1
|
Monserrat Hernández M, Jiménez-Rodríguez D. Relationship of Genetic Polymorphisms and Microbial Composition with Binge Eating Disorder: A Systematic Review. Healthcare (Basel) 2024; 12:1441. [PMID: 39057584 PMCID: PMC11276772 DOI: 10.3390/healthcare12141441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Humans are the result of an evolutionary process, and because of this, many biological processes are interconnected with each other. The intestine-brain axis consists of an intricately connected neuronal-neuroendocrine circuit that regulates the sensation of hunger and satiety. Genetic variations and the consumption of unnatural diets (ultra-processed foods, high contents of sugars, etc.) can override this circuit and cause addiction to certain foods and/or the inability to feel satiety in certain situations. The patients who come to consultations (mainly psychology or nutrition) in an attempt to resolve this problem sometimes fail, which leads to them looking for new strategies based on biological predisposition. This investigation aims to evaluate the genetic studies regarding the microbiota carried out in the last 12 years in humans to try to determine which genes and microbes that have been recently studied are related to patients diagnosed with binge eating disorder or compulsive eating (presenting obesity or not). The protocol followed the PRISMA statement, and the following databases were searched from 2012 until the present day: PubMed, PsycINFO, SCOPUS, and Web of Science. Twenty-four international articles were analyzed, including cross-sectional or exploratory studies; five of them referred to the microbial composition, and in nineteen, the existence of genetic polymorphisms present in binge eating disorder or in compulsive eating could be observed: DRD2, OPRM1, COMT, MC4R, BNDF, FTO, SLC6A3, GHRL, CARTPT, MCHR2, and LRP11. Even though there is still much to investigate on the subject, it must be highlighted that, in the last 4 years, a two-fold increase has been observed in potential markers and in studies related to the matter, also highlighting the importance of different analyses in relation to psychosocial factors and their interaction with the genetic and microbial factors, for which research on the matter must be continued.
Collapse
Affiliation(s)
| | - Diana Jiménez-Rodríguez
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain;
| |
Collapse
|
2
|
Thanos PK, Hanna C, Mihalkovic A, Hoffman A, Posner A, Butsch J, Blum K, Georger L, Mastrandrea LD, Quattrin T. Genetic Correlates as a Predictor of Bariatric Surgery Outcomes after 1 Year. Biomedicines 2023; 11:2644. [PMID: 37893019 PMCID: PMC10603884 DOI: 10.3390/biomedicines11102644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
This study analyzed genetic risk assessments in patients undergoing bariatric surgery to serve as a predictive factor for weight loss parameters 1 year after the operation. Thirty (30) patients were assessed for Genetic Addiction Risk Severity (GARS), which analyzes neurogenetic polymorphisms involved in addiction and reward deficiency. Genetic and psychosocial data collected before the operation were correlated with weight loss data, including changes in weight, body mass index (BMI), and percent of expected weight loss (%EWL). Results examined correlations between individual gene risk alleles, 1-year body weight data, and psychosocial trait scores. Spearman's correlations revealed that the OPRM1 (rs1799971) gene polymorphism had significant negative correlation with 1-year weight (rs = -0.4477, p < 0.01) and BMI (rs = -0.4477, p < 0.05). In addition, the DRD2 risk allele (rs1800497) was correlated negatively with BMI at 1 year (rs = -0.4927, p < 0.05), indicating that one risk allele copy was associated with lower BMI. However, this allele was positively correlated with both ∆Weight (rs = 0.4077, p < 0.05) and %EWL (rs = 0.5521, p < 0.05) at 1 year post-surgery. Moreover, the overall GARS score was correlated with %EWL (rs = 0.4236, p < 0.05), ∆Weight (rs = 0.3971, p < 0.05) and ∆BMI (rs = 0.3778, p < 0.05). Lastly, Food Cravings Questionnaire (FCQ) scores were negatively correlated with %EWL (rs = -0.4320, p < 0.05) and ∆Weight at 1 year post-surgery (rs = -0.4294, p < 0.05). This suggests that individuals with a higher genetic addiction risk are more responsive to weight loss treatment, especially in the case of the DRD2 polymorphism. These results should translate clinically to improve positivity and attitude related to weight management by those individuals born with the risk alleles (rs1800497; rs1799971).
Collapse
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.)
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.)
