1
|
Ruhinda M, Xia K, Rist C, Shija G, Lyimo IN, Meza F, Brewster C, Chaccour C, Rabinovich NR, Schürch R. Treatment of cattle with ivermectin and its effect on dung degradation and larval abundance in a tropical savanna setting. One Health 2025; 20:100950. [PMID: 39760016 PMCID: PMC11699432 DOI: 10.1016/j.onehlt.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
When ingested as part of a blood meal, the antiparasitic drug ivermectin kills mosquitoes, making it a candidate for mass drug administration (MDA) in humans and livestock to reduce malaria transmission. When administered to livestock, most ivermectin is excreted unmetabolized in the dung within 5 days post administration. Presence of ivermectin, has been shown to adversely affect dung colonizers and dung degradation in temperate settings; however, those findings may not apply to, tropical environment, where ivermectin MDA against malaria would occur. Here we report results of a randomized field experiment conducted with dung from ivermectin-treated and control cattle to determine the effect of ivermectin on dung degradation in tropical Tanzania. For intact pats, we measured termite colonization, larval numbers and pat wet and dry weights. Pat organic matter was interpolated from a subsample of the pat (10 g wet weight). Additionally, we counted larvae growing in the treated and untreated pats in a semi-field setting. We found that termites colonized ivermectin pats more readily than controls. Despite this, wet weight decreased significantly slower in the ivermectin-treated pats in the first two weeks. As water was lost, sub-sample dry weight increased, and organic matter decreased similarly over time for the treatment and control. Interpolated for whole pats, total organic matter was higher, and larval counts were lower in the ivermectin-treated pats after the first month. Our results demonstrate an effect of ivermectin and its metabolites on dung degradation and fauna in a tropical savanna setting. Because slow dung degradation and low insect abundance negatively impact pastureland, these non-target, environmental effects must be further investigated within the context of real-world implementation of ivermectin MDA in cattle and weighed against the potential benefits for malaria control.
Collapse
Affiliation(s)
- Miriam Ruhinda
- Department of Entomology, Virgina Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Tanzania
| | - Kang Xia
- School of Plant and Environmental Sciences, Virgina Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Cassidy Rist
- Department of Population Health Sciences, Virgina Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Gerald Shija
- School of Plant and Environmental Sciences, Virgina Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Tanzania
- Chemistry Department, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Issa N. Lyimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Tanzania
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Tengeru, Arusha, Tanzania
| | - Felician Meza
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Tanzania
| | - Carlyle Brewster
- Plant and Environmental Sciences Department, Clemson University, SC 29634, USA
| | - Carlos Chaccour
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universidda de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - N. Regina Rabinovich
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- TH Chan Harvard School of Public Health, Boston, USA
| | - Roger Schürch
- Department of Entomology, Virgina Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Khatib B, Mcha J, Pandu Z, Haji M, Hassan M, Ali H, Mrisho R, Abdallah K, Ali A, Ali K, Said T, Mohamed S, Mkali H, Mgata S, Makwaruzi S, Gulaka M, Makenga G, Mkude S, Githu V, Mero V, Serbantez N, Ballard SB, Chan A, Shija SJ, Govella NJ. Early evening outdoor biting by malaria-infected Anopheles arabiensis vectors threatens malaria elimination efforts in Zanzibar. Malar J 2025; 24:92. [PMID: 40114159 PMCID: PMC11927253 DOI: 10.1186/s12936-025-05333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The Zanzibar Malaria Elimination Programme relies on insecticide-treated nets as the principal vector control method, supplemented by reactive focal indoor residual spraying. Despite the success, local malaria transmission persists, and the underlying reasons for sustained transmission remain unclear, yet critical to optimizing vector control for elimination. Entomological characterization of transmission dynamics was conducted to identify the gaps with existing interventions and opportunities for complementary interventions. METHODS Adult malaria vectors were collected monthly for two consecutive nights at ten sentinel sites (6 Unguja, 4 Pemba) from October 2022 to September 2023. Hourly indoor and outdoor human landing catch method was used for collecting mosquitoes from 18:00 to 06:00 h. RESULTS Anopheles arabiensis was the predominant malaria vector species across all the sentinel sites, except in the urban district of Unguja, where Anopheles gambiae sensu stricto was predominant. Malaria parasite-infected An. arabiensis bites were distributed disproportionately between indoors (n = 4), 22:00 to 02:00 h, and outdoors (n = 10) earlier in the evenings, 1800 to 2100 h. CONCLUSION The outdoor catches of malaria-parasite infected mosquitoes before typical sleeping hours highlight the potential risk of human exposure to outdoor transmission.
Collapse
Affiliation(s)
- Bakar Khatib
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Juma Mcha
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Zamzam Pandu
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Makame Haji
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Makame Hassan
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Huba Ali
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Ramla Mrisho
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Kali Abdallah
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Ali Ali
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Khadija Ali
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Talib Said
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Safia Mohamed
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Humphrey Mkali
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Said Mgata
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Stella Makwaruzi
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Michael Gulaka
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Geofrey Makenga
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Sigsbert Mkude
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Victoria Githu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar Es Salaam, Tanzania
| | - Victor Mero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar Es Salaam, Tanzania
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, U. S. Agency for International Development, Dar Es Salaam, Tanzania
| | - Sarah-Blythe Ballard
- U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Dar Es Salaam, Tanzania
| | - Adeline Chan
- Entomology Branch, Division of Parasitic Diseases and Malaria, U.S. President'S Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shija Joseph Shija
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Nicodem J Govella
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania.
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar Es Salaam, Tanzania.
| |
Collapse
|
3
|
Somda Z, Zanré N, Wangrawa DW, Toé HK, Sombié A, Saiki E, Fukumoto S, Sakurai T, Sanon A, McCall PJ, Kanuka H, Weetman D, Badolo A. High pyrethroid resistance is associated with high frequencies of 1014F and 1014S kdr mutations in Anopheles arabiensis (Diptera: Culicidae) from Ouagadougou, Burkina Faso. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:381-388. [PMID: 39707159 DOI: 10.1093/jme/tjae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 12/23/2024]
Abstract
Malaria remains a major public health threat in Burkina Faso, as in most sub-Saharan Africa countries. Malaria control relies mainly on long-lasting insecticide-treated nets (LLINs) and indoor residual spraying. In Burkina Faso, an escalating of insecticide resistance has been observed over the last decades. This study aimed to investigate insecticide resistance and the underlying mechanisms in Anopheles gambiae complex in Ouagadougou. Anopheles gambiae s.l. larvae were collected from gutters and ponds, in Zogona, Tampouy and Tanghin, 3 localities in Ouagadougou from July to October 2018. The larvae were reared in the laboratory to adults stage and susceptibility profile to pyrethroid, carbamate, and organophosphate insecticides was assessed using WHO tube assays. Mosquito species and mutations linked with insecticide resistance, were identified through PCR. More than 95% of the collected An. gambiae s.l. were An. arabiensis. An. arabiensis displayed high resistance to permethrin and deltamethrin, with mortalities below 30%, but was fully susceptible to bendiocarb, fenitrothion, and malathion. A high-frequency of the pyrethroid resistance-associated kdr mutation 1014F (0.81) was recorded, while the frequency of 1014S mutation (0.18) was lower. However, the carbamate and organophosphate-associated Ace-1 119S mutation was not detected. Localities and breeding site type appear to influence pyrethroid resistance in the An. arabiensis population of Ouagadougou. The high resistance to pyrethroids in An. arabiensis of urban Ouagadougou is underpinned, at least in part by high-frequency kdr mutations. This result supports the switch to next-generation LLINs, in well-established pyrethroid resistance zones of Burkina Faso including Ouagadougout.
