1
|
Popiołek AK, Niznikiewicz MA, Borkowska A, Bieliński MK. Evaluation of Event-Related Potentials in Somatic Diseases - Systematic Review. Appl Psychophysiol Biofeedback 2024; 49:331-346. [PMID: 38564137 DOI: 10.1007/s10484-024-09642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many somatic illnesses (e.g. hypertension, diabetes, pulmonary and cardiac diseases, hepatitis C, kidney and heart failure, HIV infection, Sjogren's disease) may impact central nervous system functions resulting in emotional, sensory, cognitive or even personality impairments. Event-related potential (ERP) methodology allows for monitoring neurocognitive processes and thus can provide a valuable window into these cognitive processes that are influenced, or brought about, by somatic disorders. The current review aims to present published studies on the relationships between somatic illness and brain function as assessed with ERP methodology, with the goal to discuss where this field of study is right now and suggest future directions.
Collapse
Affiliation(s)
- Alicja K Popiołek
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland.
| | - Margaret A Niznikiewicz
- Medical Center, Harvard Medical School and Boston VA Healthcare System, Psychiatry 116a C/O R. McCarly 940 Belmont St, Brockton, MA, 02301, USA
| | - Alina Borkowska
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland
| | - Maciej K Bieliński
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|
2
|
Hamilton HK, Mathalon DH, Ford JM. P300 in schizophrenia: Then and now. Biol Psychol 2024; 187:108757. [PMID: 38316196 DOI: 10.1016/j.biopsycho.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The 1965 discovery of the P300 component of the electroencephalography (EEG)-based event-related potential (ERP), along with the subsequent identification of its alteration in people with schizophrenia, initiated over 50 years of P300 research in schizophrenia. Here, we review what we now know about P300 in schizophrenia after nearly six decades of research. We describe recent efforts to expand our understanding of P300 beyond its sensitivity to schizophrenia itself to its potential role as a biomarker of risk for psychosis or a heritable endophenotype that bridges genetic risk and psychosis phenomenology. We also highlight efforts to move beyond a syndrome-based approach to understand P300 within the context of the clinical, cognitive, and presumed pathophysiological heterogeneity among people diagnosed with schizophrenia. Finally, we describe several recent approaches that extend beyond measuring the traditional P300 ERP component in people with schizophrenia, including time-frequency analyses and pharmacological challenge studies, that may help to clarify specific cognitive mechanisms that are disrupted in schizophrenia. Moreover, we discuss several promising areas for future research, including studies of animal models that can be used for treatment development.
Collapse
Affiliation(s)
- Holly K Hamilton
- University of Minnesota, Department of Psychiatry & Behavioral Sciences, Minneapolis, MN, USA; Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA; University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| | - Daniel H Mathalon
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Judith M Ford
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
3
|
Hu W, Cheng B, Su L, Lv J, Zhu J. Uric acid is negatively associated with cognition in the first- episode of schizophrenia. L'ENCEPHALE 2024; 50:54-58. [PMID: 36907671 DOI: 10.1016/j.encep.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND We explored the relationship between levels of serum uric acid (UA) and cognitive impairment in people with schizophrenia to order to better protect and improve cognitive function in such patients. METHODS A uricase method evaluated serum UA levels in 82 individuals with first-episode schizophrenia and in 39 healthy controls. The Brief Psychiatric Rating Scale (BPRS) and the event-related potential P300 were used to assess the patient's psychiatric symptoms and cognitive functioning. The link between serum UA levels, BPRS scores, and P300 was investigated. RESULTS Prior to treatment, serum UA levels and latency N3 in the study group were significantly higher than in the control group, whereas the amplitude P3 was considerably lower. After therapy, the study group's BPRS scores, serum UA levels, latency N3, and amplitude P3 were lower than before treatment. According to correlation analysis, serum UA levels in the pre-treatment study group significantly positively correlated with BPRS score and latency N3 but not amplitude P3. After therapy, serum UA levels were no longer substantially related to the BPRS score or amplitude P3 but strongly and positively correlated with latency N3. CONCLUSIONS First-episode schizophrenia patients have higher serum UA levels than the general population which partly reflects poor cognitive performance. Improving patients' cognitive function may be facilitated by lowering serum UA levels.
Collapse
Affiliation(s)
- W Hu
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Brain Diseases Bioinformation (Xuzhou Medical University), Xuzhou, Jiangsu, China; The Key Lab of Psychiatry, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - B Cheng
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Brain Diseases Bioinformation (Xuzhou Medical University), Xuzhou, Jiangsu, China; The Key Lab of Psychiatry, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - L Su
- Yangzhou Sida Health Consulting Co., LTD, Yangzhou, Jiangsu, China
| | - J Lv
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - J Zhu
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Brain Diseases Bioinformation (Xuzhou Medical University), Xuzhou, Jiangsu, China; The Key Lab of Psychiatry, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
5
|
Fuentes-Claramonte P, Estradé A, Solanes A, Ramella-Cravaro V, Garcia-Leon MA, de Diego-Adeliño J, Molins C, Fung E, Valentí M, Anmella G, Pomarol-Clotet E, Oliver D, Vieta E, Radua J, Fusar-Poli P. Biomarkers for Psychosis: Are We There Yet? Umbrella Review of 1478 Biomarkers. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae018. [PMID: 39228676 PMCID: PMC11369642 DOI: 10.1093/schizbullopen/sgae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background and Hypothesis This umbrella review aims to comprehensively synthesize the evidence of association between peripheral, electrophysiological, neuroimaging, neuropathological, and other biomarkers and diagnosis of psychotic disorders. Study Design We selected systematic reviews and meta-analyses of observational studies on diagnostic biomarkers for psychotic disorders, published until February 1, 2018. Data extraction was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Evidence of association between biomarkers and psychotic disorders was classified as convincing, highly suggestive, suggestive, weak, or non-significant, using a standardized classification. Quality analyses used the Assessment of Multiple Systematic Reviews (AMSTAR) tool. Study Results The umbrella review included 110 meta-analyses or systematic reviews corresponding to 3892 individual studies, 1478 biomarkers, and 392 210 participants. No factor showed a convincing level of evidence. Highly suggestive evidence was observed for transglutaminase autoantibodies levels (odds ratio [OR] = 7.32; 95% CI: 3.36, 15.94), mismatch negativity in auditory event-related potentials (standardized mean difference [SMD] = 0.73; 95% CI: 0.5, 0.96), P300 component latency (SMD = -0.6; 95% CI: -0.83, -0.38), ventricle-brain ratio (SMD = 0.61; 95% CI: 0.5, 0.71), and minor physical anomalies (SMD = 0.99; 95% CI: 0.64, 1.34). Suggestive evidence was observed for folate, malondialdehyde, brain-derived neurotrophic factor, homocysteine, P50 sensory gating (P50 S2/S1 ratio), frontal N-acetyl-aspartate, and high-frequency heart rate variability. Among the remaining biomarkers, weak evidence was found for 626 and a non-significant association for 833 factors. Conclusions While several biomarkers present highly suggestive or suggestive evidence of association with psychotic disorders, methodological biases, and underpowered studies call for future higher-quality research.
Collapse
Affiliation(s)
- Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrés Estradé
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Aleix Solanes
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
| | - Valentina Ramella-Cravaro
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Javier de Diego-Adeliño
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Conrad Molins
- Psychiatric Service, Hospital Universitari Santa Maria, Lleida, Catalonia, Spain
| | - Eric Fung
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Marc Valentí
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Gerard Anmella
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Dominic Oliver
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford OX3 7JX, UK
- OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Eduard Vieta
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- OASIS Service, South London and the Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Mohammadifirouzeh M, Oh KM, Basnyat I, Gimm G. Factors Associated with Professional Mental Help-Seeking Among U.S. Immigrants: A Systematic Review. J Immigr Minor Health 2023; 25:1118-1136. [PMID: 37000385 PMCID: PMC10063938 DOI: 10.1007/s10903-023-01475-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Structural and cultural barriers have led to limited access to and use of mental health services among immigrants in the United States (U.S.). This study provided a systematic review of factors associated with help-seeking attitudes, intentions, and behaviors among immigrants who are living in the U.S. This systematic review was performed using Medline, CINAHL, APA PsycInfo, Global Health, and Web of Science. Qualitative and quantitative studies examining mental help-seeking among immigrants in the U.S. were included. 954 records were identified through a search of databases. After removing duplicates and screening by title and abstract, a total of 104 articles were eligible for full-text review and a total of 19 studies were included. Immigrants are more reluctant to seek help from professional mental health services due to barriers such as stigma, cultural beliefs, lack of English language proficiency, and lack of trust in health care providers.
Collapse
Affiliation(s)
- Mona Mohammadifirouzeh
- College of Public Health, School of Nursing, George Mason University, 4400 University Dr, Fairfax, VA 22030 USA
| | - Kyeung Mi Oh
- College of Public Health, School of Nursing, George Mason University, 3C4, Peterson Hall 3041, 4400 University Dr, Fairfax, VA 22030 USA
| | - Iccha Basnyat
- College of Humanities and Social Sciences, Global Affairs Program and Department of Communication, George Mason University, Horizon Hall 5200, Fairfax, VA 22030 USA
| | - Gilbert Gimm
- College of Public Health, Department of Health Administration and Policy, George Mason University, MS-1-J3, Peterson Hall 4410, 4400 University Dr, Fairfax, VA 22030 USA
| |
Collapse
|
7
|
Devrim-Üçok M, Keskin-Ergen HY, Üçok A. Visual P3 abnormalities in patients with first-episode schizophrenia, unaffected siblings of schizophrenia patients and individuals at ultra-high risk for psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110678. [PMID: 36427549 DOI: 10.1016/j.pnpbp.2022.110678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Cued version of the continuous performance test (AX-CPT) assesses sustained attention, working memory and cognitive control processes, which have been reported as impaired in schizophrenia. This study investigated visual P3 event-related potential elicited during cued CPT in patients with schizophrenia and in individuals who were at clinical or genetic high risk for psychosis to determine whether any abnormality may provide a marker of vulnerability for psychosis. Visual P3 elicited during cued CPT have not been reported in individuals at high risk for psychosis. Visual Go and NoGo P3 potentials were assessed in 34 antipsychotic-naive patients with first-episode schizophrenia (FES), 25 clinically unaffected siblings of these patients (familial high-risk for psychosis, FHR), 49 antipsychotic-naive individuals at ultra-high risk for psychosis (UHR) and 37 healthy control (HC) participants. FES patients had overall smaller P3 amplitudes than all other groups. P3 amplitude of the UHR participants was in-between the HC participants and FES patients. The anteroposterior P3 topography differed between the groups, with FES patients and FHR participants showing a more frontally distributed P3 compared with the HC participants. These findings suggest that the reduction in visual P3 amplitude may provide a vulnerability marker for psychosis in individuals who are at clinical high risk for psychosis and that a more frontally distributed visual P3 may be a marker of genetic liability for psychosis.