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Aaron Hoffman
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75208, USA
| | - Alan Posner
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Butsch
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Nutrigenomics, SpliceGen, Therapeutics, Inc., Austin, TX 78701, USA;
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH 45435, USA
- Division of Addiction Research & Education, Center for Exercise Sports & Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Lesley Georger
- Department of Natural Sciences and Mathematics, D’Youville University, Buffalo, NY 14201, USA;
| | - Lucy D. Mastrandrea
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA (T.Q.)
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA (T.Q.)
| |
Collapse
|
3
|
Koekkoek LL, van der Gun LL, Serlie MJ, la Fleur SE. The Clash of Two Epidemics: the Relationship Between Opioids and Glucose Metabolism. Curr Diab Rep 2022; 22:301-310. [PMID: 35593927 PMCID: PMC9188528 DOI: 10.1007/s11892-022-01473-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We are currently in the midst of a global opioid epidemic. Opioids affect many physiological processes, but one side effect that is not often taken into consideration is the opioid-induced alteration in blood glucose levels. RECENT FINDINGS This review shows that the vast majority of studies report that opioid stimulation increases blood glucose levels. In addition, plasma levels of the endogenous opioid β-endorphin rise in response to low blood glucose. In contrast, in hyperglycaemic baseline conditions such as in patients with type 2 diabetes mellitus (T2DM), opioid stimulation lowers blood glucose levels. Furthermore, obesity itself alters sensitivity to opioids, changes opioid receptor expression and increases plasma β-endorphin levels. Thus, opioid stimulation can have various side effects on glycaemia that should be taken into consideration upon prescribing opioid-based medication, and more research is needed to unravel the interaction between obesity, glycaemia and opioid use.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Luna L van der Gun
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands.
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Gerhart JG, Carreño FO, Ford JL, Edginton A, Perrin EM, Watt KM, Muller WJ, Atz AM, Al‐Uzri A, Delmore P, Gonzalez D, Benjamin DK, Hornik C, Zimmerman K, Kennel P, Beci R, Dang Hornik C, Kearns GL, Laughon M, Paul IM, Sullivan J, Wade K, Delmore P, Taylor‐Zapata P, Lee J, Anand R, Sharma G, Simone G, Kaneshige K, Taylor L, Al‐Uzri A, Hornik C, Sokol G, Speicher D, Sullivan J, Mourani P, Mendley S, Meyer M, Atkins R, Flynn J, Vaughns J, Sherwin C, Delmore P, Goldstein S, Rathore M, Melloni C, Muller W, Delmore P, Tremoulet A, James L, Mendley S, Blackford M, Atz A, Adu‐Darko M, Mourani P, Watt K, Hornik C, Al‐Uzri A, Sullivan J, Laughon M, Brian Smith P, Watt K, Cheifetz I, Atz A, Bhatt‐Mehta V, Fernandez A, Lowry J. Use of
physiologically‐based
pharmacokinetic modeling to inform dosing of the opioid analgesics fentanyl and methadone in children with obesity. CPT Pharmacometrics Syst Pharmacol 2022; 11:778-791. [PMID: 35491971 PMCID: PMC9197535 DOI: 10.1002/psp4.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Obesity is an increasingly alarming public health threat, with nearly 20% of children classified as obese in the United States today. Children with obesity are commonly prescribed the opioids fentanyl and methadone, and accurate dosing is critical to reducing the risk of serious adverse events associated with overexposure. However, pharmacokinetic studies in children with obesity are challenging to conduct, so there is limited information to guide fentanyl and methadone dosing in these children. To address this clinical knowledge gap, physiologically‐based pharmacokinetic models of fentanyl and methadone were developed in adults and scaled to children with and without obesity to explore the interplay of obesity, age, and pharmacogenomics. These models included key obesity‐induced changes in physiology and pharmacogenomic effects. Model predictions captured observed concentrations in children with obesity well, with an overall average fold error of 0.72 and 1.08 for fentanyl and methadone, respectively. Model simulations support a reduced fentanyl dose (1 vs. 2 μg/kg/h) starting at an earlier age (6 years) in virtual children with obesity, highlighting the importance of considering both age and obesity status when selecting an infusion rate most likely to achieve steady‐state concentrations within the target range. Methadone dosing simulations highlight the importance of considering genotype in addition to obesity status when possible, as cytochrome P450 (CYP)2B6*6/*6 virtual children with obesity required half the dose to match the exposure of wildtype children without obesity. This physiologically‐based pharmacokinetic modeling approach can be applied to explore dosing of other critical drugs in children with obesity.
