1
|
Ratsika A, Codagnone MG, Bastiaanssen TFS, Hoffmann Sarda FA, Lynch CMK, Ventura-Silva AP, Rosell-Cardona C, Caputi V, Stanton C, Fülling C, Clarke G, Cryan JF. Maternal high-fat diet-induced microbiota changes are associated with alterations in embryonic brain metabolites and adolescent behaviour. Brain Behav Immun 2024; 121:317-330. [PMID: 39032541 DOI: 10.1016/j.bbi.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
The developing central nervous system is highly sensitive to nutrient changes during the perinatal period, emphasising the potential impact of alterations of maternal diet on offspring brain development and behaviour. A growing body of research implicates the gut microbiota in neurodevelopment and behaviour. Maternal overweight and obesity during the perinatal period has been linked to changes in neurodevelopment, plasticity and affective disorders in the offspring, with implications for microbial signals from the maternal gut. Here we investigate the impact of maternal high-fat diet (mHFD)-induced changes in microbial signals on offspring brain development, and neuroimmune signals, and the enduring effects on behaviour into adolescence. We first demonstrate that maternal caecal microbiota composition at term pregnancy (embryonic day 18: E18) differs significantly in response to maternal diet. Moreover, mHFD resulted in the upregulation of microbial genes in the maternal intestinal tissue linked to alterations in quinolinic acid synthesis and elevated kynurenine levels in the maternal plasma, both neuronal plasticity mediators related to glutamate metabolism. Metabolomics of mHFD embryonic brains at E18 also detected molecules linked to glutamate-glutamine cycle, including glutamic acid, glutathione disulphide, and kynurenine. During adolescence, the mHFD offspring exhibited increased locomotor activity and anxiety-like behaviour in a sex-dependent manner, along with upregulation of glutamate-related genes compared to controls. Overall, our results demonstrate that maternal exposure to high-fat diet results in microbiota changes, behavioural imprinting, altered brain metabolism, and glutamate signalling during critical developmental windows during the perinatal period.
Collapse
Affiliation(s)
- Anna Ratsika
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Martin G Codagnone
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Fabiana A Hoffmann Sarda
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Caoimhe M K Lynch
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Cristina Rosell-Cardona
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Valentina Caputi
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | | | - Christine Fülling
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12YT20, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland.
| |
Collapse
|
2
|
Li Y, Yang Y, Ye B, Lin Y. Maternal high fat diet programs spatial learning and central leptin signaling in mouse offspring in a sex-specific manner. Physiol Behav 2024; 281:114580. [PMID: 38714271 DOI: 10.1016/j.physbeh.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.
Collapse
Affiliation(s)
- YiQuan Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ya Yang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - BoWei Ye
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Bautista CJ, Reyes-Castro LA, Lomas-Soria C, Ibáñez CA, Zambrano E. Late-in-life Exercise Ameliorates the Aging Trajectory Metabolism Programmed by Maternal Obesity in Rats: It is Never Too Late. Arch Med Res 2024; 55:103002. [PMID: 38735235 DOI: 10.1016/j.arcmed.2024.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Maternal obesity (MO) has been shown to adversely affect metabolic, oxidative, reproductive, and cognitive function in offspring. However, it is unclear whether lifestyle modification can ameliorate the metabolic and organ dysfunction programmed by MO and prevent the effects of metabolic syndrome in adulthood. This study aimed to evaluate whether moderate voluntary exercise in the offspring of rats born to obese mothers can ameliorate the adverse effects of MO programming on metabolism and liver function in mid-adulthood. METHODS Offspring of control (CF1) and MOF1 mothers were fed with a control diet from weaning. Adult males and females participated in 15 min exercise sessions five days/week. Metabolic parameters were analyzed before and after the exercise intervention. Liver oxidative stress biomarkers and antioxidant enzymes were analyzed before and after the intervention. RESULTS Males showed that CF1ex ran more than MOF1ex and increased the distance covered. In contrast, females in both groups ran similar distances and remained constant but ran more distance than males. At PND 300 and 450, male and female MOF1 had higher leptin, triglycerides, insulin, and HOMA-IR levels than CF1. However, male MOF1ex had lower triglycerides, insulin, and HOMA-IR levels than MOF1. Improvements in liver fat and antioxidant enzymes were observed in CF1ex and MOF1ex males and females compared to their respective CF1 and MOF1 groups. CONCLUSION These findings suggest that moderate voluntary exercise, even when started in mid-adulthood, can improve metabolic outcomes and delay accelerated metabolic aging in MO-programmed rats in a sex-dependent manner.
Collapse
Affiliation(s)
- Claudia J Bautista
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Consuelo Lomas-Soria
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Consejo Nacional de Humanidades, Ciencias y Tecnologías, Cátedras Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Carlos A Ibáñez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
4
|
Cavalcanti CCL, Manhães-de-Castro R, Chaves WF, Cadena-Burbano EV, Antonio-Santos J, da Silva Aragão R. Influence of maternal high-fat diet on offspring's locomotor activity during anxiety-related behavioral tests: A systematic review. Behav Brain Res 2024; 462:114869. [PMID: 38246396 DOI: 10.1016/j.bbr.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The aim of this review was to summarize and discuss the impact of a maternal high-fat diet on the locomotor activity of offspring during anxiety-related behavioral tests. A search was performed in the LILACS, Web of Science, SCOPUS and PUMBED databases, using the following inclusion criteria: studies in which rodent dams were submitted to a high-fat diet during gestation and/or lactation and in which the locomotor activity parameters of offspring were evaluated during an anxiety-related test. Twenty-three articles met these criteria and were included. Most studies, 14 out of 23, found that a maternal high-fat diet did not alter offspring locomotor activity. Six articles found that a maternal high-fat diet increased the locomotor activity of offspring, while three found decreased locomotion. This effect may be associated with the initial response to the test and the fact that it was the first day of exposure to the apparatus.
Collapse
Affiliation(s)
| | - Raul Manhães-de-Castro
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil
| | - Wenicios Ferreira Chaves
- Graduate Program in Nutrition, Sports Sciences and Metabolism, Universidade Estadual de Campinas, 13484-350 Campinas, SP, Brazil
| | | | - José Antonio-Santos
- Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Physical Education and Sports Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Raquel da Silva Aragão
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Physical Education and Sports Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
5
|
Frayre P, Ponce-Rubio K, Frayre J, Medrano J, Na ES. POMC-specific knockdown of MeCP2 leads to adverse phenotypes in mice chronically exposed to high fat diet. Behav Brain Res 2024; 461:114863. [PMID: 38224819 PMCID: PMC10872214 DOI: 10.1016/j.bbr.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is an epigenetic factor associated with the neurodevelopmental disorders Rett Syndrome and MECP2 duplication syndrome. Previous studies have demonstrated that knocking out MeCP2 globally in the central nervous system leads to an obese phenotype and hyperphagia, however it is not clear if the hyperphagia is the result of an increased preference for food reward or due to an increase in motivation to obtain food reward. We show that mice deficient in MeCP2 specifically in pro-opiomelanocortin (POMC) neurons have an increased preference for high fat diet as measured by conditioned place preference but do not have a greater motivation to obtain food reward using a progressive ratio task, relative to wildtype littermate controls. We also demonstrate that POMC-Cre MeCP2 knockout (KO) mice have increased body weight after long-term high fat diet exposure as well as elevated plasma leptin and corticosterone levels compared to wildtype mice. Taken together, these results are the first to show that POMC-specific loss-of-function Mecp2 mutations leads to dissociable effects on the rewarding/motivational properties of food as well as changes to hormones associated with body weight homeostasis and stress.
Collapse
Affiliation(s)
- Priscila Frayre
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Karen Ponce-Rubio
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Jessica Frayre
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Jacquelin Medrano
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Elisa Sun Na
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA.
| |
Collapse
|
6
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Melo GM, Capucho AM, Sacramento JF, Ponce-de-Leão J, Fernandes MV, Almeida IF, Martins FO, Conde SV. Overnutrition during Pregnancy and Lactation Induces Gender-Dependent Dysmetabolism in the Offspring Accompanied by Heightened Stress and Anxiety. Nutrients 2023; 16:67. [PMID: 38201896 PMCID: PMC10781034 DOI: 10.3390/nu16010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Maternal obesity and gestational diabetes predispose the next generation to metabolic disturbances. Moreover, the lactation phase also stands as a critical phase for metabolic programming. Nevertheless, the precise mechanisms originating these changes remain unclear. Here, we investigate the consequences of a maternal lipid-rich diet during gestation and lactation and its impact on metabolism and behavior in the offspring. Two experimental groups of Wistar female rats were used: a control group (NC) that was fed a standard diet during the gestation and lactation periods and an overnutrition group that was fed a high-fat diet (HF, 60% lipid-rich) during the same phases. The offspring were analyzed at postnatal days 21 and 28 and at 2 months old (PD21, PD28, and PD60) for their metabolic profiles (weight, fasting glycemia insulin sensitivity, and glucose tolerance) and euthanized for brain collection to evaluate metabolism and inflammation in the hypothalamus, hippocampus, and prefrontal cortex using Western blot markers of synaptic dynamics. At 2 months old, behavioral tests for anxiety, stress, cognition, and food habits were conducted. We observed that the female offspring born from HF mothers exhibited increased weight gain and decreased glucose tolerance that attenuated with age. In the offspring males, weight gain increased at P21 and worsened with age, while glucose tolerance remained unchanged. The offspring of the HF mothers exhibited elevated levels of anxiety and stress during behavioral tests, displaying decreased predisposition for curiosity compared to the NC group. In addition, the offspring from mothers with HF showed increased food consumption and a lower tendency towards food-related aggression. We conclude that exposure to an HF diet during pregnancy and lactation induces dysmetabolism in the offspring and is accompanied by heightened stress and anxiety. There was sexual dimorphism in the metabolic traits but not behavioral phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Camara Pestana, 6, Edificio 2, 1150-082 Lisboa, Portugal; (G.M.M.); (A.M.C.); (J.F.S.); (J.P.-d.-L.); (M.V.F.); (I.F.A.); (F.O.M.)