Collapse
Affiliation(s)
- Müge Devrim-Üçok
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - H Yasemin Keskin-Ergen
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alp Üçok
- Department of Psychiatry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Kaleda VG, Omelchenko MA, Migalina VV. [Juvenile depression as at-risk state for psychotic disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:38-45. [PMID: 38127699 DOI: 10.17116/jnevro202312311238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To establish the risk of psychotic disorders in juvenile depression and to study the role of negative symptoms in its formation. MATERIAL AND METHODS Seventy-four in-patients (19.6±2.3 years old), who were hospitalized for the first time in the clinic for a depressive episode, were examined. Psychometric scales HDRS, SOPS, SANS were used. The risk of manifestation of psychotic disorders was established in the presence of attenuated positive symptoms (APS) with values of at least one of the points P1, P2, P3 and P4 of the corresponding SOPS subscale more or equal to 3. The overall risk of schizophrenia spectrum disorders was established in the presence of attenuated negative symptoms (ANS) with values of at least one of the points H1-H6 of the negative SOPS subscale is more than or equal to 5. Statistical analysis was carried out using the Statistica 12 program. RESULTS During the psychometric assessment of patients at admission, four groups were identified based on the presence of APS and ANS: group 1 (APS+ANS), group 2 (APS), group 3 (ANS) and a comparison group without APS/ANS. It was found that the presence of APS and ANS in the structure of depression increased its severity (U=109.0; p=0.009). Assessment of the ANS severity on the negative subscale of SOPS and on the SANS demonstrated quantitative differences with the highest representation of negative symptoms in the corresponding groups (APS+ANS and ANS) with significant differences in total scores in the comparison group (U=93.0; p=0.004 and U=85.0; p=0.002). When studying the structure of negative symptoms according to the SANS subscales, patients with APS differed in a lower degree of severity of negative symptoms only according to the «Avolition-Apathy» subscale (U=141.5; p=0.028). Patients from the comparison group, despite significant differences in other psychopathological symptoms, showed lower values only for the SANS subscales «Affective flattening» (U=112.0; p=0.02) and, to a greater extent, «Avolition-Apathy» (U=84.0; p=0.002). CONCLUSION Based on the presence of prodromal symptoms in the structure of juvenile depression and their dynamics during therapy, one can assume not only a different degree of risk of endogenous psychoses, but also their nosological affiliation.
Collapse
Affiliation(s)
- V G Kaleda
- Mental Health Research Center, Moscow, Russia
| | | | | |
Collapse
|
9
|
Duncan E, Roach BJ, Massa N, Hamilton HK, Bachman PM, Belger A, Carrion RE, Johannesen JK, Light GA, Niznikiewicz MA, Addington JM, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, Perkins DO, Tsuang M, Walker EF, Woods SW, Nasiri N, Mathalon DH. Auditory N100 amplitude deficits predict conversion to psychosis in the North American Prodrome Longitudinal Study (NAPLS-2) cohort. Schizophr Res 2022; 248:89-97. [PMID: 35994912 PMCID: PMC10091223 DOI: 10.1016/j.schres.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The auditory N100 is an event related potential (ERP) that is reduced in schizophrenia, but its status in individuals at clinical high risk for psychosis (CHR) and its ability to predict conversion to psychosis remains unclear. We examined whether N100 amplitudes are reduced in CHR subjects relative to healthy controls (HC), and this reduction predicts conversion to psychosis in CHR. METHODS Subjects included CHR individuals (n = 552) and demographically similar HC subjects (n = 236) from the North American Prodrome Longitudinal Study. Follow-up assessments identified CHR individuals who converted to psychosis (CHRC; n = 73) and those who did not (CHR-NC; n = 225) over 24 months. Electroencephalography data were collected during an auditory oddball task containing Standard, Novel, and Target stimuli. N100 peak amplitudes following each stimulus were measured at electrodes Cz and Fz. RESULTS The CHR subjects had smaller N100 absolute amplitudes than HC subjects at Fz (F(1,786) = 4.00, p 0.046). A model comparing three groups (CHRC, CHR-NC, HC) was significant for Group at the Cz electrode (F(2,531) = 3.58, p = 0.029). Both Standard (p = 0.019) and Novel (p = 0.017) stimuli showed N100 absolute amplitude reductions in CHR-C relative to HC. A smaller N100 amplitude at Cz predicted conversion to psychosis in the CHR cohort (Standard: p = 0.009; Novel: p = 0.001) and predicted shorter time to conversion (Standard: p = 0.013; Novel: p = 0.001). CONCLUSION N100 amplitudes are reduced in CHR individuals which precedes the onset of psychosis. N100 deficits in CHR individuals predict a greater likelihood of conversion to psychosis. Our results highlight N100's utility as a biomarker of psychosis risk.
Collapse
Affiliation(s)
- Erica Duncan
- Atlanta VA Health Care System, Decatur, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States.
| | - Brian J Roach
- San Francisco VA Health Care System, San Francisco, CA, United States
| | - Nicholas Massa
- Atlanta VA Health Care System, Decatur, GA, United States
| | - Holly K Hamilton
- San Francisco VA Health Care System, San Francisco, CA, United States; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Peter M Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Ricardo E Carrion
- Department of Psychiatry, Zucker Hillside Hospital, New York, NY, United States
| | - Jason K Johannesen
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | | | - Jean M Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States; Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Barbara A Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, New York, NY, United States
| | - Thomas H McGlashan
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Scott W Woods
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Nima Nasiri
- Atlanta VA Health Care System, Decatur, GA, United States
| | - Daniel H Mathalon
- San Francisco VA Health Care System, San Francisco, CA, United States; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Visual P300 as a neurophysiological correlate of symptomatic improvement by a virtual reality-based computer AT system in patients with auditory verbal hallucinations: A Pilot study. J Psychiatr Res 2022; 151:261-271. [PMID: 35512620 DOI: 10.1016/j.jpsychires.2022.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Previous comparative trials showed that virtual reality (VR) therapies achieved larger effects than gold-standard cognitive-behavioral therapy (CBT) on overall auditory verbal hallucinations (AVHs). However, no trial has examined the corresponding underlying electrophysiological mechanisms. We performed a pilot randomized comparative trial evaluating the efficacy of a virtual reality-based computer AT system (CATS) over CBT for schizophrenia (SCZ) patients with treatment-resistant AVHs and explored these potential electrophysiological changes via the visual P300 component. Patients (CATS, n = 32; CBT, n = 33) completed the clinical assessments pre- and post-interventions and at 12-week follow-up. The visual P300 were measured before and after both therapies. The analysis of changes in psychiatric symptoms used linear mixed-effects models, and the P300 response in temporal and time-frequency domains was analyzed with repeated-measures analysis of variance. There was no interaction effect between change in clinical symptoms and treatment group. However, several statistically significant within-group improvements were found for CATS and CBT over time. AVH improved significantly after both treatments, as measured with the Psychotic Symptom Rating Scales-Auditory Hallucinations (PSYRATS-AH) sub-scores. Especially for the CATS group, omnipotence beliefs, anxiety symptoms, self-esteem, and quality of life also remained improved at the 12-week follow-up. Moreover, P300 amplitude had a significant interaction effect and correlation with AVH response. Overall, our analysis did not demonstrate general clinical superiority of CATS over CBT, but CATS improved refractory AVH in SCZ patients, likely by increasing P300 amplitude. These findings support the continued development of CATS for persistent AVH and suggest further trials to clarify the neurological effects of CATS.
Collapse
|
11
|
Wang B, Zartaloudi E, Linden JF, Bramon E. Neurophysiology in psychosis: The quest for disease biomarkers. Transl Psychiatry 2022; 12:100. [PMID: 35277479 PMCID: PMC8917164 DOI: 10.1038/s41398-022-01860-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023] Open
Abstract
Psychotic disorders affect 3% of the population at some stage in life, are a leading cause of disability, and impose a great economic burden on society. Major breakthroughs in the genetics of psychosis have not yet been matched by an understanding of its neurobiology. Biomarkers of perception and cognition obtained through non-invasive neurophysiological tools, especially EEG, offer a unique opportunity to gain mechanistic insights. Techniques for measuring neurophysiological markers are inexpensive and ubiquitous, thus having the potential as an accessible tool for patient stratification towards early treatments leading to better outcomes. In this paper, we review the literature on neurophysiological markers for psychosis and their relevant disease mechanisms, mainly covering event-related potentials including P50/N100 sensory gating, mismatch negativity, and the N100 and P300 waveforms. While several neurophysiological deficits are well established in patients with psychosis, more research is needed to study neurophysiological markers in their unaffected relatives and individuals at clinical high risk. We need to harness EEG to investigate markers of disease risk as key steps to elucidate the aetiology of psychosis and facilitate earlier detection and treatment.
Collapse
Affiliation(s)
- Baihan Wang
- Division of Psychiatry, University College London, London, UK.
| | - Eirini Zartaloudi
- Division of Psychiatry, University College London, London, UK.
- Institute of Clinical Trials and Methodology, University College London, London, UK.
| | - Jennifer F Linden
- Ear Institute, University College London, London, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
12
|
Auditory event-related electroencephalographic potentials in borderline personality disorder. J Affect Disord 2022; 296:454-464. [PMID: 34600969 DOI: 10.1016/j.jad.2021.09.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Borderline Personality Disorder (BPD) is characterized by mood dysregulation, impulsivity, identity disturbances, and a higher risk for suicide. Currently, the diagnosis is solely based on clinical observation of overt symptoms, and this can delay the detection of the disease and the timely start of appropriate treatment. Several candidate clinical tools have been studied to better characterize BPD, including event-related potentials (ERP). This review aimed at summarizing the results of the available ERP studies on BPD to clarify the possible application of this technique in the early diagnosis of BPD. METHODS A bibliographic search on PubMed and PsycInfo was performed in order to identify studies comprising individuals with BPD diagnosis and a control group that evaluated the ERP elicited by auditory stimuli. RESULTS Ten studies that explored various ERP components associated with auditory stimuli in BPD were included. Overall, the results showed that positive ERP (P50, P100, and P300) amplitude and latencies as well as loudness dependance were altered in BPD patients compared to controls, possibly reflecting deficits involving attention, mainly at its early stage, and executive functions. LIMITATIONS The reviewed studies used different ERP approaches and non-homogeneous BPD diagnostic criteria. CONCLUSIONS Auditory ERP appear to be a promising tool for the assessment of BPD patients, especially for early diagnosis and evaluation of cognitive symptoms.
