1
|
Bai H, Zuo X, Zhao C, Zhang S, Feng X. Non-nutritive Sweetener Aspartame Disrupts Circadian Behavior and Causes Memory Impairment in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23478-23492. [PMID: 39382230 DOI: 10.1021/acs.jafc.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a non-nutritive sweetener, aspartame is widely used in everyday life. However, its safety is highly controversial, especially its effects on neurobehavior. We evaluated the effects of chronic daily oral administration of aspartame-containing drinking water (at doses equivalent to 7-28% of the FDA-recommended human DIV) on memory and rhythm behaviors in mice and further investigated changes at the molecular level in the brains. Our results demonstrated that mice exposed to aspartame exhibited memory impairment. Disorders of hippocampal neurotransmitter metabolism and pathological damage may be responsible for the aspartame-induced memory impairment via inhibition of the BDNF/TrkB pathway. Furthermore, our findings suggested that disturbed clock gene expression in the hypothalamus after aspartame exposure led to altered rest-activity behavior, and this disruption of the circadian rhythm may exacerbate memory impairment. This study highlights the negative neurobehavioral effects of aspartame and provides valuable insights into its rational and safe use.
Collapse
Affiliation(s)
- Huijuan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xizeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Caprio S, Pilli T, Cantara S, Sestini F, Fioravanti C, Ciuoli C, Dalmiglio C, Corbo A, Castagna MG. Paradoxical effect of dopamine-agonists on IGF-1 in patients with prolactinoma: the role of weight. BMC Endocr Disord 2024; 24:94. [PMID: 38902646 PMCID: PMC11188517 DOI: 10.1186/s12902-024-01622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE An increase of IGF-1 has been reported during therapy with dopamine agonists (DA) for prolactinomas; in such cases a correct diagnosis is pivotal to avoid an unnecessary reduction or withdrawal of DA, which are needed to maintain normal prolactin levels. This study was aimed to measure IGF-1 levels, at baseline and during follow-up, in a cohort of patients with prolactinoma, treated with cabergoline, stratified by body mass index. METHODS We retrospectively enrolled 35 patients (15 F/20 M; age m ± SD, years: 43.4 ± 13.7) with prolactinoma (21 microadenomas and 14 macroadenomas) who were followed-up at the Endocrinology Unit, in Siena, and with available pituitary hormone assessment at baseline and during follow-up (m ± SD, years: 2.74 ± 0.55). RESULTS IGF-1 increased in the whole cohort, but remaining within normal range, except two patients, in whom acromegaly was ruled out with oral glucose tolerance test. After dividing patients by weight, this trend was confirmed only in subjects with overweight and obesity (OV/OB) (p = 0.04). Interestingly, the reduction of prolactin levels was significantly greater in the OV/OB compared to normal-weight patients (median decrease of 97.5% versus 88.2%, p = 0.04). CONCLUSIONS Since DA and normalization of prolactin are known to improve insulin sensitivity, we speculated they have favored the increase of IGF-1 in OV/OB. Our results should be confirmed and the hypothesis proven by further studies.
Collapse
Affiliation(s)
- S Caprio
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy
| | - T Pilli
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy
| | - S Cantara
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy
- Laboratory of Clinical and Translational Research, University of Siena, Siena, Italy
| | - F Sestini
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy
- Laboratory of Clinical and Translational Research, University of Siena, Siena, Italy
| | - C Fioravanti
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy
- Laboratory of Clinical and Translational Research, University of Siena, Siena, Italy
| | - C Ciuoli
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy
| | - C Dalmiglio
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy
| | - A Corbo
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy
| | - M G Castagna
- Section of Endocrinology, Department of Medical, Surgical and Neurogical Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
3
|
Fonseca PAS, Suárez-Vega A, Arranz JJ, Gutiérrez-Gil B. Integration of selective sweeps across the sheep genome: understanding the relationship between production and adaptation traits. Genet Sel Evol 2024; 56:40. [PMID: 38773423 PMCID: PMC11106937 DOI: 10.1186/s12711-024-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Livestock populations are under constant selective pressure for higher productivity levels for different selective purposes. This pressure results in the selection of animals with unique adaptive and production traits. The study of genomic regions associated with these unique characteristics has the potential to improve biological knowledge regarding the adaptive process and how it is connected to production levels and resilience, which is the ability of an animal to adapt to stress or an imbalance in homeostasis. Sheep is a species that has been subjected to several natural and artificial selective pressures during its history, resulting in a highly specialized species for production and adaptation to challenging environments. Here, the data from multiple studies that aim at mapping selective sweeps across the sheep genome associated with production and adaptation traits were integrated to identify confirmed selective sweeps (CSS). RESULTS In total, 37 studies were used to identify 518 CSS across the sheep genome, which were classified as production (147 prodCSS) and adaptation (219 adapCSS) CSS based on the frequency of each type of associated study. The genes within the CSS were associated with relevant biological processes for adaptation and production. For example, for adapCSS, the associated genes were related to the control of seasonality, circadian rhythm, and thermoregulation. On the other hand, genes associated with prodCSS were related to the control of feeding behaviour, reproduction, and cellular differentiation. In addition, genes harbouring both prodCSS and adapCSS showed an interesting association with lipid metabolism, suggesting a potential role of this process in the regulation of pleiotropic effects between these classes of traits. CONCLUSIONS The findings of this study contribute to a deeper understanding of the genetic link between productivity and adaptability in sheep breeds. This information may provide insights into the genetic mechanisms that underlie undesirable genetic correlations between these two groups of traits and pave the way for a better understanding of resilience as a positive ability to respond to environmental stressors, where the negative effects on production level are minimized.
