcomes.
Collapse
Affiliation(s)
- Saranya Velmurugan
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Rashmi Pauline
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | | | - Langeswaran Kulanthaivel
- Department of Biomedical Sciences, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
18
|
Zhang C, Gu L, Xie H, Liu Y, Huang P, Zhang J, Luo D, Zhang J. Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166995. [PMID: 38142757 DOI: 10.1016/j.bbadis.2023.166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Diabetic retinopathy (DR) is the most common reason for blindness in working-age individuals globally. Prolonged high blood glucose is a main causative factor for DR development, and glucose transport is prerequisite for the disturbances in DR caused by hyperglycemia. Glucose transport is mediated by its transporters, including the facilitated transporters (glucose transporter, GLUTs), the "active" glucose transporters (sodium-dependent glucose transporters, SGLTs), and the SLC50 family of uniporters (sugars will eventually be exported transporters, SWEETs). Glucose transport across the blood-retinal barrier (BRB) is crucial for nourishing the neuronal retina in the context of retinal physiology. This physiological process primarily relies on GLUTs and SGLTs, which mediate the glucose transportation across both the cell membrane of retinal capillary endothelial cells and the retinal pigment epithelium (RPE). Under diabetic conditions, increased accumulation of extracellular glucose enhances the retinal cellular glucose uptake and metabolism via both glycolysis and glycolytic side branches, which activates several biochemical pathways, including the protein kinase C (PKC), advanced glycation end-products (AGEs), polyol pathway and hexosamine biosynthetic pathway (HBP). These activated biochemical pathways further increase the production of reactive oxygen species (ROS), leading to oxidative stress and activation of Poly (ADP-ribose) polymerase (PARP). The activated PARP further affects all the cellular components in the retina, and finally resulting in microangiopathy, neurodegeneration and low-to-moderate grade inflammation in DR. This review aims to discuss the changes of glucose transport, glucose transporters, as well as its metabolism in DR, which influences the retinal neurovascular unit (NVU) and implies the possible therapeutic strategies for treating DR.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Limin Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China.
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
19
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
20
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Shelton DA, Gefke I, Summers V, Kim YK, Yu H, Getz Y, Ferdous S, Donaldson K, Liao K, Papania JT, Chrenek MA, Boatright JH, Nickerson JM. Age-Related RPE changes in Wildtype C57BL/6J Mice between 2 and 32 Months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.574142. [PMID: 38352604 PMCID: PMC10862734 DOI: 10.1101/2024.01.30.574142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Purpose This study provides a systematic evaluation of age-related changes in RPE cell structure and function using a morphometric approach. We aim to better capture nuanced predictive changes in cell heterogeneity that reflect loss of RPE integrity during normal aging. Using C57BL6/J mice ranging from P60-P730, we sought to evaluate how regional changes in RPE shape reflect incremental losses in RPE cell function with advancing age. We hypothesize that tracking global morphological changes in RPE is predictive of functional defects over time. Methods We tested three groups of C57BL/6J mice (young: P60-180; Middle-aged: P365-729; aged: 730+) for function and structural defects using electroretinograms, immunofluorescence, and phagocytosis assays. Results The largest changes in RPE morphology were evident between the young and aged groups, while the middle-aged group exhibited smaller but notable region-specific differences. We observed a 1.9-fold increase in cytoplasmic alpha-catenin expression specifically in the central-medial region of the eye between the young and aged group. There was an 8-fold increase in subretinal, IBA-1-positive immune cell recruitment and a significant decrease in visual function in aged mice compared to young mice. Functional defects in the RPE corroborated by changes in RPE phagocytotic capacity. Conclusions The marked increase of cytoplasmic alpha-catenin expression and subretinal immune cell deposition, and decreased visual output coincide with regional changes in RPE cell morphometrics when stratified by age. These cumulative changes in the RPE morphology showed predictive regional patterns of stress associated with loss of RPE integrity.
Collapse
Affiliation(s)
- Debresha A. Shelton
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Isabelle Gefke
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Vivian Summers
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Yong-Kyu Kim
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Hanyi Yu
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Department of Computer Science, Emory University, Atlanta, Georgia, United States
| | - Yana Getz
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Salma Ferdous
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Kevin Donaldson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Kristie Liao
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jack T. Papania
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
22
|
Tao T, Xu N, Li J, Zhao M, Li X, Huang L. Conditional loss of Ube3d in the retinal pigment epithelium accelerates age-associated alterations in the retina of mice. J Pathol 2023; 261:442-454. [PMID: 37772657 DOI: 10.1002/path.6201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Several studies have suggested a correlation between the ubiquitin-proteasome system (UPS) and age-related macular degeneration (AMD), with its phenotypic severity ranging from mild visual impairment to blindness, but the mechanism for UPS dysfunction contributing to disease progression is unclear. In this study, we investigated the role of ubiquitin protein ligase E3D (UBE3D) in aging and degeneration in mouse retina. Conditional knockout of Ube3d in the retinal pigment epithelium (RPE) of mice led to progressive and irregular fundus lesions, attenuation of the retinal vascular system, and age-associated deterioration of rod and cone responses. Simultaneously, RPE-specific Ube3d knockout mice also presented morphological changes similar to the histopathological characteristics of human AMD, in which a defective UPS led to RPE abnormalities such as phagocytosis or degradation of metabolites, the interaction with photoreceptor outer segment, and the transport of nutrients or waste products with choroidal capillaries via Bruch's membrane. Moreover, conditional loss of Ube3d resulted in aberrant molecular characterizations associated with the autophagy-lysosomal pathway, oxidative stress damage, and cell-cycle regulation, which are implicated in AMD pathology. Thus, our findings strengthen and expand the impact of UPS dysfunction on retinal pathophysiology during aging, indicating that genetic Ube3d deficiency in the RPE could lead to the abnormal formation of pigment deposits and secondary fundus alterations. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tianchang Tao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