Collapse
|
13
|
Giordano GM, Brando F, Perrottelli A, Di Lorenzo G, Siracusano A, Giuliani L, Pezzella P, Altamura M, Bellomo A, Cascino G, Del Casale A, Monteleone P, Pompili M, Galderisi S, Maj M. Tracing Links Between Early Auditory Information Processing and Negative Symptoms in Schizophrenia: An ERP Study. Front Psychiatry 2021; 12:790745. [PMID: 34987433 PMCID: PMC8721527 DOI: 10.3389/fpsyt.2021.790745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023] Open
Abstract
Background: Negative symptoms represent a heterogeneous dimension with a strong impact on functioning of subjects with schizophrenia (SCZ). Five constructs are included in this dimension: anhedonia, asociality, avolition, blunted affect, and alogia. Factor analyses revealed that these symptoms cluster in two domains: experiential domain (avolition, asociality, and anhedonia) and the expressive deficit (alogia and blunted affect), that might be linked to different neurobiological alterations. Few studies investigated associations between N100, an electrophysiological index of early sensory processing, and negative symptoms, reporting controversial results. However, none of these studies investigated electrophysiological correlates of the two negative symptom domains. Objectives: The aim of our study was to evaluate, within the multicenter study of the Italian Network for Research on Psychoses, the relationships between N100 and negative symptom domains in SCZ. Methods: Auditory N100 was analyzed in 114 chronic stabilized SCZ and 63 healthy controls (HCs). Negative symptoms were assessed with the Brief Negative Symptom Scale (BNSS). Repeated measures ANOVA and correlation analyses were performed to evaluate differences between SCZ and HCs and association of N100 features with negative symptoms. Results: Our findings demonstrated a significant N100 amplitude reduction in SCZ compared with HCs. In SCZ, N100 amplitude for standard stimuli was associated with negative symptoms, in particular with the expressive deficit domain. Within the expressive deficit, blunted affect and alogia had the same pattern of correlation with N100. Conclusion: Our findings revealed an association between expressive deficit and N100, suggesting that these negative symptoms might be related to deficits in early auditory processing in SCZ.
Collapse
Affiliation(s)
- Giulia M. Giordano
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesco Brando
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Andrea Perrottelli
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giorgio Di Lorenzo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pasquale Pezzella
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Section of Neurosciences, University of Salerno, Salerno, Italy
| | - Antonio Del Casale
- Department of Neurosciences, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome “La Sapienza”, Rome, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Section of Neurosciences, University of Salerno, Salerno, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome “La Sapienza”, Rome, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
14
|
Castiajo P, Pinheiro AP. Attention to voices is increased in non-clinical auditory verbal hallucinations irrespective of salience. Neuropsychologia 2021; 162:108030. [PMID: 34563552 DOI: 10.1016/j.neuropsychologia.2021.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
Alterations in the processing of vocal emotions have been associated with both clinical and non-clinical auditory verbal hallucinations (AVH), suggesting that changes in the mechanisms underpinning voice perception contribute to AVH. These alterations seem to be more pronounced in psychotic patients with AVH when attention demands increase. However, it remains to be clarified how attention modulates the processing of vocal emotions in individuals without clinical diagnoses who report hearing voices but no related distress. Using an active auditory oddball task, the current study clarified how emotion and attention interact during voice processing as a function of AVH proneness, and examined the contributions of stimulus valence and intensity. Participants with vs. without non-clinical AVH were presented with target vocalizations differing in valence (neutral; positive; negative) and intensity (55 decibels (dB); 75 dB). The P3b amplitude was larger in response to louder (vs. softer) vocal targets irrespective of valence, and in response to negative (vs. neutral) vocal targets irrespective of intensity. Of note, the P3b amplitude was globally increased in response to vocal targets in participants reporting AVH, and failed to be modulated by valence and intensity in these participants. These findings suggest enhanced voluntary attention to changes in vocal expressions but reduced discrimination of salient and non-salient cues. A decreased sensitivity to salience cues of vocalizations could contribute to increased cognitive control demands, setting the stage for an AVH.
Collapse
Affiliation(s)
- Paula Castiajo
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Ana P Pinheiro
- Faculdade de Psicologia, CICPSI, Universidade de Lisboa, Lisboa, Portugal; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Solís-Vivanco R, Mondragón-Maya A, Reyes-Madrigal F, de la Fuente-Sandoval C. Impairment of novelty-related theta oscillations and P3a in never medicated first-episode psychosis patients. NPJ SCHIZOPHRENIA 2021; 7:15. [PMID: 33637757 PMCID: PMC7910533 DOI: 10.1038/s41537-021-00146-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
We explored the neurophysiological activity underlying auditory novelty detection in antipsychotic-naive patients with a first episode of psychosis (FEP). Fifteen patients with a non-affective FEP and 13 healthy controls underwent an active involuntary attention task along with an EEG acquisition. Time-frequency representations of power, phase locking, and fronto-parietal connectivity were calculated. The P3a event-related potential was extracted as well. Compared to controls, the FEP group showed reduced theta phase-locking and fronto-parietal connectivity evoked by deviant stimuli. Also, the P3a amplitude was significantly reduced. Moreover, reduced theta connectivity was associated with more severe negative symptoms within the FEP group. Reduced activity (phase-locking and connectivity) of novelty-related theta oscillations, along with P3a reduction, may represent a failure to synchronize large-scale neural populations closely related to fronto-parietal attentional networks, and might be explored as a potential biomarker of disease severity in patients with emerging psychosis, given its association with negative symptoms.
Collapse
Affiliation(s)
- Rodolfo Solís-Vivanco
- Laboratory of Neuropsychology, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Mondragón-Maya
- Faculty of Higher Studies Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
16
|
Ren X, Fribance SN, Coffman BA, Salisbury DF. Deficits in attentional modulation of auditory N100 in first-episode schizophrenia. Eur J Neurosci 2021; 53:2629-2638. [PMID: 33492765 DOI: 10.1111/ejn.15128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022]
Abstract
Reductions of the auditory N100 are present in schizophrenia, even at the first episode (FESz). Because most studies examine auditory N100 on active target detection oddball tasks, it remains unclear if the abnormality in FESz results from sensory deficits or impaired enhancement of N100 by selective attention, or both. N100 was recorded from 21 FESz and 22 matched healthy controls (HC) on a single-tone task and a two-tone oddball task. Overall, N100 was smaller in FESz (p = .036). Attention enhanced N100 amplitude (p < .001), but this differed between groups, with FESz impaired in N100 modulation (group x attention, p = .012). The oddball task showed greater N100 enhancement than the single-tone task (p < .001) in both groups. Group differences in N100 enhancement in the oddball task were large (Cohen's d = 0.85). Exploratory correlations showed that better N100 enhancement on the oddball task in FESz was associated with better MATRICS Overall Composite scores (cognitive tasks highly sensitive to psychosis), lower PANNS Negative factor and SANS scores, and better interpersonal (social) and role functioning in the last year. N100 during ignore conditions showed no significant difference between groups, albeit smaller in FESz, with small to medium effect sizes. Although sensory deficits in N100 are likely present, they are compounded by a failure to enhance N100 with attention. The failure of N100 enhancement by attentional gain control in FESz suggests functional dysconnection between cognitive control areas and the sensory cortex. N100 amplitude on active attention tasks may be a useful outcome biomarker for targeted enhancement of the cognitive control system.
Collapse
Affiliation(s)
- Xi Ren
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah N Fribance
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Stern T, Crutcher EH, McCarthy JM, Ali MA, Issachar G, Geva AB, Peremen Z, Schaaf CP. Brain Network Analysis of EEG Recordings Can Be Used to Assess Cognitive Function in Teenagers With 15q13.3 Microdeletion Syndrome. Front Neurosci 2021; 15:622329. [PMID: 33584189 PMCID: PMC7876406 DOI: 10.3389/fnins.2021.622329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
15q13.3 microdeletion syndrome causes a spectrum of cognitive disorders, including intellectual disability and autism. We assessed the ability of the EEG analysis algorithm Brain Network Analysis (BNA) to measure cognitive function in 15q13.3 deletion patients, and to differentiate between patient and control groups. EEG data was collected from 10 individuals with 15q13.3 microdeletion syndrome (14–18 years of age), as well as 30 age-matched healthy controls, as the subjects responded to Auditory Oddball (AOB) and Go/NoGo cognitive tasks. It was determined that BNA can be used to evaluate cognitive function in 15q13.3 microdeletion patients. This analysis also significantly differentiates between patient and control groups using 5 scores, all of which are produced from ERP peaks related to late cortical components that represent higher cognitive functions of attention allocation and response inhibition (P < 0.05).
Collapse
Affiliation(s)
| | - Emeline H Crutcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - John M McCarthy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - May A Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | | | | | | | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Mucci A. EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review. Front Psychiatry 2021; 12:653642. [PMID: 34017273 PMCID: PMC8129021 DOI: 10.3389/fpsyt.2021.653642] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Electrophysiological (EEG) abnormalities in subjects with schizophrenia have been largely reported. In the last decades, research has shifted to the identification of electrophysiological alterations in the prodromal and early phases of the disorder, focusing on the prediction of clinical and functional outcome. The identification of neuronal aberrations in subjects with a first episode of psychosis (FEP) and in those at ultra high-risk (UHR) or clinical high-risk (CHR) to develop a psychosis is crucial to implement adequate interventions, reduce the rate of transition to psychosis, as well as the risk of irreversible functioning impairment. The aim of the review is to provide an up-to-date synthesis of the electrophysiological findings in the at-risk mental state and early stages of schizophrenia. Methods: A systematic review of English articles using Pubmed, Scopus, and PsychINFO was undertaken in July 2020. Additional studies were identified by hand-search. Electrophysiological studies that included at least one group of FEP or subjects at risk to develop psychosis, compared to healthy controls (HCs), were considered. The heterogeneity of the studies prevented a quantitative synthesis. Results: Out of 319 records screened, 133 studies were included in a final qualitative synthesis. Included studies were mainly carried out using frequency analysis, microstates and event-related potentials. The most common findings included an increase in delta and gamma power, an impairment in sensory gating assessed through P50 and N100 and a reduction of Mismatch Negativity and P300 amplitude in at-risk mental state and early stages of schizophrenia. Progressive changes in some of these electrophysiological measures were associated with transition to psychosis and disease course. Heterogeneous data have been reported for indices evaluating synchrony, connectivity, and evoked-responses in different frequency bands. Conclusions: Multiple EEG-indices were altered during at-risk mental state and early stages of schizophrenia, supporting the hypothesis that cerebral network dysfunctions appear already before the onset of the disorder. Some of these alterations demonstrated association with transition to psychosis or poor functional outcome. However, heterogeneity in subjects' inclusion criteria, clinical measures and electrophysiological methods prevents drawing solid conclusions. Large prospective studies are needed to consolidate findings concerning electrophysiological markers of clinical and functional outcome.