Collapse
Affiliation(s)
- Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain.
| |
Collapse
|
4
|
Bonifazi A, Ellenberger M, Farino ZJ, Aslanoglou D, Rais R, Pereira S, Mantilla-Rivas JO, Boateng CA, Eshleman AJ, Janowsky A, Hahn MK, Schwartz GJ, Slusher BS, Newman AH, Freyberg Z. Development of novel tools for dissection of central versus peripheral dopamine D 2-like receptor signaling in dysglycemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581451. [PMID: 38529497 PMCID: PMC10962703 DOI: 10.1101/2024.02.21.581451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Ellenberger
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Comfort A. Boateng
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy J. Eshleman
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Lead Contact
| |
Collapse
|
5
|
Wu Q, Long Y, Peng X, Song C, Xiao J, Wang X, Liu F, Xie P, Yang J, Shi Z, Hu Z, McCaig C, St Clair D, Lang B, Wu R. Prefrontal cortical dopamine deficit may cause impaired glucose metabolism in schizophrenia. Transl Psychiatry 2024; 14:79. [PMID: 38320995 PMCID: PMC10847097 DOI: 10.1038/s41398-024-02800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The brain neurotramsmitter dopamine may play an important role in modulating systemic glucose homeostasis. In seven hundred and four drug- naïve patients with first-episode schizophrenia, we provide robust evidence of positive associations between negative symptoms of schizophrenia and high fasting blood glucose. We then show that glucose metabolism and negative symptoms are improved when intermittent theta burst stimulation (iTBS) on prefrontal cortex (PFC) is performed in patients with predominantly negative symptoms of schizophrenia. These findings led us to hypothesize that the prefrontal cortical dopamine deficit, which is known to be associated with negative symptoms, may be responsible for abnormal glucose metabolism in schizophrenia. To explore this, we optogenetically and chemogenetically inhibited the ventral tegmental area (VTA)-medial prefrontal cortex (mPFC) dopamine projection in mice and found both procedures caused glucose intolerance. Moreover, microinjection of dopamine two receptor (D2R) neuron antagonists into mPFC in mice significantly impaired glucose tolerance. Finally, a transgenic mouse model of psychosis named Disc1tr exhibited depressive-like symptoms, impaired glucose homeostasis, and compared to wild type littermates reduced D2R expression in prefrontal cortex.
Collapse
Affiliation(s)
- Qiongqiong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
| | - Yujun Long
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xingjie Peng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chuhan Song
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingmei Xiao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyi Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Furu Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinqing Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Colin McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - David St Clair
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Bing Lang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Renrong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Kong CC, Cheng JD, Wang W. Neurotransmitters regulate β cells insulin secretion: A neglected factor. World J Clin Cases 2023; 11:6670-6679. [PMID: 37901031 PMCID: PMC10600852 DOI: 10.12998/wjcc.v11.i28.6670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023] Open
Abstract
β cells are the main cells responsible for the hypoglycemic function of pancreatic islets, and the insulin secreted by these cells is the only hormone that lowers blood glucose levels in the human body. β cells are regulated by various factors, among which neurotransmitters make an important contribution. This paper discusses the effects of neurotransmitters secreted by various sympathetic and parasympathetic nerves on β cells and summarizes the mechanisms by which various neurotransmitters regulate insulin secretion. Many neurotransmitters do not have a single source and are not only released from nerve terminals but also synthesized by β cells themselves, allowing them to synergistically regulate insulin secretion. Almost all of these neurotransmitters depend on the presence of glucose to function, and their actions are mostly related to the Ca2+ and cAMP concentrations. Although neurotransmitters have been extensively studied, many of their mechanisms remain unclear and require further exploration by researchers.