Collapse
Affiliation(s)
- Zephirin Somda
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Nicolas Zanré
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Unité de Formation et de Recherche en Sciences et Technologies, Université Norbert ZONGO, Koudougou, Burkina Faso
| | - Hyacinthe K Toé
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Departement des Sciences Biomedicales, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Aboubacar Sombié
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Erisha Saiki
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Tatsuya Sakurai
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Antoine Sanon
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hirotaka Kanuka
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
4
|
Echodu R, Oyet WS, Iwiru T, Apili F, Lutwama JJ, Opiyo EA, Otim O. Household predictors of malaria episode in northern Uganda: its implication for future malaria control. BMC Public Health 2025; 25:974. [PMID: 40075381 PMCID: PMC11905491 DOI: 10.1186/s12889-025-22175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Uses of indoor residual spraying (IRS), long-lasting insecticidal nets (LLINS) and treatment with artemisinin-based combination therapy (ACT) are greatly promoted in the northern part of Uganda as mitigating strategies for malaria episodes. Unfortunately, the region remains the fourth highest malaria burden in Uganda with a prevalence of 12%. This study assesses household predictors of malaria episodes in northern Uganda and their impact on malaria episodes at the household level. METHODS A cross-sectional study was conducted in four districts of Gulu, Oyam, Kitgum and Agago covering sixteen villages in northern Uganda. Data was collected through a pre-tested structured questionnaire and systematically coded for analysis using R software. RESULTS In total, 193 households were surveyed with 112 (58%) of them headed by women and 605 individuals were declared to have spent the night before the interview in the 193 households. On average, there were at least two-bed nets (317/159) per household and a total of 460 individuals out of 535 (86%) spent the night before the interview under a bed net. The usage of bed nets in the study area overall was 86% while malaria incidence was 50% higher in children than in adults. Hierarchical clustering on principal components (HCPC) categorizes households in northern Uganda into three types: 1) households that use bed nets and sleep in houses sprayed with insecticides; 2) households that use bed nets but no indoor residual spraying with insecticides and 3) households that have no bed nets and no indoor residual spraying. When given a choice between IRS and treated bed nets, 1 in 3 households preferred treated bed nets. At the same time, data suggests that bed nets were perceived as unnecessary once the IRS was applied. If true, the driving force for spraying insecticides indoors then becomes the lack of a bed net. CONCLUSIONS Malaria episodes were strongly related to lack of bed nets or use thereof, and directly linked to the number of individuals in a household. Children were prone to malaria more than adults by a ratio of 2:1. The three categories of households in northern Uganda as revealed by HCPC provide an opportunity to tailor-make preventive/intervention malaria messages to fit the individual household clusters.
Collapse
Affiliation(s)
- Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda.
- Gulu University Multifunctional Research Laboratories, P. O. Box 166, Gulu City, Uganda.
| | - William Sam Oyet
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda
| | - Tereza Iwiru
- Gulu University Multifunctional Research Laboratories, P. O. Box 166, Gulu City, Uganda
| | - Felister Apili
- Department of Midwifery, Faculty of Nursing and Midwifery, Lira University, P. O. Box 1035, Lira City, Uganda
| | - Julius Julian Lutwama
- Department of Arbovirology, Emerging and Re-Emerging Infectious Diseases, Uganda Virus Research Institute, P. O. Box 49, Entebbe, Uganda
| | - Elizabeth Auma Opiyo
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda
| | - Ochan Otim
- Department of Health Sciences and Sciences, University of California, City of Los Angeles, CA, USA
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu City, Uganda
| |
Collapse
|
5
|
Lukole EA, Cook J, Mosha JF, Matowo NS, Kulkarni MA, Mallya E, Aziz T, Martin J, Rowland M, Kleinschmidt I, Manjurano A, Mosha FW, Protopopoff N. Community benefits of mass distribution of three types of dual-active-ingredient long-lasting insecticidal nets against malaria prevalence in Tanzania: evidence from a 3-year cluster-randomized controlled trial. BMC Public Health 2025; 25:346. [PMID: 39875853 PMCID: PMC11773712 DOI: 10.1186/s12889-025-21586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) were once fully effective for the prevention of malaria; however, mosquitoes have developed resistance to pyrethroids, the main class of insecticides used on nets. Dual active ingredient LLINs (dual-AI LLINs) have been rolled out as an alternative to pyrethroid (PY)-only LLINs to counteract this. Understanding the minimum community usage at which these LLINs elicit an effect that also benefits non-users against malaria infection is important. METHODS We conducted a secondary analysis of a 3-year randomized controlled trial (RCT) in 84 clusters in North-western Tanzania to evaluate the effectiveness of three dual-AI LLINs: pyriproxyfen and alpha(α)-cypermethrin, chlorfenapyr and α-cypermethrin, and the piperonyl-butoxide (PBO) and permethrin compared to α-cypermethrin only LLINs. We measured malaria infection prevalence using 5 cross-sectional surveys between 2020 and 2022. We assessed net usage at the cluster level and malaria infection in children aged from 6 months to 14 years in 45 households per cluster. The trial was registered as a clinical trial on www. CLINICALTRIALS gov : ClinicalTrials.gov (NCT03554616) on 2018-06-13. RESULTS A total of 22,479 children from 12,654 households were tested for malaria using rapid diagnostic tests in January 2020, 2021, & 2022 and July 2020 & 2021. Among non-users, community-level usage of > 40% of dual-AI LLIN was significantly associated with protection against malaria infection: chlorfenapyr arm (OR: 0.44 (95% CI: 0.27-0.71), p = 0.0009), PBO arm (OR: 0.55 (95% CI: 0.33-0.94), p = 0.0277) and pyriproxyfen arm (OR: 0.61 (95% CI: 0.37-0.99), p = 0.0470) compared with non-users in clusters with > 40% usage of pyrethroid-only LLINs. There were indications of some protection against malaria infection to non-users in the chlorfenapyr arm when community-level usage was ≤ 40% (OR: 0.65 (95% CI: 0.42-1.01), p = 0.0528) compared to those living in clusters with > 40% usage of pyrethroid-only LLINs. CONCLUSION Our study demonstrated that at a community usage of 40% or more of dual-AI LLINs non-users benefited from the presence of these nets. Noticeably, even when usage was ≤ 40% in the chlorfenapyr arm, non-users were better protected than non-users in the higher coverage pyrethroid-only arm. The greater difference in malaria risk observed between users and non-users indicates that LLINs play a crucial role in providing personal protection against malaria infection for the people using the net.
Collapse
Affiliation(s)
- Eliud Andrea Lukole
- Department of Parasitology, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania.
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
| | - Jackie Cook
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Jacklin F Mosha
- Department of Parasitology, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Nancy S Matowo
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Elizabeth Mallya
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Tatu Aziz
- Department of Parasitology, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Jacklin Martin
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Alphaxard Manjurano
- Department of Parasitology, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Franklin W Mosha
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Filippou C, Coutts RHA, Kotta-Loizou I, El-Kamand S, Papanicolaou A. Transcriptomic Analysis Reveals Molecular Mechanisms Underpinning Mycovirus-Mediated Hypervirulence in Beauveria bassiana Infecting Tenebrio molitor. J Fungi (Basel) 2025; 11:63. [PMID: 39852482 PMCID: PMC11766762 DOI: 10.3390/jof11010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Mycoviral infection can either be asymptomatic or have marked effects on fungal hosts, influencing them either positively or negatively. To fully understand the effects of mycovirus infection on the fungal host, transcriptomic profiling of four Beauveria bassiana isolates, including EABb 92/11-Dm that harbors mycoviruses, was performed 48 h following infection of Tenebrio molitor via topical application or injection. Genes that participate in carbohydrate assimilation and transportation, and those essential for fungal survival and oxidative stress tolerance, calcium uptake, and iron uptake, were found to be overexpressed in the virus-infected isolate during the mid-infection stage. Mycotoxin genes encoding bassianolide and oosporein were switched off in all isolates. However, beauvericin, a mycotoxin capable of inducing oxidative stress at the molecular level, was expressed in all four isolates, indicating an important contribution to virulence against T. molitor. These observations suggest that detoxification of immune-related (oxidative) defenses and nutrient scouting, as mediated by these genes, occurs in mid-infection during the internal growth phase. Consequently, we observe a symbiotic relationship between mycovirus and fungus that does not afflict the host; on the contrary, it enhances the expression of key genes leading to a mycovirus-mediated hypervirulence effect.
