1
|
Bonomi R, Hillmer AT, Woodcock E, Bhatt S, Rusowicz A, Angarita GA, Carson RE, Davis MT, Esterlis I, Nabulsi N, Huang Y, Krystal JH, Pietrzak RH, Cosgrove KP. Microglia-mediated neuroimmune suppression in PTSD is associated with anhedonia. Proc Natl Acad Sci U S A 2024; 121:e2406005121. [PMID: 39172786 PMCID: PMC11363315 DOI: 10.1073/pnas.2406005121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
Dynamic brain immune function in individuals with posttraumatic stress disorder is rarely studied, despite evidence of peripheral immune dysfunction. Positron emission tomography brain imaging using the radiotracer [11C]PBR28 was used to measure the 18-kDa translocator protein (TSPO), a microglial marker, at baseline and 3 h after administration of lipopolysaccharide (LPS), a potent immune activator. Data were acquired in 15 individuals with PTSD and 15 age-matched controls. The PTSD group exhibited a significantly lower magnitude LPS-induced increase in TSPO availability in an a priori prefrontal-limbic circuit compared to controls. Greater anhedonic symptoms in the PTSD group were associated with a more suppressed neuroimmune response. In addition, while a reduced granulocyte-macrophage colony-stimulating factor response to LPS was observed in the PTSD group, other measured cytokine responses and self-reported sickness symptoms did not differ between groups; these findings highlight group differences in central-peripheral immune system relationships. The results of this study provide evidence of a suppressed microglia-mediated neuroimmune response to a direct immune system insult in individuals with PTSD that is associated with the severity of symptoms. They also provide further support to an emerging literature challenging traditional concepts of microglial and immune function in psychiatric disease.
Collapse
Affiliation(s)
- Robin Bonomi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | - Ansel T. Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Eric Woodcock
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | - Shivani Bhatt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | | | | | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Margaret T. Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Robert H. Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| |
Collapse
|
2
|
Bu Y, Burks J, Yang K, Prince J, Borna A, Coe CL, Simmons A, Tu XM, Baker D, Kimball D, Rao R, Shah V, Huang M, Schwindt P, Coleman TP, Lerman I. Non-invasive ventral cervical magnetoneurography as a proxy of in vivo lipopolysaccharide-induced inflammation. Commun Biol 2024; 7:893. [PMID: 39075164 PMCID: PMC11286963 DOI: 10.1038/s42003-024-06435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Maintenance of autonomic homeostasis is continuously calibrated by sensory fibers of the vagus nerve and sympathetic chain that convey compound action potentials (CAPs) to the central nervous system. Lipopolysaccharide (LPS) intravenous challenge reliably elicits a robust inflammatory response that can resemble systemic inflammation and acute endotoxemia. Here, we administered LPS intravenously in nine healthy subjects while recording ventral cervical magnetoneurography (vcMNG)-derived CAPs at the rostral Right Nodose Ganglion (RNG) and the caudal Right Carotid Artery (RCA) with optically pumped magnetometers (OPM). We observed vcMNG RNG and RCA neural firing rates that tracked changes in TNF-α levels in the systemic circulation. Further, endotype subgroups based on high and low IL-6 responders segregate RNG CAP frequency (at 30-120 min) and based on high and low IL-10 response discriminate RCA CAP frequency (at 0-30 min). These vcMNG tools may enhance understanding and management of the neuroimmune axis that can guide personalized treatment based on an individual's distinct endophenotype.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jamison Burks
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Yang
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Prince
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amir Borna
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan Simmons
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dewleen Baker
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vishal Shah
- Quspin Laboratory Head Quarters, Boulder, CO, 80305, USA
| | - Mingxiong Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peter Schwindt
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Todd P Coleman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Matias ME, Radulski DR, Rodrigues da Silva T, Raymundi AM, Stern CAJ, Zampronio AR. Involvement of cannabinoid receptors and neuroinflammation in early sepsis: Implications for posttraumatic stress disorder. Int Immunopharmacol 2023; 123:110745. [PMID: 37541107 DOI: 10.1016/j.intimp.2023.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Sepsis is associated with several comorbidities in survivors, such as posttraumatic stress disorder (PTSD). This study investigated whether rats that survive sepsis develop the generalization of fear memory as a model of PTSD. Responses to interventions that target the endothelin-1 (ET-1)/cannabinoid system and glial activation in the initial stages of sepsis were evaluated. As a control, we evaluated hyperalgesia before fear conditioning. Sepsis was induced by cecal ligation and puncture (CLP) in Wistar rats. CLP-induced sepsis with one or three punctures resulted in fear generalization in the survivors 13 and 20 days after the CLP procedure, a process that was not associated with hyperalgesia. Septic animals were intracerebroventricularly treated with vehicle, the endothelin receptor A (ETA) antagonist BQ123, the cannabinoid CB1 and CB2 receptor antagonists AM251 and AM630, respectively, and the glial blocker minocycline 4 h after CLP. The blockade of either CB1 or ETA receptors increased the survival rate, but only the former reversed fear memory generalization. The endothelinergic system blockade is important for improving survival but not for fear memory. Treatment with the CB2 receptor antagonist or minocycline also reversed the generalization of fear memory but did not increase the survival rate that was associated with CLP. Minocycline treatment also reduced tumor necrosis factor-α levels in the hippocampus suggesting that neuroinflammation is important for the generalization of fear memory induced by CLP. The influence of CLP on the generalization of fear memory was not related to Arc protein expression, a regulator of synaptic plasticity, in the dorsal hippocampus.
