1
|
Hosseinzadeh A, Pourhanifeh MH, Amiri S, Sheibani M, Irilouzadian R, Reiter RJ, Mehrzadi S. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacol Rep 2024; 76:25-50. [PMID: 37995089 DOI: 10.1007/s43440-023-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hashem MA, Alotaibi BS, Elsayed MMA, Alosaimi ME, Hussein AK, Abduljabbar MH, Lee KT, Abdelkader H, El-Mokhtar MA, Hassan AH, Abdel-Rheem AA, Belal A, Saddik MS. Characterization and Bio-Evaluation of the Synergistic Effect of Simvastatin and Folic Acid as Wound Dressings on the Healing Process. Pharmaceutics 2023; 15:2423. [PMID: 37896183 PMCID: PMC10610475 DOI: 10.3390/pharmaceutics15102423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Wound healing is a significant healthcare problem that decreases the patient's quality of life. Hence, several agents and approaches have been widely used to help accelerate wound healing. The challenge is to search for a topical delivery system that could supply long-acting effects, accurate doses, and rapid healing activity. Topical forms of simvastatin (SMV) are beneficial in wound care. This study aimed to develop a novel topical chitosan-based platform of SMV with folic acid (FA) for wound healing. Moreover, the synergistic effect of combinations was determined in an excisional wound model in rats. The prepared SMV-FA-loaded films (SMV-FAPFs) were examined for their physicochemical characterizations and morphology. Box-Behnken Design and response surface methodology were used to evaluate the tensile strength and release characteristics of the prepared SMV-FAPFs. Additionally, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction pattern (XRD), and animal studies were also investigated. The developed SMV-FAPFs showed a contraction of up to 80% decrease in the wound size after ten days. The results of the quantitative real-time polymerase chain reaction (RT-PCR) analysis demonstrated a significant upregulation of dermal collagen type I (CoTI) expression and downregulation of the inflammatory JAK3 expression in wounds treated with SMV-FAPFs when compared to control samples and individual drug treatments. In summary, it can be concluded that the utilization of SMV-FAPFs holds great potential for facilitating efficient and expeditious wound healing, hence presenting a feasible substitute for conventional topical administration methods.
Collapse
Affiliation(s)
- Mahmoud A. Hashem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Manal E. Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amal K. Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.K.H.); (H.A.)
| | - Maram H. Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Life and Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Hamdy Abdelkader
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.K.H.); (H.A.)
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Amany A. Abdel-Rheem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| |
Collapse
|
3
|
Unnisa A, Chettupalli AK, Alazragi RS, Alelwani W, Bannunah AM, Barnawi J, Amarachinta PR, Jandrajupalli SB, Elamine BA, Mohamed OA, Hussain T. Nanostructured Lipid Carriers to Enhance the Bioavailability and Solubility of Ranolazine: Statistical Optimization and Pharmacological Evaluations. Pharmaceuticals (Basel) 2023; 16:1151. [PMID: 37631066 PMCID: PMC10458271 DOI: 10.3390/ph16081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic stable angina pectoris is the primary indication for ranolazine (RZ), an anti-anginal drug. The drug has an anti-ischemic action that is unaffected by either blood pressure or heart rate. Due to the first-pass effect, the drug has a reduced bioavailability of 35 to 50%. The study emphasized developing a novel transdermal drug delivery system of nanostructured lipid carriers (NLCs) for delivering RZ. Many pharmaceutical companies employ lipid nanoparticles as biocompatible carriers for medicinal, cosmetic, and biochemical uses. These carriers are appropriate for many applications, such as topical, transdermal, parenteral, pulmonary, and oral administration, because of the large variety of lipids and surfactants that are readily available for manufacturing. RZ NLCs were made using high-pressure homogenization. Statistical analysis was utilized to find the best formula by varying the concentrations of Precirol ATO 5 (X1), oleic acid (X2), and Tween 80 (X3). Variables such as entrapment effectiveness (EE) (Y1), particle size (Y2), polydispersity index (PDI) (Y3), and zeta potential (Y4) were tested. A variety of tests were performed on the new formulation to ascertain how well it would be absorbed in the body. These tests included in vivo absorption studies, skin permeability assessments, in vitro drug release assessments, and physicochemical analyses. The particle size of RZ-NLCs was shown to be very small (118.4 ± 5.94 nm), with improved EE (88.39 ± 3.1%) and low ZP and PDI (-41.91 ± 0.38 and 0.118 ± 0.028). SEM and TEM analysis confirmed the structure of the NLCs and showed a smooth, spherical surface. Improved RZ-NLCs were used to create NLC gel, which was then tested for elasticity both physically and rheologically. The formulation's elasticity was investigated. Optimized RZ-NLCs and NLCG were found to have transdermal fluxes of 48.369 g/cm2/h and 38.383 g/cm2/h, respectively. These results showed that the transdermal delivery of RZ distribution through NLC's transdermal gel had more significant potential. According to in vivo experiments, the drug's bioavailability in Wistar rats increased when it was delivered through NLCs. The findings demonstrated that NLCs loaded with RZ successfully transported the RZ to the designated site with no interruptions and that a quadratic connection existed between the independent and dependent variables.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Ananda K. Chettupalli
- Department of Pharmaceutical Sciences, Center for Nanomedicine, School of Pharmacy, Anurag 10 University, Venkatapur, Ghatkesar, Medchal, Hyderabad 500088, India; (A.K.C.); (P.R.A.)
| | - Reem S. Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (R.S.A.); (W.A.)
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (R.S.A.); (W.A.)
| | - Azzah M. Bannunah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Padmanabha R. Amarachinta
- Department of Pharmaceutical Sciences, Center for Nanomedicine, School of Pharmacy, Anurag 10 University, Venkatapur, Ghatkesar, Medchal, Hyderabad 500088, India; (A.K.C.); (P.R.A.)
| | - Suresh B. Jandrajupalli
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Badria A. Elamine
- Department of Radiology, College of Applied Medical Sciences, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Omkalthoum A. Mohamed
- Department of Special Education, College of Education, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| |
Collapse
|
4
|
Dreyfuss AD, Velalopoulou A, Avgousti H, Bell BI, Verginadis II. Preclinical models of radiation-induced cardiac toxicity: Potential mechanisms and biomarkers. Front Oncol 2022; 12:920867. [PMID: 36313656 PMCID: PMC9596809 DOI: 10.3389/fonc.2022.920867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) is an important modality in cancer treatment with >50% of cancer patients undergoing RT for curative or palliative intent. In patients with breast, lung, and esophageal cancer, as well as mediastinal malignancies, incidental RT dose to heart or vascular structures has been linked to the development of Radiation-Induced Heart Disease (RIHD) which manifests as ischemic heart disease, cardiomyopathy, cardiac dysfunction, and heart failure. Despite the remarkable progress in the delivery of radiotherapy treatment, off-target cardiac toxicities are unavoidable. One of the best-studied pathological consequences of incidental exposure of the heart to RT is collagen deposition and fibrosis, leading to the development of radiation-induced myocardial fibrosis (RIMF). However, the pathogenesis of RIMF is still largely unknown. Moreover, there are no available clinical approaches to reverse RIMF once it occurs and it continues to impair the quality of life of long-term cancer survivors. Hence, there is an increasing need for more clinically relevant preclinical models to elucidate the molecular and cellular mechanisms involved in the development of RIMF. This review offers an insight into the existing preclinical models to study RIHD and the suggested mechanisms of RIMF, as well as available multi-modality treatments and outcomes. Moreover, we summarize the valuable detection methods of RIHD/RIMF, and the clinical use of sensitive radiographic and circulating biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis I. Verginadis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Natural polysaccharides as potential anti-fibrotic agents: A review of their progress. Life Sci 2022; 308:120953. [PMID: 36103957 DOI: 10.1016/j.lfs.2022.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
Fibrosis, as a common disease which could be found in nearly all organs, is normally initiated by organic injury and eventually ended in cellular dysfunction and organ failure. Currently, effective and safe therapeutic strategies targeting fibrogenesis still in highly demand. Natural polysaccharides derived from natural resources possess promising anti-fibrosis potential, with no deleterious side effects. Based on the etiology and pathogenesis of fibrosis, this review summarizes the intervention effects and mechanisms of natural polysaccharides in the prevention and treatment of fibrosis. Natural polysaccharides are able to regulate each phase of the fibrogenic response, including primary injury to organs, activation of effector cells, the elaboration of extracellular matrix (ECM) and dynamic deposition. In addition, polysaccharides significantly reduce fibrosis levels in multiple organs including heart, lung, liver and kidney. The investigation of the pathogenesis of fibrosis indicates that mechanisms including the inhibition of TGF-β/Smad, NF-κB, HMGB1/TLR4, cAMP/PKA signaling pathways, MMPs/TIMPs system as well as microRNAs are promising therapeutic targets. Natural polysaccharides can target these mediators or pathways to alleviate fibrosis. The information reviewed here offer new insights into the understanding the protective role of natural polysaccharides against fibrosis, help design further experimental studies related to polysaccharides and fibrotic responses, and shed light on a potential treatment for fibrosis.