Collapse
Affiliation(s)
- Charalampos Filippou
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sam El-Kamand
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| |
Collapse
|
7
|
Djoko Tagne CS, Kouamo MFM, Tchouakui M, Muhammad A, Mugenzi LJL, Tatchou-Nebangwa NMT, Thiomela RF, Gadji M, Wondji MJ, Hearn J, Desire MH, Ibrahim SS, Wondji CS. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. Genetics 2025; 229:1-40. [PMID: 39509710 PMCID: PMC11708915 DOI: 10.1093/genetics/iyae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic mechanisms conferring pyrethroid resistance in malaria vectors are jeopardizing the effectiveness of insecticide-based interventions, and identification of their markers is a key requirement for robust resistance management. Here, using a field-lab-field approach, we demonstrated that a single mutation G454A in the P450 CYP9K1 is driving pyrethroid resistance in the major malaria vector Anopheles funestus in East and Central Africa. Drastic reduction in CYP9K1 diversity was observed in Ugandan samples collected in 2014, with the selection of a predominant haplotype (G454A mutation at 90%), which was completely absent in the other African regions. However, 6 years later (2020) the Ugandan 454A-CYP9K1 haplotype was found predominant in Cameroon (84.6%), but absent in Malawi (Southern Africa) and Ghana (West Africa). Comparative in vitro heterologous expression and metabolism assays revealed that the mutant 454A-CYP9K1 (R) allele significantly metabolizes more type II pyrethroid (deltamethrin) compared with the wild G454-CYP9K1 (S) allele. Transgenic Drosophila melanogaster flies expressing 454A-CYP9K1 (R) allele exhibited significantly higher type I and II pyrethroids resistance compared to flies expressing the wild G454-CYP9K1 (S) allele. Furthermore, laboratory testing and field experimental hut trials in Cameroon demonstrated that mosquitoes harboring the resistant 454A-CYP9K1 allele significantly survived pyrethroids exposure (odds ratio = 567, P < 0.0001). This study highlights the rapid spread of pyrethroid-resistant CYP9K1 allele, under directional selection in East and Central Africa, contributing to reduced bed net efficacy. The newly designed DNA-based assay here will add to the toolbox of resistance monitoring and improving its management strategies.
Collapse
Affiliation(s)
- Carlos S Djoko Tagne
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Mersimine F M Kouamo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Leon J L Mugenzi
- Syngenta Crop Protection Department, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - Nelly M T Tatchou-Nebangwa
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O Box 63, Buea, Cameroon
| | - Riccado F Thiomela
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Mahamat Gadji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College (SRUC), RAVIC, Inverness IV2 5NA, UK
| | - Mbouobda H Desire
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Sulaiman S Ibrahim
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
8
|
Namango IH, Moore SJ, Marshall C, Saddler A, Kaftan D, Tenywa FC, Makungwa N, Limwagu AJ, Mapua S, Odufuwa OG, Ligema G, Ngonyani H, Matanila I, Bharmal J, Moore J, Finda M, Okumu F, Hetzel MW, Ross A. A matter of timing: Biting by malaria-infected Anopheles mosquitoes and the use of interventions during the night in rural south-eastern Tanzania. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003864. [PMID: 39739884 DOI: 10.1371/journal.pgph.0003864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 01/02/2025]
Abstract
Knowing when and where infected mosquitoes bite is required for estimating accurate measures of malaria risk, assessing outdoor exposure, and designing intervention strategies. This study combines secondary analyses of a human behaviour survey and an entomological survey carried out in the same area to estimate human exposure to malaria-infected Anopheles mosquitoes throughout the night in rural villages in south-eastern Tanzania. Mosquitoes were collected hourly from 6PM to 6AM indoors and outdoors by human landing catches in 2019, and tested for Plasmodium falciparum sporozoite infections using ELISA. In nearby villages, a trained member in each selected household recorded the whereabouts and activities of the household members from 6PM to 6AM in 2016 and 2017. Vector control use was high: 99% of individuals were reported to use insecticide-treated nets and a recent trial of indoor residual spraying had achieved 80% coverage. The risk of being bitten by infected mosquitoes outdoors, indoors in bed, and indoors but not in bed, and use of mosquito nets was estimated for each hour of the night. Individuals were mainly outdoors before 9PM, and mainly indoors between 10PM and 5AM. The main malaria vectors caught were Anopheles funestus sensu stricto and An. arabiensis. Biting rates were higher in the night compared to the evening or early morning. Due to the high use of ITNs, an estimated 85% (95% CI 81%, 88%) of all exposure in children below school age and 76% (71%, 81%) in older household members could potentially be averted by ITNs under current use patterns. Outdoor exposure accounted for an estimated 11% (8%, 15%) of infective bites in children below school age and 17% (13%, 22%) in older individuals. Maintaining high levels of ITN access, use and effectiveness remains important for reducing malaria transmission in this area. Interventions against outdoor exposure would provide additional protection.
Collapse
Affiliation(s)
- Isaac Haggai Namango
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah J Moore
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
- School of Life Science and Biotechnology, Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| | - Carly Marshall
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
- British Columbia Centre for Excellence in HIV/AIDS, British Columbia, Vancouver, Canada
| | - Adam Saddler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
- Telethon Kids Institute, Perth, Australia
| | - David Kaftan
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Frank Chelestino Tenywa
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Noely Makungwa
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alex J Limwagu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Salum Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- University of Salford, Manchester, United Kingdom
| | - Olukayode G Odufuwa
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Godfrey Ligema
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hassan Ngonyani
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Isaya Matanila
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jameel Bharmal
- Innovative Vector Control Consortium, Dar es Salaam, Tanzania
| | - Jason Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marceline Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Fredros Okumu
- School of Life Science and Biotechnology, Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Manuel W Hetzel
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Zembere K. The potential for attractive toxic sugar baits to complement core malaria interventions strategies: the need for more evidence. Malar J 2024; 23:356. [PMID: 39580442 PMCID: PMC11585956 DOI: 10.1186/s12936-024-05161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/29/2024] [Indexed: 11/25/2024] Open
Abstract
Despite its success, the increased use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) has contributed to the development of insecticide resistance in malaria vectors and shifts in biting patterns of the primary malaria vectors. The limitations portrayed by ITNs and IRS suggest that their use alone will not reduce malaria to elimination levels as the remaining untargeted vectors continue to sustain residual malaria transmission (RMT). RMT is a big challenge to malaria elimination because even at 100% ITN and IRS coverage, malaria transmission persists as outdoor vectors avoid or reduce contact with such interventions. With the recent increase in the outdoor biting Anopheles arabiensis (hard to control using routine tools), in most African countries, including Malawi, novel tools such as the attractive toxic sugar baits (ATSBs), targeting outdoor biting vectors in addition to controlling indoor vectors are greatly needed to complement current tools, and could facilitate sustainable malaria control. The ATSB is one potential tool that has been tested in different settings with promising results, and more trials are ongoing in other African countries. ATSBs have been attributed to reductions of mosquito densities and malaria incidence with over 80% and 50%, respectively, and there is hope that by 2025, ATSBs would be considered for the World Health Organization prequalification listing as a complementary tool for mosquito control. This article highlights evidence that ATSBs can advance malaria elimination by complementing indoor-based tools. However, for effective control programmes and elimination campaigns, the use of ATSBs alone might not be adequate, and this article recommends the combined use of ATSBs with either IRS or ITNs.
Collapse
|
10
|
García J, Chong M, Rojas AL, McMillan WO, Bennett KL, Lenhart AE, Chaves LF, Loaiza JR. Widespread geographic distribution of Aedes aegypti (Diptera: Culicidae) kdr variants in Panama. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1448-1458. [PMID: 39259661 PMCID: PMC11924955 DOI: 10.1093/jme/tjae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
We searched for evidence of knockdown resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) mosquitoes from Panama. Conventional PCR was performed on 469 Ae. aegypti and 349 Ae. albopictus. We did not discover kdr mutations in Ae. albopictus, but 2 nonsynonymous kdr mutations, V1016I (found in 101 mosquitoes) and F1534C (found in 29 of the mosquitoes with the V1016I), were detected in Ae. aegypti. These kdr mutations were present in all specimens that were successfully sequenced for both IIS5-S6 and IIIS6 regions, which included samples collected from 8 of the 10 provinces of Panama. No other kdr mutations were found in Ae. aegypti, including V1016G, which has already been reported in Panama. Findings suggest that the V1016I-F1534C variant is prevalent in Panama, which might be related to the introduction and passive movement of mosquitoes as part of the used-tire trade. However, we cannot rule out the possibility that selection on de novo replacement of kdr mutations also partially explains the widespread distribution pattern of these mutations. These 2 ecological and evolutionary processes are not mutually exclusive, though, as they can occur in tandem. Research in Panama needs to calculate the genotypic and allelic frequencies of kdr alleles in local Ae. aegypti populations and to test whether some combinations confer phenotypic resistance or not. Finally, future studies will have to track the introduction and spreading of new kdr mutations in both Aedes species.