Collapse
Affiliation(s)
| | | | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | |
Collapse
|
4
|
Li J, Tong L, Schock BC, Ji LL. Post-traumatic Stress Disorder: Focus on Neuroinflammation. Mol Neurobiol 2023; 60:3963-3978. [PMID: 37004607 DOI: 10.1007/s12035-023-03320-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Post-traumatic stress disorder (PTSD), gaining increasing attention, is a multifaceted psychiatric disorder that occurs following a stressful or traumatic event or series of events. Recently, several studies showed a close relationship between PTSD and neuroinflammation. Neuroinflammation, a defense response of the nervous system, is associated with the activation of neuroimmune cells such as microglia and astrocytes and with changes in inflammatory markers. In this review, we first analyzed the relationship between neuroinflammation and PTSD: the effect of stress-derived activation of the hypothalamic-pituitary-adrenal (HPA) axis on the main immune cells in the brain and the effect of stimulated immune cells in the brain on the HPA axis. We then summarize the alteration of inflammatory markers in brain regions related to PTSD. Astrocytes are neural parenchymal cells that protect neurons by regulating the ionic microenvironment around neurons. Microglia are macrophages of the brain that coordinate the immunological response. Recent studies on these two cell types provided new insight into neuroinflammation in PTSD. These contribute to promoting comprehension of neuroinflammation, which plays a pivotal role in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Jimeng Li
- Department of 2nd Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Lei Tong
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bettina C Schock
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Li-Li Ji
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Guo J, Chen S, Li F, Hou S, Guo M, Yuan X. CXCL8 delivered by plasma-derived exosomes induces the symptoms of post-traumatic stress disorder through facilitating astrocyte-neuron communication. J Psychiatr Res 2023; 161:261-272. [PMID: 36947957 DOI: 10.1016/j.jpsychires.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Extracellular vesicles (EVs) play an important role in post-traumatic stress disorder (PTSD). This study is aimed to investigate the possible molecular mechanism of CD63 mediating CXCL8 delivery via EVs to affect astrocyte-neuron communication in PTSD. The neuron-derived EVs (NDEVs) and astrocyte-derived EVs (ADEVs) were isolated from plasma in PTSD patients. Next, the uptake of EVs by neurons was assessed. Following determination of the interaction between CD63 and CXCL8, gain- and loss-of-function experiments were performed in astrocytes. Finally, a PTSD mouse model was established using the single prolonged stress and electric foot shock to confirm the effects of plasma-derived EVs delivering CXCL8 on anxiety- and depression-like behaviors in PTSD mice. EVs derived from plasma of PTSD patients aggravated anxiety- and depression-like behaviors in PTSD mice. CXCL8 was a key gene upregulated in both NDEVs and ADEVs from plasma of PTSD patients, which could be delivered into EVs by CD63. Meanwhile, CXCL8 was also highly expressed in plasma-derived EVs. In vivo experiments also verified that plasma-derived EVs could enhance astrocyte-neuron communication by delivering CXCL8, and silencing of CXCL8 ameliorated anxiety- and depression-like behaviors in PTSD mice. Taken together, CD63 promotes delivery of CXCL8 via EVs to induce PTSD by enhancing astrocyte-neuron communication, suggesting the potential of CD63 mediating delivery of CXCL8 via EVs as a therapeutic target for PTSD.
Collapse
Affiliation(s)
- Juncheng Guo
- Scientific Research Department, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, PR China
| | - Siran Chen
- Department of Humanities and Social Sciences, Hainan Medical University, Haikou, 571199, PR China
| | - Feiyan Li
- Psychology Department, Hainan General Hospital, Haikou, 570311, PR China
| | - Shiyi Hou
- Psychology Department, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, PR China
| | - Min Guo
- Scientific Research Department, Hainan General Hospital, Haikou, 570311, PR China
| | - Xiuhong Yuan
- Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, PR China; Department of Clinical Psychology, The Third Xiangya Hospital of Central South University, Changsha, 410013, PR China.
| |
Collapse
|
6
|
Traumatic Life Experience and Pain Sensitization: Meta-analysis of Laboratory Findings. Clin J Pain 2023; 39:15-28. [PMID: 36524769 DOI: 10.1097/ajp.0000000000001082] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Psychological trauma often co-occurs with pain. This relationship has been explored using laboratory pain measures; however, findings have been mixed. Previous studies have limited operationalization of trauma (eg, posttraumatic stress disorder) or pain (eg, pain thresholds), which may contribute to conflicting results. Further, prior reviews likely underrepresent trauma experiences among people who are not receiving clinical care, limiting generalizability. MATERIALS AND METHODS We systematically reviewed the existing literature on the relationship between psychological trauma (eg, car accidents, sexual assault, childhood abuse, neglect) and laboratory pain (ie, quantitative sensory testing measures of pain threshold, intensity, summation, modulation), using inclusive criteria. The direction of the relationship between psychological trauma and pain sensitivity was evaluated, and moderation by purported pain mechanism (ie, pain detection, suprathreshold pain, central sensitization, inhibition) was explored. RESULTS Analyses were conducted using 48 studies that provided 147 effect sizes. A multivariate random-effects model with robust variance estimation resulted in a small but statistically significant overall effect size of g=0.24 (P=0.0002), reflecting a positive association between psychological trauma and enhanced laboratory pain sensitivity. Upon examination of mechanistic moderators, this relationship appears driven by effects on pain detection (g=0.28, P=0.002) and central sensitization (g=0.22, P=0.04). While effect sizes were similar across all moderators, effects on suprathreshold pain and inhibition were not statistically significant. DISCUSSION Findings demonstrate an overall pattern of trauma-related pain enhancement and point to central sensitization as a key underlying mechanism.
Collapse
|
7
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Andrade-Brito DE, Forero DA, Orozco-Castaño CA, Montalvo-Ortiz JL. Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines 2022; 10:biomedicines10051107. [PMID: 35625844 PMCID: PMC9138536 DOI: 10.3390/biomedicines10051107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and multifactorial disorder with a prevalence ranging between 6–10% in the general population and ~35% in individuals with high lifetime trauma exposure. Growing evidence indicates that the immune system may contribute to the etiology of PTSD, suggesting the inflammatory dysregulation as a hallmark feature of PTSD. However, the potential interplay between the central and peripheral immune system, as well as the biological mechanisms underlying this dysregulation remain poorly understood. The activation of the HPA axis after trauma exposure and the subsequent activation of the inflammatory system mediated by glucocorticoids is the most common mechanism that orchestrates an exacerbated immunological response in PTSD. Recent high-throughput analyses in peripheral and brain tissue from both humans with and animal models of PTSD have found that changes in gene regulation via epigenetic alterations may participate in the impaired inflammatory signaling in PTSD. The goal of this review is to assess the role of the inflammatory system in PTSD across tissue and species, with a particular focus on the genomics, transcriptomics, epigenomics, and proteomics domains. We conducted an integrative multi-omics approach identifying TNF (Tumor Necrosis Factor) signaling, interleukins, chemokines, Toll-like receptors and glucocorticoids among the common dysregulated pathways in both central and peripheral immune systems in PTSD and propose potential novel drug targets for PTSD treatment.