Collapse
|
6
|
Agrawal YO, Husain M, Patil KD, Sodgir V, Patil TS, Agnihotri VV, Mahajan HS, Sharma C, Ojha S, Goyal SN. Verapamil hydrochloride loaded solid lipid nanoparticles: Preparation, optimization, characterisation, and assessment of cardioprotective effect in experimental model of myocardial infarcted rats. Biomed Pharmacother 2022; 154:113429. [PMID: 36007280 DOI: 10.1016/j.biopha.2022.113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
Abstract
Verapamil, a calcium channel blocker has poor bioavailability (20-30%) owing to extensive hepatic first-pass metabolism. Hence, the major objective of this research was to improve the oral bioavailability of Verapamil by Solid Lipid Nanoparticles (V-SLNs) using high shear homogenization and ultrasonication technology. A 32 factorial design was employed to statistically optimize the formulation to get minimum particle size with maximum entrapment efficiency. The average particle size was 218 nm and the entrapment efficiency was 80.32%. The V-SLN formulation exhibited biphasic behavior with a rapid release at first, then a steady release (75-80%) up to 24 h following the Korsmeyer Peppas release model. In the Isoproterenol induced myocardial necrosis model, oral administration of V-SLNs positively modulated almost all the studied hemodynamic parameters such as left ventricular end-diastolic pressure, cardiac injury markers, and tissue architecture. The cardioprotective effect was also confirmed with histopathological studies. When compared with free drugs, in-vivo pharmacokinetic studies demonstrated a rise in t1/2, AUC0-∞, and Cmax, indicating that bioavailability has improved. These encouraging results demonstrate the promising potential of developed V-SLNs for oral delivery and thereby improve the therapeutic outcome.
Collapse
Affiliation(s)
- Yogeeta O Agrawal
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India.
| | - Muzammil Husain
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Kiran D Patil
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Vishal Sodgir
- Department of Pharmaceutics, N.D.M.V. P's College of Pharmacy, Nashik, Maharashtra, India
| | - Tulshidas S Patil
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Vinit V Agnihotri
- Department of Pharmaceutics, SVKM's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Hitendra S Mahajan
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, Maharashtra, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, India, 424001
| |
Collapse
|
7
|
Dündar G, Günaydın Ö, Yazıcı G, Kurtulan O, Öğüş E, Şahin İ. Investigation of the protective effects of intraperitoneal melatonin in rats receiving laryngeal radiotherapy. Auris Nasus Larynx 2022; 50:395-402. [PMID: 35995648 DOI: 10.1016/j.anl.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVES To examine the protective effects of melatonin on laryngeal radiation damage. MATERIALS AND METHODS 31 rats were divided into 4 groups as follows: 1) the control (C) group (n=7), was only injected with intraperitoneal ethanol solution; 2) the melatonin (M) group (n=8), was injected intraperitoneal melatonin solution with 5 mg/kg; 3) the radiotherapy (RT) group (n=8) was given laryngeal radiation after intraperitoneal injection of ethanol solution; 4) the M + RT group (n=8), RT was given 30 minutes after 5 mg/kg dose of melatonin solution was injected. Drug and radiation applications were continued for 5 days. The weight changes of the rats were recorded. At the end of the study, inflammation, neutrophil migration and lymphoid aggregates, collagen distribution, laryngeal glandular structures and biochemical analysis of laryngeal tissues [malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant status (TAS)] were determined. RESULTS In the M+RT group, the first day and the 30th weight differences were significantly increased when compared with the RT group (p=0.050). Inflammation, neutrophil migration, lymphoid aggregate, disorganized collagen distribution and loss of glandular tissues were found statistically more in the RT group than in the C group (p<0.05). MDA and TOS levels were in the M + RT group exhibited better values than they did in the RT group (p<0.05). TAS levels was markedly increased in the M + RT group than in the RT group (p<0.001). CONCLUSION Administration of melatonin to rats prior receiving laryngeal radiation, decreases the level of oxidative stress markers and increases the level of anti-oxidative markers.
Collapse
Affiliation(s)
- Görkem Dündar
- Dr Nafiz Körez Sincan State Hospital, Department of Otolaryngology Ankara, Turkey.
| | - Önder Günaydın
- Hacettepe University Faculty of Medicine, Department of Otolaryngology Ankara, Turkey
| | - Gözde Yazıcı
- Hacettepe University Faculty of Medicine Department of Radiation Oncology Ankara, Turkey
| | - Olcay Kurtulan
- Hacettepe University Faculty of Medicine Department of Pathology Ankara, Turkey
| | - Elmas Öğüş
- Ankara Training and Research Hospital Department of Medical Biochemistry Ankara, Turkey
| | - İbrahim Şahin
- Bursa Uludağ University Institute of Health Sciences Department of Biostatistics Bursa, Turkey
| |
Collapse
|
8
|
Walls GM, O'Kane R, Ghita M, Kuburas R, McGarry CK, Cole AJ, Jain S, Butterworth KT. Murine models of radiation cardiotoxicity: A systematic review and recommendations for future studies. Radiother Oncol 2022; 173:19-31. [PMID: 35533784 DOI: 10.1016/j.radonc.2022.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The effects of radiation on the heart are dependent on dose, fractionation, overall treatment time, and pre-existing cardiovascular pathology. Murine models have played a central role in improving our understanding of the radiation response of the heart yet a wide range of exposure parameters have been used. We evaluated the study design of published murine cardiac irradiation experiments to assess gaps in the literature and to suggest guidance for the harmonisation of future study reporting. METHODS AND MATERIALS A systematic review of mouse/rat studies published 1981-2021 that examined the effect of radiation on the heart was performed. The protocol was published on PROSPERO (CRD42021238921) and the findings were reported in accordance with the PRISMA guidance. Risk of bias was assessed using the SYRCLE checklist. RESULTS 159 relevant full-text original articles were reviewed. The heart only was the target volume in 67% of the studies and simulation details were unavailable for 44% studies. Dosimetry methods were reported in 31% studies. The pulmonary effects of whole and partial heart irradiation were reported in 13% studies. Seventy-eight unique dose-fractionation schedules were evaluated. Large heterogeneity was observed in the endpoints measured, and the reporting standards were highly variable. CONCLUSIONS Current murine models of radiation cardiotoxicity cover a wide range of irradiation configurations and latency periods. There is a lack of evidence describing clinically relevant dose-fractionations, circulating biomarkers and radioprotectants. Recommendations for the consistent reporting of methods and results of in vivo cardiac irradiation studies are made to increase their suitability for informing the design of clinical studies.
Collapse
Affiliation(s)
- Gerard M Walls
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland.
| | - Reagan O'Kane
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Mihaela Ghita
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Refik Kuburas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Conor K McGarry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Aidan J Cole
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| |
Collapse
|
9
|
Abstract
Cardiac remodelling is characterized by abnormal changes in the function and morphological properties such as diameter, mass, normal diameter of cavities, heart shape, fibrosis, thickening of vessels and heart layers, cardiomyopathy, infiltration of inflammatory cells, and some others. These damages are associated with damage to systolic and diastolic abnormalities, damage to ventricular function, and vascular remodelling, which may lead to heart failure and death. Exposure of the heart to radiation or anti-cancer drugs including chemotherapy drugs such as doxorubicin, receptor tyrosine kinase inhibitors (RTKIs) such as imatinib, and immune checkpoint inhibitors (ICIs) can induce several abnormal changes in the heart structure and function through the induction of inflammation and fibrosis, vascular remodelling, hypertrophy, and some others. This review aims to explain the basic mechanisms behind cardiac remodelling following cancer therapy by different anti-cancer modalities.