Collapse
Affiliation(s)
- Jacqueline G. Gerhart
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina Eshelman School of Pharmacy The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Fernando O. Carreño
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina Eshelman School of Pharmacy The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Jennifer L. Ford
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina Eshelman School of Pharmacy The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | | | - Eliana M. Perrin
- Department of Pediatrics, School of Medicine and School of Nursing Johns Hopkins University Baltimore Maryland USA
| | - Kevin M. Watt
- Division of Pediatric Clinical Pharmacology, School of Medicine University of Utah Salt Lake City Utah USA
| | - William J. Muller
- Ann and Robert H. Lurie Children's Hospital of Chicago Chicago Illinois USA
| | - Andrew M. Atz
- Medical University of South Carolina Children's Hospital Charleston South Carolina USA
| | - Amira Al‐Uzri
- Oregon Health and Science University Portland Oregon USA
| | | | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina Eshelman School of Pharmacy The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Giacomini JL, Geiduschek E, Selleck RA, Sadeghian K, Baldo BA. Dissociable control of μ-opioid-driven hyperphagia vs. food impulsivity across subregions of medial prefrontal, orbitofrontal, and insular cortex. Neuropsychopharmacology 2021; 46:1981-1989. [PMID: 34226656 PMCID: PMC8429588 DOI: 10.1038/s41386-021-01068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
This study explored potentially dissociable functions of mu-opioid receptor (µ-OR) signaling across different cortical territories in the control of anticipatory activity directed toward palatable food, consumption, and impulsive food-seeking behavior in male rats. The µ-OR agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), was infused into infralimbic cortex (ILC), prelimbic cortex (PrL), medial and lateral ventral orbitofrontal cortices (VMO, VLO), and agranular/dysgranular insular (AI/DI) cortex of rats. Intra-ILC DAMGO markedly enhanced contact with a see-through screen behind which sucrose pellets were sequestered; in addition, rats having received intra-ILC and intra-VMO DAMGO exhibited locomotor hyperactivity while the screen was in place. Upon screen removal, intra-ILC and -VMO-treated rats emitted numerous, brief sucrose-intake bouts (yielding increased overall intake) interspersed with significant hyperactivity. In contrast, intra-AI/DI-treated rats consumed large amounts of sucrose in long, uninterrupted bouts with no anticipatory hyperactivity pre-screen removal. Intra-PrL and intra-VLO DAMGO altered neither pre-screen behavior nor sucrose intake. Finally, all rats were tested in a sucrose-reinforced differential reinforcement of low rates (DRL) task, which assesses the ability to advantageously withhold premature responses. DAMGO affected (impaired) DRL performance when infused into ILC only. These site-based dissociations reveal differential control of µ-OR-modulated appetitive/approach vs. consummatory behaviors by ventromedial/orbitofrontal and insular networks, respectively, and suggest a unique role of ILC µ-ORs in modulating inhibitory control.
Collapse
Affiliation(s)
- Juliana L. Giacomini
- grid.14003.360000 0001 2167 3675Graduate Program in Cellular and Molecular Biology, Physiology Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Emma Geiduschek
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ryan A. Selleck
- grid.252000.50000 0001 0728 549XDepartment of Psychological Science, Albion College, Albion, MI USA
| | - Ken Sadeghian
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Brian A. Baldo
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
6
|
Ho D, Verdejo-Garcia A. Interactive influences of food, contexts and neurocognitive systems on addictive eating. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110295. [PMID: 33657421 DOI: 10.1016/j.pnpbp.2021.110295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/04/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Compulsive eating is a common symptom of different conditions, including obesity, binge eating disorder and bulimia. One hypothesis is that contemporary food products promote compulsive eating via addiction-like mechanisms. However, what is the addictive substance in food, and what is the phenotypic overlap between obesity / eating disorders and addictions are questions that remain unresolved. In this review, we applied a multilevel framework of addiction, which encompasses the 'drug' (certain foods), the person's mindset, and the context, to improve understanding of compulsive eating. Specifically, we reviewed evidence on the addictive properties of specific foods, the neurocognitive systems that control dietary choices, and their interaction with physical, emotional and social contexts. We focused on different target groups to illustrate distinct aspects of the proposed framework: the impact of food and contextual factors were examined across a continuum, with most studies conducted on healthy participants and subclinical populations, whereas the review of neurocognitive aspects focused on clinical groups in which the alterations linked to addictive and compulsive eating are particularly visible. The reviewed evidence suggest that macronutrient composition and level of processing are associated with the addictive properties of food; there are overlapping neuroadaptations in reward and decision-making circuits across compulsive eating conditions; and there are physical and social contexts that fuel compulsive eating by exploiting reward mechanisms and their interaction with emotions. We conclude that a biopsychosocial model that integrates food, neurobiology and context can provide a better understanding of compulsive eating manifestations in a transdiagnostic framework.