Collapse
Affiliation(s)
- Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Francesco Brando
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
19
|
Foss-Feig JH, Guillory SB, Roach BJ, Velthorst E, Hamilton H, Bachman P, Belger A, Carrion R, Duncan E, Johannesen J, Light GA, Niznikiewicz M, Addington JM, Cadenhead KS, Cannon TD, Cornblatt B, McGlashan T, Perkins D, Seidman LJ, Stone WS, Tsuang M, Walker EF, Woods S, Bearden CE, Mathalon DH. Abnormally Large Baseline P300 Amplitude Is Associated With Conversion to Psychosis in Clinical High Risk Individuals With a History of Autism: A Pilot Study. Front Psychiatry 2021; 12:591127. [PMID: 33633603 PMCID: PMC7901571 DOI: 10.3389/fpsyt.2021.591127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Psychosis rates in autism spectrum disorder (ASD) are 5-35% higher than in the general population. The overlap in sensory and attentional processing abnormalities highlights the possibility of related neurobiological substrates. Previous research has shown that several electroencephalography (EEG)-derived event-related potential (ERP) components that are abnormal in schizophrenia, including P300, are also abnormal in individuals at Clinical High Risk (CHR) for psychosis and predict conversion to psychosis. Yet, it is unclear whether P300 is similarly sensitive to psychosis risk in help-seeking CHR individuals with ASD history. In this exploratory study, we leveraged data from the North American Prodrome Longitudinal Study (NAPLS2) to probe for the first time EEG markers of longitudinal psychosis profiles in ASD. Specifically, we investigated the P300 ERP component and its sensitivity to psychosis conversion across CHR groups with (ASD+) and without (ASD-) comorbid ASD. Baseline EEG data were analyzed from 304 CHR patients (14 ASD+; 290 ASD-) from the NAPLS2 cohort who were followed longitudinally over two years. We examined P300 amplitude to infrequent Target (10%; P3b) and Novel distractor (10%; P3a) stimuli from visual and auditory oddball tasks. Whereas P300 amplitude attenuation is typically characteristic of CHR and predictive of conversion to psychosis in non-ASD sample, in our sample, history of ASD moderated this relationship such that, in CHR/ASD+ individuals, enhanced - rather than attenuated - visual P300 (regardless of stimulus type) was associated with psychosis conversion. This pattern was also seen for auditory P3b amplitude to Target stimuli. Though drawn from a small sample of CHR individuals with ASD, these preliminary results point to a paradoxical effect, wherein those with both CHR and ASD history who go on to develop psychosis have a unique pattern of enhanced neural response during attention orienting to both visual and target stimuli. Such a pattern stands out from the usual finding of P300 amplitude reductions predicting psychosis in non-ASD CHR populations and warrants follow up in larger scale, targeted, longitudinal studies of those with ASD at clinical high risk for psychosis.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Department of Psychiatry and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sylvia B Guillory
- Department of Psychiatry and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brian J Roach
- San Francisco VA Health Care System, San Francisco, CA, United States
| | - Eva Velthorst
- Department of Psychiatry and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Holly Hamilton
- San Francisco VA Health Care System, San Francisco, CA, United States.,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Ricardo Carrion
- Department of Psychiatry, Zucker Hillside Hospital, New York, NY, United States
| | - Erica Duncan
- Departments of Psychology and Psychiatry, Atlanta VA Health Care System and Emory University, Decatur, GA, United States
| | - Jason Johannesen
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | | | - Jean M Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States
| | - Barbara Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, New York, NY, United States
| | - Thomas McGlashan
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States
| | - Diana Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Larry J Seidman
- Department of Psychiatry, Harvard University, Cambridge, MA, United States
| | - William S Stone
- Department of Psychiatry, Harvard University, Cambridge, MA, United States
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Atlanta VA Health Care System and Emory University, Decatur, GA, United States
| | - Scott Woods
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel H Mathalon
- San Francisco VA Health Care System, San Francisco, CA, United States.,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
20
|
Mazer P, Macedo I, Paiva TO, Ferreira-Santos F, Pasion R, Barbosa F, Almeida P, Silveira C, Cunha-Reis C, Marques-Teixeira J. Abnormal Habituation of the Auditory Event-Related Potential P2 Component in Patients With Schizophrenia. Front Psychiatry 2021; 12:630406. [PMID: 33815168 PMCID: PMC8012906 DOI: 10.3389/fpsyt.2021.630406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Auditory event-related potentials (ERP) may serve as diagnostic tools for schizophrenia and inform on the susceptibility for this condition. Particularly, the examination of N1 and P2 components of the auditory ERP may shed light on the impairments of information processing streams in schizophrenia. However, the habituation properties (i.e., decreasing amplitude with the repeated presentation of an auditory stimulus) of these components remain poorly studied compared to other auditory ERPs. Therefore, the current study used a roving paradigm to assess the modulation and habituation of N1 and P2 to simple (pure tones) and complex sounds (human voices and bird songs) in 26 first-episode patients with schizophrenia and 27 healthy participants. To explore the habituation properties of these ERPs, we measured the decrease in amplitude over a train of seven repetitions of the same stimulus (either bird songs or human voices). We observed that, for human voices, N1 and P2 amplitudes decreased linearly from stimulus 1-7, in both groups. Regarding bird songs, only the P2 component showed a decreased amplitude with stimulus presentation, exclusively in the control group. This suggests that patients did not show a fading of neural responses to repeated bird songs, reflecting abnormal habituation to this stimulus. This could reflect the inability to inhibit irrelevant or redundant information at later stages of auditory processing. In turn schizophrenia patients appear to have a preserved auditory processing of human voices.
Collapse
Affiliation(s)
- Prune Mazer
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal.,School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Inês Macedo
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal
| | - Tiago O Paiva
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal
| | - Fernando Ferreira-Santos
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal
| | - Rita Pasion
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal
| | - Pedro Almeida
- Faculty of Law, School of Criminology and Interdisciplinary Research Center on Crime, Justice and Security, University of Porto, Porto, Portugal
| | - Celeste Silveira
- Faculty of Medicine, University of Porto, Porto, Portugal.,Psychiatry Department, Hospital S. João, Porto, Portugal
| | - Cassilda Cunha-Reis
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal
| | - João Marques-Teixeira
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal
| |
Collapse
|
21
|
P300 as an index of transition to psychosis and of remission: Data from a clinical high risk for psychosis study and review of literature. Schizophr Res 2020; 226:74-83. [PMID: 30819593 PMCID: PMC6708777 DOI: 10.1016/j.schres.2019.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
Auditory P300 oddball and novel components index working memory operations and salience processing, respectively, and are regarded as biomarkers of neurocognitive changes in both chronic and first-episode schizophrenia. Much less is known about whether P300 abnormalities exist in individuals at clinical high risk for psychosis (CHR) and if they are predictors of both transition to psychosis and remission from symptoms. One hundred and four CHR and 69 healthy control individuals (HC) completed P300 oddball paradigm, and 131 CHR and 69 HC subjects completed P300 novel paradigm. All CHR subjects were followed up for one year and stratified into CHR converters (CHRC) and non-converters (CHR-NC), with CHR-NC further stratified into remitted and non-remitted subgroups. Between-group comparisons of P300 oddball and novel amplitude and latency were performed among CHRC, CHR-NC and HC, as well as among CHRC, non-remitted CHR, remitted CHR and HC. CHR converters had lower fronto-central P300 novel amplitude as well as marginally lower P300 oddball amplitude relative to HC. When CHR non-converters were stratified into remitted and non-remitted subgroups, P300 novel amplitude in remitted CHR subjects was comparable to HC, and it was higher than that in CHR subjects who converted to psychosis or who did not remit. Thus, reduced P300 novel amplitude indexing impaired salience processing marked both conversion to psychosis and remission from psychotic symptoms.
Collapse
|
22
|
Oribe N, Hirano Y, Del Re E, Mesholam-Gately RI, Woodberry KA, Ueno T, Kanba S, Onitsuka T, Shenton ME, Spencer KM, Niznikiewicz MA. Longitudinal evaluation of visual P300 amplitude in clinical high-risk subjects: An event-related potential study. Psychiatry Clin Neurosci 2020; 74:527-534. [PMID: 32519778 DOI: 10.1111/pcn.13083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
AIM We previously reported abnormal P300 and N200 in a visual oddball task, and progressive P300 amplitude reduction at 1-year follow-up in patients with first-episode schizophrenia. P300 reduction as well as intact P1/N1 were also observed in clinical high-risk subjects (CHR), but whether or not these components change over time is unknown. This study evaluates, longitudinally, the visual P300, as well as P1, N1, and N200, in CHR. METHODS Visual event-related potentials (ERP) were recorded twice, once at baseline and once at 1-year follow-up in CHR (n = 19) and healthy comparison subjects (HC; n = 28). Participants silently counted infrequent target stimuli ('x') among standard stimuli ('y') presented on the screen while the 64-channel electroencephalogram was recorded. RESULTS No CHR converted to psychosis from baseline to 1-year follow-up in this study. Visual P300 amplitude was reduced and the latency was delayed significantly in CHR at both time points compared with HC. Furthermore, CHR subjects who had more positive symptoms showed more amplitude reduction at both time points. P1, N1, and N200 did not differ between groups. CONCLUSION Visual P300 amplitude was found to be reduced in CHR individuals compared with HC. We note that this finding is in subjects who did not convert to psychosis at 1-year follow-up. The association between visual P300 amplitude and symptoms suggests that for CHR who often experience clinical symptoms and seek medical care, visual P300 may be an important index that reflects the pathophysiological impairment underlying such clinical states.
Collapse
Affiliation(s)
- Naoya Oribe
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, USA
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
- Department of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Yoshinogari, Japan
| | - Yoji Hirano
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, USA
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
| | - Elisabetta Del Re
- Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Cognitive Neuroscience Laboratory, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, USA
| | - Raquelle I Mesholam-Gately
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, USA
| | - Kristen A Woodberry
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, USA
- Center for Psychiatric Research, Maine Medical Center Research Institute, Portland, USA
| | - Takefumi Ueno
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
- Department of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Yoshinogari, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
- Japan Depression Center, Tokyo, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
| | - Martha E Shenton
- Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Margaret A Niznikiewicz
- Cognitive Neuroscience Laboratory, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, USA
| |
Collapse
|
23
|
Hamilton HK, Boos AK, Mathalon DH. Electroencephalography and Event-Related Potential Biomarkers in Individuals at Clinical High Risk for Psychosis. Biol Psychiatry 2020; 88:294-303. [PMID: 32507388 PMCID: PMC8300573 DOI: 10.1016/j.biopsych.2020.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023]
Abstract
Clinical outcomes vary among youths at clinical high risk for psychosis (CHR-P), with approximately 20% progressing to full-blown psychosis over 2 to 3 years and 30% achieving remission. Recent research efforts have focused on identifying biomarkers that precede psychosis onset and enhance the accuracy of clinical outcome prediction in CHR-P individuals, with the ultimate goal of developing staged treatment approaches based on the individual's level of risk. Identifying such biomarkers may also facilitate progress toward understanding pathogenic mechanisms underlying psychosis onset, which may support the development of mechanistically informed early interventions for psychosis. In recent years, electroencephalography-based event-related potential measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its clinical outcomes. In this review, we describe the evidence for event-related potential abnormalities in CHR-P and discuss how they inform our understanding of information processing deficits as vulnerability markers for emerging psychosis and as indicators of future outcomes. Among the measures studied, P300 and mismatch negativity are notable because deficits predict conversion to psychosis and/or CHR-P remission. However, the accuracy with which these and other measures predict outcomes in CHR-P has been obscured in the prior literature by the tendency to only report group-level differences, underscoring the need for inclusion of individual predictive accuracy metrics in future studies. Nevertheless, both P300 and mismatch negativity show promise as electrophysiological markers of risk for psychosis, as target engagement measures for clinical trials, and as potential translational bridges between human studies and animal models focused on novel drug development for early psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California
| | - Alison K Boos
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California.
| |
Collapse
|
24
|
Del Re EC, Maekawa T, Mesholam-Gately RI, Wojcik J, Seidman LJ, McCarley RW, Niznikiewicz MA. Abnormal Frequency Mismatch Negativity in Early Psychosis Outpatient Subjects. Clin EEG Neurosci 2020; 51:207-214. [PMID: 31826666 DOI: 10.1177/1550059419886691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Abnormalities of mismatch negativity (MMN), an event-related potential, indexing preattentive mechanisms, are consistently reported in schizophrenia (SZ). MMN abnormalities elicited to different deviant types have been recently shown to distinguish among patients according to length of their illness as well as inpatient versus outpatient status, and to be modulated by premorbid IQ. The objective of this study was to evaluate the MMN elicited by both frequency and duration deviant stimuli in patients with early schizophrenia (EP) recruited from an outpatient clinic in Boston, Massachusetts. Methods. Twenty-two healthy controls (HC) and 22 age-, handedness-, and gender-matched EP were tested using a frequency and duration MMN paradigm. Clinical data were also collected. Results. Frequency MMN amplitude but not duration MMN was significantly reduced in EP relative to HC subjects (P = .015). Conclusions. These results indicate that in this sample of early psychosis outpatient group, reductions in frequency MMN but not in duration MMN index clinical status. The relationship between age at first hospitalization and MMN frequency and duration amplitude and latency indicates that neurodevelopmental stage, auditory function, and clinical status are tightly linked.