- Department of Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, PR China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| |
Collapse
|
23
|
Jo DH, Lee SH, Jeon M, Cho CS, Kim DE, Kim H, Kim JH. Activation of Lysosomal Function Ameliorates Amyloid-β-Induced Tight Junction Disruption in the Retinal Pigment Epithelium. Mol Cells 2023; 46:675-687. [PMID: 37968982 PMCID: PMC10654459 DOI: 10.14348/molcells.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
Accumulation of pathogenic amyloid-β disrupts the tight junction of retinal pigment epithelium (RPE), one of its senescence-like structural alterations. In the clearance of amyloid-β, the autophagy-lysosome pathway plays the crucial role. In this context, mammalian target of rapamycin (mTOR) inhibits the process of autophagy and lysosomal degradation, acting as a potential therapeutic target for age-associated disorders. However, efficacy of targeting mTOR to treat age-related macular degeneration remains largely elusive. Here, we validated the therapeutic efficacy of the mTOR inhibitors, Torin and PP242, in clearing amyloid-β by inducing the autophagy-lysosome pathway in a mouse model with pathogenic amyloid-β with tight junction disruption of RPE, which is evident in dry age-related macular degeneration. High concentration of amyloid-β oligomers induced autophagy-lysosome pathway impairment accompanied by the accumulation of p62 and decreased lysosomal activity in RPE cells. However, Torin and PP242 treatment restored the lysosomal activity via activation of LAMP2 and facilitated the clearance of amyloid-β in vitro and in vivo. Furthermore, clearance of amyloid-β by Torin and PP242 ameliorated the tight junction disruption of RPE in vivo. Overall, our findings suggest mTOR inhibition as a new therapeutic strategy for the restoration of tight junctions in age-related macular degeneration.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Su Hyun Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea
| | - Minsol Jeon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Chang Sik Cho
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Da-Eun Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
24
|
Hao XN, Zhao N, Huang JM, Li SY, Wei D, Pu N, Peng GH, Tao Y. Intravitreal Injection of ZYAN1 Restored Autophagy and Alleviated Oxidative Stress in Degenerating Retina via the HIF-1α/BNIP3 Pathway. Antioxidants (Basel) 2023; 12:1914. [PMID: 38001767 PMCID: PMC10669006 DOI: 10.3390/antiox12111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial autophagy plays a contributary role in the pathogenesis of retina degeneration (RD). ZYAN1 is a novel proline hydroxylase domain (PHD) inhibitor that can enhance the expression of hypoxia-inducible factor 1-alpha (HIF-1α). This study investigated whether ZYAN1 could alleviate progressive photoreceptor loss and oxidative damage in a pharmacologically induced RD model via the modulation of mitophagy. ZYAN1 was injected into the vitreous body of the RD model, and the retinal autophagy level was analyzed. The therapeutic effects of ZYAN1 were evaluated via a function examination, a morphological assay, in situ reactive oxygen species (ROS) detection, and an immunofluorescence assay. It was shown that the thickness of the outer nuclear layer (ONL) increased significantly, and visual function was efficiently preserved via ZYAN1 treatment. The mitochondria structure of photoreceptors was more complete in the ZYAN1-treated mice, and the number of autophagosomes also increased significantly. Membrane disc shedding and ROS overproduction were alleviated after ZYAN1 treatment, and the axonal cilia were more structurally intact. A Western blot analysis showed that the expression levels of the autophagy-related proteins LC3-B, Beclin-1, and ATG5 increased significantly after ZYAN1 treatment, while the expression of P62 was down-regulated. Moreover, the expression levels of HIF-1α and BNIP3 were up-regulated after ZYAN1 treatment. Therefore, an intravitreal injection of ZYAN1 can act as part of the pharmacologic strategy to modulate mitophagy and alleviate oxidative stress in RD. These findings enrich our knowledge of RD pathology and provide insights for the discovery of a therapeutic molecule.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guang-Hua Peng
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; (X.-N.H.); (N.Z.); (J.-M.H.); (S.-Y.L.); (D.W.); (N.P.)
| | - Ye Tao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; (X.-N.H.); (N.Z.); (J.-M.H.); (S.-Y.L.); (D.W.); (N.P.)
| |
Collapse
|
25
|
Ren C, Cui H, Bao X, Huang L, He S, Fong HKW, Zhao M. Proteopathy Linked to Exon-Skipping Isoform of RGR-Opsin Contributes to the Pathogenesis of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:41. [PMID: 37883094 PMCID: PMC10615142 DOI: 10.1167/iovs.64.13.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose Proteopathy is believed to contribute to age-related macular degeneration (AMD). Much research indicates that AMD begins in the retinal pigment epithelium (RPE), which is associated with formation of extracellular drusen, a clinical hallmark of AMD. Human RPE produces a drusen-associated abnormal protein, the exon Ⅵ-skipping splice isoform of retinal G protein-coupled receptor (RGR-d). In this study, we investigate the detrimental effects of RGR-d on cultured cells and mouse retina. Methods ARPE-19 cells were stably infected by lentivirus overexpressing RGR or RGR-d and were treated with MG132, sometimes combined with or without endoplasmic reticulum (ER) stress inducer, tunicamycin. RGR and RGR-d protein expression, degeneration pathway, and potential cytotoxicity were explored. Homozygous RGR-d mice aged 8 or 14 months were fed with a high-fat diet for 3 months and then subjected to ocular examination and histopathology experiments. Results We confirm that RGR-d is proteotoxic under various conditions. In ARPE-19 cells, RGR-d is misfolded and almost completely degraded via the ubiquitin-proteasome system. Unlike normal RGR, RGR-d increases ER stress, triggers the unfolded protein response, and exerts potent cytotoxicity. Aged RGR-d mice manifest disrupted RPE cell integrity, apoptotic photoreceptors, choroidal deposition of complement C3, and CD86+CD32+ proinflammatory cell infiltration into retina and RPE-choroid. Furthermore, the AMD-like phenotype of RGR-d mice can be aggravated by a high-fat diet. Conclusions Our study confirmed the pathogenicity of the RGR splice isoform and corroborated a significant role of proteopathy in AMD. These findings may contribute to greater comprehension of the multifactorial causes of AMD.