Collapse
Affiliation(s)
- Chu-Chu Kong
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ji-Dong Cheng
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| |
Collapse
|
8
|
Wang W, Yao W, Tan Q, Li S, Duan H, Tian X, Xu C, Zhang D. Identification of key DNA methylation changes on fasting plasma glucose: a genome-wide DNA methylation analysis in Chinese monozygotic twins. Diabetol Metab Syndr 2023; 15:159. [PMID: 37461060 PMCID: PMC10351111 DOI: 10.1186/s13098-023-01136-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Elevated fasting plasma glucose (FPG) levels can increase morbidity and mortality even when it is below the diagnostic threshold of type 2 diabetes mellitus (T2DM). We conducted a genome-wide DNA methylation analysis to detect DNA methylation (DNAm) variants potentially related to FPG in Chinese monozygotic twins. METHODS Genome-wide DNA methylation profiling in whole blood of twins was performed using Reduced Representation Bisulfite Sequencing (RRBS), yielding 551,447 raw CpGs. Association between DNAm of single CpG and FPG was tested using a generalized estimation equation. Differentially methylated regions (DMRs) were identified using comb-P approach. ICE FALCON method was utilized to perform the causal inference. Candidate CpGs were quantified and validated using Sequenom MassARRAY platform in a community population. Weighted gene co-expression network analysis (WGCNA) was conducted using gene expression data from twins. RESULTS The mean age of 52 twin pairs was 52 years (SD: 7). The relationship between DNAm of 142 CpGs and FPG reached the genome-wide significance level. Thirty-two DMRs within 24 genes were identified, including TLCD1, MRPS31P5, CASZ1, and CXADRP3. The causal relationship of top CpGs mapped to TLCD1, MZF1, PTPRN2, SLC6A18, ASTN2, IQCA1, GRIN1, and PDE2A genes with FPG were further identified using ICE FALCON method. Pathways potentially related to FPG were also identified, such as phospholipid-hydroperoxide glutathione peroxidase activity and mitogen-activated protein kinase p38 binding. Three CpGs mapped to SLC6A18 gene were validated in a community population, with a hypermethylated direction in diabetic patients. The expression levels of 18 genes (including SLC6A18 and TLCD1) were positively correlated with FPG levels. CONCLUSIONS We detect many DNAm variants that may be associated with FPG in whole blood, particularly the loci within SLC6A18 gene. Our findings provide important reference for the epigenetic regulation of elevated FPG levels and diabetes.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071 Shandong Province China
| | - Wenqin Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071 Shandong Province China
- Shandong Province Center for Disease Control and Prevention, Shandong, China
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Shuxia Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071 Shandong Province China
| |
Collapse
|
9
|
Mantovani MDC, Gabanyi I, Pantanali CA, Santos VR, Corrêa-Giannella MLC, Sogayar MC. Islet transplantation: overcoming the organ shortage. Diabetol Metab Syndr 2023; 15:144. [PMID: 37391848 DOI: 10.1186/s13098-023-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/13/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1D) is a condition resulting from autoimmune destruction of pancreatic β cells, leading patients to require lifelong insulin therapy, which, most often, does not avoid the most common complications of this disease. Transplantation of isolated pancreatic islets from heart-beating organ donors is a promising alternative treatment for T1D, however, this approach is severely limited by the shortage of pancreata maintained under adequate conditions. METHODS In order to analyze whether and how this problem could be overcome, we undertook a retrospective study from January 2007 to January 2010, evaluating the profile of brain-dead human pancreas donors offered to our Cell and Molecular Therapy NUCEL Center ( www.usp.br/nucel ) and the basis for organ refusal. RESULTS During this time period, 558 pancreata were offered by the São Paulo State Transplantation Central, 512 of which were refused and 46 were accepted for islet isolation and transplantation. Due to the elevated number of refused organs, we decided to analyze the main reasons for refusal in order to evaluate the possibility of improving the organ acceptance rate. The data indicate that hyperglycemia, technical issues, age, positive serology and hyperamylasemia are the top five main causes for declination of a pancreas offer. CONCLUSIONS This study underlines the main reasons to decline a pancreas offer in Sao Paulo-Brazil and provides some guidance to ameliorate the rate of eligible pancreas donors, aiming at improving the islet isolation and transplantation outcome. TRIAL REGISTRATION Protocol CAPPesq number 0742/02/CONEP 9230.
Collapse
Affiliation(s)
- Marluce da Cunha Mantovani
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, Avenida Dr. Arnaldo, 455, São Paulo, 01246-903, SP, Brasil
- Technical Division for Teaching, Research and Innovation Support - DTAPEPI Biotechnology and Innovation Facility, School of Medicine, University of São Paulo Medical School, São Paulo, 01246-903, SP, Brazil
| | - Ilana Gabanyi
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, Avenida Dr. Arnaldo, 455, São Paulo, 01246-903, SP, Brasil
| | - Carlos Andrés Pantanali
- Gastroenterology Department, School of Medicine, University of São Paulo, São Paulo, 01246-903, SP, Brazil
| | - Vinícius Rocha Santos
- Gastroenterology Department, School of Medicine, University of São Paulo, São Paulo, 01246-903, SP, Brazil
| | - Maria Lúcia Cardillo Corrêa-Giannella
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, Avenida Dr. Arnaldo, 455, São Paulo, 01246-903, SP, Brasil
- Medical Sciences Department, Laboratory of Carbohydrates and Radioimmunoassay (LIM-18) HCFMUSP, Medical School, University of São Paulo, São Paulo, 01246-903, SP, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, Avenida Dr. Arnaldo, 455, São Paulo, 01246-903, SP, Brasil.