Collapse
Affiliation(s)
- Elisabetta C Del Re
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA
| | - Toshihiko Maekawa
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Okinawa, Japan
| | - Raquelle I Mesholam-Gately
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joanne Wojcik
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Larry J Seidman
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert W McCarley
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
25
|
Francis AM, Knott VJ, Labelle A, Fisher DJ. Interaction of Background Noise and Auditory Hallucinations on Phonemic Mismatch Negativity (MMN) and P3a Processing in Schizophrenia. Front Psychiatry 2020; 11:540738. [PMID: 33093834 PMCID: PMC7523538 DOI: 10.3389/fpsyt.2020.540738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Auditory hallucinations (AHs) are among the cardinal symptoms of schizophrenia (SZ). During the presence of AHs aberrant activity of auditory cortices have been observed, including hyperactivation during AHs alone and hypoactivation when AHs are accompanied by a concurrent external auditory competitor. Mismatch negativity (MMN) and P3a are common ERPs of interest within the study of SZ as they are robustly reduced in the chronic phase of the illness. The present study aimed to explore whether background noise altered the auditory MMN and P3a in those with SZ and treatment-resistant AHs. METHODS MMN and P3a were assessed in 12 hallucinating patients (HPs), 11 non-hallucinating patients (NPs) and 9 healthy controls (HCs) within an auditory oddball paradigm. Standard (P = 0.85) and deviant (P = 0.15) stimuli were presented during three noise conditions: silence (SL), traffic noise (TN), and wide-band white noise (WN). RESULTS HPs showed significantly greater deficits in MMN amplitude relative to NPs in all background noise conditions, though predominantly at central electrodes. Conversely, both NPs and HPs exhibited significant deficits in P3a amplitude relative to HCs under the SL condition only. SIGNIFICANCE These findings suggest that the presence of AHs may specifically impair the MMN, while the P3a appears to be more generally impaired in SZ. That MMN amplitudes are specifically reduced for HPs during background noise conditions suggests HPs may have a harder time detecting changes in phonemic sounds during situations with external traffic or "real-world" noise compared to NPs.
Collapse
Affiliation(s)
- Ashley M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS, Canada
| | - Verner J Knott
- Royal Ottawa Mental Health Centre, Ottawa, ON, Canada.,Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - Alain Labelle
- Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Derek J Fisher
- Department of Psychology, Saint Mary's University, Halifax, NS, Canada.,Royal Ottawa Mental Health Centre, Ottawa, ON, Canada.,Department of Psychology, Carleton University, Ottawa, ON, Canada.,Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| |
Collapse
|
26
|
Tikka DL, Singh AR, Tikka SK. Social cognitive endophenotypes in schizophrenia: A study comparing first episode schizophrenia patients and, individuals at clinical- and familial- 'at-risk' for psychosis. Schizophr Res 2020; 215:157-166. [PMID: 31761472 DOI: 10.1016/j.schres.2019.10.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 01/19/2023]
Abstract
Impairments in specific domains of social cognition have been suggested as possible endophenotypes for schizophrenia and clinical markers for accurate identification of 'at-risk' (AR) states. Aim of the present study was to find out whether performance on social cognition tasks will distinguish 'clinical at-risk (CAR)' and 'familial at-risk (FAR)' individuals from remitted first episode schizophrenia (FES) patients and healthy controls. Fifty in each of these four groups were included for analysis. Schizophrenia psychopathology in FES group was assessed using the Positive and Negative Syndrome Scale (PANSS). Theory of mind (ToM; first and second order (SOT and FOT), and faux pas composite (FPC)), attributional bias (AB) and social perception (SP) were assessed using the Social Cognition Rating Tool in Indian Setting (SOCRATIS). Facial emotion recognition task was used to assess emotional-expression recognition (ER). Significant differences in ToM, SP and ER between the four groups were found, even after controlling for performance on various neurocognitive tasks. ToM and SP were identified to follow an endophenotype pattern. While, both ToM and SP classified FES from healthy with large accuracy rates, SP, specifically, distinguished at-risk from disease groups. None of the social cognitive domains accurately classified familial at-risk from clinical at-risk groups. We conclude that social cognitive measures may be used as reliable endophenotype markers for schizophrenia and its sub-domains may be used for valid identification of AR individuals.
Collapse
Affiliation(s)
- Deyashini Lahiri Tikka
- Department of Clinical Psychology, Ranchi Institute of Neuro Psychiatry and Allied Sciences, Kanke, Ranchi, Jharkhand, 834006, India
| | - Amool Ranjan Singh
- Department of Clinical Psychology, Ranchi Institute of Neuro Psychiatry and Allied Sciences, Kanke, Ranchi, Jharkhand, 834006, India
| | - Sai Krishna Tikka
- Department of Psychiatry, All India Institute of Medical Sciences, Tatibandh, Raipur, Chhattisgarh, 492099, India.
| |
Collapse
|
27
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrion RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, McGlashan TH, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Association Between P300 Responses to Auditory Oddball Stimuli and Clinical Outcomes in the Psychosis Risk Syndrome. JAMA Psychiatry 2019; 76:1187-1197. [PMID: 31389974 PMCID: PMC6686970 DOI: 10.1001/jamapsychiatry.2019.2135] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE In most patients, a prodromal period precedes the onset of schizophrenia. Although clinical criteria for identifying the psychosis risk syndrome (PRS) show promising predictive validity, assessment of neurophysiologic abnormalities in at-risk individuals may improve clinical prediction and clarify the pathogenesis of schizophrenia. OBJECTIVE To determine whether P300 event-related potential amplitude, which is deficient in schizophrenia, is reduced in the PRS and associated with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Auditory P300 data were collected as part of the multisite, case-control North American Prodrome Longitudinal Study (NAPLS-2) at 8 university-based outpatient programs. Participants included 552 individuals meeting PRS criteria and 236 healthy controls with P300 data. Auditory P300 data of participants at risk who converted to psychosis (n = 73) were compared with those of nonconverters who were followed up for 24 months and continued to be symptomatic (n = 135) or remitted from the PRS (n = 90). Data were collected from May 27, 2009, to September 17, 2014, and were analyzed from December 3, 2015, to May 1, 2019. MAIN OUTCOMES AND MEASURES Baseline electroencephalography was recorded during an auditory oddball task. Two P300 subcomponents were measured: P3b, elicited by infrequent target stimuli, and P3a, elicited by infrequent nontarget novel stimuli. RESULTS This study included 788 participants. The PRS group (n = 552) included 236 females (42.8%) (mean [SD] age, 19.21 [4.38] years), and the healthy control group (n = 236) included 111 females (47.0%) (mean [SD] age, 20.44 [4.73] years). Target P3b and novelty P3a amplitudes were reduced in at-risk individuals vs healthy controls (d = 0.37). Target P3b, but not novelty P3a, was significantly reduced in psychosis converters vs nonconverters (d = 0.26), and smaller target P3b amplitude was associated with a shorter time to psychosis onset in at-risk individuals (hazard ratio, 1.45; 95% CI, 1.04-2.00; P = .03). Participants with the PRS who remitted had baseline target P3b amplitudes that were similar to those of healthy controls and greater than those of converters (d = 0.51) and at-risk individuals who remained symptomatic (d = 0.41). CONCLUSIONS AND RELEVANCE In this study, deficits in P300 amplitude appeared to precede psychosis onset. Target P3b amplitudes, in particular, may be sensitive to clinical outcomes in the PRS, including both conversion to psychosis and clinical remission. Auditory target P3b amplitude shows promise as a putative prognostic biomarker of clinical outcome in the PRS.