Collapse
|
10
|
Moslehi M, Moazamiyanfar R, Dakkali MS, Rezaei S, Rastegar-Pouyani N, Jafarzadeh E, Mouludi K, Khodamoradi E, Taeb S, Najafi M. Modulation of the immune system by melatonin; implications for cancer therapy. Int Immunopharmacol 2022; 108:108890. [PMID: 35623297 DOI: 10.1016/j.intimp.2022.108890] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
Immune system interactions within the tumour have a key role in the resistance or sensitization of cancer cells to anti-cancer agents. On the other hand, activation of the immune system in normal tissues following chemotherapy or radiotherapy is associated with acute and late effects such as inflammation and fibrosis. Some immune responses can reduce the efficiency of anti-cancer therapy and also promote normal tissue toxicity. Modulation of immune responses can boost the efficiency of anti-tumour therapy and alleviate normal tissue toxicity. Melatonin is a natural body agent that has shown promising results for modulating tumour response to therapy and also alleviating normal tissue toxicity. This review tries to focus on the immunomodulatory actions of melatonin in both tumour and normal tissues. We will explain how anti-cancer drugs may cause toxicity for normal tissues and how tumours can adapt themselves to ionizing radiation and anti-cancer drugs. Then, cellular and molecular mechanisms of immunoregulatory effects of melatonin alone or combined with other anti-cancer agents will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Moazamiyanfar
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sepideh Rezaei
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Bldg. Rm 112, Houston, TX 77204-5003, USA
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Mouludi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran; Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Wu Y, Liu L, Lv S, Wang Y, Wang S, Wang S, Zhang J, Wang J. Pyrrolidine Dithiocarbamate Might Mitigate Radiation-Induced Heart Damage at an Early Stage in Rats. Front Pharmacol 2022; 13:832045. [PMID: 35392554 PMCID: PMC8981468 DOI: 10.3389/fphar.2022.832045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Radiation-induced heart damage (RIHD) is becoming an increasing concern due to offsetting clinical benefits of radiotherapy to a certain extent. Pyrrolidine dithiocarbamate (PDTC) as an antioxidant has been implicated in cardioprotective effects. We aimed to investigate whether pyrrolidine dithiocarbamate could attenuate heart damage at an early stage post-irradiation and unveil the potential mechanisms. Methods: A total of 15 adult male Sprague-Dawley rats were randomized into the control, irradiation (IR), and PDTC plus irradiation (PDTC + IR) groups. Hearts were irradiated with a single fraction of 20.0 Gy. Rats received daily intraperitoneal injection of PDTC for 14 days. At the 14th day post-irradiation, echocardiography was performed, and rats were killed. Morphological damage was examined by hematoxylin-eosin (HE) stain and Masson's trichrome stain. The collagen volume fraction (CVF) was applied for semi-quantitative analysis. The protein levels were analyzed by Western blot and mRNA levels by quantitative real-time PCR. Results: No significant damage to systolic function of left ventricular was induced at an early stage post-irradiation. HE staining of cardiac tissue showed that the disordered arrangement of myocardial cells and abnormal cell infiltration were alleviated in the PDTC + IR group. The increased CVF in the irradiation group was inhibited in the PDTC + IR group (22.05 ± 2.64% vs. 9.99 ± 1.65%, p < 0.05). The protein levels of nuclear factor-kappa B (NF-κB), hypoxia-inducible factor-1α (HIF-1α), and COL-1 were downregulated after treatment with PDTC (p < 0.05), and there was a declining trend in the protein of the connective tissue growth factor (CTGF). The mRNA expression of NF-κB and HIF-1α in the PDTC plus irradiation group was lower than that in the irradiation group (p < 0.05), and there was a declining trend in the mRNA expression of the connective tissue growth factor and COL-1. Conclusion: PDTC alleviates myocardial cell disordered arrangement, abnormal cell infiltration, and pro-fibrotic change at an early stage in rats with radiation-induced heart damage. Such a protective effect is closely associated with the downregulation of NF-κB.
Collapse
Affiliation(s)
- Yajing Wu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Liu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shengliang Lv
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuai Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Jiandong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Aras S, Tanzer İO, Can Ü, Demir H, Sümer E, Baydili KN, Orak R. Radioprotective effects of melatonin against varying dose rates on radiotherapy-induced salivary gland damage scintigraphy findings. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Potentiating the Benefits of Melatonin through Chemical Functionalization: Possible Impact on Multifactorial Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms222111584. [PMID: 34769013 PMCID: PMC8583879 DOI: 10.3390/ijms222111584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although melatonin is an astonishing molecule, it is possible that chemistry will help in the discovery of new compounds derived from it that may exceed our expectations regarding antioxidant protection and perhaps even neuroprotection. This review briefly summarizes the significant amount of data gathered to date regarding the multiple health benefits of melatonin and related compounds. This review also highlights some of the most recent directions in the discovery of multifunctional pharmaceuticals intended to act as one-molecule multiple-target drugs with potential use in multifactorial diseases, including neurodegenerative disorders. Herein, we discuss the beneficial activities of melatonin derivatives reported to date, in addition to computational strategies to rationally design new derivatives by functionalization of the melatonin molecular framework. It is hoped that this review will promote more investigations on the subject from both experimental and theoretical perspectives.
Collapse
|
14
|
Hendawy AK, El-Toukhey NES, AbdEl-Rahman SS, Ahmed HH. Ameliorating effect of melatonin against nicotine induced lung and heart toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35628-35641. [PMID: 33674975 DOI: 10.1007/s11356-021-12949-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The present study was carried out to investigate the ameliorative effects of melatonin against nicotine-induced heart and lung toxicity. For this purpose, 75 mature male Sprague Dawley (SD) rats weighing 150-170 g were randomly divided into five groups (15 rats each): control group (rats were I/P injected with 1% ethanol in saline), nicotine group (rats were I/P injected with 0.6 mg/kg body weight), and combined nicotine and melatonin groups (rats received nicotine as in the previous group and melatonin at a dose of 1, 5, or 10 mg/kg body weight, respectively); all treatments were continued for 21 days. Fasting blood samples were collected from each rat at the 11th day and one day after the end of the last injection (22nd day) for complete blood count (CBC) determination, while sera were collected for the determination of lipid profiles. Malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, and reduced glutathione (GSH) as well as DNA fragmentation percentage were assessed in cardiac tissue. Heart and lung samples were collected for estimation of caspase-3 expression and histopathological examination. The results revealed that nicotine increased the number of RBCs, Hb concentration, total cholesterol, and low density lipoprotein (LDL) and decreased high density lipoprotein (HDL). In addition, it decreased SOD activity and GSH concentration with increased MDA concentration, and DNA fragmentation in the heart, as well as caspase-3 expression in both heart and lungs. It also induced histopathological changes in the heart and lung tissues. Melatonin could ameliorate the deleterious effect of nicotine on the previous parameters either partially or completely, where melatonin restored complete blood count, improved lipid profile, mended lipid peroxidation and antioxidant parameters in the cardiac tissue, rectified caspase-3 expression in the heart and lungs, ameliorated DNA fragmentation percentage in the heart, and protected both heart and lung tissue against the harmful effect of nicotine. It is concluded that melatonin has a protective effect on the heart and lungs against the harmful effect of nicotine.
Collapse
Affiliation(s)
- Aya Khalil Hendawy
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | | | | | - Hodallah Hatem Ahmed
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
15
|
Aras S, Tanzer İO, Can Ü, Sümer E, Baydili KN. The role of melatonin on acute thyroid damage induced by high dose rate X-ray in head and neck radiotherapy. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Aras S, Tanzer İO, Sayir N, Keleş MS, Özgeriş FB. Radiobiological comparison of flattening filter (FF) and flattening filter-free (FFF) beam in rat laryngeal tissue. Int J Radiat Biol 2021; 97:249-255. [PMID: 33320739 DOI: 10.1080/09553002.2021.1857457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The purpose of this study is to investigate the radioprotective effect of melatonin by analyzing histopathological changes and serum biochemical levels on experimental rat models exposed to flattening filter (FF) and flattening filter-free (FFF) beam. MATERIALS AND METHODS Forty-eight healthy adult Sprague Dawley rats were randomly divided into six groups. The control (Group 1) was given no treatment, the melatonin (Group 2) was given 10 mg/kg melatonin only, the FF (Group 3) and FFF (Group 5) were given fractionated dose (Total 32 Gy, 5 consecutive days) radiotherapy only, and the FF plus melatonin (Group 4) and FFF plus melatonin (Group 6) were given 10 mg/kg melatonin 15 minutes prior to irradiation. Rats were examined for histopathology and biochemical analysis 10 days after irradiation. RESULTS When results of FF and FFF radiotherapy only groups are compared to control group, statistically significant difference in histopathological and biochemical parameters are observed; however, melatonin administration in radiotherapy plus melatonin groups improved these parameters (p <.05). In addition, there was no statistically significant difference between FF and FFF beams (p > .05). CONCLUSIONS The effect of low- and high-dose beams on the rat larynx and serum samples were investigated histopathologically and biochemically for the first time. We observed that melatonin supplemented before FF and FFF radiotherapy protected early period radiotherapy-induced laryngeal mucosal damage. Since the radiobiological results of FF and FFF beams are similar, FFF beams can be safely applied in laryngeal irradiation. However, more experimental rat and clinical studies are needed to clarify the radiobiological uncertainy concerning dose rate on cancerous and healthy tissue.