Collapse
Affiliation(s)
- Daniel Ho
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Antonio Verdejo-Garcia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
7
|
Kantonen T, Karjalainen T, Pekkarinen L, Isojärvi J, Kalliokoski K, Kaasinen V, Hirvonen J, Nuutila P, Nummenmaa L. Cerebral μ-opioid and CB 1 receptor systems have distinct roles in human feeding behavior. Transl Psychiatry 2021; 11:442. [PMID: 34453034 PMCID: PMC8397789 DOI: 10.1038/s41398-021-01559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Eating behavior varies greatly between individuals, but the neurobiological basis of these trait-like differences in feeding remains poorly understood. Central μ-opioid receptors (MOR) and cannabinoid CB1 receptors (CB1R) regulate energy balance via multiple neural pathways, promoting food intake and reward. Because obesity and eating disorders have been associated with alterations in the brain's opioid and endocannabinoid signaling, the variation in MOR and CB1R system function could potentially underlie distinct eating behavior phenotypes. In this retrospective positron emission tomography (PET) study, we analyzed [11C]carfentanil PET scans of MORs from 92 healthy subjects (70 males and 22 females), and [18F]FMPEP-d2 scans of CB1Rs from 35 subjects (all males, all also included in the [11C]carfentanil sample). Eating styles were measured with the Dutch Eating Behavior Questionnaire (DEBQ). We found that lower cerebral MOR availability was associated with increased external eating-individuals with low MORs reported being more likely to eat in response to environment's palatable food cues. CB1R availability was associated with multiple eating behavior traits. We conclude that although MORs and CB1Rs overlap anatomically in brain regions regulating food reward, they have distinct roles in mediating individual feeding patterns. Central MOR system might provide a pharmacological target for reducing individual's excessive cue-reactive eating behavior.
Collapse
Affiliation(s)
- Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland. .,Clinical Neurosciences, University of Turku, Turku, Finland.
| | - Tomi Karjalainen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Laura Pekkarinen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Janne Isojärvi
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Kari Kalliokoski
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- grid.1374.10000 0001 2097 1371Clinical Neurosciences, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Waltmann M, Herzog N, Horstmann A, Deserno L. Loss of control over eating: A systematic review of task based research into impulsive and compulsive processes in binge eating. Neurosci Biobehav Rev 2021; 129:330-350. [PMID: 34280427 DOI: 10.1016/j.neubiorev.2021.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/26/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022]
Abstract
Recurring episodes of excessive food intake in binge eating disorder can be understood through the lens of behavioral control systems: patients repeat maladaptive behaviors against their explicit intent. Self-report measures show enhanced impulsivity and compulsivity in binge eating (BE) but are agnostic as to the processes that might lead to impulsive and compulsive behavior in the moment. Task-based neurocognitive investigations can tap into those processes. In this systematic review, we synthesize neurocognitive research on behavioral impulsivity and compulsivity in BE in humans and animals, published between 2010-2020. Findings on impulsivity are heterogeneous. Findings on compulsivity are sparse but comparatively consistent, indicating an imbalance of goal-directed and habitual control as well as deficits in reversal learning. We urge researchers to address heterogeneity related to mood states and the temporal dynamics of symptoms, to systematically differentiate contributions of body weight and BE, and to ascertain the validity and reliability of tasks. Moreover, we propose to further scrutinize the compulsivity findings to unravel the computational mechanisms of a potential reinforcement learning deficit.