Collapse
Affiliation(s)
- Holly K. Hamilton
- Department of Psychiatry, University of California, San Francisco,San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Peter M. Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Ricardo E. Carrion
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Erica Duncan
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jason K. Johannesen
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut,Veterans Affairs Connecticut Health Care System, West Haven, Connecticut
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Margaret A. Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, Massachusetts,Veterans Affairs Boston Healthcare System, Brockton, Massachusetts
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles,Department of Psychology, University of California, Los Angeles
| | | | - Barbara A. Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York,Department of Molecular Medicine, Hofstra North Shore-Long Island Jewish School of Medicine, Hempstead, New York
| | - Thomas H. McGlashan
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Elaine F. Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W. Woods
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Tyrone D. Cannon
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut,Department of Psychology, School of Medicine, Yale University, New Haven, Connecticut
| | - Daniel H. Mathalon
- Department of Psychiatry, University of California, San Francisco,San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
28
|
Hamilton HK, Woods SW, Roach BJ, Llerena K, McGlashan TH, Srihari VH, Ford JM, Mathalon DH. Auditory and Visual Oddball Stimulus Processing Deficits in Schizophrenia and the Psychosis Risk Syndrome: Forecasting Psychosis Risk With P300. Schizophr Bull 2019; 45:1068-1080. [PMID: 30753731 PMCID: PMC6737543 DOI: 10.1093/schbul/sby167] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Identification of neurophysiological abnormalities associated with schizophrenia that predate and predict psychosis onset may improve clinical prediction in the psychosis risk syndrome (PRS) and help elucidate the pathogenesis of schizophrenia. Amplitude reduction of the P300 event-related potential component reflects attention-mediated processing deficits and is among the most replicated biological findings in schizophrenia, making it a candidate biomarker of psychosis risk. The relative extent to which deficits in P300 amplitudes elicited by auditory and visual oddball stimuli precede psychosis onset during the PRS and predict transition to psychosis, however, remains unclear. Forty-three individuals meeting PRS criteria, 19 schizophrenia patients, and 43 healthy control (HC) participants completed baseline electroencephalography recording during separate auditory and visual oddball tasks. Two subcomponents of P300 were measured: P3b, elicited by infrequent target stimuli, and P3a, elicited by infrequent nontarget novel stimuli. Auditory and visual target P3b and novel P3a amplitudes were reduced in PRS and schizophrenia participants relative to HC participants. In addition, baseline auditory and visual target P3b, but not novel P3a, amplitudes were reduced in 15 PRS participants who later converted to psychosis, relative to 18 PRS non-converters who were followed for at least 22 months. Furthermore, target P3b amplitudes predicted time to psychosis onset among PRS participants. These results suggest that P300 amplitude deficits across auditory and visual modalities emerge early in the schizophrenia illness course and precede onset of full psychosis. Moreover, target P3b may represent an important neurophysiological vulnerability marker of the imminence of risk for psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Northern California Institute for Research and Education, San Francisco, CA
| | - Katiah Llerena
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | | | | | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| |
Collapse
|
29
|
Graber K, Bosquet Enlow M, Duffy FH, D'Angelo E, Sideridis G, Hyde DE, Morelli N, Tembulkar S, Gonzalez-Heydrich J. P300 amplitude attenuation in high risk and early onset psychosis youth. Schizophr Res 2019; 210:228-238. [PMID: 30685392 DOI: 10.1016/j.schres.2018.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/16/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
Little research has investigated the use of electrophysiological biomarkers in childhood and adolescence to distinguish early onset psychosis and the clinical high risk state. The P300 evoked potential is a robust neurophysiological marker of schizophrenia that is dampened in patients with schizophrenia and, less consistently, in those with affective psychoses and those at clinical high risk for psychosis (CHR). How it may differ between patients with psychotic disorders (PS) and CHR is less studied, especially in youth. The current study compared P300 activity among children and adolescents, aged 5-18 years, at CHR (n = 43), with PS (n = 28), and healthy controls (HC; n = 24). Participants engaged in an auditory event-related potential (ERP) task to elicit a P300 response and completed clinical interviews to verify symptoms and diagnoses. Linear regression analyses revealed a decrease in P300 amplitude with increased severity of psychotic symptoms. PS participants showed a diminished P300 response compared to those at CHR and HC, particularly among adolescents aged 13-18. This response was most evident at centroparietal and parietal locations in the right hemisphere. The findings suggest that high risk and psychotic symptomatology is linked to attenuated parietal P300 activity in youth as young as 13 years. Further exploration of the P300 as a biomarker for psychosis in very young patients could inform tailored, appropriate interventions at early stages of disease progression. Future research should evaluate whether specific phenotypic and genotypic characteristics are differentially associated with neurophysiological biomarkers and whether P300 attenuation in CHR youth can predict later symptom severity.
Collapse
Affiliation(s)
- Kelsey Graber
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Frank H Duffy
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Eugene D'Angelo
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Georgios Sideridis
- Department of Developmental Medicine Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Damon E Hyde
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Nicholas Morelli
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Sahil Tembulkar
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Niznikiewicz MA. Neurobiological approaches to the study of clinical and genetic high risk for developing psychosis. Psychiatry Res 2019; 277:17-22. [PMID: 30926150 DOI: 10.1016/j.psychres.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023]
Abstract
Research on neurobiological impairments in clinical and genetic high risk for developing psychosis individuals (CHR) has identified several brain abnormalities that impact both brain structure and function. The current review will discuss research examining brain abnormalities in clinical and genetic high risk for psychosis using magnetic resonance imaging (MRI) focusing on structural brain abnormalities, diffusion tensor imaging (DTI) focusing on the integrity of white matter tracks, functional MRI focusing on functional brain abnormalities, and EEG and event related potential (ERP) methodologies focusing on indices of cognitive dysfunction in CHR. Studies conducted across these different methodologies sought to identify brain regions and brain processes that would distinguish between those high risk individuals who converted to psychosis versus those who did not. In addition, in some of the studies, the distinction was made between individuals who converted to psychosis, those who did not, and those individuals who remained clinically symptomatic while not converting to psychosis. The brain regions most often identified as abnormal in this subject group were the brain areas often found abnormal in schizophrenia, including frontal and temporal regions. Similarly, several cognitive processes often found to be abnormal in schizophrenia have been also found impaired in CHR.
Collapse
Affiliation(s)
- Margaret A Niznikiewicz
- Harvard Medical School and Veterans Administration Boston, Healthcare System, United States.
| |
Collapse
|
31
|
Monaghan CK, Brickman S, Huynh P, Öngür D, Hall MH. A longitudinal study of event related potentials and correlations with psychosocial functioning and clinical features in first episode psychosis patients. Int J Psychophysiol 2019; 145:48-56. [PMID: 31108121 DOI: 10.1016/j.ijpsycho.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Deficits in auditory event-related potentials (ERPs), brain responses to stimuli indexing different cognitive processes, have been demonstrated widely in chronic schizophrenia (SZ) patients though much less is known about these responses across the early course of psychosis. The present study examined multiple ERP components in first episode psychosis (FEP) patients longitudinally and investigated the relationships between ERPs, psychosocial functioning, and clinical features over time. METHODS N1, P2, P3a, and P3b ERPs were elicited using a three-stimulus (novelty) auditory oddball paradigm. FEP patients included SZ-spectrum and psychotic bipolar disorder (BD) diagnoses. Data were collected from 41 patients at baseline, 20 patients at 12-month follow-up, 14 at 24-month follow-up, and 29 healthy control subjects. RESULTS N1 and P2 ERPs were intact across the early stages of psychosis. Baseline P2 was significantly larger in BD than SZ patients. Reduced P3a and P3b ERPs were found in patients followed longitudinally and are stable over time. ERPs tracked distinct aspects of symptomology and medication, though specific associations were inconsistent across time. Baseline P3a amplitude predicted later psychosocial functioning. The pattern of correlations between ERP components in patients differed from controls. DISCUSSION Baseline P3a ERP, and PANSS general score were significant and independent predictors of later MCAS functioning at 12-month. Overall, individuals with worse functioning and greater symptomology produced smaller amplitudes. Our results highlight the heterogeneity within the FEP population. Correlation patterns among ERPs are similar between patients and controls. P3a and P3b amplitudes appear to link with higher-order cognitive and psychosocial functioning.
Collapse
Affiliation(s)
- Caitlin K Monaghan
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Sophie Brickman
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Polly Huynh
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Mei-Hua Hall
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
32
|
Kruiper C, Fagerlund B, Nielsen MØ, Düring S, Jensen MH, Ebdrup BH, Glenthøj BY, Oranje B. Associations between P3a and P3b amplitudes and cognition in antipsychotic-naïve first-episode schizophrenia patients. Psychol Med 2019; 49:868-875. [PMID: 29914589 DOI: 10.1017/s0033291718001575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive deficits are already present in early stages of schizophrenia. P3a and P3b event-related potentials (ERPs) are believed to underlie the processes of attention and working memory (WM), yet limited research has been performed on the associations between these parameters. Therefore, we explored possible associations between P3a/b amplitudes and cognition in a large cohort of antipsychotic-naïve, first-episode schizophrenia (AN-FES) patients and healthy controls (HC). METHODS Seventy-three AN-FES patients and 93 age- and gender-matched HC were assessed for their P3a/b amplitude with an auditory oddball paradigm. In addition, subjects performed several subtests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). RESULTS AN-FES patients had significantly reduced P3a/b amplitudes, as well as significantly lower scores on all cognitive tests compared with HC. Total group correlations revealed positive associations between P3b amplitude and WM and sustained attention and negative associations with all reaction time measures. These associations appeared mainly driven by AN-FES patients, where we found a similar pattern. No significant associations were found between P3b amplitude and cognitive measures in our HC. P3a amplitude did not correlate significantly with any cognitive measures in either group, nor when combined. CONCLUSIONS Our results provide further evidence for P3a/b amplitude deficits and cognitive deficits in AN-FES patients, which are neither due to antipsychotics nor to disease progress. Furthermore, our data showed significant, yet weak associations between P3b and cognition. Therefore, our data do not supply evidence for deficient P3a/b amplitudes as direct underlying factors for cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Caitlyn Kruiper
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen,Copenhagen,Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen,Copenhagen,Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen,Copenhagen,Denmark
| | - Signe Düring
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen,Copenhagen,Denmark
| | - Maria H Jensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen,Copenhagen,Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen,Copenhagen,Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen,Copenhagen,Denmark
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen,Copenhagen,Denmark
| |
Collapse
|
33
|
Konishi J, Del Re EC, Bouix S, Blokland GAM, Mesholam-Gately R, Woodberry K, Niznikiewicz M, Goldstein J, Hirayasu Y, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW. Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study. Brain Imaging Behav 2019; 12:974-988. [PMID: 28815390 DOI: 10.1007/s11682-017-9758-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined whether abnormal volumes of several brain regions as well as their mutual associations that have been observed in patients with schizophrenia, are also present in individuals at clinical high-risk (CHR) for developing psychosis. 3T magnetic resonance imaging was acquired in 19 CHR and 20 age- and handedness-matched controls. Volumes were measured for the body and temporal horns of the lateral ventricles, hippocampus and amygdala as well as total brain, cortical gray matter, white matter, and subcortical gray matter volumes. Relationships between volumes as well as correlations between volumes and cognitive and clinical measures were explored. Ratios of lateral ventricular volume to total brain volume and temporal horn volume to total brain volume were calculated. Volumetric abnormalities were lateralized to the left hemisphere. Volumes of the left temporal horn, and marginally, of the body of the left lateral ventricle were larger, while left amygdala but not hippocampal volume was significantly smaller in CHR participants compared to controls. Total brain volume was also significantly smaller and the ratio of the temporal horn/total brain volume was significantly higher in CHR than in controls. White matter volume correlated positively with higher verbal fluency score while temporal horn volume correlated positively with a greater number of perseverative errors. Together with the finding of larger temporal horns and smaller amygdala volumes in the left hemisphere, these results indicate that the ratio of temporal horns volume to brain volume is abnormal in CHR compared to controls. These abnormalities present in CHR individuals may constitute the biological basis for at least some of the CHR syndrome.