Collapse
Affiliation(s)
- Serhat Aras
- Medical Imaging Techniques Programme, University of Health Sciences Turkey, Istanbul, Turkey
| | - İhsan Oğuz Tanzer
- Biomedical Technology Programme, University of Health Sciences Turkey, Istanbul, Turkey.,Department of Neuroscience and Biomedical Engineering, Aalto University, Finland
| | - Neslihan Sayir
- Pathology Laboratory Techniques Programme, University of Health Sciences Turkey, Istanbul, Turkey
| | - Mevlüt Sait Keleş
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
17
|
Li L, Nie X, Zhang P, Huang Y, Ma L, Li F, Yi M, Qin W, Yuan X. Dexrazoxane ameliorates radiation-induced heart disease in a rat model. Aging (Albany NY) 2021; 13:3699-3711. [PMID: 33406500 PMCID: PMC7906151 DOI: 10.18632/aging.202332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Treatment of thoracic tumors with radiotherapy can lead to severe cardiac injury. We investigated the effects of dexrazoxane, a USFDA-approved cardioprotective drug administered with chemotherapy, on radiation-induced heart disease (RIHD) in a rat model. Male Sprague-Dawley rats were irradiated with a single dose of 20 Gy to the heart and treated with dexrazoxane at the time of irradiation and for 12 subsequent weeks. Dexrazoxane suppressed radiation-induced myocardial apoptosis and significantly reversed changes in serum cardiac troponin I levels and histopathological characteristics six months post-radiation. Treatment with dexrazoxane did not alter the radiosensitivity of thoracic tumors in a tumor formation experiment using male nude Balb/C mice with tumors generated by H292 cells. Dexrazoxane reduced the accumulation of reactive oxygen species in rat cardiac tissues, but not in tumors in nude mice. Transcriptome sequencing showed that IKBKE, MAP3K8, NFKBIA, and TLR5, which are involved in Toll-like receptor signaling, may be associated with the anti-RIHD effects of dexrazoxane. Immunohistochemistry revealed that dexrazoxane significantly decreased NF-κB p65 expression in cardiomyocytes. These findings suggest dexrazoxane may protect against RIHD by suppressing apoptosis and oxidative stress in cardiomyocytes.
Collapse
Affiliation(s)
- Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqi Nie
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fang Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Radiation-associated valvular disease (RAVD) is characterized by late valvular manifestations following radiation exposure to the mediastinum. Review of current guidelines was performed to examine best practices to reduce risk and optimize outcomes in this patient population. RECENT FINDINGS Early and consistent screening and comprehensive and careful planning are critical in managing RAVD. Due to long latency periods, serial screening and targeted evaluation of risk factors are essential to early detection. Varying and complex presentations of RAVD require an integrated team of experienced specialists equipped with multimodality imaging-based screening protocols to stratify risk, plan intervention, and evaluate treatment response. Patients with valvular manifestations associated with radiation therapy call for an individualized plan of care involving longitudinal multimodality imaging-based screening and experienced decision-making regarding timing and strategy of intervention to improve patient outcomes.
Collapse
Affiliation(s)
- Samantha Xu
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Eoin Donnellan
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Milind Y Desai
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA. .,Department of Cardiovascular Imaging, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Simko F, Hrenak J, Dominguez-Rodriguez A, Reiter RJ. Melatonin as a putative protection against myocardial injury in COVID-19 infection. Expert Rev Clin Pharmacol 2020; 13:921-924. [PMID: 32893686 DOI: 10.1080/17512433.2020.1814141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University , Bratislava, Slovak Republic.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University , Bratislava, Slovak Republic.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava, Slovak Republic
| | - Jaroslav Hrenak
- Institute of Pathophysiology, Faculty of Medicine, Comenius University , Bratislava, Slovak Republic.,Department of Cardiovascular Surgery, Inselspital - University Hospital of Bern , Bern, Switzerland
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio , San Antonio, TX, USA
| |
Collapse
|
20
|
Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. Int J Mol Sci 2020; 21:E5804. [PMID: 32823530 PMCID: PMC7460937 DOI: 10.3390/ijms21165804] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation (IR) has found widespread application in modern medicine, including medical imaging and radiotherapy. As a result, both patients and healthcare professionals are exposed to various IR doses. To minimize the negative side effects of radiation associated with oxidative imbalance, antioxidant therapy has been considered. In this review, studies on the effects of melatonin and vitamin D on radiation-induced oxidative stress are discussed. According to the research data, both substances meet the conditions for use as agents that protect humans against IR-induced tissue damage. Numerous studies have confirmed that melatonin, a hydro- and lipophilic hormone with strong antioxidant properties, can potentially be used as a radioprotectant in humans. Less is known about the radioprotective effects of vitamin D, but the results to date have been promising. Deficiencies in melatonin and vitamin D are common in modern societies and may contribute to the severity of adverse side effects of medical IR exposure. Hence, supporting supplementation with both substances seems to be of first importance. Interestingly, both melatonin and vitamin D have been found to selectively radiosensitise cancer cells, which makes them promising adjuvants in radiotherapy. More research is needed in this area, especially in humans.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| | | | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
21
|
Wang B, Wang H, Zhang M, Ji R, Wei J, Xin Y, Jiang X. Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. J Cell Mol Med 2020; 24:7717-7729. [PMID: 32536032 PMCID: PMC7348163 DOI: 10.1111/jcmm.15479] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/18/2020] [Accepted: 05/24/2020] [Indexed: 12/24/2022] Open
Abstract
Radiation-induced myocardial fibrosis (RIMF) is a potentially lethal clinical complication of chest radiotherapy (RT) and a final stage of radiation-induced heart disease (RIHD). RIMF is characterized by decreased ventricular elasticity and distensibility, which can result in decreased ejection fraction, heart failure and even sudden cardiac death. Together, these conditions impair the long-term health of post-RT survivors and limit the dose and intensity of RT required to effectively kill tumour cells. Although the exact mechanisms involving in RIMF are unclear, increasing evidence indicates that the occurrence of RIMF is related to various cells, regulatory molecules and cytokines. However, accurately diagnosing and identifying patients who may progress to RIMF has been challenging. Despite the urgent need for an effective treatment, there is currently no medical therapy for RIMF approved for routine clinical application. In this review, we investigated the underlying pathophysiology involved in the initiation and progression of RIMF before outlining potential preventative and therapeutic strategies to counter this toxicity.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| | - Huanhuan Wang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| | - Mengmeng Zhang
- Phase I Clinical Research CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Rui Ji
- Department of BiologyValencia CollegeOrlandoFLUSA
| | - Jinlong Wei
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying Xin
- Key Laboratory of PathobiologyMinistry of EducationJilin UniversityChangchunChina
| | - Xin Jiang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| |
Collapse
|
22
|
Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi Z, Xiaocheng W, Hong Z, Liang S. Oxidative Stress in Radiation-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3579143. [PMID: 32190171 PMCID: PMC7071808 DOI: 10.1155/2020/3579143] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
There is a distinct increase in the risk of heart disease in people exposed to ionizing radiation (IR). Radiation-induced heart disease (RIHD) is one of the adverse side effects when people are exposed to ionizing radiation. IR may come from various forms, such as diagnostic imaging, radiotherapy for cancer treatment, nuclear disasters, and accidents. However, RIHD was mainly observed after radiotherapy for chest malignant tumors, especially left breast cancer. Radiation therapy (RT) has become one of the main ways to treat all kinds of cancer, which is used to reduce the recurrence of cancer and improve the survival rate of patients. The potential cause of radiation-induced cardiotoxicity is unclear, but it may be relevant to oxidative stress. Oxidative stress, an accumulation of reactive oxygen species (ROS), disrupts intracellular homeostasis through chemical modification and damages proteins, lipids, and DNA; therefore, it results in a series of related pathophysiological changes. The purpose of this review was to summarise the studies of oxidative stress in radiotherapy-induced cardiotoxicity and provide prevention and treatment methods to reduce cardiac damage.