| |
Collapse
|
8
|
Amaro A, Sousa D, Sá-Rocha M, Ferreira-Junior MD, Rosendo-Silva D, Saavedra LPJ, Barra C, Monteiro-Alfredo T, Gomes RM, de Freitas Mathias PC, Baptista FI, Matafome P. Postnatal Overfeeding in Rodents Induces a Neurodevelopment Delay and Anxious-like Behaviour Accompanied by Sex- and Brain-Region-Specific Synaptic and Metabolic Changes. Nutrients 2023; 15:3581. [PMID: 37630771 PMCID: PMC10459868 DOI: 10.3390/nu15163581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Nutritional disturbances during the early postnatal period can have long-lasting effects on neurodevelopment and may be related to behavioural changes at adulthood. While such neuronal connection disruption can contribute to social and behaviour alterations, the dysregulation of the neuroendocrine pathways involved in nutrient-sensing balance may also cause such impairments, although the underlying mechanisms are still unclear. We aimed to evaluate sex-specific neurodevelopmental and behavioural changes upon postnatal overfeeding and determine the potential underpinning mechanisms at the central nervous system level, with a focus on the interconnection between synaptic and neuroendocrine molecular alterations. At postnatal day 3 (PND3) litters were culled to three animals (small litter procedure). Neurodevelopmental tests were conducted at infancy, whereas behavioural tests to assess locomotion, anxiety, and memory were performed at adolescence, together with molecular analysis of the hippocampus, hypothalamus, and prefrontal cortex. At infancy, females presented impaired acquisition of an auditory response, eye opening, olfactory discrimination, and vestibular system development, suggesting that female offspring neurodevelopment/maturation was deeply affected. Male offspring presented a transitory delay in locomotor performance., while both offspring had lower upper limb strength. At adolescence, both sexes presented anxious-like behaviour without alterations in short-term memory retention. Both males and females presented lower NPY1R levels in a region-specific manner. Furthermore, both sexes presented synaptic changes in the hippocampus (lower GABAA in females and higher GABAA levels in males), while, in the prefrontal cortex, similar higher GABAA receptor levels were observed. At the hypothalamus, females presented synaptic changes, namely higher vGLUT1 and PSD95 levels. Thus, we demonstrate that postnatal overfeeding modulates offspring behaviour and dysregulates nutrient-sensing mechanisms such as NPY and GABA in a sex- and brain-region-specific manner.
Collapse
Affiliation(s)
- Andreia Amaro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Diana Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Mariana Sá-Rocha
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Marcos Divino Ferreira-Junior
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physiological Sciences, Institute of Biological Sciences, University Federal of Goiás, Goiânia 74690-900, Brazil;
| | - Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa 87020-900, Brazil; (L.P.J.S.); (P.C.d.F.M.)
| | - Cátia Barra
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Internal Medicine Department, University Hospital Center of Coimbra, 3004-561 Coimbra, Portugal
| | - Tamaeh Monteiro-Alfredo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Institute of Biological Sciences, University Federal of Goiás, Goiânia 74690-900, Brazil;
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa 87020-900, Brazil; (L.P.J.S.); (P.C.d.F.M.)
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Coimbra Health School (EsTeSC), Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
| |
Collapse
|
9
|
Cosentino L, Witt SH, Dukal H, Zidda F, Siehl S, Flor H, De Filippis B. Methyl-CpG binding protein 2 expression is associated with symptom severity in patients with PTSD in a sex-dependent manner. Transl Psychiatry 2023; 13:249. [PMID: 37419878 DOI: 10.1038/s41398-023-02529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Traumatic events may lead to post-traumatic stress disorder (PTSD), with higher prevalence in women. Adverse childhood experiences (ACE) increase PTSD risk in adulthood. Epigenetic mechanisms play important roles in PTSD pathogenesis and a mutation in the methyl-CpG binding protein 2 (MECP2) in mice provide susceptibility to PTSD-like alterations, with sex-dependent biological signatures. The present study examined whether the increased risk of PTSD associated with ACE exposure is accompanied by reduced MECP2 blood levels in humans, with an influence of sex. MECP2 mRNA levels were analyzed in the blood of 132 subjects (58 women). Participants were interviewed to assess PTSD symptomatology, and asked to retrospectively report ACE. Among trauma-exposed women, MECP2 downregulation was associated with the intensification of PTSD symptoms linked to ACE exposure. MECP2 expression emerges as a potential contributor to post-trauma pathophysiology fostering novel studies on the molecular mechanisms underlying its potential sex-dependent role in PTSD onset and progression.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesca Zidda
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Siehl
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy.
| |
Collapse
|
10
|
Cosentino L, Zidda F, Dukal H, Witt SH, De Filippis B, Flor H. Low levels of Methyl-CpG binding protein 2 are accompanied by an increased vulnerability to the negative outcomes of stress exposure during childhood in healthy women. Transl Psychiatry 2022; 12:506. [PMID: 36481643 PMCID: PMC9731965 DOI: 10.1038/s41398-022-02259-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous mental illnesses arise following stressful events in vulnerable individuals, with females being generally more affected than males. Adverse childhood experiences are known to increase the risk of developing psychopathologies and DNA methylation was demonstrated to drive the long-lasting effects of early life stress and promote stress susceptibility. Methyl-CpG binding protein 2 (MECP2), an X-linked reader of the DNA methylome, is altered in many mental disorders of stress origin, suggesting MECP2 as a marker of stress susceptibility; previous works also suggest a link between MECP2 and early stress experiences. The present work explored whether a reduced expression of MECP2 is paralleled by an increased vulnerability to the negative outcomes of stress exposure during childhood. To this aim, blood MECP2 mRNA levels were analyzed in 63 people without history of mental disorders and traits pertaining to depressive and anxiety symptom clusters were assessed as proxies of the vulnerability to develop stress-related disorders; stress exposure during childhood was also evaluated. Using structural equation modeling, we demonstrate that reduced MECP2 expression is accompanied by symptoms of anxiety/depression in association with exposure to stress in early life, selectively in healthy women. These results suggest a gender-specific involvement of MECP2 in the maladaptive outcomes of childhood adversities, and shed new light on the complex biology underlying gender bias in stress susceptibility.
Collapse
Affiliation(s)
- Livia Cosentino
- grid.416651.10000 0000 9120 6856Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy ,grid.7700.00000 0001 2190 4373Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesca Zidda
- grid.7700.00000 0001 2190 4373Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Helene Dukal
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy.
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
11
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Trujillo-Villarreal LA, Cardenas-Tueme M, Viveros-Contreras R, Ortiz-López R, Camacho-Morales A. Transgenerational Susceptibility to Food Addiction-Like Behavior in Rats Associates to a Decrease of the Anti-Inflammatory IL-10 in Plasma. Neurochem Res 2022; 47:3093-3103. [PMID: 35767136 DOI: 10.1007/s11064-022-03660-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Maternal nutritional programming by energy-dense foods leads to the transgenerational heritance of addiction-like behavior. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. This study aimed to characterize pro- and anti-inflammatory cytokine profiles in blood and their correlation to the transgenerational heritance of the addiction-like behavior in rats. F1 offspring of male Wistar diagnosed with addiction-like behavior were mated with virgin females to generate the F2 and the F3 offspring, respectively. Diagnosis of addiction-like behavior was performed by the operant training schedule (FR1, FR5 and PR) and pro- and anti-inflammatory cytokine profiles in blood were measured by multiplex platform. Multiple linear models between behavior, fetal programming by diet and pro- and anti-inflammatory cytokine profiles were performed. We found that the addiction-like behavior found in the F1 male offspring exposed to energy-dense food (cafeteria, CAF) diet during fetal programing is transgenerational inherited to the F2 and F3 generations. Blood from addiction-like behavior subjects of F2 and F3 generations exposed to CAF diet during maternal programming showed decrease in the anti-inflammatory IL-10 in the plasma. Conversely, decreased levels of the pro-inflammatory MCP-1 was identified in non-addiction-like subjects. No changes were found in plasmatic TNF-α levels in the F2 and F3 offspring of non-addiction-like and addiction-like subjects. Finally, biological modeling between IL-10 or MCP-1 plasma levels and prenatal diet exposure on operant training responses confirmed an association of decreased IL-10 levels on addiction-like behavior in the F2 and F3 generations. Globally, we identified decreased anti-inflammatory IL-10 cytokine in the blood of F2 and F3 offspring subjects diagnosed with addiction-like behavior for food rewards.