- Technical Division for Teaching, Research and Innovation Support - DTAPEPI Biotechnology and Innovation Facility, School of Medicine, University of São Paulo Medical School, São Paulo, 01246-903, SP, Brazil.
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
10
|
Zapata RC, Zhang D, Libster A, Porcu A, Montilla-Perez P, Nur A, Xu B, Zhang Z, Correa SM, Liu C, Telese F, Osborn O. Nuclear receptor 5A2 regulation of Agrp underlies olanzapine-induced hyperphagia. Mol Psychiatry 2023; 28:1857-1867. [PMID: 36765131 PMCID: PMC10412731 DOI: 10.1038/s41380-023-01981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
Antipsychotic (AP) drugs are efficacious treatments for various psychiatric disorders, but excessive weight gain and subsequent development of metabolic disease remain serious side effects of their use. Increased food intake leads to AP-induced weight gain, but the underlying molecular mechanisms remain unknown. In previous studies, we identified the neuropeptide Agrp and the transcription factor nuclear receptor subfamily 5 group A member 2 (Nr5a2) as significantly upregulated genes in the hypothalamus following AP-induced hyperphagia. While Agrp is expressed specifically in the arcuate nucleus of the hypothalamus and plays a critical role in appetite stimulation, Nr5a2 is expressed in both the CNS and periphery, but its role in food intake behaviors remains unknown. In this study, we investigated the role of hypothalamic Nr5a2 in AP-induced hyperphagia and weight gain. In hypothalamic cell lines, olanzapine treatment resulted in a dose-dependent increase in gene expression of Nr5a2 and Agrp. In mice, the pharmacological inhibition of NR5A2 decreased olanzapine-induced hyperphagia and weight gain, while the knockdown of Nr5a2 in the arcuate nucleus partially reversed olanzapine-induced hyperphagia. Chromatin-immunoprecipitation studies showed for the first time that NR5A2 directly binds to the Agrp promoter region. Lastly, the analysis of single-cell RNA seq data confirms that Nr5a2 and Agrp are co-expressed in a subset of neurons in the arcuate nucleus. In summary, we identify Nr5a2 as a key mechanistic driver of AP-induced food intake. These findings can inform future clinical development of APs that do not activate hyperphagia and weight gain.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Avraham Libster
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Aisha Nur
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Baijie Xu
- Center for Hypothalamic Research, Departments of Internal Medicine and Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chen Liu
- Center for Hypothalamic Research, Departments of Internal Medicine and Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Akrab SNA, Al Gawhary NE, Shafik AN, Morcos GNB, Wissa MY. The role of mosapride and levosulpiride in gut function and glycemic control in diabetic rats. Arab J Gastroenterol 2023:S1687-1979(23)00009-6. [PMID: 36878815 DOI: 10.1016/j.ajg.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND STUDY AIMS Gastroparesis is a well-known consequence of long-standing diabetes that presents with gastric dysmotility in the absence of gastric outlet obstruction. This study aimed to evaluate the therapeutic effects of mosapride and levosulpiride on improving gastric emptying in type 2 diabetes mellitus (T2DM) while regulating glycemic levels. MATERIAL AND METHODS Rats were divided into the normal control, untreated diabetic, metformin-treated (100 mg/kg/day), mosapride-treated (3 mg/kg/day), levosulpiride-treated (5 mg/kg/day), metformin (100 mg/kg/day) + mosapride (3 mg/kg/day)-treated, and metformin (100 mg/kg/day) + levosulpiride (5 mg/kg/day)-treated diabetic groups. T2DM was induced by a streptozotocin-nicotinamide model. Fourweeks from diabetes onset, the treatment was started orally daily for 2 weeks. Serum glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels were measured. Gastric motility study was performed using isolated rat fundus and pylorus strip preparations. Moreover, the intestinal transit rate was measured. RESULTS Mosapride and levosulpiride administration showed a significant decrease in serum glucose levels with improvement of gastric motility and intestinal transit rate. Mosapride showed a significant increase in serum insulin and GLP-1 levels. Metformin with mosapride and levosulpiride co-administration showed better glycemic control and gastric emptying than either drug administered alone. CONCLUSION Mosapride and levosulpiride showed comparable prokinetic effects. Metformin administration with mosapride and levosulpiride showed better glycemic control and prokinetic effects. Mosapride provided better glycemic control than levosulpiride. Metformin + mosapride combination provided superior glycemic control and prokinetic effects.