Collapse
Affiliation(s)
- Jun Konishi
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Elisabetta C Del Re
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Gabriëlla A M Blokland
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Kristen Woodberry
- Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| | - Jill Goldstein
- Brigham and Women's Hospital, Connors Center for Women's Health and Gender Biology, Boston, MA, USA.,Health and Gender Biology, Boston, MA, USA.,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Research and Development, VA Boston Healthcare System, Boston, MA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Predicting prognosis in patients with first-episode psychosis using auditory P300: A 1-year follow-up study. Clin Neurophysiol 2019; 130:46-54. [DOI: 10.1016/j.clinph.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023]
|
35
|
Kelly S, Guimond S, Lyall A, Stone WS, Shenton ME, Keshavan M, Seidman LJ. Neural correlates of cognitive deficits across developmental phases of schizophrenia. Neurobiol Dis 2018; 131:104353. [PMID: 30582983 DOI: 10.1016/j.nbd.2018.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is associated with cognitive deficits across all stages of the illness (i.e., high risk, first episode, early and chronic phases). Identifying the underlying neurobiological mechanisms of these deficits is an important area of scientific inquiry. Here, we selectively review evidence regarding the pattern of deficits across the developmental trajectory of schizophrenia using the five cognitive domains identified by the Research Domain Criteria (RDoC) initiative. We also report associated findings from neuroimaging studies. We suggest that most cognitive domains are affected across the developmental trajectory, with corresponding brain structural and/or functional differences. The idea of a common mechanism driving these deficits is discussed, along with implications for cognitive treatment in schizophrenia.
Collapse
Affiliation(s)
- Sinead Kelly
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Synthia Guimond
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Amanda Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William S Stone
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Matcheri Keshavan
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Larry J Seidman
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Lepock JR, Mizrahi R, Korostil M, Bagby RM, Pang EW, Kiang M. Event-Related Potentials in the Clinical High-Risk (CHR) State for Psychosis: A Systematic Review. Clin EEG Neurosci 2018; 49:215-225. [PMID: 29382210 DOI: 10.1177/1550059418755212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is emerging evidence that identification and treatment of individuals in the prodromal or clinical high-risk (CHR) state for psychosis can reduce the probability that they will develop a psychotic disorder. Event-related brain potentials (ERPs) are a noninvasive neurophysiological technique that holds promise for improving our understanding of neurocognitive processes underlying the CHR state. We aimed to systematically review the current literature on cognitive ERP studies of the CHR population, in order to summarize and synthesize the results, and their implications for our understanding of the CHR state. Across studies, amplitudes of the auditory P300 and duration mismatch negativity (MMN) ERPs appear reliably reduced in CHR individuals, suggesting that underlying impairments in detecting changes in auditory stimuli are a sensitive early marker of the psychotic disease process. There are more limited data indicating that an earlier-latency auditory ERP response, the N100, is also reduced in amplitude, and in the degree to which it is modulated by stimulus characteristics, in the CHR population. There is also evidence that a number of auditory ERP measures (including P300, MMN and N100 amplitudes, and N100 gating in response to repeated stimuli) can further refine our ability to detect which CHR individuals are most at risk for developing psychosis. Thus, further research is warranted to optimize the predictive power of algorithms incorporating these measures, which could help efforts to target psychosis prevention interventions toward those most in need.
Collapse
Affiliation(s)
- Jennifer R Lepock
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Michele Korostil
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,4 Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - R Michael Bagby
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,5 Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth W Pang
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,6 Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,7 Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Michael Kiang
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Bravermanová A, Viktorinová M, Tylš F, Novák T, Androvičová R, Korčák J, Horáček J, Balíková M, Griškova-Bulanova I, Danielová D, Vlček P, Mohr P, Brunovský M, Koudelka V, Páleníček T. Psilocybin disrupts sensory and higher order cognitive processing but not pre-attentive cognitive processing-study on P300 and mismatch negativity in healthy volunteers. Psychopharmacology (Berl) 2018; 235:491-503. [PMID: 29302713 DOI: 10.1007/s00213-017-4807-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
RATIONALE Disruption of auditory event-related evoked potentials (ERPs) P300 and mismatch negativity (MMN), electrophysiological markers of attentive and pre-attentive cognitive processing, is repeatedly described in psychosis and schizophrenia. Similar findings were observed in a glutamatergic model of psychosis, but the role of serotonergic 5-HT2A receptors in information processing is less clear. OBJECTIVES We studied ERPs in a serotonergic model of psychosis, induced by psilocybin, a psychedelic with 5-HT2A/C agonistic properties, in healthy volunteers. METHODS Twenty subjects (10M/10F) were given 0.26 mg/kg of psilocybin orally in a placebo-controlled, double-blind, cross-over design. ERPs (P300, MMN) were registered during the peak of intoxication. Correlations between measured electrophysiological variables and psilocin serum levels and neuropsychological effects were also analyzed. RESULTS Psilocybin induced robust psychedelic effects and psychotic-like symptoms, decreased P300 amplitude (p = 0.009) but did not affect the MMN. Psilocybin's disruptive effect on P300 correlated with the intensity of the psychedelic state, which was dependent on the psilocin serum levels. We also observed a decrease in N100 amplitude (p = 0.039) in the P300 paradigm and a negative correlation between P300 and MMN amplitude (p = 0.014). CONCLUSIONS Even though pre-attentive cognition (MMN) was not affected, processing at the early perceptual level (N100) and in higher-order cognition (P300) was significantly disrupted by psilocybin. Our results have implications for the role of 5-HT2A receptors in altered information processing in psychosis and schizophrenia.
Collapse
Affiliation(s)
- Anna Bravermanová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,First Faculty of Medicine, Charles University Prague, Kateřinská 32, 121 08, Prague 2, Czech Republic
| | - Michaela Viktorinová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Filip Tylš
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Tomáš Novák
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Renáta Androvičová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Jakub Korčák
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Marie Balíková
- First Faculty of Medicine, Charles University Prague, Kateřinská 32, 121 08, Prague 2, Czech Republic
| | - Inga Griškova-Bulanova
- Institute of Biosciences, Vilnius University, Sauletekio ave 7, 102 57, Vilnius, Lithuania
| | - Dominika Danielová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Přemysl Vlček
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Pavel Mohr
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Martin Brunovský
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Vlastimil Koudelka
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic. .,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic.
| |
Collapse
|
38
|
Ford TC, Woods W, Crewther DP. Magnetoencephalography reveals an increased non-target P3a, but not target P3b, that is associated with high non-clinical psychosocial deficits. Psychiatry Res Neuroimaging 2018; 271:1-7. [PMID: 29182941 DOI: 10.1016/j.pscychresns.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022]
Abstract
Auditory processing deficits are frequently identified in autism and schizophrenia, and the two disorders have been shown to share psychosocial difficulties. This study used magnetoencephalography to investigate auditory processing differences for those with a high degree of a non-clinical autistic and schizotypal trait phenotype, Social Disorganisation (SD). Participants were 18 low (9 female) and 19 high (9 female) SD scorers (18-40 years) who completed a three-stimulus auditory oddball paradigm of speech sounds (standard: 100ms 'o', deviant: 150ms 'o', novel: 150ms 'e'). Spatio-temporal cluster analysis revealed increased amplitude for the high SD group in a left (p = 0.006) and a right (p = 0.020) hemisphere cluster in response to the novel non-target. No cluster differences were found in response to the target deviant. These findings suggest that those with a high degree of the SD phenotype recruit more cortical resources when processing unattended, novel speech stimuli, which may lead to psychosocial deficits.
Collapse
Affiliation(s)
- Talitha C Ford
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Will Woods
- Centre for Mental Health, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - David P Crewther
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| |
Collapse
|
39
|
Retsa C, Knebel JF, Geiser E, Ferrari C, Jenni R, Fournier M, Alameda L, Baumann PS, Clarke S, Conus P, Do KQ, Murray MM. Treatment in early psychosis with N-acetyl-cysteine for 6months improves low-level auditory processing: Pilot study. Schizophr Res 2018; 191:80-86. [PMID: 28711476 DOI: 10.1016/j.schres.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/03/2023]
Abstract
Sensory impairments constitute core dysfunctions in schizophrenia. In the auditory modality, impaired mismatch negativity (MMN) has been observed in chronic schizophrenia and may reflect N-methyl-d-aspartate (NMDA) hypo-function, consistent with models of schizophrenia based on oxidative stress. Moreover, a recent study demonstrated deficits in the N100 component of the auditory evoked potential (AEP) in early psychosis patients. Previous work has shown that add-on administration of the glutathione precursor N-acetyl-cysteine (NAC) improves the MMN and clinical symptoms in chronic schizophrenia. To date, it remains unknown whether NAC also improves general low-level auditory processing and if its efficacy would extend to early-phase psychosis. We addressed these issues with a randomized, double-blind study of a small sample (N=15) of early psychosis (EP) patients and 18 healthy controls from whom AEPs were recorded during an active, auditory oddball task. Patients were recorded twice: once prior to NAC/placebo administration and once after six months of treatment. The N100 component was significantly smaller in patients before NAC administration versus controls. Critically, NAC administration improved this AEP deficit. Source estimations revealed increased activity in the left temporo-parietal lobe in patients after NAC administration. Overall, the data from this pilot study, which call for replication in a larger sample, indicate that NAC improves low-level auditory processing in early psychosis.
Collapse
Affiliation(s)
- Chrysa Retsa
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-François Knebel
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Eveline Geiser
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Carina Ferrari
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Luis Alameda
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Psychiatric Liaison Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Stephanie Clarke
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Micah M Murray
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
40
|
Abstract
It has been surprisingly difficult to find associations between neural signatures of schizophrenia and the symptoms that define it. That is, many of the legacy components of the event-related potential (ERP)- P50, N100, P200, P300-are reduced in patients with schizophrenia, in first-degree relatives of patients with schizophrenia, in schizophrenia patients early in their illness, and even in people at clinical high risk for schizophrenia. Nevertheless, these ERP components tend to be relatively insensitive to symptoms. This might be due to a number of reasons. First, this could reflect a lack of relationship, a failure to report disappointing findings, or a failure to test for relationships. Second, many ERP studies were not designed to be sensitive to symptoms or to the mechanisms that might underlie them. Third, assessing symptoms is sometimes dependent on the patients' ability to describe unfathomable experiences and the clinicians' ability to understand and interpret them. Fourth, medications and comorbidities may decouple the symptoms from the neurobiology. Finally, we must also consider the possibility that the schizophrenia diagnosis breeds truer than the symptoms it comprises.
Collapse
Affiliation(s)
- Judith M Ford
- 1 San Francisco Veterans Administration Medical Center, San Francisco, CA, USA.,2 University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Geiser E, Retsa C, Knebel JF, Ferrari C, Jenni R, Fournier M, Alameda L, Baumann PS, Clarke S, Conus P, Do KQ, Murray MM. The coupling of low-level auditory dysfunction and oxidative stress in psychosis patients. Schizophr Res 2017; 190:52-59. [PMID: 28189532 DOI: 10.1016/j.schres.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023]
Abstract
Patients diagnosed with schizophrenia often present with low-level sensory deficits. It is an open question whether there is a functional link between these deficits and the pathophysiology of the disease, e.g. oxidative stress and glutathione (GSH) metabolism dysregulation. Auditory evoked potentials (AEPs) were recorded from 21 psychosis disorder patients and 30 healthy controls performing an active, auditory oddball task. AEPs to standard sounds were analyzed within an electrical neuroimaging framework. A peripheral measure of participants' redox balance, the ratio of glutathione peroxidase and glutathione reductase activities (GPx/GR), was correlated with the AEP data. Patients displayed significantly decreased AEPs over the time window of the P50/N100 complex resulting from significantly weaker responses in the left temporo-parietal lobe. The GPx/GR ratio significantly correlated with patients' brain activity during the time window of the P50/N100 in the medial frontal lobe. We show for the first time a direct coupling between electrophysiological indices of AEPs and peripheral redox dysregulation in psychosis patients. This coupling is limited to stages of auditory processing that are impaired relative to healthy controls and suggests a link between biochemical and sensory dysfunction. The data highlight the potential of low-level sensory processing as a trait-marker of psychosis.