Collapse
Affiliation(s)
- Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Luis A Trujillo-Villarreal
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Marcela Cardenas-Tueme
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | | | - Rocío Ortiz-López
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, S/N, C.P. 64460, Monterrey, NL, Mexico.
| |
Collapse
|
13
|
Dunn GA, Mitchell AJ, Selby M, Fair DA, Gustafsson HC, Sullivan EL. Maternal diet and obesity shape offspring central and peripheral inflammatory outcomes in juvenile non-human primates. Brain Behav Immun 2022; 102:224-236. [PMID: 35217175 PMCID: PMC8995380 DOI: 10.1016/j.bbi.2022.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/21/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022] Open
Abstract
The obesity epidemic affects 40% of adults in the US, with approximately one-third of pregnant women classified as obese. Previous research suggests that children born to obese mothers are at increased risk for a number of health conditions. The mechanisms behind this increased risk are poorly understood. Increased exposure to in-utero inflammation induced by maternal obesity is proposed as an underlying mechanism for neurodevelopmental alterations in offspring. Utilizing a non-human primate model of maternal obesity, we hypothesized that maternal consumption of an obesogenic diet will predict offspring peripheral (e.g., cytokines and chemokines) and central (microglia number) inflammatory outcomes via the diet's effects on maternal adiposity and maternal inflammatory state during the third trimester. We used structural equation modeling to simultaneously examine the complex associations among maternal diet, metabolic state, adiposity, inflammation, and offspring central and peripheral inflammation. Four latent variables were created to capture maternal chemokines and pro-inflammatory cytokines, and offspring cytokine and chemokines. Model results showed that offspring microglia counts in the basolateral amygdala were associated with maternal diet (β = -0.622, p < 0.01), adiposity (β = 0.593, p < 0.01), and length of gestation (β = 0.164, p < 0.05) but not with maternal chemokines (β = 0.135, p = 0.528) or maternal pro-inflammatory cytokines (β = 0.083, p = 0.683). Additionally, we found that juvenile offspring peripheral cytokines (β = -0.389, p < 0.01) and chemokines (β = -0.298, p < 0.05) were associated with a maternal adiposity-induced decrease in maternal circulating chemokines during the third trimester (β = -0.426, p < 0.01). In summary, these data suggest that maternal diet and adiposity appear to directly predict offspring amygdala microglial counts while maternal adiposity influences offspring peripheral inflammatory outcomes via maternal inflammatory state.
Collapse
Affiliation(s)
| | - A J Mitchell
- Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA
| | - Matthew Selby
- University of Oregon, Department of Human Physiology, USA
| | - Damien A Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, USA
| | | | - Elinor L Sullivan
- University of Oregon, Department of Human Physiology, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA; Oregon Health & Science University, Department of Psychiatry, USA.
| |
Collapse
|
14
|
D'avila LF, Dias VT, Trevizol F, Metz VG, Roversi K, Milanesi L, Maurer LH, Baranzelli J, Emanuelli T, Burger ME. INTERESTERIFIED FAT MATERNAL CONSUMPTION BEFORE CONCEPTION PROGRAMMS MEMORY AND LEARNING OF ADULTHOOD OFFSPRING: how big is this deleterious repercussion? Toxicol Lett 2022; 361:10-20. [PMID: 35301046 DOI: 10.1016/j.toxlet.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
In recent years, interesterified fat (IF) has largely replaced trans fat in industrialized food. Studies of our research group showed that IF consumption may not be safe for central nervous system (CNS) functions. Our current aim was to evaluate IF maternal consumption before conception on cognitive performance of adult rat offspring. Female Wistar rats were fed with standard chow plus 20% soybean and fish oil mix (control group) or plus 20% IF from weaning until adulthood (before mating), when the diets were replaced by standard chow only. Following the gestation and pups' development, locomotion and memory performance followed by neurotrophin immunocontent and fatty acids (FA) profile in the hippocampus of the adulthood male offspring were quantified. Maternal IF consumption before conception decreased hippocampal palmitoleic acid incorporation, proBDNF and BDNF levels, decreasing both exploratory activity and memory performance in adult offspring. Considering that, the adult male offspring did not consume IF directly, further studies are needed to understand the molecular mechanisms and if the IF maternal preconception consumption could induce the epigenetic changes observed here. Our outcomes reinforce an immediate necessity to monitor and / or question the replacement of trans fat by IF with further studies involving CNS functions.
Collapse
Affiliation(s)
- Lívia Ferraz D'avila
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Verônica Tironi Dias
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Fabíola Trevizol
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Karine Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Laura Milanesi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Luana Haselein Maurer
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Júlia Baranzelli
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Tatiana Emanuelli
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Marilise Escobar Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| |
Collapse
|
15
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
16
|
Monteiro S, Nejad YS, Aucoin M. Perinatal diet and offspring anxiety: A scoping review. Transl Neurosci 2022; 13:275-290. [PMID: 36128579 PMCID: PMC9449687 DOI: 10.1515/tnsci-2022-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Health behaviors during pregnancy have an impact on the developing offspring. Dietary factors play a role in the development of mental illness: however, less is known about the impact of diet factors during pre-conception, gestation, and lactation on anxiety levels in offspring. This scoping review sought to systematically map the available research involving human and animal subjects to identify nutritional interventions which may have a harmful or protective effect, as well as identify gaps. Studies investigating an association between any perinatal diet pattern or diet constituent and offspring anxiety were included. The number of studies reporting an association with increased or decreased levels of anxiety were counted and presented in figures. A total of 55,914 results were identified as part of a larger scoping review, and 120 articles met the criteria for inclusion. A greater intake of phytochemicals and vitamins were associated with decreased offspring anxiety whereas maternal caloric restriction, protein restriction, reduced omega-3 consumption, and exposure to a high fat diet were associated with higher levels of offspring anxiety. Results were limited by a very large proportion of animal studies. High quality intervention studies involving human subjects are warranted to elucidate the precise dietary factors or constituents that modulate the risk of anxiety in offspring.
Collapse
Affiliation(s)
- Sasha Monteiro
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Yousef Sadat Nejad
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Monique Aucoin
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| |
Collapse
|
17
|
Rocha-Gomes A, Teixeira AE, de Oliveira DG, Santiago CMO, da Silva AA, Riul TR, Lacerda ACR, Mendonça VA, Rocha-Vieira E, Leite HR. LPS tolerance prevents anxiety-like behavior and amygdala inflammation of high-fat-fed dams' adolescent offspring. Behav Brain Res 2021; 411:113371. [PMID: 34019914 DOI: 10.1016/j.bbr.2021.113371] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023]
Abstract
Maternal high-fat diets (HFD) can generate inflammation in the offspring's amygdala, which can lead to anxiety-like behaviors. Conversely, lipopolysaccharide (LPS) tolerance can reduce neuroinflammation in the offspring caused by maternal high-fat diets. This study evaluated the combination of LPS tolerance and high-fat maternal diet on amygdala's inflammatory parameters and the anxiety-like behavior in adolescent offspring. Female pregnant Wistar rats received randomly a standard diet or a high-fat diet during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitonially injected with LPS (0.1 mg.kg-1). After weaning, the male offspring (n = 96) were placed in individual boxes in standard conditions, and when 6 weeks-old, the animals underwent: Open-Field, Light/Dark Box, Elevated Plus-Maze, and Rotarod tests. When 50 days-old the offspring were euthanized and the amygdala removed for cytokine and redox status analysis. The offspring in the HFD group showed lower amygdala IL-10 levels, high IL-6/IL-10 ratio, and anxiety-like behaviors. These effects were attenuated in the HFD offspring submitted to LPS tolerance, which showed an anti-inflammatory compensatory response in the amygdala. Also, this group showed a higher activity of the enzyme catalase in the amygdala. In addition, receiving the combination of LPS tolerance and maternal HFD did not lead to anxiety-like behavior in the offspring. The results suggest that LPS tolerance attenuated amygdala inflammation through an anti-inflammatory compensatory response besides preventing anxiety-like behavior caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Faculdade de Medicina do Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais, Diamantina, MG, Brazil.
| |
Collapse
|
18
|
Mizera J, Kazek G, Niedzielska-Andres E, Pomierny-Chamiolo L. Maternal high-sugar diet results in NMDA receptors abnormalities and cognitive impairment in rat offspring. FASEB J 2021; 35:e21547. [PMID: 33855764 DOI: 10.1096/fj.202002691r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Cognitive impairment affects patients suffering from various neuropsychiatric diseases, which are often accompanied by changes in the glutamatergic system. Epidemiological studies indicate that predispositions to the development of neuropsychiatric diseases may be programmed prenatally. Mother's improper diet during pregnancy and lactation may cause fetal abnormalities and, consequently, predispose to diseases in childhood and even adulthood. Considering the prevalence of obesity in developed countries, it seems important to examine the effects of diet on the behavior and physiology of future generations. We hypothesized that exposure to sugar excess in a maternal diet during pregnancy and lactation would affect memory as the NMDA receptor-related processes. Through the manipulation of the sugar amount in the maternal diet in rats, we assessed its effect on offspring's memory. Then, we evaluated if memory alterations were paralleled by molecular changes in NMDA receptors and related modulatory pathways in the prefrontal cortex and the hippocampus of adolescent and young adult female and male offspring. Behavioral studies have shown sex-related changes like impaired recognition memory in adolescent males and spatial memory in females. Molecular results confirmed an NMDA receptor hypofunction along with subunit composition abnormalities in the medial prefrontal cortex of adolescent offspring. In young adults, GluN2A-containing receptors were dominant in the medial prefrontal cortex, while in the hippocampus the GluN2B subunit contribution was elevated. In conclusion, we demonstrated that a maternal high-sugar diet can affect the memory processes in the offspring by disrupting the NMDA receptor composition and regulation in the medial prefrontal cortex and the hippocampus.
Collapse
Affiliation(s)
- Jozef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | | | | |
Collapse
|
19
|
Ortiz-Valladares M, Pedraza-Medina R, Pinto-González MF, Muñiz JG, Gonzalez-Perez O, Moy-López NA. Neurobiological approaches of high-fat diet intake in early development and their impact on mood disorders in adulthood: A systematic review. Neurosci Biobehav Rev 2021; 129:218-230. [PMID: 34324919 DOI: 10.1016/j.neubiorev.2021.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
The early stage of development is a vulnerable period for progeny neurodevelopment, altering cytogenetic and correct cerebral functionality. The exposure High-Fat Diet (HFD) is a factor that impacts the future mental health of individuals. This review analyzes possible mechanisms involved in the development of mood disorders in adulthood because of maternal HFD intake during gestation and lactation, considering previously reported findings in the last five years, both in humans and animal models. Maternal HFD could induce alterations in mood regulation, reported as increased stress response, anxiety-like behavior, and depressive-like behavior. These changes were mostly related to HPA axis dysregulations and neuroinflammatory responses. In conclusion, there could be a relationship between HFD consumption during the early stages of life and the development of psychopathologies during adulthood. These findings provide guidelines for the understanding of possible mechanisms involved in mood disorders, however, there is still a need for more human clinical studies that provide evidence to improve the understanding of maternal nutrition and future mental health outcomes in the offspring.