Collapse
Affiliation(s)
- Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Margarete-Höppel-Platz1, 97080 Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1, 04103 Leipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.
| | - Nadine Herzog
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1, 04103 Leipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1, 04103 Leipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Margarete-Höppel-Platz1, 97080 Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1, 04103 Leipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany; Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Ashok AH, Myers J, Frost G, Turton S, Gunn RN, Passchier J, Colasanti A, Marques TR, Nutt D, Lingford-Hughes A, Howes OD, Rabiner EA. Acute acetate administration increases endogenous opioid levels in the human brain: A [ 11C]carfentanil molecular imaging study. J Psychopharmacol 2021; 35:606-610. [PMID: 33406950 PMCID: PMC8155733 DOI: 10.1177/0269881120965912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION A recent study has shown that acetate administration leads to a fourfold increase in the transcription of proopiomelanocortin (POMC) mRNA in the hypothalamus. POMC is cleaved to peptides, including β-endorphin, an endogenous opioid (EO) agonist that binds preferentially to the µ-opioid receptor (MOR). We hypothesised that an acetate challenge would increase the levels of EO in the human brain. We have previously demonstrated that increased EO release in the human brain can be detected using positron emission tomography (PET) with the selective MOR radioligand [11C]carfentanil. We used this approach to evaluate the effects of an acute acetate challenge on EO levels in the brain of healthy human volunteers. METHODS Seven volunteers each completed a baseline [11C]carfentanil PET scan followed by an administration of sodium acetate before a second [11C]carfentanil PET scan. Dynamic PET data were acquired over 90 minutes, and corrected for attenuation, scatter and subject motion. Regional [11C] carfentanil BPND values were then calculated using the simplified reference tissue model (with the occipital grey matter as the reference region). Change in regional EO concentration was evaluated as the change in [11C]carfentanil BPND following acetate administration. RESULTS Following sodium acetate administration, 2.5-6.5% reductions in [11C]carfentanil regional BPND were seen, with statistical significance reached in the cerebellum, temporal lobe, orbitofrontal cortex, striatum and thalamus. CONCLUSIONS We have demonstrated that an acute acetate challenge has the potential to increase EO release in the human brain, providing a plausible mechanism of the central effects of acetate on appetite in humans.
Collapse
Affiliation(s)
- Abhishekh H Ashok
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK.,Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Radiology, University of Cambridge, Cambridge, UK.,Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | - Samuel Turton
- Imperial College London, UK.,Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Roger N Gunn
- Imperial College London, UK.,Invicro, London, UK
| | | | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK.,Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | - Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK.,Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenii A Rabiner
- Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK.,Invicro, London, UK
| |
Collapse
|
10
|
Boswell RG, Potenza MN, Grilo CM. The Neurobiology of Binge-eating Disorder Compared with Obesity: Implications for Differential Therapeutics. Clin Ther 2021; 43:50-69. [PMID: 33257092 PMCID: PMC7902428 DOI: 10.1016/j.clinthera.2020.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Emerging work indicates divergence in the neurobiologies of binge-eating disorder (BED) and obesity despite their frequent co-occurrence. This review highlights specific distinguishing aspects of BED, including elevated impulsivity and compulsivity possibly involving the mesocorticolimbic dopamine system, and discusses implications for differential therapeutics for BED. METHODS This narrative review describes epidemiologic, clinical, genetic, and preclinical differences between BED and obesity. Subsequently, this review discusses human neuroimaging work reporting differences in executive functioning, reward processing, and emotion reactivity in BED compared with obesity. Finally, on the basis of the neurobiology of BED, this review identifies existing and new therapeutic agents that may be most promising given their specific targets based on putative mechanisms of action relevant specifically to BED. FINDINGS BED is characterized by elevated impulsivity and compulsivity compared with obesity, which is reflected in divergent neurobiological characteristics and effective pharmacotherapies. Therapeutic agents that influence both reward and executive function systems may be especially effective for BED. IMPLICATIONS Greater attention to impulsivity/compulsivity-related, reward-related, and emotion reactivity-related processes may enhance conceptualization and treatment approaches for patients with BED. Consideration of these distinguishing characteristics and processes could have implications for more targeted pharmacologic treatment research and interventions.
Collapse
Affiliation(s)
- Rebecca G Boswell
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA.