Collapse
Affiliation(s)
- Diana L. Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - José J. Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Carlos A. Orozco-Castaño
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
- Correspondence: ; Tel.: +1-(203)-9325711 (ext. 7491)
| |
Collapse
|
8
|
Friend SF, Nachnani R, Powell SB, Risbrough VB. C-Reactive Protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur J Neurosci 2022; 55:2297-2310. [PMID: 33131159 PMCID: PMC8087722 DOI: 10.1111/ejn.15031] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that inflammation plays a role in PTSD and stress disorder pathophysiology. PTSD is consistently associated with higher circulating inflammatory protein levels. Rodent models demonstrate that inflammation promotes enduring avoidance and arousal behaviors after severe stressors (e.g., predator exposure and social defeat), suggesting that inflammation may play a mechanistic role in trauma disorders. C-reactive protein (CRP) is an innate acute phase reactant produced by the liver after acute infection and chronic disease. A growing number of investigations report associations with PTSD diagnosis and elevated peripheral CRP, CRP gene mutations, and CRP gene expression changes in immune signaling pathways. CRP is reasonably established as a potential marker of PTSD and trauma exposure, but if and how it may play a mechanistic role is unclear. In this review, we discuss the current understanding of immune mechanisms in PTSD with a particular focus on the innate immune signaling factor, CRP. We found that although there is consistent evidence of an association of CRP with PTSD symptoms and risk, there is a paucity of data on how CRP might contribute to CNS inflammation in PTSD, and consequently, PTSD symptoms. We discuss potential mechanisms through which CRP could modulate enduring peripheral and CNS stress responses, along with future areas of investigation probing the role of CRP and other innate immune signaling factors in modulating trauma responses. Overall, we found that CRP likely contributes to central inflammation, but how it does so is an area for further study.
Collapse
Affiliation(s)
- Samantha F. Friend
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA,Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| | - Rahul Nachnani
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
| | - Susan B. Powell
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA,Research ServiceVA San Diego Healthcare SystemSan DiegoCAUSA
| | - Victoria B. Risbrough
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA,Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
9
|
Shulman A, Wang W, Luo H, Bao S, Searchfield G, Zhang J. Neuroinflammation and Tinnitus. Curr Top Behav Neurosci 2021; 51:161-174. [PMID: 34282564 DOI: 10.1007/7854_2021_238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuroinflammation is the central nervous system's response to: injury, infection, and abnormal neural activity. Inflammatory processes are known to mediate many diseases, and recently evidence indicates that neuroinflammation underlies hearing disorders such as presbyacusis, middle-ear disease, ototoxicity, noise-induced hearing loss, and tinnitus. This chapter provides a review of the role of neuroinflammation in the etiology and treatment of tinnitus. Specifically, our research team has demonstrated that both tumor necrosis factor alpha (TNF-α) and calpain signaling pathways are involved in noise-induced tinnitus and that blocking them yielded therapeutic effects on tinnitus. Other efforts such as controlling acute inflammatory response via specialized pro-resolving mediators may help provide insight into preventing and treating tinnitus-related inflammatory processes.
Collapse
Affiliation(s)
- Abraham Shulman
- Department of Otolaryngology, State University New York-Downstate, Brooklyn, NY, USA.
| | - Weihua Wang
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Hao Luo
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Grant Searchfield
- Section of Audiology, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Jinsheng Zhang
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Communication Sciences and Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, USA
| |
Collapse
|
10
|
Neurophysiological relationship of neuromuscular fatigue and stress disorder in PTSD patients. J Bodyw Mov Ther 2020; 24:386-394. [PMID: 33218539 DOI: 10.1016/j.jbmt.2020.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/25/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Apart from mental disorders, other complications that have been reported in some patients with Post-Traumatic Stress Disorder (PTSD), include physical pain and being quick to fatigue, which can severely affect the patients' daily life. Therefore, this study aims to evaluate the relationship between PTSD and physical fatigue in people with PTSD. METHOD 18 military men with (n = 9) and without PTSD (n = 9), with an age range of 45-60 years, volunteered to participate. They were randomly assigned into two groups: PTSD and non-PTSD groups. Recording of the surface electromyography (EMG) in a specific muscle was conducted twice in both groups, once at baseline and then again after a single session of fatiguing exercise. Data were analyzed by ANOVA with repeated measure (2✕2) at the significance level of 0.05. RESULTS Results showed that there was a significant main effect of intervention on electrical activity and neural conduction variables in the PTSD group (p = 0.04, p = 0.02). There was also an effect of time for the both variables (P < 0.001). CONCLUSION Stress disorders may affect the time to fatigue in PTSD patients and subsequently cause some difficulties in their daily life.
Collapse
|
11
|
Bersani FS, Mellon SH, Lindqvist D, Kang JI, Rampersaud R, Somvanshi PR, Doyle FJ, Hammamieh R, Jett M, Yehuda R, Marmar CR, Wolkowitz OM. Novel Pharmacological Targets for Combat PTSD-Metabolism, Inflammation, The Gut Microbiome, and Mitochondrial Dysfunction. Mil Med 2020; 185:311-318. [PMID: 32074311 DOI: 10.1093/milmed/usz260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Current pharmacological treatments of post-traumatic stress disorder (PTSD) have limited efficacy. Although the diagnosis is based on psychopathological criteria, it is frequently accompanied by somatic comorbidities and perhaps "accelerated biological aging," suggesting widespread physical concomitants. Such physiological comorbidities may affect core PTSD symptoms but are rarely the focus of therapeutic trials. METHODS To elucidate the potential involvement of metabolism, inflammation, and mitochondrial function in PTSD, we integrate findings and mechanistic models from the DOD-sponsored "Systems Biology of PTSD Study" with previous data on these topics. RESULTS Data implicate inter-linked dysregulations in metabolism, inflammation, mitochondrial function, and perhaps the gut microbiome in PTSD. Several inadequately tested targets of pharmacological intervention are proposed, including insulin sensitizers, lipid regulators, anti-inflammatories, and mitochondrial biogenesis modulators. CONCLUSIONS Systemic pathologies that are intricately involved in brain functioning and behavior may not only contribute to somatic comorbidities in PTSD, but may represent novel targets for treating core psychiatric symptoms.