Collapse
Affiliation(s)
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima, Mexico
| | | | - Jorge Guzmán Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | | |
Collapse
|
20
|
Huerta-Cervantes M, Peña-Montes DJ, López-Vázquez MÁ, Montoya-Pérez R, Cortés-Rojo C, Olvera-Cortés ME, Saavedra-Molina A. Effects of Gestational Diabetes in Cognitive Behavior, Oxidative Stress and Metabolism on the Second-Generation Off-Spring of Rats. Nutrients 2021; 13:nu13051575. [PMID: 34066827 PMCID: PMC8150291 DOI: 10.3390/nu13051575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Gestational diabetes (GD) has a negative impact on neurodevelopment, resulting in cognitive and neurological deficiencies. Oxidative stress (OS) has been reported in the brain of the first-generation offspring of GD rats. OS has been strongly associated with neurodegenerative diseases. In this work, we determined the effect of GD on the cognitive behavior, oxidative stress and metabolism of second-generation offspring. GD was induced with streptozotocin (STZ) in pregnant rats to obtain first-generation offspring (F1), next female F1 rats were mated with control males to obtain second-generation offspring (F2). Two and six-month-old F2 males and females were employed. Anxious-type behavior, spatial learning and spatial working memory were evaluated. In cerebral cortex and hippocampus, the oxidative stress and serum biochemical parameters were measured. Male F2 GD offspring presented the highest level of anxiety-type behavior, whilst females had the lowest level of anxiety-type behavior at juvenile age. In short-term memory, adult females presented deficiencies. The offspring F2 GD females presented modifications in oxidative stress biomarkers in the cerebral cortex as lipid-peroxidation, oxidized glutathione and catalase activity. We also observed metabolic disturbances, particularly in the lipid and insulin levels of male and female F2 GD offspring. Our results suggest a transgenerational effect of GD on metabolism, anxiety-like behavior, and spatial working memory.
Collapse
Affiliation(s)
- Maribel Huerta-Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Miguel Ángel López-Vázquez
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, Mexico;
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - María Esther Olvera-Cortés
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, Mexico;
- Correspondence: (M.E.O.-C.); (A.S.-M.); Tel.: +52-443-322-2600 (M.E.O.-C.); +52-443-326-5790 (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
- Correspondence: (M.E.O.-C.); (A.S.-M.); Tel.: +52-443-322-2600 (M.E.O.-C.); +52-443-326-5790 (A.S.-M.)
| |
Collapse
|
21
|
The impact of maternal obesity on childhood neurodevelopment. J Perinatol 2021; 41:928-939. [PMID: 33249428 DOI: 10.1038/s41372-020-00871-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
There is growing clinical and experimental evidence to suggest that maternal obesity increases children's susceptibility to neurodevelopmental and neuropsychiatric disorders. Given the worldwide obesity epidemic, it is crucial that we acquire a thorough understanding of the available evidence, identify gaps in knowledge, and develop an agenda for intervention. This review synthesizes human and animal studies investigating the association between maternal obesity and offspring brain health. It also highlights key mechanisms underlying these effects, including maternal and fetal inflammation, alterations to the microbiome, epigenetic modifications of neurotrophic genes, and impaired dopaminergic and serotonergic signaling. Lastly, this review highlights several proposed interventions and priorities for future investigation.
Collapse
|
22
|
Norr ME, Hect JL, Lenniger CJ, Van den Heuvel M, Thomason ME. An examination of maternal prenatal BMI and human fetal brain development. J Child Psychol Psychiatry 2021; 62:458-469. [PMID: 32779186 PMCID: PMC7875456 DOI: 10.1111/jcpp.13301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prenatal development is a time when the brain is acutely vulnerable to insult and alteration by environmental factors (e.g., toxins, maternal health). One important risk factor is maternal obesity (Body Mass Index > 30). Recent research indicates that high maternal BMI during pregnancy is associated with increased risk for numerous physical health, cognitive, and mental health problems in offspring across the lifespan. It is possible that heightened maternal prenatal BMI influences the developing brain even before birth. METHODS The present study examines this possibility at the level of macrocircuitry in the human fetal brain. Using a data-driven strategy for parcellating the brain into subnetworks, we test whether MRI functional connectivity within or between fetal neural subnetworks varies with maternal prenatal BMI in 109 fetuses between the ages of 26 and 39weeks. RESULTS We discovered that strength of connectivity between two subnetworks, left anterior insula/inferior frontal gyrus (aIN/IFG) and bilateral prefrontal cortex (PFC), varied with maternal BMI. At the level of individual aIN/IFG-PFC connections, we observed both increased and decreased between-network connectivity with a tendency for increased within-hemisphere connectivity and reduced cross-hemisphere connectivity in higher BMI pregnancies. Maternal BMI was not associated with global differences in network topography based on network-based statistical analyses. CONCLUSIONS Overall effects were localized in regions that will later support behavioral regulation and integrative processes, regions commonly associated with obesity-related deficits. By establishing onset in neural differences prior to birth, this study supports a model in which maternal BMI-related risk is associated with fetal connectome-level brain organization with implications for offspring long-term cognitive development and mental health.
Collapse
Affiliation(s)
- Megan E. Norr
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
| | - Jasmine L. Hect
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Carly J. Lenniger
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Martijn Van den Heuvel
- Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Moriah E. Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
- Department of Population Health, New York Medical Center, New York University, New York, NY, USA
- Neuroscience Institute, New York Medical Center, New York University, New York, NY, USA
| |
Collapse
|
23
|
Kelty TJ, Brown JD, Kerr NR, Roberts MD, Childs TE, Cabrera OH, Manzella FM, Miller DK, Taylor GT, Booth FW. RNA-sequencing and behavioral testing reveals inherited physical inactivity co-selects for anxiogenic behavior without altering depressive-like behavior in Wistar rats. Neurosci Lett 2021; 753:135854. [PMID: 33785378 DOI: 10.1016/j.neulet.2021.135854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/15/2022]
Abstract
Physical inactivity is positively associated with anxiety and depression. Considering physical inactivity, anxiety, and depression each have a genetic basis for inheritance, our lab used artificial selectively bred low-voluntary running (LVR) and wild type (WT) female Wistar rats to test if physical inactivity genes selected over multiple generations would lead to an anxiety or depressive-like phenotype. We performed next generation RNA sequencing and immunoblotting on the dentate gyrus to reveal key biological functions from heritable physical inactivity. LVR rats did not display depressive-like behavior. However, LVR rats did display anxiogenic behavior with gene networks associated with reduced neuronal development, proliferation, and function compared to WT counterparts. Additionally, immunoblotting revealed LVR deficits in neuronal development and function. To our knowledge, this is the first study to show that by selectively breeding for physical inactivity genes, anxiety-like genes were co-selected. The study also reveals molecular insights to the genetic influences that physical inactivity has on anxiety-like behavior.
Collapse
Affiliation(s)
- Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Jacob D Brown
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael D Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tom E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Omar H Cabrera
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63110, USA
| | - Francesca M Manzella
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63110, USA
| | - Dennis K Miller
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - George T Taylor
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63110, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Yin W, Liang Y, Sun L, Yin Y, Zhang W. Maternal intermittent fasting before mating alters hepatic DNA methylation in offspring. Epigenomics 2021; 13:341-356. [PMID: 33504196 DOI: 10.2217/epi-2020-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Our aim was to explore how maternal intermittent fasting (IF) influences offspring metabolism. Materials & methods: A model of female C57BL/6J mice alternate-day feeding before mating was established and alteration of hepatic DNA methylation in offspring analyzed by whole genome bisulfite sequencing. Results: IF dams weighed less (p = 0.03) and had lower random blood glucose levels (p = 0.04). Lower birth weight (p = 0.0031) and impaired glucose metabolism were also observed in the offspring of the IF mice. The hepatic genome-wide DNA methylation maps showed a correlation between maternal IF and decreased hepatic global DNA methylation of adult offspring. In the offspring liver, 2869 differentially methylated DNA regions were altered. Conclusions: Our finding suggests that maternal IF before mating significantly alters hepatic DNA methylation in offspring.
Collapse
Affiliation(s)
- Wenzhen Yin
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yuan Liang
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lijun Sun
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
25
|
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Front Neurosci 2021; 15:632312. [PMID: 33642988 PMCID: PMC7902933 DOI: 10.3389/fnins.2021.632312] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Kasherman MA, Currey L, Kurniawan ND, Zalucki O, Vega MS, Jolly LA, Burne THJ, Wood SA, Piper M. Abnormal Behavior and Cortical Connectivity Deficits in Mice Lacking Usp9x. Cereb Cortex 2021; 31:1763-1775. [PMID: 33188399 DOI: 10.1093/cercor/bhaa324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic association studies have identified many factors associated with neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the way these genes shape neuroanatomical structure and connectivity is poorly understood. Recent research has focused on proteins that act as points of convergence for multiple factors, as these may provide greater insight into understanding the biology of neurodevelopmental disorders. USP9X, a deubiquitylating enzyme that regulates the stability of many ASD-related proteins, is one such point of convergence. Loss of function variants in human USP9X lead to brain malformations, which manifest as a neurodevelopmental syndrome that frequently includes ASD, but the underlying structural and connectomic abnormalities giving rise to patient symptoms is unknown. Here, we analyzed forebrain-specific Usp9x knockout mice (Usp9x-/y) to address this knowledge gap. Usp9x-/y mice displayed abnormal communication and social interaction behaviors. Moreover, the absence of Usp9x culminated in reductions to the size of multiple brain regions. Diffusion tensor magnetic resonance imaging revealed deficits in all three major forebrain commissures, as well as long-range hypoconnectivity between cortical and subcortical regions. These data identify USP9X as a key regulator of brain formation and function, and provide insights into the neurodevelopmental syndrome arising as a consequence of USP9X mutations in patients.