Collapse
Affiliation(s)
- Zhang Ping
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Yang Peng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Hong Lang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Cai Xinyong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Zeng Zhiyi
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Wu Xiaocheng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Zeng Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Shao Liang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| |
Collapse
|
23
|
Barlaz Us S, Vezir O, Yildirim M, Bayrak G, Yalin S, Balli E, Yalin AE, Çömelekoğlu Ü. Protective effect of N-acetyl cysteine against radiotherapy-induced cardiac damage. Int J Radiat Biol 2020; 96:661-670. [PMID: 31990607 DOI: 10.1080/09553002.2020.1721605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose: Although radiotherapy (RT) is an important component of cancer treatment, it induces adverse tissue reactions in the around of cancer tissue. Therefore, radioprotectives are needed to protect normal tissues. The aim of this study was to investigate the radioprotective effect of N-acetylcysteine (NAC) on RT-induced cardiac damage in rats for the acute term.Materials and methods: The animals were divided into four groups. The rats in control group were injected with saline for 7 d; the rats in NAC group were injected NAC at dose of 240 mg/kg d for 7 d; the rats in RT group were injected with saline for 7 d plus was irradiated 1 h after the last injection and the rats in NAC + RT group were injected with NAC for 7 d and irradiated 1 h after the last NAC dose. The electrocardiogram was recorded and evaluated PR interval, QRS duration, QT interval, T wave alterations and heart rate. Serum interleukin-4, interleukin-6, tumor necrosis factor-alpha, interleukin 1 beta, galectin-3 levels and creatine kinase and creatine kinase isoenzyme-MB activities were determined in all groups. Also, tissue malondialdehyde (MDA) and nitric oxide levels, superoxide dismutase, catalase and glutathione peroxidase activities were determined. In addition, histological changes of heart were evaluated. All measurements were performed 24 h after RT.Results: In the RT group, findings supporting cardiac injury were observed in the electrocardiogram. Also, cytokine levels and oxidative stress were significantly increased. Pretreatment of rats with NAC ameliorated cardiac injury induced by RT.Conclusions: Our findings suggested that NAC may be a potential radioprotector which is capable of preventing cardiac damage.
Collapse
Affiliation(s)
- Songul Barlaz Us
- Department of Radiation Oncology, Mersin University, Mersin, Turkey
| | - Ozden Vezir
- Department of Cardiovascular Surgery, Mersin City Hospital, Mersin, Turkey
| | - Metin Yildirim
- Department of Biochemistry, Mersin University, Mersin, Turkey
| | - Gülsen Bayrak
- Department of Histology-Embryology, Mersin University, Mersin, Turkey
| | - Serap Yalin
- Department of Biochemistry, Mersin University, Mersin, Turkey
| | - Ebru Balli
- Department of Histology-Embryology, Mersin University, Mersin, Turkey
| | | | | |
Collapse
|
24
|
Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother 2020; 21:317-337. [PMID: 31928256 PMCID: PMC6982586 DOI: 10.1080/14656566.2019.1702968] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Introduction: There is a limited array of currently available medicinals that are useful for either the prevention, mitigation or treatment of bodily injuries arising from ionizing radiation exposure.Area covered: In this brief article, the authors review those pharmacologic agents that either are currently being used to counter the injurious effects of radiation exposure, or those that show promise and are currently under development.Expert opinion: Although significant, but limited progress has been made in the development and fielding of safe and effective pharmacotherapeutics for select types of acute radiation-associated injuries, additional effort is needed to broaden the scope of drug development so that overall health risks associated with both short- and long-term injuries in various organ systems can be reduced and effectively managed. There are several promising radiation countermeasures that may gain regulatory approval from the government in the near future for use in clinical settings and in the aftermath of nuclear/radiological exposure contingencies.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
25
|
Zou B, Schuster JP, Niu K, Huang Q, Rühle A, Huber PE. Radiotherapy-induced heart disease: a review of the literature. PRECISION CLINICAL MEDICINE 2019; 2:270-282. [PMID: 35693876 PMCID: PMC8985808 DOI: 10.1093/pcmedi/pbz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
Radiotherapy as one of the four pillars of cancer therapy plays a critical role in the multimodal treatment of thoracic cancers. Due to significant improvements in overall cancer survival, radiotherapy-induced heart disease (RIHD) has become an increasingly recognized adverse reaction which contributes to major radiation-associated toxicities including non-malignant death. This is especially relevant for patients suffering from diseases with excellent prognosis such as breast cancer or Hodgkin's lymphoma, since RIHD may occur decades after radiotherapy. Preclinical studies have enriched our knowledge of many potential mechanisms by which thoracic radiotherapy induces heart injury. Epidemiological findings in humans reveal that irradiation might increase the risk of cardiac disease at even lower doses than previously assumed. Recent preclinical studies have identified non-invasive methods for evaluation of RIHD. Furthermore, potential options preventing or at least attenuating RIHD have been developed. Ongoing research may enrich our limited knowledge about biological mechanisms of RIHD, identify non-invasive early detection biomarkers and investigate potential treatment options that might attenuate or prevent these unwanted side effects. Here, we present a comprehensive review about the published literature regarding clinical manifestation and pathological alterations in RIHD. Biological mechanisms and treatment options are outlined, and challenges in RIHD treatment are summarized.
Collapse
Affiliation(s)
- Bingwen Zou
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Julius Philipp Schuster
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Kerun Niu
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Qianyi Huang
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Oncology (NCRO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Peter Ernst Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Oncology (NCRO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| |
Collapse
|
26
|
Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, Jiang X. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci 2019; 15:2128-2138. [PMID: 31592122 PMCID: PMC6775290 DOI: 10.7150/ijbs.35460] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
With the increasing incidence of thoracic tumors, radiation therapy (RT) has become an important component of comprehensive treatment. RT improves survival in many cancers, but it involves some inevitable complications. Radiation-induced heart disease (RIHD) is one of the most serious complications. RIHD comprises a spectrum of heart disease including cardiomyopathy, pericarditis, coronary artery disease, valvular heart disease and conduction system abnormalities. There are numerous clinical manifestations of RIHD, such as chest pain, palpitation, and dyspnea, even without obvious symptoms. Based on previous studies, the pathogenesis of RIHD is related to the production and effects of various cytokines caused by endothelial injury, inflammatory response, and oxidative stress (OS). Therefore, it is of great importance for clinicians to identify the mechanism and propose interventions for the prevention of RIHD.
Collapse
Affiliation(s)
- Heru Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China.,Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Qingshuang Zheng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32804,USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xia Yin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
27
|
Prevention, Diagnosis, and Management of Radiation-Associated Cardiac Disease. J Am Coll Cardiol 2019; 74:905-927. [DOI: 10.1016/j.jacc.2019.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022]
|
28
|
Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, Farhood B, Yahyapour R, Shirazi A, Goushbolagh NA, Najafi M. Mechanisms for Radioprotection by Melatonin; Can it be Used as a Radiation Countermeasure? Curr Mol Pharmacol 2019; 12:2-11. [PMID: 30073934 DOI: 10.2174/1874467211666180802164449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasoul Yahyapour
- Department of Medical School, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Shirazi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of medical Physics, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Musa AE, Shabeeb D. Radiation-Induced Heart Diseases: Protective Effects of Natural Products. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E126. [PMID: 31075882 PMCID: PMC6572037 DOI: 10.3390/medicina55050126] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVDs) account for the majority of deaths worldwide. Radiation-induced heart diseases (RIHD) is one of the side effects following exposure to ionizing radiation (IR). Exposure could be from various forms such as diagnostic imaging, radiotherapy for cancer treatment, as well as nuclear disasters and nuclear accidents. RIHD is mostly observed after radiotherapy for thoracic malignancies, especially left breast cancer. RIHD may affect the supply of blood to heart muscles, leading to an increase in the risk of heart attacks to irradiated persons. Due to its dose-limiting consequence, RIHD has a negative effect on the therapeutic efficacy of radiotherapy. Several methods have been proposed for protection against RIHD. In this paper, we review the use of natural products, which have shown promising results for protection against RIHD.