Collapse
Affiliation(s)
- F Saverio Bersani
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy.,Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, 401 Parnassus Ave, San Francisco, CA 94143
| | - Synthia H Mellon
- Department of OB/GYN and Reproductive Sciences, UCSF School of Medicine, 513 Parnassus Ave, 1464G, San Francisco, CA 94143
| | - Daniel Lindqvist
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, 401 Parnassus Ave, San Francisco, CA 94143.,Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Psychiatry, Lund, Sweden
| | - Jee In Kang
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, 401 Parnassus Ave, San Francisco, CA 94143.,Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, South Korea
| | - Ryan Rampersaud
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, 401 Parnassus Ave, San Francisco, CA 94143
| | - Pramod Rajaram Somvanshi
- Harvard John A. Paulson School of Engineering and Applied Sciences, 29 Oxford St., Harvard University, Cambridge, MA 02138
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, 29 Oxford St., Harvard University, Cambridge, MA 02138
| | - Rasha Hammamieh
- Integrative Systems Biology, U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD 21702-5010
| | - Marti Jett
- Integrative Systems Biology, U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD 21702-5010
| | - Rachel Yehuda
- James J. Peters Veterans Administration Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468.,Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Charles R Marmar
- Center for Alcohol Use Disorder and PTSD, New York University, 1 Park Ave., Room 8-214, New York NY 10016.,Department of Psychiatry, New York University, 1 Park Ave., Room 8-214, New York, NY 10016
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, 401 Parnassus Ave, San Francisco, CA 94143
| |
Collapse
|
12
|
Deng D, Wang W, Bao S. Diffusible Tumor Necrosis Factor-Alpha (TNF-α) Promotes Noise-Induced Parvalbumin-Positive (PV+) Neuron Loss and Auditory Processing Impairments. Front Neurosci 2020; 14:573047. [PMID: 33154715 PMCID: PMC7590827 DOI: 10.3389/fnins.2020.573047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has been implicated in noise-induced auditory processing disorder and tinnitus. Certain non-auditory neurological disorders can also increase the levels of proinflammatory cytokines in the brain. To investigate the impact of increased brain proinflammatory cytokine levels on the central auditory pathway, we infused recombinant TNF-α into the right lateral cerebral ventricle, and examined auditory processing and cytoarchitecture of the auditory cortex. Microglial deramification was observed in the auditory cortex of mice that had received both TNF-α infusion and exposure to an 86-dB noise, but not in mice that had received either TNF-α infusion or noise exposure alone. In addition, we observed reduced cortical PV+ neuron density and impaired performances in gap detection and prepulse inhibition (PPI) only in mice that received both TNF-α infusion and the noise exposure. These results suggest that disease-related increase in brain proinflammatory cytokine release could be a risk factor for noise-induced auditory processing disorder and tinnitus.
Collapse
Affiliation(s)
- Di Deng
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Weihua Wang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Shaowen Bao
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
13
|
Tesarz J, Baumeister D, Andersen TE, Vaegter HB. Pain perception and processing in individuals with posttraumatic stress disorder: a systematic review with meta-analysis. Pain Rep 2020; 5:e849. [PMID: 33490843 PMCID: PMC7808684 DOI: 10.1097/pr9.0000000000000849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a known risk factor for the development of chronic pain conditions, and almost 1 in 5 individuals with chronic pain fulfills the criteria for PTSD. However, the relationship between PTSD and pain is poorly understood and studies on pain perception in patients with PTSD show inconsistent results suggesting that different sensory profiles exist among individuals with PTSD. Here, we (1) systematically summarize the current literature on experimentally evoked pain perception in patients with PTSD compared to subjects without PTSD, and (2) assess whether the nature of the traumatic event is associated with different patterns in pain perception. The main outcome measures were pain threshold, pain tolerance, and pain intensity ratings as well as measures of temporal summation of pain and conditioned pain modulation. A systematic search of MEDLINE, EMBASE, Web of Science, PsycINFO, and CINAHL identified 21 studies for the meta-analysis, including 422 individuals with PTSD and 496 PTSD-free controls. No main effect of PTSD on any outcome measure was found. However, stratification according to the nature of trauma revealed significant differences of small to medium effect sizes. Combat-related PTSD was associated with increased pain thresholds, whereas accident-related PTSD was associated with decreased pain thresholds. No clear relationship between PTSD and experimentally evoked pain perception exists. The type of trauma may affect pain thresholds differently indicating the presence of different subgroups with qualitative differences in pain processing.
Collapse
Affiliation(s)
- Jonas Tesarz
- Department of General Internal Medicine and Psychosomatics, Medical Hospital, University of Heidelberg, Heidelberg, Germany
| | - David Baumeister
- Department of General Internal Medicine and Psychosomatics, Medical Hospital, University of Heidelberg, Heidelberg, Germany
| | | | - Henrik Bjarke Vaegter
- Pain Research Group, Pain Center, Department of Anesthesiology and Intensive Care Medicine, University Hospital Odense, University Hospital Odense, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Alexander-Bloch AF, Raznahan A, Shinohara RT, Mathias SR, Bathulapalli H, Bhalla IP, Goulet JL, Satterthwaite TD, Bassett DS, Glahn DC, Brandt CA. The architecture of co-morbidity networks of physical and mental health conditions in military veterans. Proc Math Phys Eng Sci 2020; 476:20190790. [PMID: 32831602 DOI: 10.1098/rspa.2019.0790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/03/2020] [Indexed: 11/12/2022] Open
Abstract
Co-morbidity between medical and psychiatric conditions is commonly considered between individual pairs of conditions. However, an important alternative is to consider all conditions as part of a co-morbidity network, which encompasses all interactions between patients and a healthcare system. Analysis of co-morbidity networks could detect and quantify general tendencies not observed by smaller-scale studies. Here, we investigate the co-morbidity network derived from longitudinal healthcare records from approximately 1 million United States military veterans, a population disproportionately impacted by psychiatric morbidity and psychological trauma. Network analyses revealed marked and heterogenous patterns of co-morbidity, including a multi-scale community structure composed of groups of commonly co-morbid conditions. Psychiatric conditions including posttraumatic stress disorder were strong predictors of future medical morbidity. Neurological conditions and conditions associated with chronic pain were particularly highly co-morbid with psychiatric conditions. Across conditions, the degree of co-morbidity was positively associated with mortality. Co-morbidity was modified by biological sex and could be used to predict future diagnostic status, with out-of-sample prediction accuracy of 90-92%. Understanding complex patterns of disease co-morbidity has the potential to lead to improved designs of systems of care and the development of targeted interventions that consider the broader context of mental and physical health.