Collapse
Affiliation(s)
- Sara N A Akrab
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Nawal E Al Gawhary
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Amani N Shafik
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - George N B Morcos
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Cairo University, Egypt; Basic Medical Science Department, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| | - Marian Y Wissa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| |
Collapse
|
12
|
Freyberg Z, Gittes GK. Roles of Pancreatic Islet Catecholamine Neurotransmitters in Glycemic Control and in Antipsychotic Drug-Induced Dysglycemia. Diabetes 2023; 72:3-15. [PMID: 36538602 PMCID: PMC9797319 DOI: 10.2337/db22-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and β-cell adrenergic receptors to modify hormone secretion, α-cells and β-cells also synthesize catecholamines locally. We propose a model where α-cells and β-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and β-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - George K. Gittes
- Division of Pediatric Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
AlQudah M, Khalifeh M, Al-Azaizeh R, Masaadeh A, Al-Rusan OM, Haddad HK. Hyperbaric oxygen exposure alleviate metabolic side-effects of olanzapine treatment and is associated with Langerhans islet proliferation in rats. Pathol Oncol Res 2022; 28:1610752. [PMID: 36590387 PMCID: PMC9801520 DOI: 10.3389/pore.2022.1610752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Introduction: Olanzapine (OLZ) is one of the second-generation antipsychotics drugs (APDs) used to treat several psychiatric illnesses. Olanzapine treatment is often associated with many metabolic side effects in a dose dependent manner such as obesity, dyslipidemia and insulin resistance, induction of type II diabetes and acute pancreatitis in some patients. Methods: Hyperbaric Oxygen therapy (HBOT) was investigated as a tool to mitigate olanzapine metabolic side effects in rats. Thirty-six female Sprague Dawley (SD) rats were divided into 4 groups; rats on olanzapine treatment either exposed to hyperbaric oxygen therapy (HBOOLZ) or left without exposure (OLZ) then non-treated rats that either exposed to hyperbaric oxygen therapy or left without exposure (control). Rats received Hyperbaric Oxygen therapy for 35 days at 2.4 atmospheres absolute (ATA) for 2.5 h daily followed by intraperitoneal injection of olanzapine at 10 mg/kg or placebo. Results: Rats on either hyperbaric oxygen therapy or olanzapine had a significant loss in body weight. Olanzapine treatment showed a decrease in serum insulin level, triglyceride, highdensity lipoprotein (HDL) cholesterol, and lipase level but an increase in fasting blood sugar (FBS), insulin resistance index (HOMA-IR) and amylase, while rats' exposure to hyperbaric oxygen therapy reversed these effects. The Pancreatic Langerhans islets were up-regulated in both hyperbaric oxygen therapy and olanzapine treatments but the combination (HBOOLZ) doubled these islets number. Discussion: This study advocated that hyperbaric oxygen therapy can be an alternative approach to control or reverse many metabolic disorders (MDs) associatedwith olanzapine treatment. In addition, it seems that hyperbaric oxygen therapy positively affect the pancreatic Langerhans cells activity and architecture.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan,*Correspondence: Mohammad AlQudah,
| | - Mohammad Khalifeh
- Department of Veterinary Basic Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rasha Al-Azaizeh
- Department of Veterinary Basic Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Amr Masaadeh
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan,University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Omar M. Al-Rusan
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Husam K. Haddad
- Department of Pathology and Laboratory Medicine, Ministry of Health, Amman, Jordan
| |
Collapse
|
14
|
Zapata RC, Silver A, Yoon D, Chaudry B, Libster A, McCarthy MJ, Osborn O. Antipsychotic-induced weight gain and metabolic effects show diurnal dependence and are reversible with time restricted feeding. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:70. [PMID: 36042214 PMCID: PMC9427943 DOI: 10.1038/s41537-022-00276-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Antipsychotic drugs (AP) are highly efficacious treatments for psychiatric disorders but are associated with significant metabolic side-effects. The circadian clock maintains metabolic homeostasis by sustaining daily rhythms in feeding, fasting and hormone regulation but how circadian rhythms interact with AP and its associated metabolic side-effects is not well-known. We hypothesized that time of AP dosing impacts the development of metabolic side-effects. Weight gain and metabolic side-effects were compared in C57Bl/6 mice and humans dosed with APs in either the morning or evening. In mice, AP dosing at the start of the light cycle/rest period (AM) resulted in significant increase in food intake and weight gain compared with equivalent dose before the onset of darkness/active period (PM). Time of AP dosing also impacted circadian gene expression, metabolic hormones and inflammatory pathways and their diurnal expression patterns. We also conducted a retrospective examination of weight and metabolic outcomes in patients who received risperidone (RIS) for the treatment of serious mental illness and observed a significant association between time of dosing and severity of RIS-induced metabolic side-effects. Time restricted feeding (TRF) has been shown in both mouse and some human studies to be an effective therapeutic intervention against obesity and metabolic disease. We demonstrate, for the first time, that TRF is an effective intervention to reduce AP-induced metabolic side effects in mice. These studies identify highly effective and translatable interventions with potential to mitigate AP-induced metabolic side effects.