Collapse
Affiliation(s)
- Maria A Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Laura Currey
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Oressia Zalucki
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | - Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide 5005, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Brisbane 4076, Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
27
|
Mechanisms Underlying the Cognitive and Behavioural Effects of Maternal Obesity. Nutrients 2021; 13:nu13010240. [PMID: 33467657 PMCID: PMC7829712 DOI: 10.3390/nu13010240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread consumption of 'western'-style diets along with sedentary lifestyles has led to a global epidemic of obesity. Epidemiological, clinical and preclinical evidence suggests that maternal obesity, overnutrition and unhealthy dietary patterns programs have lasting adverse effects on the physical and mental health of offspring. We review currently available preclinical and clinical evidence and summarise possible underlying neurobiological mechanisms by which maternal overnutrition may perturb offspring cognitive function, affective state and psychosocial behaviour, with a focus on (1) neuroinflammation; (2) disrupted neuronal circuities and connectivity; and (3) dysregulated brain hormones. We briefly summarise research implicating the gut microbiota in maternal obesity-induced changes to offspring behaviour. In animal models, maternal obesogenic diet consumption disrupts CNS homeostasis in offspring, which is critical for healthy neurodevelopment, by altering hypothalamic and hippocampal development and recruitment of glial cells, which subsequently dysregulates dopaminergic and serotonergic systems. The adverse effects of maternal obesogenic diets are also conferred through changes to hormones including leptin, insulin and oxytocin which interact with these brain regions and neuronal circuits. Furthermore, accumulating evidence suggests that the gut microbiome may directly and indirectly contribute to these maternal diet effects in both human and animal studies. As the specific pathways shaping abnormal behaviour in offspring in the context of maternal obesogenic diet exposure remain unknown, further investigations are needed to address this knowledge gap. Use of animal models permits investigation of changes in neuroinflammation, neurotransmitter activity and hormones across global brain network and sex differences, which could be directly and indirectly modulated by the gut microbiome.
Collapse
|
28
|
McEwan A, Erickson JC, Davidson C, Heijkoop J, Turnbull Y, Delibegovic M, Murgatroyd C, MacKenzie A. The anxiety and ethanol intake controlling GAL5.1 enhancer is epigenetically modulated by, and controls preference for, high-fat diet. Cell Mol Life Sci 2020; 78:3045-3055. [PMID: 33313982 PMCID: PMC8004485 DOI: 10.1007/s00018-020-03705-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Excess maternal fat intake and obesity increase offspring susceptibility to conditions such as chronic anxiety and substance abuse. We hypothesised that environmentally modulated DNA methylation changes (5mC/5hmC) in regulatory regions of the genome that modulate mood and consumptive behaviours could contribute to susceptibility to these conditions. We explored the effects of environmental factors on 5mC/5hmC levels within the GAL5.1 enhancer that controls anxiety-related behaviours and alcohol intake. We first observed that 5mC/5hmC levels within the GAL5.1 enhancer differed significantly in different parts of the brain. Moreover, we noted that early life stress had no significant effect of 5mC/5hmC levels within GAL5.1. In contrast, we identified that allowing access of pregnant mothers to high-fat diet (> 60% calories from fat) had a significant effect on 5mC/5hmC levels within GAL5.1 in hypothalamus and amygdala of resulting male offspring. Cell transfection-based studies using GAL5.1 reporter plasmids showed that 5mC has a significant repressive effect on GAL5.1 activity and its response to known stimuli, such as EGR1 transcription factor expression and PKC agonism. Intriguingly, CRISPR-driven disruption of GAL5.1 from the mouse genome, although having negligible effects on metabolism or general appetite, significantly decreased intake of high-fat diet suggesting that GAL5.1, in addition to being epigenetically modulated by high-fat diet, also actively contributes to the consumption of high-fat diet suggesting its involvement in an environmentally influenced regulatory loop. Furthermore, considering that GAL5.1 also controls alcohol preference and anxiety these studies may provide a first glimpse into an epigenetically controlled mechanism that links maternal high-fat diet with transgenerational susceptibility to alcohol abuse and anxiety.
Collapse
Affiliation(s)
- Andrew McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Johanna Celene Erickson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Connor Davidson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Jenny Heijkoop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Yvonne Turnbull
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Mirela Delibegovic
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
29
|
Penna E, Pizzella A, Cimmino F, Trinchese G, Cavaliere G, Catapano A, Allocca I, Chun JT, Campanozzi A, Messina G, Precenzano F, Lanzara V, Messina A, Monda V, Monda M, Perrone-Capano C, Mollica MP, Crispino M. Neurodevelopmental Disorders: Effect of High-Fat Diet on Synaptic Plasticity and Mitochondrial Functions. Brain Sci 2020; 10:brainsci10110805. [PMID: 33142719 PMCID: PMC7694125 DOI: 10.3390/brainsci10110805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) include diverse neuropathologies characterized by abnormal brain development leading to impaired cognition, communication and social skills. A common feature of NDDs is defective synaptic plasticity, but the underlying molecular mechanisms are only partially known. Several studies have indicated that people’s lifestyles such as diet pattern and physical exercise have significant influence on synaptic plasticity of the brain. Indeed, it has been reported that a high-fat diet (HFD, with 30–50% fat content), which leads to systemic low-grade inflammation, has also a detrimental effect on synaptic efficiency. Interestingly, metabolic alterations associated with obesity in pregnant woman may represent a risk factor for NDDs in the offspring. In this review, we have discussed the potential molecular mechanisms linking the HFD-induced metabolic dysfunctions to altered synaptic plasticity underlying NDDs, with a special emphasis on the roles played by synaptic protein synthesis and mitochondrial functions.
Collapse
Affiliation(s)
- Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Ivana Allocca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Angelo Campanozzi
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Valentina Lanzara
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Vincenzo Monda
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Correspondence: ; Tel.: +39-081-679990; Fax: +39-081-679233
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| |
Collapse
|
30
|
Soltani H, Sadat-Shirazi MS, Pakpour B, Ashabi G, Zarrindast MR. Toxic effect of calcium/calmodulin kinase II on anxiety behavior, neuronal firing and plasticity in the male offspring of morphine-abstinent rats. Behav Brain Res 2020; 395:112877. [PMID: 32841609 DOI: 10.1016/j.bbr.2020.112877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Studies have shown that epigenetic changes such as alteration in histone acetylation and DNA methylation in various brain regions play an essential role in anxiety behavior. According to the critical role of calcium/calmodulin protein kinaseII (CaMKII) in these processes, the present study examined the effect of CaMKII inhibitor (KN93) on neuronal activity and level of c-fos in the amygdala and nucleus accumbens (NAC) in the offspring of morphine-exposed parents. Adult male and female Wistar rats received morphine orally (for 21 days). After the washout period (10 days), rats were mated with either drug-naïve or morphine-exposed rats. KN93 was microinjected into the brain of male offspring. The anxiety-like behavior, the neuronal firing rate in the NAC and the amygdala and level of c-fos were assessed by related techniques. Data showed the offspring with one and/or two morphine-abstinent parent(s) had more anxiety-like behavior than the control group. However, the administration of KN-93 decreased anxiety in the offspring of morphine-exposed rats compared with saline-treated groups. The expression level of the c-fos was not significantly altered by the inhibition of CaMKII in the amygdala, but the c-fos level was reduced in the NAC. The neuronal firing rate of these groups was associated with an increase in the amygdala in comparison to the saline groups but was decreased in the NAC. Results showed that CaMKII had a role in anxiety-like behavior in the offspring of morphine-exposed parents, and changes in neuronal firing rate and c-fos level in the NAC might be involved in this process.
Collapse
Affiliation(s)
- Haniyeh Soltani
- Department of Biology, Faculty of Basic Science, University of Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Pakpour
- Department of Biology, Faculty of Basic Science, University of Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Pharmacology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
31
|
Glendining KA, Higgins MBA, Fisher LC, Jasoni CL. Maternal obesity modulates sexually dimorphic epigenetic regulation and expression of leptin receptor in offspring hippocampus. Brain Behav Immun 2020; 88:151-160. [PMID: 32173454 DOI: 10.1016/j.bbi.2020.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity during pregnancy is associated with a greater risk for obesity and neurodevelopmental deficits in offspring. This developmental programming of disease is proposed to involve neuroendocrine, inflammatory, and epigenetic factors during gestation that disrupt normal fetal brain development. The hormones leptin and insulin are each intrinsically linked to metabolism, inflammation, and neurodevelopment, which led us to hypothesise that maternal obesity may disrupt leptin or insulin receptor signalling in the developing brain of offspring. Using a C57BL/6 mouse model of high fat diet-induced maternal obesity (mHFD), we performed qPCR to examine leptin receptor (Lepr) and insulin receptor (Insr) gene expression in gestational day (GD) 17.5 fetal brain. We found a significant effect of maternal diet and offspring sex on Lepr regulation in the developing hippocampus, with increased Lepr expression in female mHFD offspring (p < 0.05) compared to controls. Maternal diet did not alter hippocampal Insr in the fetal brain, or Lepr or Insr in prefrontal cortex, amygdala, or hypothalamus of female or male offspring. Chromatin immunoprecipitation revealed decreased binding of histones possessing the repressive histone mark H3K9me3 at the Lepr promoter (p < 0.05) in hippocampus of female mHFD offspring compared to controls, but not in males. Sex-specific deregulation of Lepr could be reproduced in vitro by exposing female hippocampal neurons to the obesity related proinflammatory cytokine IL-6, but not IL-17a or IFNG. Our findings indicate that the obesity-related proinflammatory cytokine IL-6 during pregnancy leads to sexually dimorphic changes in the modifications of histones binding at the Lepr gene promoter, and concomitant changes to Lepr transcription in the developing hippocampus. This suggests that exposure of the fetus to metabolic inflammatory molecules can impact epigenetic regulation of gene expression in the developing hippocampus.