Collapse
Affiliation(s)
- Joel García
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panama, Campus Octavio Méndez Pereira, Avenida Transístmica, Panama City, Panama
| | - Mabelle Chong
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Ambar L Rojas
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - W Owen McMillan
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Kelly L Bennett
- Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Audrey E Lenhart
- Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Luis F Chaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
- Department of Geography, Indiana University, Bloomington, IN, USA
| | - Jose R Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panama, Campus Octavio Méndez Pereira, Avenida Transístmica, Panama City, Panama
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Panama City, Panama
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama
| |
Collapse
|
11
|
Abbasi M, Yousefi S, Nikpour F. Assessing agricultural practices and insecticides resistance for effective malaria vector control in northwestern Iran. Trop Med Health 2024; 52:81. [PMID: 39511698 PMCID: PMC11542464 DOI: 10.1186/s41182-024-00653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND After three years with no local transmission of malaria, an outbreak occurred in Iran in 2022. Key malaria control methods in Iran are including indoor residual spraying (IRS), long-lasting insecticide-treated nets (LLINs), and prompt diagnosis and treatment of malaria cases. Anopheles sacharovi is one of the main malaria vectors in Iran. This study aimed to determine the insecticides resistance status of An. sacharovi in northwestern Iran, to inform effective vector control programs in this region. METHODS Larval stages of An. sacharovi were collected from various larval habitats located in the villages along the Aras River. Adult susceptibility tests were performed on An. sacharovi using diagnostic doses of insecticides accordance to World Health Organization (WHO) guidelines. The study also evaluated agricultural insecticide and fertilizer usage alongside the presence of natural mosquito predators in breeding sites in the study area. RESULTS Alongside various chemicals such as silica, humic acid, superphosphate, sulfur, urea, and solupotasse at different dose levels, organophosphorus and pyrethroid insecticides are commonly used in rice fields and orchards. Anopheles sacharovi displayed diverse reactions to insecticides, demonstrating resistance to DDT but sensitivity to malathion, and showing similar reactions to carbamate and pyrethroid insecticides. CONCLUSIONS These results provide significant insights into agricultural practices and the presence of mosquito larvae in the study area. The extensive use of a specific herbicide illustrates its popularity among farmers for weed control, while other agricultural products focus on enhancing soil fertility and productivity. The absence of mosquito larvae in habitats with predators indicates the usefulness of these predators in controlling the population of mosquitoes. The resistance of mosquitoes to certain insecticides highlights the need for careful selection and intermittent use of insecticides in vector control programs. These findings can inform the development of targeted strategies to reduce malaria transmission risks. Further research is essential for assessing the effectiveness of these interventions.
Collapse
Affiliation(s)
- Madineh Abbasi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saideh Yousefi
- Sirjan School of Medical Sciences, Sirjan, Iran.
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran.
| | - Fatemeh Nikpour
- Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Department of Vector-Borne Diseases, Centre for Communicable Diseases Control, Ministry of Health, Tehran, Iran
| |
Collapse
|
12
|
Kumari R, Lindgren C, Kumar R, Forsgren N, Andersson CD, Ekström F, Linusson A. Enzyme Dynamics Determine the Potency and Selectivity of Inhibitors Targeting Disease-Transmitting Mosquitoes. ACS Infect Dis 2024; 10:3664-3680. [PMID: 39291389 PMCID: PMC11474975 DOI: 10.1021/acsinfecdis.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Vector control of mosquitoes with insecticides is an important tool for preventing the spread of mosquito-borne diseases including malaria, dengue, chikungunya, and Zika. Development of active ingredients for insecticides are urgently needed because existing agents exhibit off-target toxicity and are subject to increasing resistance. We therefore seek to develop noncovalent inhibitors of the validated insecticidal target acetylcholinesterase 1 (AChE1) from mosquitoes. Here we use molecular dynamics simulations to identify structural properties essential for the potency of reversible inhibitors targeting AChE1 from Anopheles gambiae (AgAChE1), the malaria-transmitting mosquito, and for selectivity relative to the vertebrate Mus musculus AChE (mAChE). We show that the collective motions of apo AgAChE1 and mAChE differ, with AgAChE1 exhibiting less dynamic movement. Opening and closing of the gorge, which regulates access to the catalytic triad, is enabled by different mechanisms in the two species, which could be linked to their differing amino acid sequences. Inhibitor binding reduced the overall magnitude of dynamics of AChE. In particular, more potent inhibitors reduced the flexibility of the Ω loop at the entrance of the gorge. The selectivity of inhibitors for AgAChE1 over mAChE derives from the positioning of the α-helix lining the binding gorge. Our findings emphasize the need to consider dynamics when developing inhibitors targeting this enzyme and highlight factors needed to create potent and selective AgAChE1 inhibitors that could serve as active ingredients to combat disease-transmitting mosquitoes.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Rajendra Kumar
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | - Nina Forsgren
- CBRN
Defense and Security, Swedish Defense Research
Agency, Umeå SE-90621, Sweden
| | | | - Fredrik Ekström
- CBRN
Defense and Security, Swedish Defense Research
Agency, Umeå SE-90621, Sweden
| | - Anna Linusson
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| |
Collapse
|
13
|
Kumar J, Kumar A, Gupta Y, Vashisht K, Kumar S, Sharma A, Kumar R, Sharon A, Tripathi PK, Das R, Singh OP, Singh S, Chakraborti S, Sunil S, Pandey KC. A cub and sushi domain-containing protein with esterase-like activity confers insecticide resistance in the Indian malaria vector Anopheles stephensi. J Biol Chem 2024; 300:107759. [PMID: 39260695 PMCID: PMC11474193 DOI: 10.1016/j.jbc.2024.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Chemical insecticides (organophosphates and pyrethroids) in the form of IRS (Indoor Residual Sprays) and LLINs (Long Lasting Insecticidal Nets) are the cornerstone for vector control, globally. However, their incessant use has resulted in widespread development of resistance in mosquito vectors, warranting continuous monitoring and investigation of the underlying mechanisms of resistance. Here, we identified a previously uncharacterized- Cub and Sushi Domain containing Insecticide Resistance (CSDIR) protein and generated evidence for its role in mediating insecticide resistance in the Anopheles stephensi. A strong binding affinity of the CSDIR protein towards different classes of insecticide molecules-malathion (KD 6.43 μM) and deltamethrin (KD 46.7 μM) were demonstrated using MD simulation studies and Surface Plasmon Resonance (SPR) experiments. Further, the recombinant CSDIR913-1190 protein exhibited potent esterase-like activity (α-naphthyl acetate (α-NA)- 1.356 ± 0.262 mM/min/mg and β-naphthyl acetate (β -NA)- 1.777 ± 0.220 mM/min/mg). Interestingly, dsRNA-mediated gene silencing of the CSDIR transcripts caused >60% mortality in resistant An. stephensi upon 1-h exposure to deltamethrin and malathion insecticides, compared to the control group. A significant reduction in the esterase-like activity was also observed against α-NA (p = 0.004) and β-NA (p = 0.025) in CSDIR silenced mosquitoes compared to the control group. Using computational analysis and experimental data, our results provided significant evidence of the involvement of the CSDIR protein in mediating insecticide resistance in Anopheles mosquitoes. Thereby making the CSDIR protein, a novel candidate for exploration of novel insecticide molecules. These data would also be helpful in further understanding the development of metabolic resistance by the Anopheles vector.