Collapse
Affiliation(s)
- Rizaldy C. Zapata
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Allison Silver
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Dongmin Yoon
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Besma Chaudry
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Avraham Libster
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Michael J. McCarthy
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093 USA
| | - Olivia Osborn
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
15
|
Aslanoglou D, Bertera S, Friggeri L, Sánchez-Soto M, Lee J, Xue X, Logan RW, Lane JR, Yechoor VK, McCormick PJ, Meiler J, Free RB, Sibley DR, Bottino R, Freyberg Z. Dual pancreatic adrenergic and dopaminergic signaling as a therapeutic target of bromocriptine. iScience 2022; 25:104771. [PMID: 35982797 PMCID: PMC9379584 DOI: 10.1016/j.isci.2022.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Bromocriptine is approved as a diabetes therapy, yet its therapeutic mechanisms remain unclear. Though bromocriptine's actions have been mainly attributed to the stimulation of brain dopamine D2 receptors (D2R), bromocriptine also targets the pancreas. Here, we employ bromocriptine as a tool to elucidate the roles of catecholamine signaling in regulating pancreatic hormone secretion. In β-cells, bromocriptine acts on D2R and α2A-adrenergic receptor (α2A-AR) to reduce glucose-stimulated insulin secretion (GSIS). Moreover, in α-cells, bromocriptine acts via D2R to reduce glucagon secretion. α2A-AR activation by bromocriptine recruits an ensemble of G proteins with no β-arrestin2 recruitment. In contrast, D2R recruits G proteins and β-arrestin2 upon bromocriptine stimulation, demonstrating receptor-specific signaling. Docking studies reveal distinct bromocriptine binding to α2A-AR versus D2R, providing a structural basis for bromocriptine's dual actions on β-cell α2A-AR and D2R. Together, joint dopaminergic and adrenergic receptor actions on α-cell and β-cell hormone release provide a new therapeutic mechanism to improve dysglycemia.
Collapse
Affiliation(s)
- Despoina Aslanoglou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Laura Friggeri
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marta Sánchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, UK
| | - Vijay K. Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
- Imagine Pharma, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, PA, USA
| |
Collapse
|
16
|
Grant AD, Lewis DM, Kriegsfeld LJ. Multi-Timescale Rhythmicity of Blood Glucose and Insulin Delivery Reveals Key Advantages of Hybrid Closed Loop Therapy. J Diabetes Sci Technol 2022; 16:912-920. [PMID: 33719596 PMCID: PMC9264430 DOI: 10.1177/1932296821994825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Blood glucose and insulin exhibit coordinated daily and hourly rhythms in people without diabetes (nonT1D). Although the presence and stability of these rhythms are associated with euglycemia, it is unknown if they (1) are preserved in individuals with type 1 diabetes (T1D) and (2) vary by therapy type. In particular, Hybrid Closed Loop (HCL) systems improve glycemia in T1D compared to Sensor Augmented Pump (SAP) therapies, but the extent to which either recapitulates coupled glucose and insulin rhythmicity is not well described. In HCL systems, more rapid modulation of glucose via automated insulin delivery may result in greater rhythmic coordination and euglycemia. Such precision may not be possible in SAP systems. We hypothesized that HCL users would exhibit fewer hyperglycemic event, superior rhythmicity, and coordination relative to SAP users. METHODS Wavelet and coherence analyses were used to compare glucose and insulin delivery rate (IDR) within-day and daily rhythms, and their coordination, in 3 datasets: HCL (n = 150), SAP (n = 89), and nonT1D glucose (n = 16). RESULTS Glycemia, correlation between normalized glucose and IDR, daily coherence of glucose and IDR, and amplitude of glucose oscillations differed significantly between SAP and HCL users. Daily glucose rhythms differed significantly between SAP, but not HCL, users and nonT1D individuals. CONCLUSIONS SAP use is associated with greater hyperglycemia, higher amplitude glucose fluctuations, and a less stably coordinated rhythmic phenotype compared to HCL use. Improvements in glucose and IDR rhythmicity may contribute to the overall effectiveness of HCL systems.