| | - Marc N Potenza
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Yale School of Medicine, Child Study Center, New Haven, CT, USA; Yale University, Department of Neuroscience, New Haven, CT, USA
| | - Carlos M Grilo
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA; Yale University, Department of Psychology, New Haven, CT, USA
| |
Collapse
|
11
|
Wiss DA, Avena N, Gold M. Food Addiction and Psychosocial Adversity: Biological Embedding, Contextual Factors, and Public Health Implications. Nutrients 2020; 12:E3521. [PMID: 33207612 PMCID: PMC7698089 DOI: 10.3390/nu12113521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The role of stress, trauma, and adversity particularly early in life has been identified as a contributing factor in both drug and food addictions. While links between traumatic stress and substance use disorders are well documented, the pathways to food addiction and obesity are less established. This review focuses on psychosocial and neurobiological factors that may increase risk for addiction-like behaviors and ultimately increase BMI over the lifespan. Early childhood and adolescent adversity can induce long-lasting alterations in the glucocorticoid and dopamine systems that lead to increased addiction vulnerability later in life. Allostatic load, the hypothalamic-pituitary-adrenal axis, and emerging data on epigenetics in the context of biological embedding are highlighted. A conceptual model for food addiction is proposed, which integrates data on the biological embedding of adversity as well as upstream psychological, social, and environmental factors. Dietary restraint as a feature of disordered eating is discussed as an important contextual factor related to food addiction. Discussion of various public health and policy considerations are based on the concept that improved knowledge of biopsychosocial mechanisms contributing to food addiction may decrease stigma associated with obesity and disordered eating behavior.
Collapse
Affiliation(s)
- David A. Wiss
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Nicole Avena
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Mark Gold
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
12
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
13
|
Wiss D, Brewerton T. Separating the Signal from the Noise: How Psychiatric Diagnoses Can Help Discern Food Addiction from Dietary Restraint. Nutrients 2020; 12:E2937. [PMID: 32992768 PMCID: PMC7600542 DOI: 10.3390/nu12102937] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Converging evidence from both animal and human studies have implicated hedonic eating as a driver of both binge eating and obesity. The construct of food addiction has been used to capture pathological eating across clinical and non-clinical populations. There is an ongoing debate regarding the value of a food addiction "diagnosis" among those with eating disorders such as anorexia nervosa binge/purge-type, bulimia nervosa, and binge eating disorder. Much of the food addiction research in eating disorder populations has failed to account for dietary restraint, which can increase addiction-like eating behaviors and may even lead to false positives. Some have argued that the concept of food addiction does more harm than good by encouraging restrictive approaches to eating. Others have shown that a better understanding of the food addiction model can reduce stigma associated with obesity. What is lacking in the literature is a description of a more comprehensive approach to the assessment of food addiction. This should include consideration of dietary restraint, and the presence of symptoms of other psychiatric disorders (substance use, posttraumatic stress, depressive, anxiety, attention deficit hyperactivity) to guide treatments including nutrition interventions. The purpose of this review is to help clinicians identify the symptoms of food addiction (true positives, or "the signal") from the more classic eating pathology (true negatives, or "restraint") that can potentially elevate food addiction scores (false positives, or "the noise"). Three clinical vignettes are presented, designed to aid with the assessment process, case conceptualization, and treatment strategies. The review summarizes logical steps that clinicians can take to contextualize elevated food addiction scores, even when the use of validated research instruments is not practical.
Collapse
Affiliation(s)
- David Wiss
- Department of Community Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90025, USA
| | - Timothy Brewerton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
14
|
Neuroimaging of Sex/Gender Differences in Obesity: A Review of Structure, Function, and Neurotransmission. Nutrients 2020; 12:nu12071942. [PMID: 32629783 PMCID: PMC7400469 DOI: 10.3390/nu12071942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
While the global prevalence of obesity has risen among both men and women over the past 40 years, obesity has consistently been more prevalent among women relative to men. Neuroimaging studies have highlighted several potential mechanisms underlying an individual’s propensity to become obese, including sex/gender differences. Obesity has been associated with structural, functional, and chemical alterations throughout the brain. Whereas changes in somatosensory regions appear to be associated with obesity in men, reward regions appear to have greater involvement in obesity among women than men. Sex/gender differences have also been observed in the neural response to taste among people with obesity. A more thorough understanding of these neural and behavioral differences will allow for more tailored interventions, including diet suggestions, for the prevention and treatment of obesity.