Collapse
Affiliation(s)
- Chi Ren
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Haoran Cui
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuan Bao
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Lvzhen Huang
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Shikun He
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Henry K. W. Fong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States
| | - Mingwei Zhao
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
26
|
Korb CA, Lackner KJ, Wolters D, Schuster AK, Nickels S, Beutgen VM, Münzel T, Wild PS, Beutel ME, Schmidtmann I, Pfeiffer N, Grus FH. Association of autoantibody levels with different stages of age-related macular degeneration (AMD): Results from the population-based Gutenberg Health Study (GHS). Graefes Arch Clin Exp Ophthalmol 2023; 261:2763-2773. [PMID: 37160502 PMCID: PMC10543519 DOI: 10.1007/s00417-023-06085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
PURPOSE Anti-retinal autoantibodies are assumed to be associated with age-related macular degeneration (AMD). To our knowledge, this is the first evaluation of autoantibodies in human sera of participants with different stages of AMD in a large population-based, observational cohort study in Germany. METHODS The Gutenberg Health Study (GHS) is a population-based, observational cohort study in Germany, including 15,010 participants aged between 35 and 74. Amongst others, non-mydriatic fundus photography (Visucam PRO NM™, Carl Zeiss Meditec AG, Jena, Germany) was performed. Fundus images of the first 5000 participants were graded based on the Rotterdam Eye Study classification. Sera of participants with AMD (n=541) and sera of age-matched participants without AMD (n=490) were analyzed by antigen-microarrays. Besides descriptive statistics, autoantibody-levels were compared by Mann-Whitney-U test and the associations of level of autoantibodies with AMD were calculated by logistic regression analysis. Likewise, possible associations of the autoantibodies and both clinical and laboratory parameters on AMD subjects were analyzed. RESULTS Autoantibodies against transferrin (p<0.001) were significantly downregulated in participants with early AMD and soft, distinct drusen (≥63 μm) or pigmentary abnormalities only compared to Controls. Mitogen-activated protein kinase 3 (p=0.041), glutathione peroxidase 4 (p=0.048), clusterin (p=0.045), lysozyme (p=0.19), protein kinase C substrate 80K-H (p=0.02), heat shock 70 kDa protein 1A (p=0.04) and insulin (p=0.018) show a trend between Control and participants with early AMD and soft, distinct drusen (≥63 μm) or pigmentary abnormalities only. CONCLUSIONS This study contributes to a growing knowledge of autoantibodies in association with different AMD stages compared to controls in the context of a large population-based study in Germany. Especially autoantibodies against inflammatory proteins were downregulated in participants with early AMD and soft, distinct drusen (≥63 μm) or pigmentary abnormalities only.
Collapse
Affiliation(s)
- Christina A Korb
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Karl J Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dominik Wolters
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Alexander K Schuster
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Stefan Nickels
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Vanessa M Beutgen
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine Main, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Manfred E Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Franz H Grus
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
27
|
Shome I, Thathapudi NC, Aramati BMR, Kowtharapu BS, Jangamreddy JR. Stages, pathogenesis, clinical management and advancements in therapies of age-related macular degeneration. Int Ophthalmol 2023; 43:3891-3909. [PMID: 37347455 DOI: 10.1007/s10792-023-02767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal degenerative disorder prevalent in the elderly population, which leads to the loss of central vision. The disease progression can be managed, if not prevented, either by blocking neovascularization ("wet" form of AMD) or by preserving retinal pigment epithelium and photoreceptor cells ("dry" form of AMD). Although current therapeutic modalities are moderately successful in delaying the progression and management of the disease, advances over the past years in regenerative medicine using iPSC, embryonic stem cells, advanced materials (including nanomaterials) and organ bio-printing show great prospects in restoring vision and efficient management of either forms of AMD. This review focuses on the molecular mechanism of the disease, model systems (both cellular and animal) used in studying AMD, the list of various regenerative therapies and the current treatments available. The article also highlights on the recent clinical trials using regenerative therapies and management of the disease.
Collapse
Affiliation(s)
- Ishita Shome
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Neethi C Thathapudi
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Ophthalmology and Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Bindu Madhav Reddy Aramati
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Bhavani S Kowtharapu
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jaganmohan R Jangamreddy
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
28
|
Kaidonis G, Lamy R, Wu J, Yang D, Psaras C, Doan T, Stewart JM. Aqueous Fluid Transcriptome Profiling Differentiates Between Non-Neovascular and Neovascular AMD. Invest Ophthalmol Vis Sci 2023; 64:26. [PMID: 37471072 PMCID: PMC10365141 DOI: 10.1167/iovs.64.10.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Purpose Early and intermediate non-neovascular AMD (NN-AMD) has the potential to progress to either advanced NN-AMD with geographic atrophy, or to neovascular AMD (N-AMD) with CNV. This exploratory study performed an unbiased analysis of aqueous humor transcriptome in patients with early or intermediate NN-AMD vs. treatment-naïve N-AMD to determine the feasibility of using this method in future studies investigating pathways and triggers for conversion from one form to another. Methods Aqueous humor samples were obtained from 20 patients with early or intermediate NN-AMD and 20 patients with untreated N-AMD, graded on clinical examination and optical coherence tomography. Transcriptome profiles were generated using next-generation sequencing methods optimized for ocular samples. Top-ranked transcripts were compared between groups, and pathway enrichment analysis was performed. Results Seventy-eight differentially expressed transcripts were identified. Unsupervised clustering of differentially expressed transcripts was able to successfully differentiate between the two groups based on aqueous transcriptome alone. Pathway analysis highlighted changes in expression of genes associated with mitochondrial respiration, oxidative stress, ubiquitination, and neurogenesis between the two groups. Conclusions This pilot study compared the aqueous fluid transcriptome of patients with early or intermediate NN-AMD and untreated N-AMD. Differences in transcripts and transcriptome pathways identified in the aqueous of patients with early or intermediate NN-AMD compared with patients with N-AMD are consistent with those previously implicated in the pathogenesis of these distinct AMD subtypes. The findings from this exploratory study warrant further investigation using a larger, prospective study design, with the inclusion of a control group of eyes without AMD.
Collapse
Affiliation(s)
- Georgia Kaidonis
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Ricardo Lamy
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, United States
| | - Joshua Wu
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, United States
| | - Daphne Yang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, United States
| | - Catherine Psaras
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, United States
| | - Thuy Doan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Francis I. Proctor Foundation, San Francisco, California, United States
| | - Jay M Stewart
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, United States
| |
Collapse
|
29
|
Nita M, Grzybowski A. Antioxidative Role of Heterophagy, Autophagy, and Mitophagy in the Retina and Their Association with the Age-Related Macular Degeneration (AMD) Etiopathogenesis. Antioxidants (Basel) 2023; 12:1368. [PMID: 37507908 PMCID: PMC10376332 DOI: 10.3390/antiox12071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD), an oxidative stress-linked neurodegenerative disease, leads to irreversible damage of the central retina and severe visual impairment. Advanced age and the long-standing influence of oxidative stress and oxidative cellular damage play crucial roles in AMD etiopathogenesis. Many authors emphasize the role of heterophagy, autophagy, and mitophagy in maintaining homeostasis in the retina. Relevantly modifying the activity of both macroautophagy and mitophagy pathways represents one of the new therapeutic strategies in AMD. Our review provides an overview of the antioxidative roles of heterophagy, autophagy, and mitophagy and presents associations between dysregulations of these molecular mechanisms and AMD etiopathogenesis. The authors performed an extensive analysis of the literature, employing PubMed and Google Scholar, complying with the 2013-2023 period, and using the following keywords: age-related macular degeneration, RPE cells, reactive oxygen species, oxidative stress, heterophagy, autophagy, and mitophagy. Heterophagy, autophagy, and mitophagy play antioxidative roles in the retina; however, they become sluggish and dysregulated with age and contribute to AMD development and progression. In the retina, antioxidative roles also play in RPE cells, NFE2L2 and PGC-1α proteins, NFE2L2/PGC-1α/ARE signaling cascade, Nrf2 factor, p62/SQSTM1/Keap1-Nrf2/ARE pathway, circulating miRNAs, and Yttrium oxide nanoparticles performed experimentally in animal studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", 40-231 Katowice, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland
| |
Collapse
|
30
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
31
|
Si Z, Zheng Y, Zhao J. The Role of Retinal Pigment Epithelial Cells in Age-Related Macular Degeneration: Phagocytosis and Autophagy. Biomolecules 2023; 13:901. [PMID: 37371481 DOI: 10.3390/biom13060901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD) causes vision loss in the elderly population. Dry AMD leads to the formation of Drusen, while wet AMD is characterized by cell proliferation and choroidal angiogenesis. The retinal pigment epithelium (RPE) plays a key role in AMD pathogenesis. In particular, helioreceptor renewal depends on outer segment phagocytosis of RPE cells, while RPE autophagy can protect cells from oxidative stress damage. However, when the oxidative stress burden is too high and homeostasis is disturbed, the phagocytosis and autophagy functions of RPE become damaged, leading to AMD development and progression. Hence, characterizing the roles of RPE cell phagocytosis and autophagy in the pathogenesis of AMD can inform the development of potential therapeutic targets to prevent irreversible RPE and photoreceptor cell death, thus protecting against AMD.