Collapse
Affiliation(s)
- Jatin Kumar
- ICMR- National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ankit Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yash Gupta
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kapil Vashisht
- ICMR- National Institute of Malaria Research, New Delhi, India
| | - Shivam Kumar
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, Jharkhand, India
| | - Arvind Sharma
- ICMR- National Institute of Malaria Research, New Delhi, India
| | - Raj Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, Jharkhand, India
| | | | - Ram Das
- ICMR- National Institute of Malaria Research, New Delhi, India
| | | | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumyananda Chakraborti
- ICMR- National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sujatha Sunil
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kailash C Pandey
- ICMR- National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
14
|
Jobe NB, Erickson M, Rydberg SE, Huijben S, Paaijmans KP. Repelling Aedes aegypti mosquitoes with electric fields using insulated conductor wires. PLoS Negl Trop Dis 2024; 18:e0012493. [PMID: 39269948 PMCID: PMC11424001 DOI: 10.1371/journal.pntd.0012493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/25/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The control and prevention of mosquito-borne diseases is mostly achieved with insecticides. However, their use has led to the rapid development and spread of insecticide resistance worldwide. Health experts have called for intensified efforts to find new approaches to reduce mosquito populations and human-mosquito contact. A promising new tool is the use of electrical fields (EFs), whereby mosquitoes are repelled by charged particles in their flight path. Such particles move between two or more conductors, and the use of uninsulated copper or aluminum plates as conductors has been proven to be effective at repelling mosquitoes. Here, for the first time, we assess if EFs generated using a single row of insulated conductor wires (ICWs) can also successfully repel mosquitoes, and whether mosquitoes are equally repelled at the same EF strength when the electrodes are a) orientated differently (horizontal vs. vertical placement), and b) spaced more apart. METHODOLOGY/PRINCIPAL FINDINGS Over a period of 23 hours, the number of host-seeking female Aedes aegypti mosquitoes that were successfully repelled by EFs, using ICWs, at EF strengths ranging from 0 kV/cm (control) to 9.15 kV/cm were quantified. Mosquitoes were released inside a 220×220×180 cm room and lured into a BG-Pro trap that was equipped with a BG-counter and baited with CO2 using dry ice. Mosquitoes had to pass through an EF window, that contained a single row of ICWs with alternating polarity, to reach the bait. The baseline interaction between EF strength and repellency was assessed first, after which the impact of different ICW orientations and ICW distances on repellency were determined. Over 50% of mosquitoes were repelled at EF strengths of ≥ 3.66 kV/cm. A linear regression model showed that a vertical ICW orientation (vertical vs. horizontal) had a small but insignificant increased impact on mosquito repellency (p = 0.059), and increasing ICW distance (while maintaining the same EF strength) significantly reduced repellency (p = 0.01). CONCLUSIONS/SIGNIFICANCE ICWs can be used to generate EFs that partially repel host-seeking mosquitoes, which will reduce human-mosquito contact. While future studies need to assess if (i) increased repellency can be achieved, and (ii) a repellency of 50-60% is sufficient to impact disease transmission, it is encouraging that EF repellency using ICWs is higher compared to that of some spatial repellent technologies currently in development. This technology can be used in the housing improvement toolkit (i.e. preventing mosquito entry through eaves, windows, and doors). Moreover, the use of cheap, over-the-counter ICWs will mean that the technology is more accessible worldwide, and easier to manufacture and implement locally.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
| | - Michael Erickson
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
| | - Sarah E Rydberg
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States America
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States America
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Tchouakui M, Ibrahim SS, Mangoua MK, Thiomela RF, Assatse T, Ngongang-Yipmo SL, Muhammad A, Mugenzi LJM, Menze BD, Mzilahowa T, Wondji CS. Substrate promiscuity of key resistance P450s confers clothianidin resistance while increasing chlorfenapyr potency in malaria vectors. Cell Rep 2024; 43:114566. [PMID: 39088320 PMCID: PMC11372441 DOI: 10.1016/j.celrep.2024.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
Novel insecticides were recently introduced to counter pyrethroid resistance threats in African malaria vectors. To prolong their effectiveness, potential cross-resistance from promiscuous pyrethroid metabolic resistance mechanisms must be elucidated. Here, we demonstrate that the duplicated P450s CYP6P9a/-b, proficient pyrethroid metabolizers, reduce neonicotinoid efficacy in Anopheles funestus while enhancing the potency of chlorfenapyr. Transgenic expression of CYP6P9a/-b in Drosophila confirmed that flies expressing both genes were significantly more resistant to neonicotinoids than controls, whereas the contrasting pattern was observed for chlorfenapyr. This result was also confirmed by RNAi knockdown experiments. In vitro expression of recombinant CYP6P9a and metabolism assays established that it significantly depletes both clothianidin and chlorfenapyr, with metabolism of chlorfenapyr producing the insecticidally active intermediate metabolite tralopyril. This study highlights the risk of cross-resistance between pyrethroid and neonicotinoid and reveals that chlorfenapyr-based control interventions such as Interceptor G2 could remain efficient against some P450-based resistant mosquitoes.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK
| | - Mersimine K Mangoua
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Riccado F Thiomela
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Tatiane Assatse
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Sonia L Ngongang-Yipmo
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK; Centre for Biotechnology Research, Bayero University, PMB 3011, Kano, Nigeria
| | - Leon J M Mugenzi
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Themba Mzilahowa
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Entomology Department, P.O. Box 265, Blantyre, Malawi
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK; International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
16
|
Perugini E, Pichler V, Guelbeogo WM, Micocci M, Poggi C, Manzi S, Ranson H, Della Torre A, Mancini E, Pombi M. Longitudinal survey of insecticide resistance in a village of central region of Burkina Faso reveals co-occurrence of 1014F, 1014S and 402L mutations in Anopheles coluzzii and Anopheles arabiensis. Malar J 2024; 23:250. [PMID: 39164725 PMCID: PMC11334353 DOI: 10.1186/s12936-024-05069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Pyrethroid resistance is one of the major threats for effectiveness of insecticide-treated bed nets (ITNs) in malaria vector control. Genotyping of mutations in the voltage gated sodium channel (VGSC) gene is widely used to easily assess the evolution and spread of pyrethroid target-site resistance among malaria vectors. L1014F and L1014S substitutions are the most common and best characterized VGSC mutations in major African malaria vector species of the Anopheles gambiae complex. Recently, an additional substitution involved in pyrethroid resistance, i.e. V402L, has been detected in Anopheles coluzzii from West Africa lacking any other resistance alleles at locus 1014. The evolution of target-site resistance mutations L1014F/S and V402L was monitored in An. coluzzii and Anopheles arabiensis specimens from a Burkina Faso village over a 10-year range after the massive ITN scale-up started in 2010. METHODS Anopheles coluzzii (N = 300) and An. arabiensis (N = 362) specimens collected both indoors and outdoors by different methods (pyrethrum spray catch, sticky resting box and human landing collections) in 2011, 2015 and 2020 at Goden village were genotyped by TaqMan assays and sequencing for the three target site resistance mutations; allele frequencies were statistically investigated over the years. RESULTS A divergent trend in resistant allele frequencies was observed in the two species: 1014F decreased in An. coluzzii (from 0.76 to 0.52) but increased in An. arabiensis (from 0.18 to 0.70); 1014S occurred only in An. arabiensis and slightly decreased over time (from 0.33 to 0.23); 402L increased in An. coluzzii (from 0.15 to 0.48) and was found for the first time in one An. arabiensis specimen. In 2020 the co-occurrence of different resistance alleles reached 43% in An. coluzzii (alleles 410L and 1014F) and 32% in An. arabiensis (alleles 1014F and 1014S). CONCLUSIONS Overall, an increasing level of target-site resistance was observed among the populations with only 1% of the two malaria vector species being wild type at both loci, 1014 and 402, in 2020. This, together with the co-occurrence of different mutations in the same specimens, calls for future investigations on the possible synergism between resistance alleles and their phenotype to implement local tailored intervention strategies.