Collapse
Affiliation(s)
- Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (TUMS), International Campus, Tehran 1416753955, Iran.
- Research Center for Molecular and Cellular Imaging, TUMS, Tehran 1416753955, Iran.
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan 62010, Iraq.
| |
Collapse
|
30
|
Nabavi SM, Nabavi SF, Sureda A, Xiao J, Dehpour AR, Shirooie S, Silva AS, Baldi A, Khan H, Daglia M. Anti-inflammatory effects of Melatonin: A mechanistic review. Crit Rev Food Sci Nutr 2019; 59:S4-S16. [DOI: 10.1080/10408398.2018.1487927] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Grup de Nutrici_o Comunit_aria i Estr_es Oxidatiu and CIBEROBN (Physiopathology of Obesity and Nutrition), Universitat de les Illes Balears, Palma de E-07122 Mallorca, Spain
| | - Janbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau SAR, China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, Vila do Conde, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Alessandra Baldi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
31
|
Yahyapour R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Farhood B, Nouruzi F, Shabeeb D, Eleojo Musa A, Najafi M. Metformin Protects Against Radiation-Induced Heart Injury and Attenuates the Upregulation of Dual Oxidase Genes Following Rat's Chest Irradiation. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:193-202. [PMID: 31565651 PMCID: PMC6744616 DOI: 10.22088/ijmcm.bums.7.3.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023]
Abstract
Radiation-induced heart toxicity is one of the serious side effects after a radiation disaster or radiotherapy for patients with chest cancers, leading to a reduction in the quality of life of the patients. Evidence has shown that infiltration of inflammatory cells plays a key role in the development of functional damages to the heart via chronic upregulation of some pro-fibrotic and pro-inflammatory cytokines. These changes are associated with continuous free radical production and increased stiffness of heart muscle. IL-4 and IL-13 are two important pro-fibrotic cytokines which contribute to the side effects of ionizing radiation exposure. Recent studies have proposed that IL-4 through upregulation of DUOX2, and IL-13 via stimulation of DUOX1 gene expression, are involved in the development of radiation late effects. In the present study, we aimed to detect changes in the expression of these pathways following irradiation of rat’s heart. Furthermore, we evaluated the possible protective effect of metformin on the development of these abnormal changes. 20 male rats were divided into 4 groups (control, radiation, metformin treated, metformin + radiation). These rats were irradiated with 15 Gy 60Co gamma rays, and sacrificed after 10 weeks for evaluation of the changes in the expression of IL4R1, IL-13R2a, DUOX1 and DUOX2. In addition, the levels of IL-4 and IL-13 cytokines, as well as infiltration of macrophages and lymphocytes were detected. Results showed an upregulation of both DUOX1 and DUOX2 pathways in the presence of metformin, while the level of IL-13 did not show any significant change. This was associated with infiltration of macrophages and lymphocytes. Also, treatment with metformin could significantly attenuate accumulation of inflammatory cells, and upregulate these pathways. Therefore, suppression of dual oxidase genes by metformin may be a contributory factor to its protective effect.
Collapse
Affiliation(s)
- Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzad Nouruzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 2018; 21:268-279. [PMID: 30136132 DOI: 10.1007/s12094-018-1934-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
It is estimated that more than half of cancer patients undergo radiotherapy during the course of their treatment. Despite its beneficial therapeutic effects on tumor cells, exposure to high doses of ionizing radiation (IR) is associated with several side effects. Although improvements in radiotherapy techniques and instruments could reduce these side effects, there are still important concerns for cancer patients. For several years, scientists have been trying to modulate tumor and normal tissue responses to IR, leading to an increase in therapeutic ratio. So far, several types of radioprotectors and radiosensitizers have been investigated in experimental studies. However, high toxicity of chemical sensitizers or possible tumor protection by radioprotectors creates a doubt for their clinical applications. On the other hand, the protective effects of these radioprotectors or sensitizer effects of radiosensitizers may limit some type of cancers. Hence, the development of some radioprotectors without any protective effect on tumor cells or low toxic radiosensitizers can help improve therapeutic ratio with less side effects. Melatonin as a natural body hormone is a potent antioxidant and anti-inflammatory agent that shows some anti-cancer properties. It is able to neutralize different types of free radicals produced by IR or pro-oxidant enzymes which are activated following exposure to IR and plays a key role in the protection of normal tissues. In addition, melatonin has shown the ability to inhibit long-term changes in inflammatory responses at different levels, thereby ameliorating late side effects of radiotherapy. Fortunately, in contrast to classic antioxidants, some in vitro studies have revealed that melatonin has a potent anti-tumor activity when used alongside irradiation. However, the mechanisms of its radiosensitive effect remain to be elucidated. Studies suggested that the activation of pro-apoptosis gene, such as p53, changes in the metabolism of tumor cells, suppression of DNA repair responses as well as changes in biosynthesis of estrogen in breast cancer cells are involved in this process. In this review, we describe the molecular mechanisms for radioprotection and radiosensitizer effects of melatonin. Furthermore, some other proposed mechanisms that may be involved are presented.
Collapse
Affiliation(s)
- B Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - N H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - K Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - N Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M S Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - D Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Amarah, Iraq
| | - A E Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - M Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
33
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
34
|
Nduhirabandi F, Maarman GJ. Melatonin in Heart Failure: A Promising Therapeutic Strategy? Molecules 2018; 23:molecules23071819. [PMID: 30037127 PMCID: PMC6099639 DOI: 10.3390/molecules23071819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a multifactorial clinical syndrome characterized by the inability of the heart to pump sufficient blood to the body. Despite recent advances in medical management, poor outcomes in patients with heart failure remain very high. This highlights a need for novel paradigms for effective, preventive and curative strategies. Substantial evidence supports the importance of endogenous melatonin in cardiovascular health and the benefits of melatonin supplementation in various cardiac pathologies and cardiometabolic disorders. Melatonin plays a crucial role in major pathological processes associated with heart failure including ischemic injury, oxidative stress, apoptosis, and cardiac remodeling. In this review, available evidence for the role of melatonin in heart failure is discussed. Current challenges and possible limitations of using melatonin in heart failure are also addressed. While few clinical studies have investigated the role of melatonin in the context of heart failure, current findings from experimental studies support the potential use of melatonin as preventive and adjunctive curative therapy in heart failure.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| | - Gerald J Maarman
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| |
Collapse
|
35
|
Irradiation-Induced Cardiac Connexin-43 and miR-21 Responses Are Hampered by Treatment with Atorvastatin and Aspirin. Int J Mol Sci 2018; 19:ijms19041128. [PMID: 29642568 PMCID: PMC5979305 DOI: 10.3390/ijms19041128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/31/2018] [Accepted: 04/05/2018] [Indexed: 11/29/2022] Open
Abstract
Radiation of the chest during cancer therapy is deleterious to the heart, mostly due to oxidative stress and inflammation related injury. A single sub-lethal dose of irradiation has been shown to result in compensatory up-regulation of the myocardial connexin-43 (Cx43), activation of the protein kinase C (PKC) signaling along with the decline of microRNA (miR)-1 and an increase of miR-21 levels in the left ventricle (LV). We investigated whether drugs with antioxidant, anti-inflammatory or vasodilating properties, such as aspirin, atorvastatin, and sildenafil, may affect myocardial response in the LV and right ventricle (RV) following chest irradiation. Adult, male Wistar rats were subjected to a single sub-lethal dose of chest radiation at 25 Gy and treated with aspirin (3 mg/day), atorvastatin (0.25 mg/day), and sildenafil (0.3 mg/day) for six weeks. Cx43, PKCε and PKCδ proteins expression and levels of miR-1 as well as miR-21 were determined in the LV and RV. Results showed that the suppression of miR-1 was associated with an increase of total and phosphorylated forms of Cx43 as well as PKCε expression in the LV while having no effect in the RV post-irradiation as compared to the non-irradiated rats. Treatment with aspirin and atorvastatin prevented an increase in the expression of Cx43 and PKCε without change in the miR-1 levels. Furthermore, treatment with aspirin, atorvastatin, and sildenafil completely prevented an increase of miR-21 in the LV while having partial effect in the RV post irradiation. The increase in pro-apoptotic PKCδ was not affected by any of the used treatment. In conclusion, irradiation and drug-induced changes were less pronounced in the RV as compared to the LV. Treatment with aspirin and atorvastatin interfered with irradiation-induced compensatory changes in myocardial Cx43 protein and miR-21 by preventing their elevation, possibly via amelioration of oxidative stress and inflammation.