Collapse
Affiliation(s)
- Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.,Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Intramural Program, Bethesda, MA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harini Bathulapalli
- US Department of Veterans Affairs (VA) Connecticut Healthcare System, West Haven, CT, USA.,Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | - Ish P Bhalla
- National Clinician Scholars Program, University of California, Los Angeles, CA, USA
| | - Joseph L Goulet
- US Department of Veterans Affairs (VA) Connecticut Healthcare System, West Haven, CT, USA.,Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Danielle S Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.,Santa Fe Institute, Santa Fe, NM, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia A Brandt
- US Department of Veterans Affairs (VA) Connecticut Healthcare System, West Haven, CT, USA.,Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Bhatt S, Hillmer AT, Girgenti MJ, Rusowicz A, Kapinos M, Nabulsi N, Huang Y, Matuskey D, Angarita GA, Esterlis I, Davis MT, Southwick SM, Friedman MJ, Duman RS, Carson RE, Krystal JH, Pietrzak RH, Cosgrove KP. PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transcriptomic studies. Nat Commun 2020; 11:2360. [PMID: 32398677 PMCID: PMC7217830 DOI: 10.1038/s41467-020-15930-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Despite well-known peripheral immune activation in posttraumatic stress disorder (PTSD), there are no studies of brain immunologic regulation in individuals with PTSD. [11C]PBR28 Positron Emission Tomography brain imaging of the 18-kDa translocator protein (TSPO), a microglial biomarker, was conducted in 23 individuals with PTSD and 26 healthy individuals-with or without trauma exposure. Prefrontal-limbic TSPO availability in the PTSD group was negatively associated with PTSD symptom severity and was significantly lower than in controls. Higher C-reactive protein levels were also associated with lower prefrontal-limbic TSPO availability and PTSD severity. An independent postmortem study found no differential gene expression in 22 PTSD vs. 22 controls, but showed lower relative expression of TSPO and microglia-associated genes TNFRSF14 and TSPOAP1 in a female PTSD subgroup. These findings suggest that peripheral immune activation in PTSD is associated with deficient brain microglial activation, challenging prevailing hypotheses positing neuroimmune activation as central to stress-related pathophysiology.
Collapse
Affiliation(s)
- Shivani Bhatt
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06510, USA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Aleksandra Rusowicz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Michael Kapinos
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Irina Esterlis
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06510, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Margaret T Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Steven M Southwick
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | | | - Ronald S Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Kelly P Cosgrove
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06510, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
- Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
16
|
Hori H, Yoshida F, Itoh M, Lin M, Niwa M, Ino K, Imai R, Ogawa S, Matsui M, Kamo T, Kunugi H, Kim Y. Proinflammatory status-stratified blood transcriptome profiling of civilian women with PTSD. Psychoneuroendocrinology 2020; 111:104491. [PMID: 31698278 DOI: 10.1016/j.psyneuen.2019.104491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Etiology of posttraumatic stress disorder (PTSD) remains largely unknown. Studies have shown that a significant subset of patients with PTSD exhibit increased inflammation, suggesting that the understanding of this disorder could be facilitated by classifying these patients by inflammatory status. Here we performed a microarray-based blood transcriptome analysis on proinflammatory status-stratified Japanese civilian women with PTSD most of whom developed the disorder after experiencing interpersonal violence. By utilizing our previously identified cut-off serum interleukin-6 (IL-6) level that approximately corresponded to the median IL-6 level of our PTSD patients, we classified patients into those with high IL-6 levels and those with normal IL-6 levels (n = 16 for each). Transcriptome profiles of these 2 groups were compared with the profile of 16 age-matched healthy control women. Differentially expressed genes between high IL-6 patients and controls showed significant enrichment in a number of gene ontology terms and pathways primarily involved in immune/inflammatory responses, and their protein-protein interaction network was significantly enriched. In contrast, differentially expressed genes between normal IL-6 patients and controls showed significant enrichment in several gene ontology terms related to ion transport and neural function. The microarray data were confirmed by reverse transcription quantitative PCR. These findings illustrate the heterogeneous molecular mechanisms of PTSD within this relatively homogeneous sample in terms of sex, trauma type, and ethnicity, suggesting that peripheral proinflammatory status such as IL-6 levels could be a useful subtyping marker for this disorder. With further research, it is hoped that our findings will be translated into personalized medicine.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Fuyuko Yoshida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mariko Itoh
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Madoka Niwa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Keiko Ino
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Risa Imai
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sei Ogawa
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mie Matsui
- Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Toshiko Kamo
- Wakamatsu-cho Mental and Skin Clinic, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
17
|
Caylor J, Reddy R, Yin S, Cui C, Huang M, Huang C, Rao R, Baker DG, Simmons A, Souza D, Narouze S, Vallejo R, Lerman I. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med 2019; 5:12. [PMID: 31435499 PMCID: PMC6703564 DOI: 10.1186/s42234-019-0023-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Well-established in the field of bioelectronic medicine, Spinal Cord Stimulation (SCS) offers an implantable, non-pharmacologic treatment for patients with intractable chronic pain conditions. Chronic pain is a widely heterogenous syndrome with regard to both pathophysiology and the resultant phenotype. Despite advances in our understanding of SCS-mediated antinociception, there still exists limited evidence clarifying the pathways recruited when patterned electric pulses are applied to the epidural space. The rapid clinical implementation of novel SCS methods including burst, high frequency and dorsal root ganglion SCS has provided the clinician with multiple options to treat refractory chronic pain. While compelling evidence for safety and efficacy exists in support of these novel paradigms, our understanding of their mechanisms of action (MOA) dramatically lags behind clinical data. In this review, we reconstruct the available basic science and clinical literature that offers support for mechanisms of both paresthesia spinal cord stimulation (P-SCS) and paresthesia-free spinal cord stimulation (PF-SCS). While P-SCS has been heavily examined since its inception, PF-SCS paradigms have recently been clinically approved with the support of limited preclinical research. Thus, wide knowledge gaps exist between their clinical efficacy and MOA. To close this gap, many rich investigative avenues for both P-SCS and PF-SCS are underway, which will further open the door for paradigm optimization, adjunctive therapies and new indications for SCS. As our understanding of these mechanisms evolves, clinicians will be empowered with the possibility of improving patient care using SCS to selectively target specific pathophysiological processes in chronic pain.