Collapse
Affiliation(s)
- Eleonora Perugini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Verena Pichler
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et Formation Sur le Paludisme, Ouagadougou, Burkina Faso
| | - Martina Micocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cristiana Poggi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sara Manzi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, UK
| | - Alessandra Della Torre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Emiliano Mancini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Marco Pombi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Nkahe DL, Kopya E, Ngangue Siewe NI, Ndjeunia Mbiakop P, Kala Chouakeu NA, Mimpfoundi R, Kekeunou S, Awono-Ambene P, Antonio-Nkondjio C. Durability of PBO nets (Olyset Plus®), 12 months after their distribution in Bertoua, Cameroon. Parasite Epidemiol Control 2024; 26:e00373. [PMID: 39228793 PMCID: PMC11369369 DOI: 10.1016/j.parepi.2024.e00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/06/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024] Open
Abstract
Background The rapid spread of pyrethroid resistance has led to a change in strategy, going from pyrethroid-based nets to PBO + pyrethroid-treated nets. Although these new nets may significantly improve the control of pyrethroid-resistant mosquitoes, their durability in the field remain not yet well documented. This study investigates the durability and washing resistance of Olyset-Plus nets in the city centre and rural areas of Bertoua, Cameroon. In each site, a semi-structured questionnaire was administered to at least 190 households with an Olyset-Plus net. Factors such as net use, physical integrity and bioefficacy were recorded. Bioassays were conducted on the collected nets to assess their bioefficacy and resistance to washing. They were tested against wild Anopheles gambiae sensus lato (s.l.). Unused nets and the Kisumu strain were used as controls. Washing and cone testing of the nets was carried out according to standard WHO protocols. Results A high rate of net use by children was recorded in the urban area (89.1% (106/119)) compared to the rural area (39.7% (118/297)). The majority of Olyset-Plus nets inspected 82.2% (162/197) in the rural area and 88% (206/234) in the urban centre were in good condition (Hole Index<64). Only 5.6% and 6.8% of nets were badly torn in rural and urban sites respectively. Nets were washed more regularly in the urban centre. 88.1% of urban dwellers reported having washed their nets at least once compared to only 62% of rural dwellers. Bioefficacy tests with nets indicated a mortality rate ranging from 66% for unwashed nets to 86.7% for nets washed at least once. Bioefficacy varied significantly in the city of Bertoua according to net washing frequency, soaking time, soap type and drying location, whereas in the rural village, only washing(washed or unwashed) and soaking status (soaked or unsoaked) significantly influenced the bioefficacy of Olyset-Plus nets. Conclusions This study revealed different handling practices of bed nets in rural and urban settings which could significantly affect Olyset-Plus nets bio-efficacy and durability. Routine monitoring and sensitization of communities to best practices concerning bed nets usage and handling during mass distribution might enhance the net durability in the community.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Nasser Idriss Ngangue Siewe
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Department of Animal Physiology and Biology, Faculty of Science, University of Douala, B.P. 24157, Cameroon
| | - Paulette Ndjeunia Mbiakop
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Nelly Armanda Kala Chouakeu
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Vector-Borne Diseases Laboratory of the Research Unit of Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Rémy Mimpfoundi
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Sévilor Kekeunou
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
18
|
Kambou SS, Valente A, Agnew P, Hien DFDS, Yerbanga RS, Moiroux N, Dabire KR, Pennetier C, Cohuet A, Carrasco D. Non-contact detection of pyrethroids widely used in vector control by Anopheles mosquitoes. PLoS One 2024; 19:e0298512. [PMID: 38995958 PMCID: PMC11244766 DOI: 10.1371/journal.pone.0298512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying. This opens the way to the emergence of a wide range of behavioral adaptations among malaria vectors. However, the spatial sensory detection of these molecules is controversial and needs to be demonstrated. The goal of this study was to behaviorally characterize the non-contact detection of three of the most common pyrethroids used for malaria vector control: permethrin, deltamethrin an ⍺-cypermethrin. To reach this goal, we recorded the behavior (takeoff response) of Anopheles gambiae pyrethroid-sensitive and resistant laboratory strains, as well as field collected mosquitoes from the Gambiae Complex, when exposed to the headspace of bottles containing different doses of the insecticides at 25 and 35°C, in order to represent a range of laboratory and field temperatures. We found the proportion of laboratory susceptible and resistant female mosquitoes that took off was, in all treatments, dose and the temperature dependent. Sensitive mosquitoes were significantly more prone to take off only in the presence of ⍺-cypermethrin, whereas sensitive and resistant mosquitoes showed similar responses to permethrin and deltamethrin. Field-collected mosquitoes of the Gambiae Complex were also responsive to permethrin, independently of the species identity (An. gambiae, An. coluzzii and An. arabiensis) or their genotypes for the kdr mutation, known to confer resistance to pyrethroids. The observed ability of Anopheles spp. mosquitoes to detect insecticides without contact could favor the evolution of behavioral modifications that may allow them to avoid or reduce the adverse effect of insecticides and thus, the development of behavioral resistance.
Collapse
Affiliation(s)
- Sassan Simplice Kambou
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Adeline Valente
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Philip Agnew
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Domonbabele François de Sales Hien
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé Serge Yerbanga
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut des Sciences et Techniques (InSTech), Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Kounbobr Roch Dabire
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - David Carrasco
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
19
|
Sovegnon PM, Akoton R, Stopard IJ, Churcher TS, McCall PJ, Ranson H, Foster GM, Djogbénou LS. Efficacy of Interceptor G2, Royal Guard and PermaNet 3.0 against pyrethroid-resistant Anopheles gambiae s.l. from Za-Kpota, southern Benin: an experimental hut trial. Parasit Vectors 2024; 17:300. [PMID: 38992693 PMCID: PMC11238393 DOI: 10.1186/s13071-024-06372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND The widespread use of insecticide-treated nets (ITNs) has significantly contributed to the reduction in malaria cases and deaths observed across Africa. Unfortunately, this control strategy is threatened by the rapid spread of pyrethroid resistance in malaria vectors. Dual-active-ingredient insecticidal nets are now available to mitigate the impact of pyrethroid resistance. To facilitate evidence-based decisions regarding product selection in specific use settings, data are needed on the efficacy of these different nets against local mosquito populations. METHODS Two experimental hut trials were performed in Za-Kpota, southern Benin in 2021 to evaluate the performance of Interceptor G2 (BASF), Royal Guard (Disease Control Technologies) and PermaNet 3.0 (Vestergaard Frandsen), all dual-active-ingredient bednets, in comparison to untreated or standard pyrethroid-treated bednets, against free-flying wild Anopheles gambiae mosquitoes. The performance of some of these next-generation nets was compared to the same type of nets that have been in use for up to 2 years. Mosquitoes collected in the huts were followed up after exposure to assess the sublethal effects of treatments on certain life-history traits. RESULTS The predominant species in the study site was Anopheles gambiae sensu stricto (An. gambiae s.s.). Both Anopheles coluzzii and An. gambiae s.s. were resistant to pyrethroids (deltamethrin susceptibility was restored by piperonyl butoxide pre-exposure). In the experimental hut trials, the highest blood-feeding inhibition (5.56%) was recorded for the Royal Guard net, relative to the standard PermaNet 2.0 net (44.44% inhibition). The highest 72-h mortality rate (90.11%) was recorded for the Interceptor G2 net compared to the PermaNet 2.0 net (56.04%). After exposure, the risk of death of An. gambiae sensu lato (An. gambiae s.l.) was 6.5-fold higher with the Interceptor G2 net and 4.4-fold higher with the PermaNet 3.0 net compared to the respective untreated net. Lower mosquito mortality was recorded with an aged Interceptor G2 net compared to a new Interceptor G2 net. Oviposition rates were lower in mosquitoes collected from huts containing ITNs compared to those of untreated controls. None of the mosquitoes collected from huts equipped with Royal Guard nets laid any eggs. CONCLUSIONS The Royal Guard and Interceptor G2 nets showed a potential to significantly improve the control of malaria-transmitting vectors. However, the PermaNet 3.0 net remains effective in pyrethroid-resistant areas.
Collapse
Affiliation(s)
- Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Cotonou, Benin.
| | - Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Cotonou, Benin
| | - Isaac J Stopard
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Geraldine M Foster
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Luc Salako Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Cotonou, Benin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
20
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
21
|
Hamid-Adiamoh M, Muhammad AK, Assogba BS, Soumare HM, Jadama L, Diallo M, D'Alessandro U, Ousmane Ndiath M, Erhart A, Amambua-Ngwa A. Mosquitocidal effect of ivermectin-treated nettings and sprayed walls on Anopheles gambiae s.s. Sci Rep 2024; 14:12620. [PMID: 38824239 PMCID: PMC11144240 DOI: 10.1038/s41598-024-63389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Ivermectin (IVM) has been proposed as a new tool for malaria control as it is toxic on vectors feeding on treated humans or cattle. Nevertheless, IVM may have a direct mosquitocidal effect when applied on bed nets or sprayed walls. The potential for IVM application as a new insecticide for long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) was tested in this proof-of-concept study in a laboratory and semi-field environment. Laboratory-reared, insecticide-susceptible Kisumu Anopheles gambiae were exposed to IVM on impregnated netting materials and sprayed plastered- and mud walls using cone bioassays. The results showed a direct mosquitocidal effect of IVM on this mosquito strain as all mosquitoes died by 24 h after exposure to IVM. The effect was slower on the IVM-sprayed walls compared to the treated nettings. Further work to evaluate possibility of IVM as a new insecticide formulation in LLINs and IRS will be required.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia.