Collapse
Affiliation(s)
- K A Glendining
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - M B A Higgins
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - L C Fisher
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - C L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
32
|
Ghanemi A, Melouane A, Yoshioka M, St-Amand J. Exercise and High-Fat Diet in Obesity: Functional Genomics Perspectives of Two Energy Homeostasis Pillars. Genes (Basel) 2020; 11:genes11080875. [PMID: 32752100 PMCID: PMC7463441 DOI: 10.3390/genes11080875] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
The heavy impact of obesity on both the population general health and the economy makes clarifying the underlying mechanisms, identifying pharmacological targets, and developing efficient therapies for obesity of high importance. The main struggle facing obesity research is that the underlying mechanistic pathways are yet to be fully revealed. This limits both our understanding of pathogenesis and therapeutic progress toward treating the obesity epidemic. The current anti-obesity approaches are mainly a controlled diet and exercise which could have limitations. For instance, the “classical” anti-obesity approach of exercise might not be practical for patients suffering from disabilities that prevent them from routine exercise. Therefore, therapeutic alternatives are urgently required. Within this context, pharmacological agents could be relatively efficient in association to an adequate diet that remains the most efficient approach in such situation. Herein, we put a spotlight on potential therapeutic targets for obesity identified following differential genes expression-based studies aiming to find genes that are differentially expressed under diverse conditions depending on physical activity and diet (mainly high-fat), two key factors influencing obesity development and prognosis. Such functional genomics approaches contribute to elucidate the molecular mechanisms that both control obesity development and switch the genetic, biochemical, and metabolic pathways toward a specific energy balance phenotype. It is important to clarify that by “gene-related pathways”, we refer to genes, the corresponding proteins and their potential receptors, the enzymes and molecules within both the cells in the intercellular space, that are related to the activation, the regulation, or the inactivation of the gene or its corresponding protein or pathways. We believe that this emerging area of functional genomics-related exploration will not only lead to novel mechanisms but also new applications and implications along with a new generation of treatments for obesity and the related metabolic disorders especially with the modern advances in pharmacological drug targeting and functional genomics techniques.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Aicha Melouane
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-418-654-2296; Fax: +1-418-654-2761
| |
Collapse
|
33
|
Rivera P, Tovar R, Ramírez-López MT, Navarro JA, Vargas A, Suárez J, de Fonseca FR. Sex-Specific Anxiety and Prefrontal Cortex Glutamatergic Dysregulation Are Long-Term Consequences of Pre-and Postnatal Exposure to Hypercaloric Diet in a Rat Model. Nutrients 2020; 12:nu12061829. [PMID: 32575416 PMCID: PMC7353464 DOI: 10.3390/nu12061829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Both maternal and early life malnutrition can cause long-term behavioral changes in the offspring, which depends on the caloric availability and the timing of the exposure. Here we investigated in a rat model whether a high-caloric palatable diet given to the mother and/or to the offspring during the perinatal and/or postnatal period might dysregulate emotional behavior and prefrontal cortex function in the offspring at adult age. To this end, we examined both anxiety responses and the mRNA/protein expression of glutamatergic, GABAergic and endocannabinoid signaling pathways in the prefrontal cortex of adult offspring. Male animals born from mothers fed the palatable diet, and who continued with this diet after weaning, exhibited anxiety associated with an overexpression of the mRNA of Grin1, Gria1 and Grm5 glutamate receptors in the prefrontal cortex. In addition, these animals had a reduced expression of the endocannabinoid system, the main inhibitory retrograde input to glutamate synapses, reflected in a decrease of the Cnr1 receptor and the Nape-pld enzyme. In conclusion, a hypercaloric maternal diet induces sex-dependent anxiety, associated with alterations in both glutamatergic and cannabinoid signaling in the prefrontal cortex, which are accentuated with the continuation of the palatable diet during the life of the offspring.
Collapse
Affiliation(s)
- Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
- Correspondence: (P.R.); (F.R.d.F.); Tel.: +34-952-614-012 (P.R. & F.R.d.F.)
| | - Rubén Tovar
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
| | - María Teresa Ramírez-López
- Hospital Universitario de Getafe, Servicio de Ginecología y Obstetricia, 28905 Getafe, Spain;
- Departamento de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
| | - Antonio Vargas
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
- Correspondence: (P.R.); (F.R.d.F.); Tel.: +34-952-614-012 (P.R. & F.R.d.F.)
| |
Collapse
|
34
|
Gawlińska K, Gawliński D, Filip M, Przegaliński E. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr Rev 2020; 79:709-725. [PMID: 32447401 DOI: 10.1093/nutrit/nuaa020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A balanced maternal diet is essential for proper fetal development, and the consumption of a nutritionally inadequate diet during intrauterine development and early childhood is associated with a significantly increased risk of metabolic and brain disorders in offspring. The current literature indicates that maternal exposure to a high-fat diet exerts an irreversible influence on the general health of the offspring. This review of preclinical research examines the relationship between a maternal high-fat diet during pregnancy or lactation and metabolic changes, molecular alterations in the brain, and behavioral disorders in offspring. Animal models indicate that offspring exposed to a maternal high-fat diet during pregnancy and lactation manifest increased depressive-like and aggressive behaviors, reduced cognitive development, and symptoms of metabolic syndrome. Recently, epigenetic and molecular studies have shown that maternal nutrition during pregnancy and the suckling period modifies the development of neurotransmitter circuits and many other factors important to central nervous system development. This finding confirms the importance of a balanced maternal diet for the health of offspring.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
35
|
Repercussions of maternal exposure to high-fat diet on offspring feeding behavior and body composition: a systematic review. J Dev Orig Health Dis 2020; 12:220-228. [DOI: 10.1017/s2040174420000318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractMaternal nutrition is an environmental determinant for offspring growth and development, especially in critical periods. Nutritional imbalances during these phases can promote dysregulations in food intake and feeding preference in offspring, affecting body composition. The aim of this review is to summarize and discuss the effects of maternal high-fat diet (HFD) on offspring feeding behavior and body composition. A search was performed in the PUBMED, SCOPUS, Web of Science, and LILACS databases. Inclusion criteria were studies in rodents whose mothers were submitted to HFD that assessed outcomes of food or caloric intake on offspring and food preference associated or not with body weight or body composition analysis. At the end of the search, 17 articles with the proposed characteristics were included. In these studies, 15 articles manipulated diet during pregnancy and lactation, 1 during pregnancy only, and 1 during lactation only. Maternal exposure to a HFD leads to increased food intake, increased preference for HFDs, and earlier food independence in offspring. The offspring from HFD mothers present low birthweight but become heavier into adulthood. In addition, these animals also exhibited greater fat deposition on white adipose tissue pads. In conclusion, maternal exposure to HFD may compromise parameters in feeding behavior and body composition of offspring, impairing the health from conception until adulthood.
Collapse
|
36
|
Glendining KA, Fisher LC, Jasoni CL. Maternal Obesity Modulates Expression of Satb2 in Hypothalamic VMN of Female Offspring. Life (Basel) 2020; 10:life10040048. [PMID: 32344561 PMCID: PMC7235991 DOI: 10.3390/life10040048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Maternal obesity during pregnancy is associated with a greater risk of poor health outcomes in offspring, including obesity, metabolic disorders, and anxiety, however the incidence of these diseases differs for males and females. Similarly, animal models of maternal obesity have reported sex differences in offspring, for both metabolic outcomes and anxiety-like behaviors. The ventromedial nucleus of the hypothalamus (VMN) is a brain region known to be involved in the regulation of both metabolism and anxiety, and is well documented to be sexually dimorphic. As the VMN is largely composed of glutamatergic neurons, which are important for its functions in modulating metabolism and anxiety, we hypothesized that maternal obesity may alter the number of glutamatergic neurons in the offspring VMN. We used a mouse model of a maternal high-fat diet (mHFD), to examine mRNA expression of the glutamatergic neuronal marker Satb2 in the mediobasal hypothalamus of control and mHFD offspring at GD17.5. We found sex differences in Satb2 expression, with mHFD-induced upregulation of Satb2 mRNA in the mediobasal hypothalamus of female offspring, compared to controls, but not males. Using immunohistochemistry, we found an increase in the number of SATB2-positive cells in female mHFD offspring VMN, compared to controls, which was localized to the rostral region of the nucleus. These data provide evidence that maternal nutrition during gestation alters the developing VMN, possibly increasing its glutamatergic drive of offspring in a sex-specific manner, which may contribute to sexual dimorphism in offspring health outcomes later in life.