Collapse
Affiliation(s)
- Azure D. Grant
- The Helen Wills Neuroscience
Institute, University of California, Berkeley, CA, USA
| | | | - Lance J. Kriegsfeld
- The Helen Wills Neuroscience
Institute, University of California, Berkeley, CA, USA
- Department of Psychology,
University of California, Berkeley, CA, USA
- Department of Integrative Biology,
University of California, Berkeley, CA, USA
- Graduate Group in Endocrinology,
University of California, Berkeley, CA, USA
- Lance J. Kriegsfeld, PhD, Department
of Psychology, Integrative Biology, Graduate Group in Endocrinology
and The Helen Wills Neuroscience Institute, University of California,
2121 Berkeley Way, Mail Code 1650, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Zapata RC, Chaudry BS, Valencia ML, Zhang D, Ochsner SA, McKenna NJ, Osborn O. Conserved immunomodulatory transcriptional networks underlie antipsychotic-induced weight gain. Transl Psychiatry 2021; 11:405. [PMID: 34294678 PMCID: PMC8296828 DOI: 10.1038/s41398-021-01528-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Although antipsychotics, such as olanzapine, are effective in the management of psychiatric conditions, some patients experience excessive antipsychotic-induced weight gain (AIWG). To illuminate pathways underlying AIWG, we compared baseline blood gene expression profiles in two cohorts of mice that were either prone (AIWG-P) or resistant (AIWG-R) to weight gain in response to olanzapine treatment for two weeks. We found that transcripts elevated in AIWG-P mice relative to AIWG-R are enriched for high-confidence transcriptional targets of numerous inflammatory and immunomodulatory signaling nodes. Moreover, these nodes are themselves enriched for genes whose disruption in mice is associated with reduced body fat mass and slow postnatal weight gain. In addition, we identified gene expression profiles in common between our mouse AIWG-P gene set and an existing human AIWG-P gene set whose regulation by immunomodulatory transcription factors is highly conserved between species. Finally, we identified striking convergence between mouse AIWG-P transcriptional regulatory networks and those associated with body weight and body mass index in humans. We propose that immunomodulatory transcriptional networks drive AIWG, and that these networks have broader conserved roles in whole body-metabolism.
Collapse
Affiliation(s)
- Rizaldy C. Zapata
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Besma S. Chaudry
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Mariela Lopez Valencia
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Dinghong Zhang
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Scott A. Ochsner
- grid.39382.330000 0001 2160 926XSignaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Neil J. McKenna
- grid.39382.330000 0001 2160 926XSignaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Zhang R, Manza P, Tomasi D, Kim SW, Shokri-Kojori E, Demiral SB, Kroll DS, Feldman DE, McPherson KL, Biesecker CL, Wang GJ, Volkow ND. Dopamine D1 and D2 receptors are distinctly associated with rest-activity rhythms and drug reward. J Clin Invest 2021; 131:e149722. [PMID: 34264865 DOI: 10.1172/jci149722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Certain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude) and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking. METHODS We examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, age: 42.40±12.22) and its relationship to drug reward. Rest-activity rhythms were assessed by one-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride Positron Emission Tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed. RESULTS We found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or 'social jet lag', whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate. CONCLUSION These findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders. TRIAL REGISTRATION ClinicalTrials.gov: NCT03190954FUNDING. This work was accomplished with support from the National Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sukru B Demiral
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Katherine L McPherson
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Catherine L Biesecker
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Nora D Volkow
- National Institute on Drug Abuse, NIH, Bethesda, United States of America
| |
Collapse
|
19
|
Wang P, Gao X, Zhao F, Gao Y, Wang K, Tian JS, Li Z, Qin XM. Study of the Neurotransmitter Changes Adjusted by Circadian Rhythm in Depression Based on Liver Transcriptomics and Correlation Analysis. ACS Chem Neurosci 2021; 12:2151-2166. [PMID: 34060807 DOI: 10.1021/acschemneuro.1c00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Depression has drawn increasing attention from the public around the world in recent years. Studies have shown that liver injury caused by chronic stress is relevant to depression and neurotransmitter changes. It is essential to clarify the relationship between neurotransmitter changes and hepatic gene expression in depression. In this study, we used the chronic unpredictable mild stress (CUMS) model combined with UHPLC-MS to explore the changes of neurotransmitters in serum and hippocampus and to decipher the differential gene expression in the liver by using the RNA-Seq combined with multivariate statistical analysis. Compared with the control group, the levels of neurotransmitters including 5-hydroxytryptamine (5-HT), acetylcholine, glutamate (Glu), and dopamine (DA) in the hippocampus and 5-HT, norepinephrine, γ-aminobutyric acid (GABA), and 5-hydroxyindoleacetic acid in serum were significantly changed in the CUMS rats. The results of liver transcriptomic analysis and correlation analysis showed that the Glu, DA, 5-HT, and GABA were impacted by 68 liver genes which were mainly enriched in three pathways including circadian rhythm, serotonergic synapse, and p53 signaling pathway. The expressive levels of clock genes and serotonergic synapse genes were validated by using q-PCR, and the diurnal rhythms of neurotransmitters were validated by in vivo hippocampus microdialysis. The CUMS stressors might cause phase advance of Glu and GABA by adjusting clock genes. The transcriptomic technique combined with correlation analysis and in vivo microdialysis could be used to discover comprehensive pathways of depression. It provides a new strategy for the rational assessment of the mechanism of disease.