Collapse
|
15
|
Antunes LC, Elkfury JL, Parizotti CS, Brietzke AP, Bandeira JS, Torres ILDS, Fregni F, Caumo W. Longer Cortical Silent Period Length Is Associated to Binge Eating Disorder: An Exploratory Study. Front Psychiatry 2020; 11:559966. [PMID: 33173510 PMCID: PMC7591768 DOI: 10.3389/fpsyt.2020.559966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Although binge eating disorder (BED) is an eating disorder and obesity is a clinical disease, it is known that both conditions present overlapped symptoms related to, at least partially, the disruption of homeostatic and hedonistic eating behavior pathways. Therefore, the understanding of neural substrates, such as the motor cortex excitability assessed by transcranial magnetic stimulation (TMS), might provide new insights into the pathophysiology of BED and obesity. Objectives: (i) To compare, among BED, obesity, ex-obese, and HC (healthy control) subjects, the cortical excitability indexed by TMS measures, such as CSP (cortical silent period; primary outcome), SICI (intracortical inhibition), and ICF (intracortical facilitation; secondary outcome). (ii) To explore the relationship of the CSP, eating behavior (e.g., restraint, disinhibition, and hunger), depressive symptoms, and sleep quality among the four groups (BED, obesity, ex-obese, and HC). Methods: Fifty-nine women [BED (n = 13), obese (n = 20), ex-obese (n = 12), and HC (n = 14)] comprise the total sample for this study. Assessments: cortical excitability measures (CSP, SICI, and ICF), inhibition response task by the Go/No-go paradigm, and instruments to assess the eating psychopathology (Three-Factor Eating Questionnaire, Eating Disorder Examination Questionnaire, and Binge Eating Scale) were used. Results: A MANCOVA analysis revealed that the mean of CSP was longer in the BED group compared with other three groups: 24.10% longer than the obesity group, 25.98% longer than the HC group, and 25.41% longer than the ex-obese group. Pearson's correlations evidenced that CSP was positively associated with both eating concern and binge eating scores. Conclusion: The findings point out that BED patients present longer CSP, which might suggest an upregulation of intracortical inhibition. Additionally, CSP was positively correlated with Binge Eating Scale and eating concern scores. Further studies are needed.
Collapse
Affiliation(s)
- Luciana C Antunes
- Associate Professor in the Health Science Center, Nutrition Department, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Jessica Lorenzzi Elkfury
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cristiane Schultz Parizotti
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Patrícia Brietzke
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Janete Shatkoski Bandeira
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Iraci Lucena da Silva Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Associate Professor, Pharmacology Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Anesthesiologist, Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA), Laboratory of Pain and Neuromodulation at Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Associate Professor of Pain and Anesthesia, Surgery Department, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Wiss DA, Avena NM. Food Addiction, Binge Eating, and the Role of Dietary Restraint: Converging Evidence from Animal and Human Studies. BINGE EATING 2020:193-209. [DOI: 10.1007/978-3-030-43562-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
A Survey of Molecular Imaging of Opioid Receptors. Molecules 2019; 24:molecules24224190. [PMID: 31752279 PMCID: PMC6891617 DOI: 10.3390/molecules24224190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
The discovery of endogenous peptide ligands for morphine binding sites occurred in parallel with the identification of three subclasses of opioid receptor (OR), traditionally designated as μ, δ, and κ, along with the more recently defined opioid-receptor-like (ORL1) receptor. Early efforts in opioid receptor radiochemistry focused on the structure of the prototype agonist ligand, morphine, although N-[methyl-11C]morphine, -codeine and -heroin did not show significant binding in vivo. [11C]Diprenorphine ([11C]DPN), an orvinol type, non-selective OR antagonist ligand, was among the first successful PET tracers for molecular brain imaging, but has been largely supplanted in research studies by the μ-preferring agonist [11C]carfentanil ([11C]Caf). These two tracers have the property of being displaceable by endogenous opioid peptides in living brain, thus potentially serving in a competition-binding model. Indeed, many clinical PET studies with [11C]DPN or [11C]Caf affirm the release of endogenous opioids in response to painful stimuli. Numerous other PET studies implicate μ-OR signaling in aspects of human personality and vulnerability to drug dependence, but there have been very few clinical PET studies of μORs in neurological disorders. Tracers based on naltrindole, a non-peptide antagonist of the δ-preferring endogenous opioid enkephalin, have been used in PET studies of δORs, and [11C]GR103545 is validated for studies of κORs. Structures such as [11C]NOP-1A show selective binding at ORL-1 receptors in living brain. However, there is scant documentation of δ-, κ-, or ORL1 receptors in healthy human brain or in neurological and psychiatric disorders; here, clinical PET research must catch up with recent progress in radiopharmaceutical chemistry.