Collapse
Affiliation(s)
- Jacob Caylor
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Rajiv Reddy
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Sopyda Yin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Christina Cui
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
| | - Charles Huang
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Bioengineering, Stanford University, Palo Alto, CA USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Alan Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Dmitri Souza
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Ricardo Vallejo
- Basic Science Research, Millennium Pain Center, Bloomington, IL USA
- School of Biological Sciences, Illinois State University, Normal, IL USA
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL USA
| | - Imanuel Lerman
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
- Present Address: VA San Diego, 3350 La Jolla Village Dr, (MC116A), San Diego, CA 92161 USA
| |
Collapse
|
18
|
Sundby KK, Wagner J, Aron AR. The Functional Role of Response Suppression during an Urge to Relieve Pain. J Cogn Neurosci 2019; 31:1404-1421. [PMID: 31059353 DOI: 10.1162/jocn_a_01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Being in the state of having both a strong impulse to act and a simultaneous need to withhold is commonly described as an "urge." Although urges are part of everyday life and also important to several clinical disorders, the components of urge are poorly understood. It has been conjectured that withholding an action during urge involves active response suppression. We tested that idea by designing an urge paradigm that required participants to resist an impulse to press a button and gain relief from heat (one hand was poised to press while the other arm had heat stimulation). We first used paired-pulse TMS over motor cortex (M1) to measure corticospinal excitability of the hand that could press for relief, while participants withheld movement. We observed increased short-interval intracortical inhibition, an index of M1 GABAergic interneuron activity that was maintained across seconds and specific to the task-relevant finger. A second experiment replicated this. We next used EEG to better "image" putative cortical signatures of motor suppression and pain. We found increased sensorimotor beta contralateral to the task-relevant hand while participants withheld the movement during heat. We interpret this as further evidence of a motor suppressive process. Additionally, there was beta desynchronization contralateral to the arm with heat, which could reflect a pain signature. Strikingly, participants who "suppressed" more exhibited less of a putative "pain" response. We speculate that, during urge, a suppressive state may have functional relevance for both resisting a prohibited action and for mitigating discomfort.
Collapse
|
19
|
Lerman I, Davis B, Huang M, Huang C, Sorkin L, Proudfoot J, Zhong E, Kimball D, Rao R, Simon B, Spadoni A, Strigo I, Baker DG, Simmons AN. Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge. PLoS One 2019; 14:e0201212. [PMID: 30759089 PMCID: PMC6373934 DOI: 10.1371/journal.pone.0201212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group × time × GSR analysis showed a significantly decreased response in the nVNS group (p < .0005) bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output.
Collapse
Affiliation(s)
- Imanuel Lerman
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| | - Bryan Davis
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Charles Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Linda Sorkin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - James Proudfoot
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Edward Zhong
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Bruce Simon
- electroCore LLC, Basking Ridge NJ, United States of America
| | - Andrea Spadoni
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Irina Strigo
- Department of Psychiatry, VA San Francisco Healthcare System, San Francisco, CA, United States of America
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Alan N. Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| |
Collapse
|
20
|
Harrison LA, Kats A, Williams ME, Aziz-Zadeh L. The Importance of Sensory Processing in Mental Health: A Proposed Addition to the Research Domain Criteria (RDoC) and Suggestions for RDoC 2.0. Front Psychol 2019; 10:103. [PMID: 30804830 PMCID: PMC6370662 DOI: 10.3389/fpsyg.2019.00103] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
The time is ripe to integrate burgeoning evidence of the important role of sensory and motor functioning in mental health within the National Institute of Mental Health's [NIMH] Research Domain Criteria [RDoC] framework (National Institute of Mental Health, n.d.a), a multi-dimensional method of characterizing mental functioning in health and disease across all neurobiological levels of analysis ranging from genetic to behavioral. As the importance of motor processing in psychopathology has been recognized (Bernard and Mittal, 2015; Garvey and Cuthbert, 2017; National Institute of Mental Health, 2019), here we focus on sensory processing. First, we review the current design of the RDoC matrix, noting sensory features missing despite their prevalence in multiple mental illnesses. We identify two missing classes of sensory symptoms that we widely define as (1) sensory processing, including sensory sensitivity and active sensing, and (2) domains of perceptual signaling, including interoception and proprioception, which are currently absent or underdeveloped in the perception construct of the cognitive systems domain. Then, we describe the neurobiological basis of these psychological constructs and examine why these sensory features are important for understanding psychopathology. Where appropriate, we examine links between sensory processing and the domains currently included in the RDoC matrix. Throughout, we emphasize how the addition of these sensory features to the RDoC matrix is important for understanding a range of mental health disorders. We conclude with the suggestion that a separate sensation and perception domain can enhance the current RDoC framework, while discussing what we see as important principles and promising directions for the future development and use of the RDoC.
Collapse
Affiliation(s)
- Laura A. Harrison
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Anastasiya Kats
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Marian E. Williams
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
21
|
Agorastos A, Hauger RL, Barkauskas DA, Lerman IR, Moeller-Bertram T, Snijders C, Haji U, Patel PM, Geracioti TD, Chrousos GP, Baker DG. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology 2019; 100:237-245. [PMID: 30390522 DOI: 10.1016/j.psyneuen.2018.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute and chronic stress can lead to a dysregulation of the immune response. Growing evidence suggests peripheral immune dysregulation and low-grade systemic inflammation in posttraumatic stress disorder (PTSD), with numerous reports of elevated plasma interleukin-6 (IL-6) levels. However, only a few studies have assessed IL-6 levels in the cerebrospinal fluid (CSF). Most of those have used single time-point measurements, and thus cannot take circadian level variability and CSF-plasma IL-6 correlations into account. METHODS This study used time-matched, sequential 24-h plasma and CSF measurements to investigate the effects of combat stress and PTSD on physiologic levels and biorhythmicity of IL-6 in 35 male study volunteers, divided in 3 groups: (PTSD = 12, combat controls, CC = 12, and non-deployed healthy controls, HC = 11). RESULTS Our findings show no differences in diurnal mean concentrations of plasma and CSF IL-6 across the three comparison groups. However, a significantly blunted circadian rhythm of plasma IL-6 across 24 h was observed in all combat-zone deployed participants, with or without PTSD, in comparison to HC. CSF IL-6 rhythmicity was unaffected by combat deployment or PTSD. CONCLUSIONS Although no significant group differences in mean IL-6 concentration in either CSF or plasma over a 24-h timeframe was observed, we provide first evidence for a disrupted peripheral IL-6 circadian rhythm as a sequel of combat deployment, with this disruption occurring in both PTSD and CC groups. The plasma IL-6 circadian blunting remains to be replicated and its cause elucidated in future research.