Collapse
|
37
|
Blossom SJ, Melnyk SB, Simmen FA. Complex epigenetic patterns in cerebellum generated after developmental exposure to trichloroethylene and/or high fat diet in autoimmune-prone mice. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:583-594. [PMID: 31894794 PMCID: PMC7350281 DOI: 10.1039/c9em00514e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is an environmental contaminant associated with immune-mediated inflammatory disorders and neurotoxicity. Based on known negative effects of developmental overnutrition on neurodevelopment, we hypothesized that developmental exposure to high fat diet (HFD) consisting of 40% kcal fat would enhance neurotoxicity of low-level (6 μg per kg per day) TCE exposure in offspring over either stressor alone. Male offspring were evaluated at ∼6 weeks of age after exposure beginning 4 weeks preconception in the dams until weaning. TCE, whether used as a single exposure or together with HFD, appeared to be more robust than HFD alone in altering one-carbon metabolites involved in glutathione redox homeostasis and methylation capacity. In contrast, opposing effects of expression of key enzymes related to DNA methylation related to HFD and TCE exposure were observed. The mice generated unique patterns of anti-brain antibodies detected by western blotting attributable to both TCE and HFD. Taken together, developmental exposure to TCE and/or HFD appear to act in complex ways to alter brain biomarkers in offspring.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| | | | | |
Collapse
|
38
|
Smith BL, Laaker CJ, Lloyd KR, Hiltz AR, Reyes TM. Adolescent microglia play a role in executive function in male mice exposed to perinatal high fat diet. Brain Behav Immun 2020; 84:80-89. [PMID: 31765789 PMCID: PMC8634520 DOI: 10.1016/j.bbi.2019.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/09/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022] Open
Abstract
In humans, excessive gestational weight gain during pregnancy is associated with an increased risk for executive function deficits in the offspring. Our previous work has confirmed this finding in mice, as offspring from dams fed a 60% high fat (HF) diet during breeding, gestation, and lactation demonstrate impulsive-like behavior in the 5 choice serial reaction time task (5CSRTT). Because the prefrontal cortex (PFC), which plays a key role in executive function, undergoes substantial postnatal adolescent pruning and microglia are actively involved in synaptic refinement, we hypothesized that microglia may play a role in mediating changes in brain development after maternal HF diet, with a specific focus on microglial activity during adolescence. Therefore, we treated male and female offspring from HF or control diet (CD) dams with PLX3397-formulated diet (PLX) to ablate microglia during postnatal days 23-45. After PLX removal and microglial repopulation, adult mice underwent testing to evaluate executive function. Adolescent PLX treatment did increase the control male dropout rate in learning the basic FR1 task, but otherwise had a minimal effect on behavior in control offspring. In males, HF offspring learned faster and performed better on a simple operant task (fixed ratio 1) without an effect of PLX. However, in HF offspring this increase in FR1 responding was associated with more impulsive errors in the 5CSRTT while PLX eliminated this association and decreased impulsive errors specifically in HF offspring. This suggests that adolescent PLX treatment improves executive function and particularly impulsive behavior in adult male HF offspring, without an overall effect of perinatal diet. In females, maternal HF diet impaired reversal learning but PLX had no effect on performance. We then measured gene expression in adult male PFC, nucleus accumbens (NAC), and amygdala (AMG), examining targets related to synaptic function, reward, and inflammation. Maternal HF diet increased PFC synaptophysin and AMG psd95 expression. PFC synaptophysin expression was correlated with more impulsive errors in the 5CSRTT in the HF offspring only and PLX treatment eliminated this correlation. These data suggest that adolescent microglia may play a critical role in mediating executive function after perinatal high fat diet in males.
Collapse
Affiliation(s)
- Brittany L Smith
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Collin J Laaker
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Kelsey R Lloyd
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Adam R Hiltz
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Teresa M Reyes
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
39
|
Shaw JC, Crombie GK, Zakar T, Palliser HK, Hirst JJ. Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol 2020; 32:e12814. [PMID: 31758712 DOI: 10.1111/jne.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
Abstract
Extensive evidence now shows that adversity during the perinatal period is a significant risk factor for the development of neurodevelopmental disorders long after the causative event. Despite stemming from a variety of causes, perinatal compromise appears to have similar effects on the developing brain, thereby resulting in behavioural disorders of a similar nature. These behavioural disorders occur in a sex-dependent manner, with males affected more by externalising behaviours such as attention deficit hyperactivity disorder (ADHD) and females by internalising behaviours such as anxiety. Regardless of the causative event or the sex of the offspring, these disorders may begin in childhood or adolescence but extend into adulthood. A mechanism by which adverse events in the perinatal period impact later in life behaviour has been shown to be the changing epigenetic landscape. Methylation of the GAD1/GAD67 gene, which encodes the key glutamate-to-GABA-synthesising enzyme glutamate decarboxylase 1, resulting in increased levels of glutamate, is one epigenetic mechanism that may account for a tendency towards excitation in disorders such as ADHD. Exposure of the fetus or the neonate to high levels of cortisol may be the mediator between perinatal compromise and poor behavioural outcomes because evidence suggests that increased glucocorticoid exposure triggers widespread changes in the epigenetic landscape. This review summarises the current evidence and recent literature about the impact of various perinatal insults on the epigenome and the common mechanisms that may explain the similarity of behavioural outcomes occurring following diverse perinatal compromise.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
40
|
Epigenetic Dysregulation of Dopaminergic System by Maternal Cafeteria Diet During Early Postnatal Development. Neuroscience 2020; 424:12-23. [DOI: 10.1016/j.neuroscience.2019.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
|
41
|
Gabriel MO, Nikou M, Akinola OB, Pollak DD, Sideromenos S. Western diet-induced fear memory impairment is attenuated by 6-shogaol in C57BL/6N mice. Behav Brain Res 2019; 380:112419. [PMID: 31816337 DOI: 10.1016/j.bbr.2019.112419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023]
Abstract
Dementia is a progressive cognitive diminution impeding with normal daily activities that is constantly on the increase. Currently, the estimated prevalence is 50 million affected people worldwide, a figure expected to triple within the next 30 years. While the pathophysiology of the different types of dementia is complex, likely involving the interplay between multiple genetic and environmental factors, strong evidence points towards an important link between diet and cognitive health. Here we examined the consequences of high-fat, high-sugar Western diet (HFSD)-induced obesity on cognitive performance in the fear conditioning task in mice and explored a possible beneficial effect of 6-shogaol (6S), an active constituent of ginger, in this model. Chronic exposure to HFSD significantly enhanced body weight gain in C57BL/6N mice and this effect was prevented by treatment with 6S. HFSD + vehicle-treated mice presented with a selective deficit in cued fear memory, which was not observed in HFSD + 6S-treated animals. The findings of this study provide first evidence for a beneficial effect of 6S on HFSD-induced obesity and emotional memory deficit in mice.
Collapse
Affiliation(s)
- Michael O Gabriel
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Edo University Iyamho, Edo State, Nigeria; Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Maria Nikou
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Oluwole B Akinola
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Spyridon Sideromenos
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
42
|
Noronha SSR, Lima PM, Campos GSV, Chírico MTT, Abreu AR, Figueiredo AB, Silva FCS, Chianca DA, Lowry CA, De Menezes RCA. Association of high-fat diet with neuroinflammation, anxiety-like defensive behavioral responses, and altered thermoregulatory responses in male rats. Brain Behav Immun 2019; 80:500-511. [PMID: 31022457 DOI: 10.1016/j.bbi.2019.04.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022] Open
Abstract
Overweight and obesity are a worldwide pandemic affecting billions of people. These conditions have been associated with a chronic low-grade inflammatory state that is recognized as a risk factor for a range of somatic diseases as well as neurodevelopmental disorders, anxiety disorders, trauma- and stressor-related disorders, and affective disorders. We previously reported that the ingestion of a high-fat diet (HFD; 45% fat kcal/g) for nine weeks was capable of inducing obesity in rats in association with increased reactivity to stress and increased anxiety-related defensive behavior. In this study, we conducted a nine-week diet protocol to induce obesity in rats, followed by investigation of anxiety-related defensive behavioral responses using the elevated T-maze (ETM), numbers of FOS-immunoreactive cells after exposure of rats to the avoidance or escape task of the ETM, and neuroinflammatory cytokine expression in hypothalamic and amygdaloid nuclei. In addition, we investigated stress-induced cutaneous thermoregulatory responses during exposure to an open-field (OF). Here we demonstrated that nine weeks of HFD intake induced obesity, in association with increased abdominal fat pad weight, increased anxiety-related defensive behavioral responses, and increased proinflammatory cytokines in hypothalamic and amygdaloid nuclei. In addition, HFD exposure altered avoidance- or escape task-induced FOS-immunoreactivity within brain structures involved in control of neuroendocrine, autonomic, and behavioral responses to aversive stimuli, including the basolateral amygdala (BLA) and dorsomedial (DMH), paraventricular (PVN) and ventromedial (VMH) hypothalamic nuclei. Furthermore, rats exposed to HFD, relative to control diet-fed rats, responded with increased tail skin temperature at baseline and throughout exposure to an open-field apparatus. These data are consistent with the hypothesis that HFD induces neuroinflammation, alters excitability of brain nuclei controlling neuroendocrine, autonomic, and behavioral responses to stressful stimuli, and enhances stress reactivity and anxiety-like defensive behavioral responses.