| | - Abdul Khalie Muhammad
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Benoit Sessinou Assogba
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Harouna Massire Soumare
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Lamin Jadama
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Moussa Diallo
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Mamadou Ousmane Ndiath
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Annette Erhart
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| |
Collapse
|
22
|
Zuo S, Lu J, Sun Y, Song J, Han S, Feng X, Han ET, Cheng Y. The Plasmodium vivax MSP1P-19 is involved in binding of reticulocytes through interactions with the membrane proteins band3 and CD71. J Biol Chem 2024; 300:107285. [PMID: 38636656 PMCID: PMC11107369 DOI: 10.1016/j.jbc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
The parasite Plasmodium vivax preferentially invades human reticulocytes. Its merozoite surface protein 1 paralog (PvMSP1P), particularly the 19-kDa C-terminal region (PvMSP1P-19), has been shown to bind to reticulocytes, and this binding can be inhibited by antisera obtained by PvMSP1P-19 immunization. The molecular mechanism of interactions between PvMSP1P-19 and reticulocytes during P. vivax invasion, however, remains unclear. In this study, we analyzed the ability of MSP1P-19 to bind to different concentrations of reticulocytes and confirmed its reticulocyte preference. LC-MS analysis was used to identify two potential reticulocyte receptors, band3 and CD71, that interact with MSP1P-19. Both PvMSP1P-19 and its sister taxon Plasmodium cynomolgi MSP1P-19 were found to bind to the extracellular loop (loop 5) of band3, where the interaction of MSP1P-19 with band3 was chymotrypsin sensitive. Antibodies against band3-P5, CD71, and MSP1P-19 reduced the binding activity of PvMSP1P-19 and Plasmodium cynomolgi MSP1P-19 to reticulocytes, while MSP1P-19 proteins inhibited Plasmodium falciparum invasion in vitro in a concentration-dependent manner. To sum up, identification and characterization of the reticulocyte receptor is important for understanding the binding of reticulocytes by MSP1P-19.
Collapse
Affiliation(s)
- Shenghuan Zuo
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Song
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Feng
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
23
|
Tang H, Liu X, Wang S, Wang Y, Bai L, Peng X, Chen M. A relaxin receptor gene RpGPCR41 is involved in the resistance of Rhopalosiphum padi to pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105894. [PMID: 38685221 DOI: 10.1016/j.pestbp.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Rhopalosiphum padi is a global pest that poses a significant threat to wheat crops and has developed resistance to various insecticides. G protein-coupled receptors (GPCRs), known for their crucial role in signaling and biological processes across insect species, have recently gained attention as a potential target for insecticides. GPCR has the potential to contribute to insect resistance through the regulation of P450 gene expression. However, GPCRs in R. padi remained unexplored until this study. We identified a total of 102 GPCRs in R. padi, including 81 receptors from family A, 10 receptors from family B, 8 receptors from family C, and 3 receptors from family D. Among these GPCR genes, 16 were up-regulated in both lambda-cyhalothrin and bifenthrin-resistant strains of R. padi (LC-R and BIF-R). A relaxin receptor gene, RpGPCR41, showed the highest up-regulated expression in both the resistant strains, with a significant increase of 14.3-fold and 22.7-fold compared to the susceptible strain (SS). RNA interference (RNAi) experiments targeting the relaxin receptor significantly increase the mortality of R. padi when exposed to the LC50 concentration of lambda-cyhalothrin and bifenthrin. The expression levels of five P450 genes (RpCYP6CY8, RpCYP6DC1, RpCYP380B1, RpCYP4CH2, and RpCYP4C1) were significantly down-regulated following knockdown of RpGPCR41 in LC-R and BIF-R strains. Our results highlight the involvement of GPCR gene overexpression in the resistance of R. padi to pyrethroids, providing valuable insights into the mechanisms underlying aphid resistance and a potential target for aphid control.
Collapse
Affiliation(s)
- Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yixuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingling Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
24
|
Maximiliano JE, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Anadón A, Martínez MA. Dopaminergic and serotoninergic systems as preferential targets of the pyrethroid tefluthrin exposure in the rat brain. ENVIRONMENTAL RESEARCH 2024; 247:118239. [PMID: 38244974 DOI: 10.1016/j.envres.2024.118239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The monoaminergic systems dopamine (DA) and serotonin (5-HT) play important roles in neuromodulation, such as motor control, cognitive, affective, and neuroendocrine functions. In the present research study, we addressed the hypothesis that exposure to Type I pyrethroid tefluthrin may specifically target the dopaminergic and serotoninergic systems. Tefluthrin could modify brain monoamine neurotransmitters, DA and 5-HT levels as well as dopaminergic and serotoninergic signaling pathways. Adult male Wistar rats were treated with tefluthrin [2.2, 4.4 and 5.5 mg/kg bw, equivalent to 1/10, 1/5 and 1/4 of the acute oral rat lethal dose 50 (LD50) value] by oral gavage, six days. After last dose of tefluthrin, DA and 5-HT and metabolites levels were determined in brain regions (striatum, hippocampus, prefrontal cortex and hypothalamus). Tefluthrin induced a decrease of DA, 5-HT and metabolites contents, in a brain regional- and dose-related manner. The major decreases in DA and 5-HT contents were observed in prefrontal cortex tissue. Here, we studied that in vivo exposure to tefluthrin may alter DA and 5-HT neurotransmission in prefrontal cortex. Transcripts related to (i) dopaminergic [dopamine transporter 1 (Dat1), tyrosine hydroxylase (TH), dopamine receptors (Drd1, Drd2)], (ii) serotoninergic [serotonin transporter (SERT), tryptophan hydroxylase 2 (TPH2), serotonin receptors (5-HT1A, 5-HT2A)] and (iii) DA and 5-HT degradation [monoamine oxidases (MAOA, MAOB)] signaling pathways were investigated. Results showed that tefluthrin induced down-regulation of transcripts responsible for the synthesis and action of DA (TH, Drd1, Drd2) and 5-HT (SERT, TPH2). In contrast, tefluthrin treatment induced up-regulation of genes involved in DA transporter (Dat1), 5-HT receptors (5-HT1A, 5-HT2A) and monoamine oxidases (MAOA, MAOB). Given the integral roles of mitochondrial dysfunction and dopaminergic and serotoninergic alterations as hallmarks of neurodegenerative diseases, our data suggest that tefluthrin may be a candidate for pesticides contributing to neurodegenerative disorders pathogenesis by causing damage to the DA and 5-HT systems.
Collapse
Affiliation(s)
- Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
25
|
Mouhamadou CS, Kouadio FPA, Sadia CG, Behi FK. Trapping and killing performance of a PermaNet 2.0 hybrid mosquito trapping bednet: an experimental hut evaluation. Wellcome Open Res 2024; 8:428. [PMID: 38586160 PMCID: PMC10995533 DOI: 10.12688/wellcomeopenres.19759.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Background Despite the huge global effort , there has been an increase in malaria morbidity and mortality in sub-Saharan Africa since 2015, from 212 million cases and 429,000 deaths in 2015 to 241 million cases and 627,000 deaths in 2020 mainly because of resistance to insecticide. Therefore, advancing innovative approaches is the only sustainable way to fight malaria. Methods Taking advantage of the behavior of mosquitoes around the net, which is almost 70-90% concentrated on the roof, we have developed a two-compartment mosquito bednet, the so-called T-Net for mass mosquito trapping and killing. In the current study, we investigated in an experimental hut trial, the efficacy of trapping-long-lasting insecticide-treated nets (T-LLINs) against Anopheles gambiae s.l. in an insecticide resistance context. Five different arms have been considered in this study including three positive control arms e.g. PermaNet 2.0 LLIN, Tsara boost LLIN and Interceptor generation 2 (IG2) LLIN), one negative control arm using insecticide-free bednet, and one candidate arm using a hybrid-treated trapping bednet made with PermaNet 2.0 LLIN mounted with an insecticide-free compartment (T-LLIN). Results The highest average daily mortality was recorded with the T-LLIN. In total, 678 mosquitoes were killed by T-LLIN among the 760 collected, i.e. 89.2%. Out of these, 317 were found in the trap compartment, representing 46.75% of mortality directly attributable to the mechanical effect of this net. This added value made it possible to quantify the increased in the killing effect that this net would have over the positive control arms: this would be 58.5% higher than the killing effect of PN2.0, 38% higher than that of Tsara boost and 31.5% higher than that of IG2. Conclusion The current study shows potential to maximize the efficiency of the WHO-recommended LLINs by an addition of an insecticide-free trap compartment on top of the net.