Collapse
Affiliation(s)
- Zhibo Si
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
32
|
Pinelli R, Ferrucci M, Berti C, Biagioni F, Scaffidi E, Bumah VV, Busceti CL, Lenzi P, Lazzeri G, Fornai F. The Essential Role of Light-Induced Autophagy in the Inner Choroid/Outer Retinal Neurovascular Unit in Baseline Conditions and Degeneration. Int J Mol Sci 2023; 24:ijms24108979. [PMID: 37240326 DOI: 10.3390/ijms24108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Caterina Berti
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Elena Scaffidi
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry College of Sciences San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Knoxville, TN 37996, USA
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| |
Collapse
|
33
|
Chang YJ, Jenny L, Li YS, Cui X, Kong Y, Li Y, Sparrow J, Tsang S. CRISPR editing demonstrates rs10490924 raised oxidative stress in iPSC-derived retinal cells from patients with ARMS2/HTRA1-related AMD. Proc Natl Acad Sci U S A 2023; 120:e2215005120. [PMID: 37126685 PMCID: PMC10175836 DOI: 10.1073/pnas.2215005120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 05/03/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified genetic risk loci for age-related macular degeneration (AMD) on the chromosome 10q26 (Chr10) locus and are tightly linked: the A69S (G>T) rs10490924 single-nucleotide variant (SNV) and the AATAA-rich insertion-deletion (indel, del443/ins54), which are found in the age-related maculopathy susceptibility 2 (ARMS2) gene, and the G512A (G>A) rs11200638 SNV, which is found in the high-temperature requirement A serine peptidase 1 (HTRA1) promoter. The fourth variant is Y402H complement factor H (CFH), which directs CFH signaling. CRISPR manipulation of retinal pigment epithelium (RPE) cells may allow one to isolate the effects of the individual SNV and thus identify SNV-specific effects on cell phenotype. Clustered regularly interspaced short palindromic repeats (CRISPR) editing demonstrates that rs10490924 raised oxidative stress in induced pluripotent stem cell (iPSC)-derived retinal cells from patients with AMD. Sodium phenylbutyrate preferentially reverses the cell death caused by ARMS2 rs10490924 but not HTRA1 rs11200638. This study serves as a proof of concept for the use of patient-specific iPSCs for functional annotation of tightly linked GWAS to study the etiology of a late-onset disease phenotype. More importantly, we demonstrate that antioxidant administration may be useful for reducing reactive oxidative stress in AMD, a prevalent late-onset neurodegenerative disorder.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Laura A. Jenny
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Yong-Shi Li
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Xuan Cui
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Yang Kong
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Yao Li
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Janet R. Sparrow
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
- Department of Ophthalmology, Columbia University, New York, NY10032
- Department of Biomedical Engineering, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
| | - Stephen H. Tsang
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
- Department of Ophthalmology, Columbia University, New York, NY10032
- Department of Biomedical Engineering, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
- Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, NY10032
| |
Collapse
|
34
|
Ma JY, Greferath U, Wong JH, Fothergill LJ, Jobling AI, Vessey KA, Fletcher EL. Aging induces cell loss and a decline in phagosome processing in the mouse retinal pigment epithelium. Neurobiol Aging 2023; 128:1-16. [PMID: 37130462 DOI: 10.1016/j.neurobiolaging.2023.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss and dysfunction in the retinal pigment epithelium (RPE) with age is known to contribute to disease development. The aim of this study was to investigate how the C57BL/6J mouse RPE changes with age. RPE structure was found to change with age and eccentricity, with cell size increasing, nuclei lost, and tight junctions altered in the peripheral retina. Phagocytosis of photoreceptor outer segments (POS) by the RPE was investigated using gene expression analysis and histology. RNA-Seq transcriptomic gene profiling of the RPE showed a downregulation of genes involved in phagosome processing and histological analysis showed a decline in phagosome-lysosome association in the aged tissue. In addition, failures in the autophagy pathway that modulates intracellular waste degradation were observed in the aged RPE tissue. These findings highlight that RPE cell loss and slowing of POS processing contribute to RPE dysfunction with age and may predispose the aging eye to AMD development.