Collapse
|
18
|
Brutman JN, Sirohi S, Davis JF. Recent Advances in the Neurobiology of Altered Motivation Following Bariatric Surgery. Curr Psychiatry Rep 2019; 21:117. [PMID: 31707546 DOI: 10.1007/s11920-019-1084-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW There is compelling evidence in the clinical population that long-term weight loss secondary to bariatric surgery is mitigated by the reemergence of maladaptive feeding behaviors and in some cases new onset substance abuse. RECENT FINDINGS A review of the current literature suggests that physical restructuring of the GI tract during WLS alters secretion of feeding peptides and nutrient-sensing mechanisms that directly target the brain's endogenous reward system, the mesolimbic dopamine system. Post-surgical changes in GI physiology augment activation of the mesolimbic system. In some patients, this process may contribute to a reduced appetite for palatable food whereas in others it may support maladaptive motivated behavior for food and chemical drugs. It is concluded that future studies are required to detail the timing and duration of surgical-induced changes in GI-mesolimbic communication to more fully understand this phenomenon.
Collapse
Affiliation(s)
- Julianna N Brutman
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, 1815 Ferdinand's Lane, Pullman, WA, 99164, USA
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, 1815 Ferdinand's Lane, Pullman, WA, 99164, USA.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Eating disorders are severe psychiatric disorders with a suspected complex biopsychosocial cause. The purpose of this review is to synthesize the recent literature on brain imaging in eating disorders. RECENT FINDINGS Food restriction as well as binge eating and purging behaviors are associated with lower regional brain volumes or cortical thickness, but those changes largely return to normal with normalization of weight and eating behavior. Computational modeling has started to identify patterns of structural and functional imaging data that classify eating disorder subtypes, which could be used in the future, diagnostically and to better understand disorder-specific psychopathology. The prediction error model, a computational approach to assess dopamine-related brain reward function, helped support a brain-based model for anorexia nervosa. In that model, the conscious motivation to restrict conflicts with body signals that stimulate eating. This conflict causes anxiety and drives a vicious cycle of food restriction. SUMMARY Novel brain research supports the notion that eating disorders have distinct neurobiological underpinnings. This new knowledge can be used to describe disease models to patients and develop novel treatments.
Collapse
|
20
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Gill I, Moon JH, Kim YJ, Kim JH, Ahn DH, Koh MS. Visual Hyper-vigilance But Insufficient Mental Representation in Children with Overweight/Obesity: Event-related Potential Study with Visual Go/NoGo Test. Pediatr Gastroenterol Hepatol Nutr 2019; 22:249-261. [PMID: 31110958 PMCID: PMC6506426 DOI: 10.5223/pghn.2019.22.3.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 11/14/2022] Open
Abstract
PURPOSE The neural processing of children with overweight/obesity (CWO), may affect their eating behavior. We investigated the visual information processing of CWO under response control condition, by event-related potential (ERP) study, an electrophysiologic study for cognitive mechanism. METHODS Seventeen CWO (mean age: 10.6±1.9), and 17 age-matched non-obese children (NOC), participated in the study. Neurocognitive function tests and visual ERP under Go/NoGo conditions, were implemented. Area amplitudes of major ERP components (P1, N1, P2, N2, and P3) from four scalp locations (frontal, central, parietal, and occipital), were analyzed. RESULTS For Go and NoGo conditions, CWO had significantly greater occipital P1, fronto-central N1, and P2 amplitudes compared with NOC. P2 amplitude was significantly greater in CWO, than in NOC, at the frontal location. N2 amplitude was not significantly different, between CWO and NOC. For CWO and NOC, Go P3 amplitude was highest at the parietal location, and NoGo P3 amplitude was highest at the frontal location. In Go and NoGo conditions, P3 amplitude of CWO was significantly less than in NOC. CONCLUSION The greater P1, N1, and P2 suggested hyper-vigilance to visual stimuli of CWO, but the smaller P3 suggested insufficient mental representation of them. Such altered visual processing, may affect the eating behavior of CWO.
Collapse
Affiliation(s)
- Inkyu Gill
- Department of Pediatrics, Hanyang University University Guri Hospital, Guri, Korea
| | - Jin-Hwa Moon
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Korea
| | - Yong Joo Kim
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Korea
| | - Ja Hye Kim
- Department of Pediatrics, Hanyang University University Guri Hospital, Guri, Korea
| | - Dong Hyun Ahn
- Department of Psychiatry, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Korea
| | - Min Sook Koh
- Department of Pediatrics, Hanyang University University Guri Hospital, Guri, Korea
| |
Collapse
|
22
|
Activation of orexin-1 receptors in the amygdala enhances feeding in the diet-induced obesity rats: Blockade with μ-opioid antagonist. Biochem Biophys Res Commun 2018; 503:3186-3191. [DOI: 10.1016/j.bbrc.2018.08.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/31/2022]
|