Collapse
|
36
|
Griffin F, Marignol L. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int J Radiat Biol 2018. [PMID: 29521142 DOI: 10.1080/09553002.2018.1446227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Melatonin is an endogenous hormone primarily known for its action on the circadian rhythms. But pre-clinical studies are reporting both its radioprotective and radiosensitizing properties, possibly mediated through an interaction between melatonin and the regulation of estrogens. Melatonin pre-treatment prior to ionizing radiation was associated with a decrease in cell proliferation and an increase in p53 mRNA expression, leading to an increase in the radiosensitivity of breast cancer cells. At the same time, a decrease in radiation-induced side effects was described in breast cancer patients and in rodent models. This review examines the potential for melatonin to improve the therapeutic outcomes of breast radiation therapy, specifically estrogen receptor positive patients. Evidence suggests that melatonin may offer a novel, non-toxic and cheap adjuvant therapy to improve the existing treatment modalities. But further research is required in the clinical setting before a clear understanding of its therapeutic benefits is determined.
Collapse
Affiliation(s)
- Fiona Griffin
- a Applied Radiation Therapy Trinity, Discipline of Radiation therapy , Trinity College Dublin , Dublin , Ireland
| | - Laure Marignol
- a Applied Radiation Therapy Trinity, Discipline of Radiation therapy , Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
37
|
Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F, Rezapoor S, Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 2018; 94:335-356. [DOI: 10.1080/09553002.2018.1440092] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Norouzi
- Science and Research Branch, Azad University, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Donis N, Oury C, Moonen M, Lancellotti P. Treating cardiovascular complications of radiotherapy: a role for new pharmacotherapies. Expert Opin Pharmacother 2018; 19:431-442. [DOI: 10.1080/14656566.2018.1446080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nathalie Donis
- Laboratory of Thrombosis, Haemostasis and Valvular Heart Diseases, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Thrombosis, Haemostasis and Valvular Heart Diseases, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Liège, Liège, Belgium
| | - Marie Moonen
- Laboratory of Thrombosis, Haemostasis and Valvular Heart Diseases, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Liège, Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Thrombosis, Haemostasis and Valvular Heart Diseases, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Liège, Liège, Belgium
- Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| |
Collapse
|
39
|
Arıcıgil M, Dündar MA, Yücel A, Eryılmaz MA, Aktan M, Alan MA, Fındık S, Kılınç İ. Melatonin prevents possible radiotherapy-induced thyroid injury. Int J Radiat Biol 2017; 93:1350-1356. [DOI: 10.1080/09553002.2017.1397296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mitat Arıcıgil
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Akif Dündar
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Abitter Yücel
- Department of Otorhinolaryngology, Horasan State Hospital, Erzurum, Turkey
| | - Mehmet Akif Eryılmaz
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Meryem Aktan
- Department of Radiation Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Akif Alan
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sıdıka Fındık
- Department of Pathology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - İbrahim Kılınç
- Department of Medical Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
40
|
Salucci S, Battistelli M, Baldassarri V, Burini D, Falcieri E, Burattini S. Melatonin prevents mitochondrial dysfunctions and death in differentiated skeletal muscle cells. Microsc Res Tech 2017; 80:1174-1181. [PMID: 28742227 DOI: 10.1002/jemt.22914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/08/2017] [Indexed: 12/24/2022]
Abstract
Oxidative stress increase induces cellular damage and apoptosis activation, a mechanism believed to represent a final common pathway correlated to sarcopenia and many skeletal muscle disorders. The goal of this study is to evaluate if melatonin, a ROS scavenger molecule, is able to counteract or modulate myotube death. Here, differentiated C2C12 skeletal muscle cells have been treated with melatonin before chemicals known to induce apoptotic death and oxidative stress, and its effect has been investigated by means of morpho-functional analyses. Ultrastructural observations show melatonin protection against triggers by the reducing of membrane blebbing, chromatin condensation, myonuclei loss and in situ DNA cleavage. Moreover, melatonin is able to prevent mitochondrial dysfunctions which occur in myotubes exposed to the trigger alone. These findings demonstrate melatonin ability in preventing apoptotic cell death in skeletal muscle fibers in vitro, suggesting for this molecule a potential therapeutic role in the treatment of various muscle disorders.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Valentina Baldassarri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Debora Burini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| |
Collapse
|
41
|
Vázquez-Velasco M, González-Torres L, García-Fernández RA, Méndez MT, Bastida S, Benedí J, González-Muñoz MJ, Sánchez-Muniz FJ. Glucomannan or Glucomannan Plus Spirulina-Enriched Squid-Surimi Diets Reduce Histological Damage to Liver and Heart in Zucker fa/fa Rats Fed a Cholesterol-Enriched and Non-Cholesterol-Enriched Atherogenic Diet. J Med Food 2017; 20:618-625. [DOI: 10.1089/jmf.2016.0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Miguel Vázquez-Velasco
- Department of Nutrition and Food Science (I) Nutrition, School of Pharmacy, Complutense University, Madrid, Spain
| | - Laura González-Torres
- Department of Nutrition and Food Science (I) Nutrition, School of Pharmacy, Complutense University, Madrid, Spain
| | - Rosa A. García-Fernández
- Department of Veterinary Medicine and Surgery, School of Veterinary, Complutense University, Madrid, Spain
| | - María Teresa Méndez
- Clinic Analysis Center, School of Pharmacy, Complutense University, Madrid, Spain
| | - Sara Bastida
- Department of Nutrition and Food Science (I) Nutrition, School of Pharmacy, Complutense University, Madrid, Spain
| | - Juana Benedí
- Department of Pharmacology, School of Pharmacy, Complutense University, Madrid, Spain
| | - María José González-Muñoz
- Department of Nutrition, Food Science and Toxicology, School of Pharmacy, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Department of Nutrition and Food Science (I) Nutrition, School of Pharmacy, Complutense University, Madrid, Spain
| |
Collapse
|
42
|
Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, Rodella LF, Rezzani R. Melatonin: Protection against age-related cardiac pathology. Ageing Res Rev 2017; 35:336-349. [PMID: 27884595 DOI: 10.1016/j.arr.2016.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Aging is a complex and progressive process that involves physiological and metabolic deterioration in every organ and system. Cardiovascular diseases are one of the most common causes of mortality and morbidity among elderly subjects worldwide. Most age-related cardiovascular disorders can be influenced by modifiable behaviours such as a healthy diet rich in fruit and vegetables, avoidance of smoking, increased physical activity and reduced stress. The role of diet in prevention of various disorders is a well-established factor, which has an even more important role in the geriatric population. Melatonin, an indoleamine with multiple actions including antioxidant properties, has been identified in a very large number of plant species, including edible plant products and medical herbs. Among products where melatonin has been identified include wine, olive oil, tomato, beer, and others. Interestingly, consumed melatonin in plant foods or melatonin supplementation may promote health benefits by virtue of its multiple properties and it may counteract pathological conditions also related to cardiovascular disorders, carcinogenesis, neurological diseases and aging. In the present review, we summarized melatonin effects against age-related cardiac alterations and abnormalities with a special focus on heart ischemia/reperfusion (IR) injury and myocardial infarction.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences, University of Manitoba and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
43
|
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017; 9:E367. [PMID: 28387721 PMCID: PMC5409706 DOI: 10.3390/nu9040367] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, Rezapoor S. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 2017; 9:139-148. [PMID: 28510090 PMCID: PMC5425818 DOI: 10.1007/s12551-017-0256-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy has a key role in cancer treatment in more than half of patients with cancer. The management of severe side effects of this treatment modality is a limiting factor to appropriate treatment. Immune system responses play a pivotal role in many of the early and late side effects of radiation. Moreover, immune cells have a significant role in tumor response to radiotherapy, such as angiogenesis and tumor growth. Melatonin as a potent antioxidant has shown appropriate immune regulatory properties that may ameliorate toxicity induced by radiation in various organs. These effects are mediated through various modulatory effects of melatonin in different levels of tissue reaction to ionizing radiation. The effects on the DNA repair system, antioxidant enzymes, immune cells, cytokines secretion, transcription factors, and protein kinases are most important. Moreover, anti-cancer properties of melatonin may increase the therapeutic ratio of radiotherapy. Clinical applications of this agent for the management of malignancies such as breast cancer have shown promising results. It seems anti-proliferative, anti-angiogenesis, and stimulation or suppression of some immune cell responses are the main anti-tumor effects of melatonin that may help to improve response of the tumor to radiotherapy. In this review, the effects of melatonin on the modulation of immune responses in both normal and tumor tissues will be discussed.