Collapse
|
35
|
Ramírez-Pardo I, Villarejo-Zori B, Jiménez-Loygorri JI, Sierra-Filardi E, Alonso-Gil S, Mariño G, de la Villa P, Fitze PS, Fuentes JM, García-Escudero R, Ferrington DA, Gomez-Sintes R, Boya P. Ambra1 haploinsufficiency in CD1 mice results in metabolic alterations and exacerbates age-associated retinal degeneration. Autophagy 2023; 19:784-804. [PMID: 35875981 PMCID: PMC9980615 DOI: 10.1080/15548627.2022.2103307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macroautophagy/autophagy is a key process in the maintenance of cellular homeostasis. The age-dependent decline in retinal autophagy has been associated with photoreceptor degeneration. Retinal dysfunction can also result from damage to the retinal pigment epithelium (RPE), as the RPE-retina constitutes an important metabolic ecosystem that must be finely tuned to preserve visual function. While studies of mice lacking essential autophagy genes have revealed a predisposition to retinal degeneration, the consequences of a moderate reduction in autophagy, similar to that which occurs during physiological aging, remain unclear. Here, we described a retinal phenotype consistent with accelerated aging in mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene. These mice showed protein aggregation in the retina and RPE, metabolic underperformance, and premature vision loss. Moreover, Ambra1+/gt mice were more prone to retinal degeneration after RPE stress. These findings indicate that autophagy provides crucial support to RPE-retinal metabolism and protects the retina against stress and physiological aging.Abbreviations : 4-HNE: 4-hydroxynonenal; AMBRA1: autophagy and beclin 1 regulator 1, AMD: age-related macular degeneration;; GCL: ganglion cell layer; GFAP: glial fibrillary acidic protein; GLUL: glutamine synthetase/glutamate-ammonia ligase; HCL: hierarchical clustering; INL: inner nuclear layer; IPL: inner plexiform layer; LC/GC-MS: liquid chromatography/gas chromatography-mass spectrometry; MA: middle-aged; MTDR: MitoTracker Deep Red; MFI: mean fluorescence intensity; NL: NH4Cl and leupeptin; Nqo: NAD(P)H quinone dehydrogenase; ONL: outer nuclear layer; OPL: outer plexiform layer; OP: oscillatory potentials; OXPHOS: oxidative phosphorylation; PCR: polymerase chain reaction; PRKC/PKCα: protein kinase C; POS: photoreceptor outer segment; RGC: retinal ganglion cells; RPE: retinal pigment epithelium; SI: sodium iodate; TCA: tricarboxylic acid.
Collapse
Affiliation(s)
- Ignacio Ramírez-Pardo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Elena Sierra-Filardi
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Sandra Alonso-Gil
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | | | - Pedro de la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain.,Vision neurophisiology group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patrick S Fitze
- Departament of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - José Manuel Fuentes
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Nerodegenerative Diseases unit, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT, Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Raquel Gomez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
36
|
Quantitative Autofluorescence in Non-Neovascular Age Related Macular Degeneration. Biomedicines 2023; 11:biomedicines11020560. [PMID: 36831096 PMCID: PMC9952913 DOI: 10.3390/biomedicines11020560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Quantitative autofluorescence (qAF8) level is a presumed surrogate marker of lipofuscin content in the retina. We investigated the changes in the qAF8 levels in non-neovascular AMD. In this prospective cohort study, Caucasians aged ≥50 years with varying severity of non-neovascular AMD in at least one eye and Snellen visual acuity ≥6/18 were recruited. The qAF8 levels were analysed in the middle eight segments of the Delori pattern (HEYEX software, Heidelberg, Germany). The AMD categories were graded using both the Beckman classification and multimodal imaging (MMI) to include the presence of subretinal drusenoid deposits (SDD). A total of 353 eyes from 231 participants were analyzed. Compared with the age-matched controls, the qAF8 values decreased in the eyes with AMD (adjusted % difference = -19.7% [95% CI -28.8%, -10.4%]; p < 0.001) and across the AMD categories, (adjusted % differences; Early, -13.1% (-24.4%, -1%), p = 0.04; intermediate AMD (iAMD), -22.9% (-32.3%, -13.1%), p < 0.001; geographic atrophy -25.2% (-38.1%, -10.4%), p = 0.002). On MMI, the qAF8 was reduced in the AMD subgroups relative to the controls, (adjusted % differences; Early, -5.8% (-18.9%, 8.3%); p = 0.40; iAMD, -26.7% (-36.2%, -15.6%); p < 0.001; SDD, -23.7% (-33.6%, -12.2%); p < 0.001; atrophy, -26.7% (-39.3%, -11.3%), p = 0.001). The qAF8 levels declined early in AMD and were not significantly different between the severity levels of non-neovascular AMD, suggesting the early and sustained loss of function of the retinal pigment epithelium in AMD.
Collapse
|
37
|
Kaarniranta K, Blasiak J, Liton P, Boulton M, Klionsky DJ, Sinha D. Autophagy in age-related macular degeneration. Autophagy 2023; 19:388-400. [PMID: 35468037 PMCID: PMC9851256 DOI: 10.1080/15548627.2022.2069437] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with limited understanding of its pathogenesis and a lack of effective treatment. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to geographic atrophy and/or choroidal neovascularization and fibrosis. The role of macroautophagy/autophagy in AMD pathology is steadily emerging. This review describes selective and secretory autophagy and their role in drusen biogenesis, senescence-associated secretory phenotype, inflammation and epithelial-mesenchymal transition in the pathogenesis of AMD.Abbreviations: Aβ: amyloid-beta; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ATF6: activating transcription factor 6; ATG: autophagy related; BACE1: beta-secretase 1; BHLHE40: basic helix-loop-helix family member e40; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; C: complement; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CFB: complement factor B; DELEC1/Dec1; deleted in esophageal cancer 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMT: epithelial-mesenchymal transition; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; IL: interleukin; KEAP1: kelch like ECH associated protein 1; LAP: LC3-associated phagocytosis; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NFE2L2: NFE2 like bZIP transcription factor 2; NLRP3; NLR family pyrin domain containing 3; NFKB/NFκB: nuclear factor kappa B; OPTN: optineurin; PARL: presenilin associated rhomboid like; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; PINK1: PTEN induced kinase 1; POS: photoreceptor outer segment; PPARGC1A: PPARG coactivator 1 alpha; PRKN: parkin RBR E3 ubiquitin protein ligase; PYCARD/ASC: PYD and CARD domain containing; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SA: secretory autophagy; SASP: senescence-associated secretory phenotype; SEC22B: SEC22 homolog B, vesicle trafficking protein; SNAP: synaptosome associated protein; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX: syntaxin; TGFB2: transforming growth factor beta 2; TRIM16: tripartite motif containing 16; TWIST: twist family bHLH transcription factor; Ub: ubiquitin; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; V-ATPase: vacuolar-type H+-translocating ATPase; VIM: vimentin.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Paloma Liton
- Duke University, Department of Ophthalmology, Durham, NC, USA
| | - Michael Boulton
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, AL, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Debasish Sinha
- University of Pittsburgh School of Medicine, Departments of Ophthalmology, Cell Biology, and Developmental Biology, Pittsburgh, PA, USA
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Cohen-Gulkar M, David A, Messika-Gold N, Eshel M, Ovadia S, Zuk-Bar N, Idelson M, Cohen-Tayar Y, Reubinoff B, Ziv T, Shamay M, Elkon R, Ashery-Padan R. The LHX2-OTX2 transcriptional regulatory module controls retinal pigmented epithelium differentiation and underlies genetic risk for age-related macular degeneration. PLoS Biol 2023; 21:e3001924. [PMID: 36649236 PMCID: PMC9844853 DOI: 10.1371/journal.pbio.3001924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023] Open
Abstract
Tissue-specific transcription factors (TFs) control the transcriptome through an association with noncoding regulatory regions (cistromes). Identifying the combination of TFs that dictate specific cell fate, their specific cistromes and examining their involvement in complex human traits remain a major challenge. Here, we focus on the retinal pigmented epithelium (RPE), an essential lineage for retinal development and function and the primary tissue affected in age-related macular degeneration (AMD), a leading cause of blindness. By combining mechanistic findings in stem-cell-derived human RPE, in vivo functional studies in mice and global transcriptomic and proteomic analyses, we revealed that the key developmental TFs LHX2 and OTX2 function together in transcriptional module containing LDB1 and SWI/SNF (BAF) to regulate the RPE transcriptome. Importantly, the intersection between the identified LHX2-OTX2 cistrome with published expression quantitative trait loci, ATAC-seq data from human RPE, and AMD genome-wide association study (GWAS) data, followed by functional validation using a reporter assay, revealed a causal genetic variant that affects AMD risk by altering TRPM1 expression in the RPE through modulation of LHX2 transcriptional activity on its promoter. Taken together, the reported cistrome of LHX2 and OTX2, the identified downstream genes and interacting co-factors reveal the RPE transcription module and uncover a causal regulatory risk single-nucleotide polymorphism (SNP) in the multifactorial common blinding disease AMD.