Collapse
Affiliation(s)
- Peng Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry Education of Shanxi University, Taiyuan 030006, China
| | - Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kexin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry Education of Shanxi University, Taiyuan 030006, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry Education of Shanxi University, Taiyuan 030006, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry Education of Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Zapata RC, Zhang D, Chaudry B, Osborn O. Self-Administration of Drugs in Mouse Models of Feeding and Obesity. J Vis Exp 2021. [PMID: 34180903 DOI: 10.3791/62775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Preclinical studies in mice often rely on invasive protocols, such as injections or oral gavage, to deliver drugs. These stressful routes of administration have significant effects on important metabolic parameters including food intake and body weight. Although an attractive option to circumvent this is to compound the drug in rodent food or dissolve it in water, these approaches also have limitations as they are affected by drug stability at room temperature for extended periods of time, the drug's solubility in water, and that the dosing is highly dependent on timing of food or water intake. The constant availability of the drug also limits translational relevance on how drugs are administered to patients. To overcome these limitations, drugs can be mixed with highly palatable food, such as peanut butter, allowing mice to self-administer compounds. Mice reliably and reproducibly consume the drug/peanut butter pellet in a short time frame. This approach facilitates a delivery approach with minimal stress compared with an injection or gavage. This protocol demonstrates the approach of drug preparation, animal acclimatization to placebo delivery, and drug delivery. The implications of this approach are discussed in studies related to timing of drug administration and the circadian rhythm.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego
| | - Besma Chaudry
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego;
| |
Collapse
|
21
|
Romo-Nava F, Buijs RM, McElroy SL. The use of melatonin to mitigate the adverse metabolic side effects of antipsychotics. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:371-382. [PMID: 34225976 DOI: 10.1016/b978-0-12-819975-6.00024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antipsychotic drugs are efficacious first-line treatments for many individuals diagnosed with a psychiatric illness. However, their adverse metabolic side-effect profile, which resembles the metabolic syndrome, represents a significant clinical problem that increases morbidity and limits treatment adherence. Moreover, the mechanisms involved in antipsychotic-induced adverse metabolic effects (AMEs) are unknown and mitigating strategies and interventions are limited. However, recent clinical trials show that nightly administration of exogenous melatonin may mitigate or even prevent antipsychotic-induced AMEs. This clinical evidence in combination with recent preclinical data implicate the circadian system in antipsychotic-induced AMEs and their mitigation. In this chapter, we provide an overview on the circadian system and its involvement in antipsychotic-induced AMEs, as well as the potential beneficial effect of nightly melatonin administration to mitigate them.
Collapse
Affiliation(s)
- Francisco Romo-Nava
- Lindner Center of HOPE Research Institute, Lindner Center of HOPE, Mason, OH, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Susan L McElroy
- Lindner Center of HOPE Research Institute, Lindner Center of HOPE, Mason, OH, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
22
|
The circadian machinery links metabolic disorders and depression: A review of pathways, proteins and potential pharmacological interventions. Life Sci 2020; 265:118809. [PMID: 33249097 DOI: 10.1016/j.lfs.2020.118809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Circadian rhythms are responsible for regulating a number of physiological processes. The central oscillator is located within the suprachiasmatic nucleus (SCN) of the hypothalamus and the SCN synchronises the circadian clocks that are found in our peripheral organs through neural and humoral signalling. At the molecular level, biological clocks consist of transcription-translation feedback loops (TTFLs) and these pathways are influenced by transcription factors, post-translational modifications, signalling pathways and epigenetic modifiers. When disruptions occur in the circadian machinery, the activities of the proteins implicated in this network and the expression of core clock or clock-controlled genes (CCGs) can be altered. Circadian misalignment can also arise when there is desychronisation between our internal clocks and environmental stimuli. There is evidence in the literature demonstrating that disturbances in the circadian rhythm contribute to the pathophysiology of several diseases and disorders. This includes the metabolic syndrome and recently, it has been suggested that the 'circadian syndrome' may be a more appropriate term to use to not only describe the cardio-metabolic risk factors but also the associated comorbidities. Here we overview the molecular architecture of circadian clocks in mammals and provide insight into the effects of shift work, exposure to artificial light, food intake and stress on the circadian rhythm. The relationship between circadian rhythms, metabolic disorders and depression is reviewed and this is a topic that requires further investigation. We also describe how particular proteins involved in the TTFLs can be potentially modulated by small molecules, including pharmacological interventions and dietary compounds.
Collapse
|