Collapse
Affiliation(s)
- S S R Noronha
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - P M Lima
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - G S V Campos
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - M T T Chírico
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - A R Abreu
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - A B Figueiredo
- Department of Biological Science, Laboratory of Immunoparasitology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - F C S Silva
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - D A Chianca
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - C A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
| | - R C A De Menezes
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| |
Collapse
|
43
|
Prenatal cold exposure causes hypertension in offspring by hyperactivity of the sympathetic nervous system. Clin Sci (Lond) 2019; 133:1097-1113. [PMID: 31015358 PMCID: PMC6833955 DOI: 10.1042/cs20190254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Environmental temperature plays a role in the variation of blood pressure. Maternal cold stress could affect the physiological phenotype of the offspring, including blood pressure elevation. In the present study, we found that adult offspring of dams exposed to cold have increased systolic and diastolic blood pressure, and decreased urine volume and sodium excretion, accompanied by increased heart rate and heart rate variability, secondary to increased activity of the sympathetic nervous system. Renal denervation or adrenergic receptor blockade decreased blood pressure and increased sodium excretion. The increase in peripheral sympathetic nerve activity can be ascribed to the central nervous system because administration of clonidine, a centrally acting α2 adrenergic receptor agonist, lowered blood pressure to a greater degree in the prenatal cold-exposed than control offspring. Moreover, these prenatal cold-exposed offspring had hypothalamic paraventricular nucleus (PVN) disorder because magnetic resonance spectroscopy showed decreased N-acetylaspartate and increased choline and creatine ratios in the PVN. Additional studies found that prenatal cold exposure impaired the balance between inhibitory and excitatory neurons. This led to PVN overactivation that was related to enhanced PVN-angiotensin II type 1 (AT1) receptor expression and function. Microinjection of the AT1 receptor antagonist losartan in the PVN lowered blood pressure to a greater extent in prenatal cold-exposed that control offspring. The present study provides evidence for overactive peripheral and central sympathetic nervous systems in the pathogenesis of prenatal cold-induced hypertension. Central AT1 receptor blockade in the PVN may be a key step for treatment of this type hypertension.
Collapse
|
44
|
Almeida MM, Dias-Rocha CP, Reis-Gomes CF, Wang H, Atella GC, Cordeiro A, Pazos-Moura CC, Joss-Moore L, Trevenzoli IH. Maternal high-fat diet impairs leptin signaling and up-regulates type-1 cannabinoid receptor with sex-specific epigenetic changes in the hypothalamus of newborn rats. Psychoneuroendocrinology 2019; 103:306-315. [PMID: 30776574 DOI: 10.1016/j.psyneuen.2019.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/17/2019] [Accepted: 02/06/2019] [Indexed: 12/26/2022]
Abstract
Maternal nutritional imbalances trigger developmental adaptations involving early epigenetic mechanisms associated with adult chronic disease. Maternal high-fat (HF) diet promotes obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood. Leptin resistance is associated with over activation of the endocannabinoid system (ECS). The ECS mainly consists of endocannabinoids derived from n-6 fatty acids and cannabinoid receptors (CB1 coded by Cnr1 and CB2 coded by Cnr2). The CB1 activation in hypothalamus stimulates feeding and appetite for fat while CB2 activation seems to play an immunomodulatory role. We demonstrated that maternal HF diet increases hypothalamic CB1 in male offspring while increases CB2 in female offspring at birth, prior to obesity development. However, the molecular mechanisms behind these changes remain unexplored. We hypothesized that maternal HF diet would down-regulate leptin signaling and up-regulate Cnr1 mRNA levels in the hypothalamus of the offspring at birth, associated with sex-specific changes in epigenetic markers and sex steroid signaling. To test our hypothesis, we used progenitor female rats that received control diet (C, 9% fat) or isocaloric high-fat diet (HF, 28% fat) from 8 weeks before mating until delivery. Blood, hypothalamus and carcass from C and HF male and female offspring were collected for biochemical and molecular analyses at birth. Maternal HF diet down-regulated the transcriptional factor STAT3 in the hypothalamus of male and female offspring, but induced hypoleptinemia only in males and decreased phosphorylated STAT3 only in female offspring. Because leptin acts through STAT3 pathway to inhibit central ECS, our results suggest that leptin pathway impairment might contribute to increased levels of Crn1 mRNA in hypothalamus of both sex offspring. Besides, maternal HF diet increased the histone acetylation percentage of Cnr1 promoter in male offspring and increased the androgen receptor binding to the Cnr1 promoter, which can contribute to higher expression of Cnr1 in newborn HF offspring. Maternal HF diet increased plasma n6 to n3 fatty acid ratio in male offspring, which is an important risk factor to metabolic diseases and might indicate an over activation of endocannabinoid signaling. Thus, although maternal HF diet programs a similar phenotype in adult offspring of both sexes (obesity, hyperphagia and higher preference for fat), here we showed that molecular mechanisms involving leptin signaling, ECS, epigenetic markers and sex hormone signaling were modified prior to obesity development and can differ between newborn male and female offspring. These observations may provide molecular insights into sex-specific targets for anti-obesity therapies.
Collapse
Affiliation(s)
- Mariana M Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| | - Camilla P Dias-Rocha
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Clara F Reis-Gomes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Haimei Wang
- Department of Pediatrics, University of Utah, UT, United States
| | - Georgia C Atella
- Leopoldo de Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Aline Cordeiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Lisa Joss-Moore
- Department of Pediatrics, University of Utah, UT, United States
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
45
|
Wikenius E, Myhre AM, Page CM, Moe V, Smith L, Heiervang ER, Undlien DE, LeBlanc M. Prenatal maternal depressive symptoms and infant DNA methylation: a longitudinal epigenome-wide study. Nord J Psychiatry 2019; 73:257-263. [PMID: 31070508 DOI: 10.1080/08039488.2019.1613446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Prenatal maternal stress increases the risk of offspring developmental and psychological difficulties. The biological mechanisms behind these associations are mostly unknown. One explanation suggests that exposure of the fetus to maternal stress may influence DNA methylation. However, this hypothesis is largely based on animal studies, and human studies of candidate genes from single timepoints. Aim: The aim of this study was to investigate if prenatal maternal stress, in the form of maternal depressive symptoms, was associated with variation in genome-wide DNA methylation at two timepoints. Methods: One-hundred and eighty-four mother-child dyads were selected from a population of pregnant women in the Little-in-Norway study. The Edinburgh Postnatal Depression Scale (EPDS) measured maternal depressive symptoms. It was completed by the pregnant mothers between weeks 17 and 32 of gestation. DNA was obtained from infant saliva cells at two timepoints (age 6 weeks and 12 months). DNA methylation was measured in 274 samples from 6 weeks (n = 146) and 12 months (n = 128) using the Illumina Infinium HumanMethylation 450 BeadChip. Linear regression analyses of prenatal maternal depressive symptoms and infant methylation were performed at 6 weeks and 12 months separately, and for both timepoints together using a mixed model. Results: The analyses revealed no significant genome-wide association between maternal depressive symptoms and infant DNA methylation in the separate analyses and for both timepoints together. Conclusions: This sample of pregnant women and their infants living in Norway did not reveal associations between maternal depressive symptoms and infant DNA methylation.
Collapse
Affiliation(s)
- Ellen Wikenius
- a Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway.,b Child & Adolescent Mental Health Research Unit , Oslo University Hospital , Oslo , Norway
| | - Anne Margrethe Myhre
- a Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway.,b Child & Adolescent Mental Health Research Unit , Oslo University Hospital , Oslo , Norway
| | - Christian Magnus Page
- c Oslo Centre for Biostatistics and Epidemiology , Oslo University Hospital , Oslo , Norway.,d Centre for Fertility and Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Vibeke Moe
- e The Department of Psychology, Faculty of Social Sciences , University of Oslo , Oslo , Norway.,f Center for Child and Adolescent Mental Health , Eastern and Southern Norway (RBUP) , Oslo , Norway
| | - Lars Smith
- e The Department of Psychology, Faculty of Social Sciences , University of Oslo , Oslo , Norway
| | - Einar Røshol Heiervang
- a Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway.,b Child & Adolescent Mental Health Research Unit , Oslo University Hospital , Oslo , Norway
| | - Dag Erik Undlien
- a Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway.,g Department of Medical Genetics , Oslo University Hospital , Oslo , Norway
| | - Marissa LeBlanc
- c Oslo Centre for Biostatistics and Epidemiology , Oslo University Hospital , Oslo , Norway
| |
Collapse
|
46
|
Maternal High Fat Diet-Induced Obesity Modifies Histone Binding and Expression of Oxtr in Offspring Hippocampus in a Sex-Specific Manner. Int J Mol Sci 2019; 20:ijms20020329. [PMID: 30650536 PMCID: PMC6359595 DOI: 10.3390/ijms20020329] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
Maternal obesity during pregnancy increases risk for neurodevelopmental disorders in offspring, although the underlying mechanisms remain unclear. Epigenetic deregulation associates with many neurodevelopmental disorders, and recent evidence indicates that maternal nutritional status can alter chromatin marks in the offspring brain. Thus, maternal obesity may disrupt epigenetic regulation of gene expression during offspring neurodevelopment. Using a C57BL/6 mouse model, we investigated whether maternal high fat diet (mHFD)-induced obesity alters the expression of genes previously implicated in the etiology of neurodevelopmental disorders within the Gestational Day 17.5 (GD 17.5) offspring hippocampus. We found significant two-fold upregulation of oxytocin receptor (Oxtr) mRNA in the hippocampus of male, but not female, GD 17.5 offspring from mHFD-induced obese dams (p < 0.05). To determine whether altered histone binding at the Oxtr gene promoter may underpin these transcriptional changes, we then performed chromatin immunoprecipitation (ChIP). Consistent with the Oxtr transcriptional changes, we observed increased binding of active histone mark H3K9Ac at the Oxtr transcriptional start site (TSS) in the hippocampus of mHFD male (p < 0.05), but not female, offspring. Together, these data indicate an increased vulnerability of male offspring to maternal obesity-induced changes in chromatin remodeling processes that regulate gene expression in the developing hippocampus, and contributes to our understanding of how early life nutrition affects the offspring brain epigenome.
Collapse
|