Collapse
Affiliation(s)
- Eveline Geiser
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Chrysa Retsa
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-François Knebel
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Carina Ferrari
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Luis Alameda
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Psychiatric Liaison Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Micah M Murray
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Psychiatric Liaison Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
42
|
Enlarged lateral ventricles inversely correlate with reduced corpus callosum central volume in first episode schizophrenia: association with functional measures. Brain Imaging Behav 2017; 10:1264-1273. [PMID: 26678596 DOI: 10.1007/s11682-015-9493-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lateral and third ventricles, as well as the corpus callosum (CC), are known to be affected in schizophrenia. Here we investigate whether abnormalities in the lateral ventricles (LVs), third ventricle, and corpus callosum are related to one another in first episode schizophrenia (FESZ), and whether such abnormalities show progression over time. Nineteen FESZ and 19 age- and handedness-matched controls were included in the study. MR images were acquired on a 3-Tesla MRI at baseline and ~1.2 years later. FreeSurfer v.5.3 was employed for segmentation. Two-way or univariate ANCOVAs were used for statistical analysis, where the covariate was intracranial volume. Group and gender were included as between-subjects factors. Percent volume changes between baseline and follow-up were used to determine volume changes at follow-up. Bilateral LV and third ventricle volumes were significantly increased, while central CC volume was significantly decreased in patients compared to controls at baseline and at follow-up. In FESZ, the bilateral LV volume was also inversely correlated with volume of the central CC. This inverse correlation was not present in controls. In FESZ, an inverse correlation was found between percent volume increase from baseline to follow-up for bilateral LVs and lesser improvement in the Global Assessment of Functioning score. Significant correlations were observed for abnormalities of central CC, LVs and third ventricle volumes in FESZ, suggesting a common neurodevelopmental origin in schizophrenia. Enlargement of ventricles was associated with less improvement in global functioning over time.
Collapse
|
43
|
Greer JMH, Hamilton C, McMullon MEG, Riby DM, Riby LM. An event related potential study of ihibitory and attentional control in Williams syndrome adults. PLoS One 2017; 12:e0170180. [PMID: 28187205 PMCID: PMC5302371 DOI: 10.1371/journal.pone.0170180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022] Open
Abstract
The primary aim of the current study was to employ event-related potentials (ERPs) methodology to disentangle the mechanisms related to inhibitory control in older adults with Williams syndrome (WS). Eleven older adults with WS (mean age 42), 16 typically developing adults (mean age 42) and 13 typically developing children (mean age 12) participated in the study. ERPs were recorded during a three-stimulus visual oddball task, during which participants were required to make a response to a rare target stimulus embedded in a train of frequent non-target stimuli. A task-irrelevant infrequent stimulus was also present at randomised intervals during the session. The P3a latency data response related to task-irrelevant stimulus processing was delayed in WS. In addition, the early perceptual N2 amplitude was attenuated. These data are indicative of compromised early monitoring of perceptual input, accompanied by appropriate orientation of responses to task-irrelevant stimuli. However, the P3a delay suggests inefficient evaluation of the task-irrelevant stimuli. These data are discussed in terms of deficits in the disengagement of attentional processes, and the regulation of monitoring processes required for successful inhibition.
Collapse
Affiliation(s)
- Joanna M. H. Greer
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Colin Hamilton
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Mhairi E. G. McMullon
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Deborah M. Riby
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Leigh M. Riby
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
44
|
Haigh SM, Coffman BA, Salisbury DF. Mismatch Negativity in First-Episode Schizophrenia: A Meta-Analysis. Clin EEG Neurosci 2017; 48:3-10. [PMID: 27170669 PMCID: PMC5768309 DOI: 10.1177/1550059416645980] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 01/15/2023]
Abstract
Mismatch negativity (MMN) to deviant stimuli is robustly smaller in individuals with chronic schizophrenia compared with healthy controls (Cohen's d > 1.0 or more), leading to the possibility of MMN being used as a biomarker for schizophrenia. However, there is some debate in the literature as to whether MMN is reliably reduced in first-episode schizophrenia patients. For the biomarker to be used as a predictive marker for schizophrenia, it should be reduced in the majority of cases known to have the disease, particularly at disease onset. We conducted a meta-analysis on the fourteen studies that measured MMN to pitch or duration deviants in healthy controls and patients within 12 months of their first episode of schizophrenia. The overall effect size showed no MMN reduction in first-episode patients to pitch-deviants (Cohen's d < 0.04), and a small-to-medium reduction to duration-deviants (Cohen's d = 0.47). Together, this indicates that pitch-deviant MMN is not a candidate biomarker for schizophrenia prediction, while duration-deviant MMN may hold some promise, albeit nearly a third as large an effect as in chronic schizophrenia. Potential causes for discrepancies between studies are discussed.
Collapse
Affiliation(s)
- Sarah M Haigh
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Gonzalez-Heydrich J, Enlow MB, D’Angelo E, Seidman B LJ, Gumlak S, Kim A, Woodberry KA, Rober A, Tembulkar S, Graber K, O’Donnell K, Hamoda HM, Kimball K, Rotenberg A, Oberman LM, Pascual-Leone A, Keshavan MS, Duffy FH. Early auditory processing evoked potentials (N100) show a continuum of blunting from clinical high risk to psychosis in a pediatric sample. Schizophr Res 2015; 169:340-345. [PMID: 26549629 PMCID: PMC4821005 DOI: 10.1016/j.schres.2015.10.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The N100 is a negative deflection in the surface EEG approximately 100 ms after an auditory signal. It has been shown to be reduced in individuals with schizophrenia and those at clinical high risk (CHR). N100 blunting may index neural network dysfunction underlying psychotic symptoms. This phenomenon has received little attention in pediatric populations. METHOD This cross-sectional study compared the N100 response measured via the average EEG response at the left medial frontal position FC1 to 150 sinusoidal tones in participants ages 5 to 17 years with a CHR syndrome (n=29), a psychotic disorder (n=22), or healthy controls (n=17). RESULTS Linear regression analyses that considered potential covariates (age, gender, handedness, family mental health history, medication usage) revealed decreasing N100 amplitude with increasing severity of psychotic symptomatology from healthy to CHR to psychotic level. CONCLUSIONS Longitudinal assessment of the N100 in CHR children who do and do not develop psychosis will inform whether it predicts transition to psychosis and if its response to treatment predicts symptom change.
Collapse
Affiliation(s)
- Joseph Gonzalez-Heydrich
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, MA 02215, USA.
| | - Michelle Bosquet Enlow
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, MA 02215, USA
| | - Eugene D’Angelo
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, MA 02215, USA
| | - Larry J. Seidman B
- Beth Israel Deaconess Medical Center, Department of Psychiatry, Commonwealth Research Center, 75 Fenwood Road, Boston, MA 02115, USA,Massachusetts General Hospital, Department of Psychiatry, 55 Fruit Street, Boston, MA 02114, USA
| | - Sarah Gumlak
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - April Kim
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kristen A. Woodberry
- Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, MA 02215, USA,Beth Israel Deaconess Medical Center, Department of Psychiatry, Commonwealth Research Center, 75 Fenwood Road, Boston, MA 02115, USA
| | - Ashley Rober
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Sahil Tembulkar
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kelsey Graber
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kyle O’Donnell
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Hesham M. Hamoda
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, MA 02215, USA
| | - Kara Kimball
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alexander Rotenberg
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Harvard Medical School, Department of Neurology, 25 Shattuck Street, Boston, MA 02115, USA
| | - Lindsay M. Oberman
- E.P. Bradley Hospital and Warren Alpert Medical School, Brown University, Neuroplasticity and Autism Spectrum Disorder Program and Department of Psychiatry and Human Behavior, 1011 Veterans Memorial Parkway, East Providence, RI 02915, USA
| | - Alvaro Pascual-Leone
- Harvard Medical School, Department of Neurology, 25 Shattuck Street, Boston, MA 02115, USA,Beth Israel Deaconess Medical Center, Division of Cognitive Neurology and Berenson-Allen Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Matcheri S. Keshavan
- Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, MA 02215, USA,Beth Israel Deaconess Medical Center, Department of Psychiatry, Commonwealth Research Center, 75 Fenwood Road, Boston, MA 02115, USA
| | - Frank H. Duffy
- Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Harvard Medical School, Department of Neurology, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
46
|
Del Re EC, Gao Y, Eckbo R, Petryshen TL, Blokland GAM, Seidman LJ, Konishi J, Goldstein JM, McCarley RW, Shenton ME, Bouix S. A New MRI Masking Technique Based on Multi-Atlas Brain Segmentation in Controls and Schizophrenia: A Rapid and Viable Alternative to Manual Masking. J Neuroimaging 2015; 26:28-36. [PMID: 26585545 DOI: 10.1111/jon.12313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Brain masking of MRI images separates brain from surrounding tissue and its accuracy is important for further imaging analyses. We implemented a new brain masking technique based on multi-atlas brain segmentation (MABS) and compared MABS to masks generated using FreeSurfer (FS; version 5.3), Brain Extraction Tool (BET), and Brainwash, using manually defined masks (MM) as the gold standard. We further determined the effect of different masking techniques on cortical and subcortical volumes generated by FreeSurfer. METHODS Images were acquired on a 3-Tesla MR Echospeed system General Electric scanner on five control and five schizophrenia subjects matched on age, sex, and IQ. Automated masks were generated from MABS, FS, BET, and Brainwash, and compared to MM using these metrics: a) volume difference from MM; b) Dice coefficients; and c) intraclass correlation coefficients. RESULTS Mean volume difference between MM and MABS masks was significantly less than the difference between MM and FS or BET masks. Dice coefficient between MM and MABS was significantly higher than Dice coefficients between MM and FS, BET, or Brainwash. For subcortical and left cortical regions, MABS volumes were closer to MM volumes than were BET or FS volumes. For right cortical regions, MABS volumes were closer to MM volumes than were BET volumes. CONCLUSIONS Brain masks generated using FreeSurfer, BET, and Brainwash are rapidly obtained, but are less accurate than manually defined masks. Masks generated using MABS, in contrast, resemble more closely the gold standard of manual masking, thereby offering a rapid and viable alternative.
Collapse
Affiliation(s)
- Elisabetta C Del Re
- VA Boston Healthcare System, Brockton, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Yi Gao
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Ryan Eckbo
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | | | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Jun Konishi
- VA Boston Healthcare System, Brockton, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | - Robert W McCarley
- VA Boston Healthcare System, Brockton, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Martha E Shenton
- VA Boston Healthcare System, Brockton, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Radiology, Harvard Medical School, Boston, MA
| | - Sylvain Bouix
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|