Collapse
Affiliation(s)
- Agorastos Agorastos
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Richard L Hauger
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego (UCSD), CA, USA
| | - Donald A Barkauskas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Imanuel R Lerman
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Tobias Moeller-Bertram
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Clara Snijders
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Uzair Haji
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Piyush M Patel
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Thomas D Geracioti
- University of Cincinnati Medical Center, Department of Psychiatry and Neurobehavioral Sciences, Cincinnati, OH, USA
| | - George P Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dewleen G Baker
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego (UCSD), CA, USA.
| |
Collapse
|
22
|
Dyball D, Evans S, Boos CJ, Stevelink SAM, Fear NT. The association between PTSD and cardiovascular disease and its risk factors in male veterans of the Iraq/Afghanistan conflicts: a systematic review. Int Rev Psychiatry 2019; 31:34-48. [PMID: 31041877 DOI: 10.1080/09540261.2019.1580686] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Military personnel with Post-Traumatic Stress Disorder (PTSD) can experience high levels of mental and physical health comorbidity, potentially indicating a high level of functional impairment that can impact on both military readiness and later ill-health. There is strong evidence to implicate PTSD as a contributory factor to Cardiovascular Disease (CVD) among serving personnel and veterans. This systematic review focusses on the association between PTSD and cardiovascular disease/risk factors in male, military serving and ex-serving personnel who served in the Iraq/Afghanistan conflicts. PUBMED, MEDLINE, PILOTS, EMBASE, PSYCINFO, and PSYCARTICLES were searched using PRISMA guidelines. Three hundred and forty-three records were identified, of which 20 articles were selected. PTSD was positively associated with the development of CVD, specifically circulatory diseases, including hypertension. PTSD was also positively associated with the following risk factors: elevated heart rate, tobacco use, dyslipidaemia, and obesity. Conflicting data is presented regarding heart rate variability and inflammatory markers. Future studies would benefit from a standardized methodological approach to investigating PTSD and physical health manifestations. It is suggested that clinicians offer health advice for CVD at an earlier age for ex-/serving personnel with PTSD.
Collapse
Affiliation(s)
- Daniel Dyball
- a King's Centre for Military Health Research, Psychological Medicine , King's College London , London , UK.,b ADVANCE study, Academic Department of Military Rehabilitation , Defence Medical Rehabilitation Centre Stanford Hall , Loughborough , UK
| | - Sarah Evans
- a King's Centre for Military Health Research, Psychological Medicine , King's College London , London , UK.,b ADVANCE study, Academic Department of Military Rehabilitation , Defence Medical Rehabilitation Centre Stanford Hall , Loughborough , UK
| | - Christopher J Boos
- b ADVANCE study, Academic Department of Military Rehabilitation , Defence Medical Rehabilitation Centre Stanford Hall , Loughborough , UK.,c Department of Postgraduate Medical Education , Bournemouth University , Poole , UK
| | - Sharon A M Stevelink
- a King's Centre for Military Health Research, Psychological Medicine , King's College London , London , UK.,d Department of Psychological Medicine , King's College London , London , UK
| | - Nicola T Fear
- a King's Centre for Military Health Research, Psychological Medicine , King's College London , London , UK.,b ADVANCE study, Academic Department of Military Rehabilitation , Defence Medical Rehabilitation Centre Stanford Hall , Loughborough , UK.,e Academic Department for Military Mental Health , King's College London , London , UK
| |
Collapse
|
23
|
Larrieu T, Layé S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front Physiol 2018; 9:1047. [PMID: 30127751 PMCID: PMC6087749 DOI: 10.3389/fphys.2018.01047] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
The central nervous system (CNS) has the highest concentration of lipids in the organism after adipose tissue. Among these lipids, the brain is particularly enriched with polyunsaturated fatty acids (PUFAs) represented by the omega-6 (ω6) and omega-3 (ω3) series. These PUFAs include arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively. PUFAs have received substantial attention as being relevant to many brain diseases, including anxiety and depression. This review addresses an important question in the area of nutritional neuroscience regarding the importance of ω3 PUFAs in the prevention and/or treatment of neuropsychiatric diseases, mainly depression and anxiety. In particular, it focuses on clinical and experimental data linking dietary intake of ω3 PUFAs and depression or anxiety. In particular, we will discuss recent experimental data highlighting how ω3 PUFAs can modulate neurobiological processes involved in the pathophysiology of anxiety and depression. Potential mechanisms involved in the neuroprotective and corrective activity of ω3 PUFAs in the brain are discussed, in particular the sensing activity of free fatty acid receptors and the activity of the PUFAs-derived endocannabinoid system and the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Thomas Larrieu
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
24
|
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, Iyer SS, Bhagavan SM, Beladakere-Ramaswamy S, Zaheer A. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis. Front Neurosci 2017; 11:703. [PMID: 29302258 PMCID: PMC5733004 DOI: 10.3389/fnins.2017.00703] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Govindhasamy P. Selvakumar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Ramasamy Thangavel
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Mohammad E. Ahmed
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sudhanshu P. Raikwar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Shankar S. Iyer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Sachin M. Bhagavan
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Swathi Beladakere-Ramaswamy
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Asgar Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| |
Collapse
|
25
|
Fraser L, Woodbury A. Case report: Percutaneous electrical neural field stimulation in two cases of sympathetically-mediated pain. F1000Res 2017; 6:920. [PMID: 29057068 PMCID: PMC5629543 DOI: 10.12688/f1000research.11494.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
Background: Fibromyalgia and complex regional pain syndrome (CRPS) are both chronic pain syndromes with pathophysiologic mechanisms related to autonomic nervous system dysregulation and central sensitization. Both syndromes are considered difficult to treat with conventional pain therapies.