Collapse
Affiliation(s)
- Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Ahuvit David
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Naama Messika-Gold
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Mai Eshel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Nitay Zuk-Bar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and Department of Gynecology, Jerusalem, Israel
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and Department of Gynecology, Jerusalem, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (RE); (RAP)
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (RE); (RAP)
| |
Collapse
|
39
|
Hytti M, Ruuth J, Kanerva I, Bhattarai N, Pedersen ML, Nielsen CU, Kauppinen A. Phloretin inhibits glucose transport and reduces inflammation in human retinal pigment epithelial cells. Mol Cell Biochem 2023; 478:215-227. [PMID: 35771396 PMCID: PMC9836970 DOI: 10.1007/s11010-022-04504-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/15/2022] [Indexed: 01/24/2023]
Abstract
During age-related macular degeneration (AMD), chronic inflammatory processes, possibly fueled by high glucose levels, cause a breakdown of the retinal pigment epithelium (RPE), leading to vision loss. Phloretin, a natural dihydroxychalcone found in apples, targets several anti-inflammatory signaling pathways and effectively inhibits transporter-mediated glucose uptake. It could potentially prevent inflammation and cell death of RPE cells through either direct regulation of inflammatory signaling pathways or through amelioration of high glucose levels. To test this hypothesis, ARPE-19 cells were incubated with or without phloretin for 1 h before exposure to lipopolysaccharide (LPS). Cell viability and the release of pro-inflammatory cytokines interleukin 6 (IL-6), IL-8 and vascular endothelial growth factor (VEGF) were measured. Glucose uptake was studied using isotope uptake studies. The nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were determined alongside the phosphorylation levels of mitogen-activated protein kinases. Phloretin pretreatment reduced the LPS-induced release of IL-6 and IL-8 as well as VEGF. Phloretin increased intracellular levels of reactive oxygen species and nuclear translocation of Nrf2. It also inhibited glucose uptake into ARPE-19 cells and the phosphorylation of Jun-activated kinase (JNK). Subsequent studies revealed that Nrf2, but not the inhibition of glucose uptake or JNK phosphorylation, was the main pathway of phloretin's anti-inflammatory activities. Phloretin was robustly anti-inflammatory in RPE cells and reduced IL-8 secretion via activation of Nrf2 but the evaluation of its potential in the treatment or prevention of AMD requires further studies.
Collapse
Affiliation(s)
- Maria Hytti
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Johanna Ruuth
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland ,School of Medicine, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Iiris Kanerva
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Niina Bhattarai
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Maria L. Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Carsten U. Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Anu Kauppinen
- School of Pharmacy, Department of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| |
Collapse
|
40
|
Álvarez-Barrios A, Álvarez L, Artime E, García M, Lengyel I, Pereiro R, González-Iglesias H. Altered zinc homeostasis in a primary cell culture model of the retinal pigment epithelium. Front Nutr 2023; 10:1124987. [PMID: 37139441 PMCID: PMC10149808 DOI: 10.3389/fnut.2023.1124987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
The retinal pigment epithelium (RPE) is progressively degenerated during age-related macular degeneration (AMD), one of the leading causes of irreversible blindness, which clinical hallmark is the buildup of sub-RPE extracellular material. Clinical observations indicate that Zn dyshomeostasis can initiate detrimental intracellular events in the RPE. In this study, we used a primary human fetal RPE cell culture model producing sub-RPE deposits accumulation that recapitulates features of early AMD to study Zn homeostasis and metalloproteins changes. RPE cell derived samples were collected at 10, 21 and 59 days in culture and processed for RNA sequencing, elemental mass spectrometry and the abundance and cellular localization of specific proteins. RPE cells developed processes normal to RPE, including intercellular unions formation and expression of RPE proteins. Punctate deposition of apolipoprotein E, marker of sub-RPE material accumulation, was observed from 3 weeks with profusion after 2 months in culture. Zn cytoplasmic concentrations significantly decreased 0.2 times at 59 days, from 0.264 ± 0.119 ng·μg-1 at 10 days to 0.062 ± 0.043 ng·μg-1 at 59 days (p < 0.05). Conversely, increased levels of Cu (1.5-fold in cytoplasm, 5.0-fold in cell nuclei and membranes), Na (3.5-fold in cytoplasm, 14.0-fold in cell nuclei and membranes) and K (6.8-fold in cytoplasm) were detected after 59-days long culture. The Zn-regulating proteins metallothioneins showed significant changes in gene expression over time, with a potent down-regulation at RNA and protein level of the most abundant isoform in primary RPE cells, from 0.141 ± 0.016 ng·mL-1 at 10 days to 0.056 ± 0.023 ng·mL-1 at 59 days (0.4-fold change, p < 0.05). Zn influx and efflux transporters were also deregulated, along with an increase in oxidative stress and alterations in the expression of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. The RPE cell model producing early accumulation of extracellular deposits provided evidences on an altered Zn homeostasis, exacerbated by changes in cytosolic Zn-binding proteins and Zn transporters, along with variations in other metals and metalloproteins, suggesting a potential role of altered Zn homeostasis during AMD development.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Lydia Álvarez,
| | - Enol Artime
- Fundación de Investigación Oftalmológica, Oviedo, Spain
| | | | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- *Correspondence: Héctor González-Iglesias,
| |
Collapse
|
41
|
Chowdhury O, Ghosh S, Das A, Liu H, Shang P, Stepicheva NA, Hose S, Sinha D, Chattopadhyay S. Sustained systemic inflammation increases autophagy and induces EMT/fibrotic changes in mouse liver cells: Protection by melatonin. Cell Signal 2023; 101:110521. [PMID: 36375715 DOI: 10.1016/j.cellsig.2022.110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The unending lifestyle stressors along with genetic predisposition, environmental factors and infections have pushed the immune system into a state of constant activity, leading to unresolved inflammation and increased vulnerability to chronic diseases. Liver fibrosis, an early-stage liver condition that increases the risk of developing liver diseases like cirrhosis and hepatocellular carcinoma, is among the various diseases linked to inflammation that dominate worldwide morbidity and mortality. We developed a mouse model with low-grade lipopolysaccharide (LPS) exposure that shows hepatic damage and a pro-inflammatory condition in the liver. We show that inflammation and oxidative changes increase autophagy in liver cells, a degradation process critical in maintaining cellular homeostasis. Our findings from in vivo and in vitro studies also show that induction of both inflammation and autophagy trigger epithelial-mesenchymal transition (EMT) and pro-fibrotic changes in hepatocytes. Inhibiting the inflammatory pathways with a naturally occurring NF-κB inhibitor and antioxidant, melatonin, could assuage the changes in autophagy and activation of EMT/fibrotic pathways in hepatocytes. Taken together, this study shows a pathway linking inflammation and autophagy which could be targeted for future drug development to delay the progression of liver fibrosis.