Collapse
Affiliation(s)
- M Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gh Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - F Norouzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M Heidari
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - S Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Sodium Tanshinone IIA Sulfonate Prevents Radiation-Induced Toxicity in H9c2 Cardiomyocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4537974. [PMID: 28386289 PMCID: PMC5366215 DOI: 10.1155/2017/4537974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 02/04/2023]
Abstract
The present study was designed to elucidate the key parameters associated with X-ray radiation induced oxidative stress and the effects of STS on X-ray-induced toxicity in H9c2 cardiomyocytes. Cytotoxicity of STS and radiation was assessed by MTT. Antioxidant activity was evaluated by SOD and MDA. Apoptosis was measured by the flow cytometry, Hoechst 33258, clonogenic survival assay, and western blot. It was found that the cell viability of H9c2 cells exposed to X-ray radiation was significantly decreased in a dose-dependent manner and was associated with cell cycle arrest at the G0/G1 phase as well as apoptosis. STS treatment significantly reversed the morphological changes, attenuated radiation-induced apoptosis, and improved the antioxidant activity in the H9c2 cells. STS significantly increased the Bcl-2 and Bcl-2/Bax levels and decreased the Bax and caspase-3 levels, compared with the cells treated with radiation alone. STS treatment also resulted in a significant increase in p38-MAPK activation. STS could protect the cells from X-ray-induced cell cycle arrest, oxidative stress, and apoptosis. Therefore, we suggest the STS could be useful for the treatment of radiation-induced cardiovascular injury.
Collapse
|
46
|
Cuomo JR, Sharma GK, Conger PD, Weintraub NL. Novel concepts in radiation-induced cardiovascular disease. World J Cardiol 2016; 8:504-519. [PMID: 27721934 PMCID: PMC5039353 DOI: 10.4330/wjc.v8.i9.504] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Radiation-induced cardiovascular disease (RICVD) is the most common nonmalignant cause of morbidity and mortality among cancer survivors who have undergone mediastinal radiation therapy (RT). Cardiovascular complications include effusive or constrictive pericarditis, cardiomyopathy, valvular heart disease, and coronary/vascular disease. These are pathophysiologically distinct disease entities whose prevalence varies depending on the timing and extent of radiation exposure to the heart and great vessels. Although refinements in RT dosimetry and shielding will inevitably limit future cases of RICVD, the increasing number of long-term cancer survivors, including those treated with older higher-dose RT regimens, will ensure a steady flow of afflicted patients for the foreseeable future. Thus, there is a pressing need for enhanced understanding of the disease mechanisms, and improved detection methods and treatment strategies. Newly characterized mechanisms responsible for the establishment of chronic fibrosis, such as oxidative stress, inflammation and epigenetic modifications, are discussed and linked to potential treatments currently under study. Novel imaging modalities may serve as powerful screening tools in RICVD, and recent research and expert opinion advocating their use is introduced. Data arguing for the aggressive use of percutaneous interventions, such as transcutaneous valve replacement and drug-eluting stents, are examined and considered in the context of prior therapeutic approaches. RICVD and its treatment options are the subject of a rich and dynamic body of research, and patients who are at risk or suffering from this disease will benefit from the care of physicians with specialty expertise in the emerging field of cardio-oncology.
Collapse
Affiliation(s)
- Jason R Cuomo
- Jason R Cuomo, Neal L Weintraub, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | - Gyanendra K Sharma
- Jason R Cuomo, Neal L Weintraub, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | - Preston D Conger
- Jason R Cuomo, Neal L Weintraub, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | - Neal L Weintraub
- Jason R Cuomo, Neal L Weintraub, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
47
|
Rezaeyan A, Haddadi GH, Hosseinzadeh M, Moradi M, Najafi M. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue. J Med Phys 2016; 41:182-91. [PMID: 27651565 PMCID: PMC5019037 DOI: 10.4103/0971-6203.189482] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to evaluate radioprotective effects of hesperidin (HES) administration before the irradiation on the cardiac oxidative stress and histopathological changes in an experimental rat model. The cardiovascular complications of radiation exposure cause morbidity and mortality in patients who received radiotherapy. HES, an antioxidant flavonoid found in citrus fruits, suggests the protection against the tissue damage. Fifty-eight rats were divided into four groups: Group 1 received phosphate buffered saline (PBS) and sham radiation; Group 2, HES and sham radiation; Group 3, PBS and radiation; and Group 4, HES and radiation. The rats were exposed to single dose of 18 Gy of 6 MV X-ray. One hundred milligrams per kilogram doses of HES was administered for 7 days before irradiation. The estimation of superoxide dismutase (SOD), malondialdehyde (MDA), and histopathological analyses was performed at 24 h and 8 weeks after radiation exposure. The irradiation of chest area resulted in an elevated MDA level and decreased SOD activity. Moreover, long-term pathological lesions of radiation were inflammation, fibrosis, the increased number of mast cells and macrophages, and development of plaque, vascular leakage, myocardial degeneration, and myocyte necrosis. Although the administration of HES decreases inflammation, fibrosis, mast cell and macrophage numbers, and myocyte necrosis, it did not result in reduced thrombus, myocardium degeneration, and vascular leakage. In conclusion, these results suggest that HES can perform a radioprotection action. The protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties.
Collapse
Affiliation(s)
- Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholam Hassan Haddadi
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massood Hosseinzadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moradi
- Food and Drug Organization, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats. Life Sci 2016; 160:57-63. [DOI: 10.1016/j.lfs.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
|
49
|
Hu W, Ma Z, Jiang S, Fan C, Deng C, Yan X, Di S, Lv J, Reiter RJ, Yang Y. Melatonin: the dawning of a treatment for fibrosis? J Pineal Res 2016; 60:121-31. [PMID: 26680689 DOI: 10.1111/jpi.12302] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
Fibrosis is a common occurrence following organ injury and failure. To date, there is no effective treatment for this condition. Melatonin targets numerous molecular pathways, a consequence of its antioxidant and anti-inflammatory actions that reduce excessive fibrosis. Herein, we review the multiple protective effects of melatonin against fibrosis. There exist four major phases of the fibrogenic response including primary injury to the organ, activation of effector cells, the elaboration of extracellular matrix (ECM) and dynamic deposition. Melatonin regulates each of these phases. Additionally, melatonin reduces fibrosis levels in numerous organs. Melatonin exhibits its anti-fibrosis effects in heart, liver, lung, kidney, and other organs. In addition, adhesions which occur following surgical procedures are also inhibited by melatonin. The information reviewed here should be significant to understanding the protective role of melatonin against fibrosis, contribute to the design of further experimental studies related to melatonin and the fibrotic response and shed light on a potential treatment for fibrosis.
Collapse
Affiliation(s)
- Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
- Department of General Surgery, Beidaihe Sanatorium, Beijing Military Area Command, Qinhuangdao, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
- Department of General Surgery, Beidaihe Sanatorium, Beijing Military Area Command, Qinhuangdao, China
| |
Collapse
|
50
|
Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol 2015; 5:39. [PMID: 25741474 PMCID: PMC4332338 DOI: 10.3389/fonc.2015.00039] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 02/04/2015] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a common diagnosis in women. Breast radiation has become critical in managing patients who receive breast conserving surgery, or have certain high-risk features after mastectomy. Most patients have an excellent prognosis, therefore understanding the late effects of radiation to the chest is important. Radiation-induced heart disease (RIHD) comprises a spectrum of cardiac pathology including myocardial fibrosis and cardiomyopathy, coronary artery disease, valvular disease, pericardial disease, and arrhythmias. Tissue fibrosis is a common mediator in RIHD. Multiple pathways converge with both acute and chronic cellular, molecular, and genetic changes to result in fibrosis. In this article, we review the pathophysiology of cardiac disease related to radiation therapy to the chest. Our understanding of these mechanisms has improved substantially, but much work remains to further refine radiation delivery techniques and develop therapeutics to battle late effects of radiation.
Collapse
Affiliation(s)
- Neil K Taunk
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - Bruce G Haffty
- Department of Radiation Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, NJ , USA
| | - John B Kostis
- Department of Medicine, The Cardiovascular Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, NJ , USA
| | - Sharad Goyal
- Department of Radiation Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, NJ , USA
| |
Collapse
|