Case presentations: Here we describe a female veteran with fibromyalgia and a male veteran with CRPS, both of whom failed multiple pharmacologic, physical and psychological therapies for pain, but responded to percutaneous electrical neural field stimulation (PENFS) targeted at the auricular branches of the cranial nerves.
Discussion: While PENFS applied to the body has been previously described for treatment of localized pain, PENFS effects on cranial nerve branches of the ear is not well-known, particularly when used for regional and full-body pain syndromes such as those described here. PENFS of the ear is a minimally-invasive, non-pharmacologic therapy that could lead to improved quality of life and decreased reliance on medication. However, further research is needed to guide clinical application, particularly in complex pain patients.
Collapse
Affiliation(s)
- Lynn Fraser
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Anna Woodbury
- Department of Anesthesiology, Veterans Affairs Medical Center, Atlanta, GA, 30033, USA.,Pain Medicine, Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Ogłodek EA, Just MJ, Szromek AR, Araszkiewicz A. Assessing the serum concentration levels of NT-4/5, GPX-1, TNF-α, and l-arginine as biomediators of depression severity in first depressive episode patients with and without posttraumatic stress disorder. Pharmacol Rep 2017; 69:1049-1058. [PMID: 28958613 DOI: 10.1016/j.pharep.2017.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neurotrophin-4/5 (NT-4/5) and glutathione peroxidase-1 (GPX-1) have been shown to play a major role in neuronal processes including depression and posttraumatic stress disorder (PTSD). They protect the body from oxidative damage by affecting neuronal growth, development and plasticity. The aim of the study was to evaluate the concentrations of NT-4/5, GPX-1, tumor necrosis factor-α (TNF-α), and l-arginine in patients suffering from varying levels of depression severity, PTSD, and depression comorbid with PTSD. METHODS The study involved 460 participants, 360 of whom were diagnosed with different types of depressive episodes. They included: 60 patients with mild depression (MD), 60 patients with moderate depression (MOD), 60 patients with severe depression (SeD), 60 patients with MD and PTSD (MD+PTSD), 60 patients with MOD and PTSD (MOD+PTSD), 60 patients with SeD and PTSD (SeD+PTSD), and 60 patients with PTSD alone. Each group of 60 subjects comprised 30 females and 30 males. The control group comprised 40 subjects. The 10th revision of the International Statistical Classification of Diseases and Related Health Problems was utilized to diagnose depression and PTSD. At 7a.m. blood samples were collected and serum NT-4/5, GPX-1, TNF-α and l-arginine concentrations were assessed using the ELISA method. RESULTS Depressive episodes with and without PTSD and PTSD alone became more severe as the levels of TNF-α, l-arginine increased and the levels of NT-4/5, GPX-1 decreased. CONCLUSION l-arginine, TNF-α, NT-4/5 and GPX-1 can be markers of depression severity in both males and females with first depressive episode with or without posttraumatic stress disorder.
Collapse
Affiliation(s)
- Ewa A Ogłodek
- Department of Psychiatry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Marek J Just
- Department of General and Endocrine Surgery, Municipal Hospital in Piekary Śląskie, Piekary Śląskie, Poland
| | - Adam R Szromek
- Silesian University of Technology in Gliwice, Gliwice, Poland
| | - Aleksander Araszkiewicz
- Department of Psychiatry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
27
|
Decreased AGO2 and DCR1 in PBMCs from War Veterans with PTSD leads to diminished miRNA resulting in elevated inflammation. Transl Psychiatry 2017; 7:e1222. [PMID: 28850112 PMCID: PMC5611749 DOI: 10.1038/tp.2017.185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/02/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a characteristic of post-traumatic stress disorder (PTSD). The initiation of inflammation and molecules involved are not yet clearly understood. Here, we provide compelling evidence that the inflammation seen in PTSD may result from the dysregulated miRNA processing pathway. Using microarray analysis with a discovery group of peripheral blood mononuclear cell (PBMC) samples from War Veterans with PTSD, we found 183 significantly downregulated miRNAs, several of which target numerous genes categorized to be pro-inflammatory in nature. This observation was further confirmed in a replicate group by including more samples. Furthermore, employing RNA-sequencing, quantitative real time PCR (qRT-PCR) and in vitro experiments, we found that Argonaute 2 (AGO2) and Dicer1 (DCR1) were downregulated in PTSD and provided convincing evidence that their downregulation affects mature miRNA generation. In addition, we noted that STAT3 transcript was reduced in PTSD and this was possibly responsible for reduced AGO2 and DCR1, which in turn affected miRNA synthesis. Furthermore, we observed that activation of CD4+ T cells or monocytes led to reduced mature miRNA availability. Finally, the inflammation seen in PTSD was associated with downregulated miRNA profile. Altogether, the current study demonstrates that the chronic inflammation seen in PTSD may be a result of dysregulated miRNA biogenesis pathway due to diminished expression of the key molecules like AGO2, DCR1 and STAT3.
Collapse
|
28
|
Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment. CHILDREN-BASEL 2016; 3:children3040040. [PMID: 27918444 PMCID: PMC5184815 DOI: 10.3390/children3040040] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022]
Abstract
Chronic pain during childhood and adolescence can lead to persistent pain problems and mental health disorders into adulthood. Posttraumatic stress disorders and depressive and anxiety disorders are mental health conditions that co-occur at high rates in both adolescent and adult samples, and are linked to heightened impairment and disability. Comorbid chronic pain and psychopathology has been explained by the presence of shared neurobiology and mutually maintaining cognitive-affective and behavioral factors that lead to the development and/or maintenance of both conditions. Particularly within the pediatric chronic pain population, these factors are embedded within the broader context of the parent-child relationship. In this review, we will explore the epidemiology of, and current working models explaining, these comorbidities. Particular emphasis will be made on shared neurobiological mechanisms, given that the majority of previous research to date has centered on cognitive, affective, and behavioral mechanisms. Parental contributions to co-occurring chronic pain and psychopathology in childhood and adolescence will be discussed. Moreover, we will review current treatment recommendations and future directions for both research and practice. We argue that the integration of biological and behavioral approaches will be critical to sufficiently address why these comorbidities exist and how they can best be targeted in treatment.
Collapse
|