Collapse
Affiliation(s)
- Olivia Chowdhury
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata 700098, India.
| |
Collapse
|
42
|
Zhou T, Yang Z, Ni B, Zhou H, Xu H, Lin X, Li Y, Liu C, Ju R, Ge J, He C, Liu X. IL-4 induces reparative phenotype of RPE cells and protects against retinal neurodegeneration via Nrf2 activation. Cell Death Dis 2022; 13:1056. [PMID: 36539414 PMCID: PMC9768119 DOI: 10.1038/s41419-022-05433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Retinal degeneration is a kind of neurodegeneration characterized by progressive neuronal death and dysfunction of retinal pigment epithelium (RPE) cells, leading to permanent visual impairment. It still lacks effective therapeutic options and new drugs are highly warranted. In this study, we found the expression of IL-4, a critical regulator of immunity, was reduced in both patients and mouse models. Importantly, exogenous intravitreal IL-4 application could exert a novel neuroprotective effect, characterized by well-preserved RPE layer and neuroretinal structure, as well as amplified wave-amplitudes in ERG. The RNA-seq analysis revealed that IL-4 treatment suppressed the essential oxidative and pro-inflammatory pathways in the degenerative retina. Particularly, IL-4 upregulated the IL-4Rα on RPE cells and induced a reparative phenotype via the activation of Nrf2 both in vitro and in vivo. Furthermore, the Nrf2-/- mice displayed no recovery in response to IL-4 application, highlighting a significant role of Nrf2 in IL-4-mediated protection. Our data provides evidence that IL-4 protects against retinal neurodegeneration by its antioxidant and anti-inflammatory property through IL-4Rα upregulation and Nrf2 activation in RPE cells. The IL-4/IL-4Rα-Nrf2 axis maybe the potential targets for the development of novel therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Zhou
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Ziqi Yang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Biyan Ni
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Hong Zhou
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Huiyi Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Xiaojing Lin
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Yingmin Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Chunqiao Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Rong Ju
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Jian Ge
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Chang He
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Xialin Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| |
Collapse
|
43
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
44
|
Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms232314759. [PMID: 36499086 PMCID: PMC9735888 DOI: 10.3390/ijms232314759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common ocular disease characterized by degeneration of the central area of the retina in the elderly population. Progression and response to treatment are influenced by genetic and non-genetic factors. Proteomics is a powerful tool to study, at the molecular level, the mechanisms underlying the progression of the disease, to identify new therapeutic targets and to establish biomarkers to monitor progression and treatment effectiveness. In this work, we systematically review the use of proteomics-based approaches for the study of the molecular mechanisms underlying the development of AMD, as well as the progression of the disease and on-treatment patient monitoring. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines were followed. Proteomic approaches have identified key players in the onset of the disease, such as complement components and proteins involved in lipid metabolism and oxidative stress, but also in the progression to advanced stages, including factors related to extracellular matrix integrity and angiogenesis. Although anti-vascular endothelial growth factor (anti-VEGF)-based therapy has been crucial in the treatment of neovascular AMD, it is necessary to deepen our understanding of the underlying disease mechanisms to move forward to next-generation therapies for later-stage forms of this multifactorial disease.
Collapse
|
45
|
Guo R, Chen P, Fu T, Zhang R, Zhu Y, Jin N, Xu H, Xia Y, Tian X. Activation of Delta-Opioid Receptor Protects ARPE19 Cells against Oxygen-Glucose Deprivation/Reoxygenation-Induced Necroptosis and Apoptosis by Inhibiting the Release of TNF- α. J Ophthalmol 2022; 2022:2285663. [PMID: 36457949 PMCID: PMC9708366 DOI: 10.1155/2022/2285663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 09/22/2023] Open
Abstract
PURPOSE Retinal ischemia-reperfusion injury (RIRI) is the basis of the pathology that leads to many retinal diseases and induces necroptosis and apoptosis. Tumor necrosis factor-α (TNF-α) is critically involved in necroptosis and apoptosis. Delta-opioid receptor (DOR) activation inhibits TNF-α release in our previous studies, it might prevent necroptosis and apoptosis by inhibiting the release of TNF-α. However, the role of TNF-α and DOR in necroptosis and apoptosis of retinal pigment epithelial (RPE) cells remains largely unknown. Here, we explored the mechanisms of TNF-α and DOR in necroptosis and apoptosis using an oxygen-glucose deprivation/reoxygenation (OGD/R) model of adult retinal pigment epithelial cell line-19 (ARPE19) cells. MATERIALS AND METHODS ARPE19 cells were exposed to OGD/R conditions to mimic RIRI in vitro. Cell viability was quantified using the Cell Counting Kit-8 (CCK-8) assay. Morphological changes were observed by inverted microscopy. TNF-α protein levels in cell lysates were measured by enzyme-linked immunosorbent assay (ELISA). The DOR agonist TAN-67 and antagonist naltrindole (NTI) were used to pretreat cells for 1 or 2 hours before OGD24/R36 administration. Calcein acetoxymethylester/propidium iodide (Calcein-AM/PI) and Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining were used to detect necroptotic and apoptotic ARPE19 cells, respectively. The protein expression of DOR, p-RIP1 (RIP1), p-RIP3 (RIP3), p-MLKL (MLKL), and cleaved Caspase3 (Caspase3) was measured by western blotting. RESULTS OGD severely damaged ARPE19 cells. Prolonged reoxygenation significantly increased TNF-α level and decreased DOR expression in ARPE19 cells. Pretreatment with the DOR agonist TAN-67 (10 µM) significantly improved ARPE19 cell viability after OGD24/R36 by reducing the number of necroptotic and apoptotic cells. Furthermore, DOR activation significantly inhibited TNF-α release and suppressed the expression of proteins related to necroptosis and apoptosis, including p-RIP1, p-RIP3, p-MLKL, and cleaved Caspase3, after OGD24/R36. This effect was reversed by the DOR antagonist NTI. CONCLUSION These results strongly suggest that DOR activation inhibits necroptosis and apoptosis by decreasing TNF-α release, leading to the prevention of OGD/R-induced injury in ARPE19 cells. This study provides an innovative idea for clinical treatment strategies for retinal damage and vision loss due to RIRI.
Collapse
Affiliation(s)
- Runjie Guo
- Experiment Center of Science and Technology, Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Chen
- Experiment Center of Science and Technology, Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tiantian Fu
- Experiment Center of Science and Technology, Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ren Zhang
- Shanghai Chinese Medicine Literature Museum, Shanghai 201203, China
| | - Yuan Zhu
- Shanghai Jinshan District Hospital of Traditional Chinese and Western Medicine, Shanghai 201501, China
| | - Nange Jin
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX 77204, USA
| | - Hong Xu
- Department of Acupuncture-Moxibustion, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong Xia
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuesong Tian
- Experiment Center of Science and Technology, Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
46
|
Dissecting Regulators of Aging and Age-Related Macular Degeneration in the Retinal Pigment Epithelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6009787. [PMID: 36439688 PMCID: PMC9683958 DOI: 10.1155/2022/6009787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD), the leading cause of blindness in elderly populations, involves the loss of central vision due to progressive dysfunction of the retinal pigment epithelium (RPE) and subsequent loss of light-sensing photoreceptors. While age is a key risk factor, not every aged individual develops AMD. Thus, the critical question is what specific cellular changes tip the balance from healthy aging to disease. To distinguish between changes associated with aging and AMD, we compared the RPE proteome in human eye bank tissue from nondiseased donors during aging (n = 50, 29-91 years) and in donors with AMD (n = 36) compared to age-matched donors without disease (n = 28). Proteins from RPE cells were separated on two-dimensional gels, analyzed for content, and identified using mass spectrometry. A total of 58 proteins displayed significantly altered content with either aging or AMD. Proteins involved in metabolism, protein turnover, stress response, and cell death were altered with both aging and AMD. However, the direction of change was predominantly opposite. With aging, we detected an overall decrease in metabolism and reductions in stress-associated proteins, proteases, and chaperones. With AMD, we observed upregulation of metabolic proteins involved in glycolysis, TCA, and fatty acid metabolism, with a concurrent decline in oxidative phosphorylation, suggesting a reprogramming of energy utilization. Additionally, we detected upregulation of proteins involved in the stress response and protein turnover. Predicted upstream regulators also showed divergent results, with inhibition of inflammation and immune response with aging and activation of these processes with AMD. Our results support the idea that AMD is not simply advanced aging but rather the culmination of perturbed protein homeostasis, defective bioenergetics, and increased oxidative stress within the aging RPE, exacerbated by environmental factors and the genetic background of an individual.
Collapse
|
47
|
Choi YK. An Altered Neurovascular System in Aging-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms232214104. [PMID: 36430581 PMCID: PMC9694120 DOI: 10.3390/ijms232214104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The eye has a complex and metabolically active neurovascular system. Repeated light injuries induce aging and trigger age-dependent eye diseases. Damage to blood vessels is related to the disruption of the blood-retinal barrier (BRB), altered cellular communication, disrupted mitochondrial functions, and exacerbated aggregated protein accumulation. Vascular complications, such as insufficient blood supply and BRB disruption, have been suggested to play a role in glaucoma, age-related macular degeneration (AMD), and Alzheimer's disease (AD), resulting in neuronal cell death. Neuronal loss can induce vision loss. In this review, we discuss the importance of the neurovascular system in the eye, especially in aging-related diseases such as glaucoma, AMD, and AD. Beneficial molecular pathways to prevent or slow down retinal pathologic processes will also be discussed.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
48
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
49
|
Blasiak J, Sobczuk P, Pawlowska E, Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev 2022; 81:101735. [PMID: 36113764 DOI: 10.1016/j.arr.2022.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of β-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch's membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland; Department of Orthopaedics and Traumatology, Polish Mothers' Memorial Hospital - Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, FI-70029 Finland
| |
Collapse
|
50
|
Segurado A, Rodríguez-Carrillo A, Castellanos B, Hernández-Galilea E, Velasco A, Lillo C. Scribble basal polarity acquisition in RPE cells and its mislocalization in a pathological AMD-like model. Front Neuroanat 2022; 16:983151. [PMID: 36213611 PMCID: PMC9539273 DOI: 10.3389/fnana.2022.983151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Apicobasal polarity is a hallmark of retinal pigment epithelium cells and is required to perform their functions; however, the precise roles of the different proteins that execute polarity are still poorly understood. Here, we have studied the expression and location of Scribble, the core member of the polarity basal protein complex in epithelial-derived cells, in human and mouse RPE cells in both control and pathological conditions. We found that Scribble specifically localizes at the basolateral membrane of mouse and human RPE cells. In addition, we observed an increase in the expression of Scribble during human RPE development in culture, while it acquires a well-defined basolateral pattern as this process is completed. Finally, the expression and location of Scribble were analyzed in human RPE cells in experimental conditions that mimic the toxic environment suffered by these cells during AMD development and found an increase in Scribble expression in cells that develop a pathological phenotype, suggesting that the protein could be altered in cells under stress conditions, as occurs in AMD. Together, our results demonstrate, for the first time, that Scribble is expressed in both human and mouse RPE and is localized at the basolateral membrane in mature cells. Furthermore, Scribble shows impaired expression and location in RPE cells in pathological conditions, suggesting a possible role for this protein in the development of pathologies, such as AMD.
Collapse
Affiliation(s)
- Alicia Segurado
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Plasticity, Degeneration, and Regeneration of the Visual System Group, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Alba Rodríguez-Carrillo
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
| | - Bárbara Castellanos
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
| | - Emiliano Hernández-Galilea
- Plasticity, Degeneration, and Regeneration of the Visual System Group, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Surgery, Ophthalmology Service, University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Almudena Velasco
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Plasticity, Degeneration, and Regeneration of the Visual System Group, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Concepción Lillo
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Plasticity, Degeneration, and Regeneration of the Visual System Group, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Concepción Lillo
| |
Collapse
|