Collapse
Affiliation(s)
| | | | - Christabelle G. Sadia
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Cote d'Ivoire
- Nangui Abrogoua University, Abidjan, Lagunes Region, Cote d'Ivoire
| | - Fodjo K. Behi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Cote d'Ivoire
- Nangui Abrogoua University, Abidjan, Lagunes Region, Cote d'Ivoire
| |
Collapse
|
26
|
Sadia CG, Bonneville JM, Zoh MG, Fodjo BK, Kouadio FPA, Oyou SK, Koudou BG, Adepo-Gourene BA, Reynaud S, David JP, Mouahamadou CS. The impact of agrochemical pollutant mixtures on the selection of insecticide resistance in the malaria vector Anopheles gambiae: insights from experimental evolution and transcriptomics. Malar J 2024; 23:69. [PMID: 38443984 PMCID: PMC10916200 DOI: 10.1186/s12936-023-04791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/14/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND There are several indications that pesticides used in agriculture contribute to the emergence and spread of resistance of mosquitoes to vector control insecticides. However, the impact of such an indirect selection pressure has rarely been quantified and the molecular mechanisms involved are still poorly characterized. In this context, experimental selection with different agrochemical mixtures was conducted in Anopheles gambiae. The multi-generational impact of agrochemicals on insecticide resistance was evaluated by phenotypic and molecular approaches. METHODS Mosquito larvae were selected for 30 generations with three different agrochemical mixtures containing (i) insecticides, (ii) non-insecticides compounds, and (iii) both insecticide and non-insecticide compounds. Every five generations, the resistance of adults to deltamethrin and bendiocarb was monitored using bioassays. The frequencies of the kdr (L995F) and ace1 (G119S) target-site mutations were monitored every 10 generations. RNAseq was performed on all lines at generation 30 in order to identify gene transcription level variations and polymorphisms associated with each selection regime. RESULTS Larval selection with agrochemical mixtures did not affect bendiocarb resistance and did not select for ace1 mutation. Contrastingly, an increased deltamethrin resistance was observed in the three selected lines. Such increased resistance was not majorly associated with the presence of kdr L995F mutation in selected lines. RNA-seq identified 63 candidate resistance genes over-transcribed in at least one selected line. These include genes coding for detoxification enzymes or cuticular proteins previously associated with insecticide resistance, and other genes potentially associated with chemical stress response. Combining an allele frequency filtering with a Bayesian FST-based genome scan allowed to identify genes under selection across multiple genomic loci, supporting a multigenic adaptive response to agrochemical mixtures. CONCLUSION This study supports the role of agrochemical contaminants as a significant larval selection pressure favouring insecticide resistance in malaria vectors. Such selection pressures likely impact kdr mutations and detoxification enzymes, but also more generalist mechanisms such as cuticle resistance, which could potentially lead to cross-tolerance to unrelated insecticide compounds. Such indirect effect of global landscape pollution on mosquito resistance to public health insecticides deserves further attention since it can affect the nature and dynamics of resistance alleles circulating in malaria vectors and impact the efficacy of control vector strategies.
Collapse
Affiliation(s)
- Christabelle G Sadia
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire.
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire.
| | - Jean-Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | - Marius G Zoh
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
- Vector Control Product Evaluation Centre (VCPEC)/Institut Pierre Richet, Bouaké, Côte d'Ivoire
| | - Behi K Fodjo
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - France-Paraudie A Kouadio
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - Sebastien K Oyou
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - Benjamin G Koudou
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | | | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | | |
Collapse
|
27
|
Azizi S, Mbewe NJ, Mo H, Edward F, Sumari G, Mwacha S, Msapalla A, Mawa B, Mosha F, Matowo J. Is Anopheles gambiae ( sensu stricto), the principal malaria vector in Africa prone to resistance development against new insecticides? Outcomes from laboratory exposure of An. gambiae ( s.s.) to sub-lethal concentrations of chlorfenapyr and clothianidin. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100172. [PMID: 38444984 PMCID: PMC10912349 DOI: 10.1016/j.crpvbd.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
Indiscriminate use of pesticides in the public health and agriculture sectors has contributed to the development of resistance in malaria vectors following exposure to sub-lethal concentrations. To preserve the efficacy of vector control tools and prevent resistance from spreading, early resistance detection is urgently needed to inform management strategies. The introduction of new insecticides for controlling malaria vectors such as clothianidin and chlorfenapyr requires research to identify early markers of resistance which could be used in routine surveillance. This study investigated phenotypic resistance of Anopheles gambiae (sensu stricto) Muleba-Kis strain using both WHO bottle and tube assays following chlorfenapyr, clothianidin, and alpha-cypermethrin selection against larvae and adults under laboratory conditions. High mortality rates were recorded for both chlorfenapyr-selected mosquitoes that were consistently maintained for 10 generations (24-h mortality of 92-100% and 72-h mortality of 98-100% for selected larvae; and 24-h mortality of 95-100% and 72-h mortality of 98-100% for selected adults). Selection with clothianidin at larval and adult stages showed a wide range of mortality (18-91%) compared to unselected progeny where mortality was approximately 99%. On the contrary, mosquitoes selected with alpha-cypermethrin from the adult selection maintained low mortality (28% at Generation 2 and 23% at Generation 4) against discrimination concentration compared to unselected progeny where average mortality was 51%. The observed resistance in the clothianidin-selected mosquitoes needs further investigation to determine the underlying resistance mechanism against this insecticide class. Additionally, further investigation is recommended to develop molecular markers for observed clothianidin phenotypic resistance.
Collapse
Affiliation(s)
- Salum Azizi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Njelembo J. Mbewe
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hosiana Mo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Felista Edward
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Godwin Sumari
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Silvia Mwacha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Agness Msapalla
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Benson Mawa
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
| | - Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| |
Collapse
|
28
|
Puig-Torrents M, Díez J. Controlling arbovirus infection: high-throughput transcriptome and proteome insights. Front Microbiol 2024; 15:1330303. [PMID: 38414768 PMCID: PMC10896924 DOI: 10.3389/fmicb.2024.1330303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Arboviruses pose a significant threat to public health globally, demanding innovative approaches for their control. For this, a better understanding of the complex web of interactions established in arbovirus-infected mosquitoes is fundamental. High-throughput analyses allow a genome-wide view of arbovirus-induced alterations at different gene expression levels. This review provides a comprehensive perspective into the current literature in transcriptome and proteome landscapes in mosquitoes infected with arboviruses. It also proposes a coordinated research effort to define the critical nodes that determine arbovirus infection and transmission.
Collapse
Affiliation(s)
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
29
|
Yuan L, Zhang K, Wang Z, Xian L, Liu K, Wu S. Functional diversity of voltage-gated sodium channel in Drosophila suzukii (Matsumura). PEST MANAGEMENT SCIENCE 2024; 80:592-601. [PMID: 37740934 DOI: 10.1002/ps.7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/22/2023] [Accepted: 09/23/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The larvae of Drosophila suzukii Matsumura feed directly inside the fruit, causing catastrophic damage to orchards. The misuse of pyrethroid insecticides during the control period has led to increasing resistance of D. suzukii to pyrethroids acting on the voltage-gated sodium channel (VGSC). RESULTS In this study, the sodium channel of D. suzukii was cloned (DsNav 5 GenBank number: OQ871532). The results of multiple-sequence alignment showed that the homology of sodium channel between D. suzukii and Drosophila melanogaster was as high as 95.3%. Analysis of transcripts from 62 variants of D. suzukii VGSC revealed a total of six alternative splicing sites (exons u, j, a, b, e, and h) and 33 RNA editing. Exons j, a, b, e, and h are conserved in D. melanogaster and other insects, whereas exon u has never been reported before. The number of A-to-I was distinctly more than that of U-to-C for RNA editing. All D. suzukii VGSC variants were expressed in Xenopus oocytes, but only one (type 5) was able to produce robust currents and nine produce weak currents. DsNav 5 with TipE of D. melanogaster co-expresses current better than its own TipE. Subsequently, tetrodotoxin was verified to be a blocker of VGSC, and the gating properties of DsNav 5 were investigated. CONCLUSION These findings proved that the VGSC of D. suzukii has not only the basic gating properties, but also the diversity of gating properties. This study also laid a foundation for the study of pyrethroid resistance mechanism of VGSC in D. suzukii. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linlin Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Zhenglei Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Limin Xian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
30
|
Saili K, de Jager C, Masaninga F, Sangoro OP, Nkya TE, Likulunga LE, Chirwa J, Hamainza B, Chanda E, Fillinger U, Mutero CM. House Screening Reduces Exposure to Indoor Host-Seeking and Biting Malaria Vectors: Evidence from Rural South-East Zambia. Trop Med Infect Dis 2024; 9:20. [PMID: 38251217 PMCID: PMC10821011 DOI: 10.3390/tropicalmed9010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study evaluated the impact of combining house screens with long-lasting insecticidal nets (LLINs) on mosquito host-seeking, resting, and biting behavior. Intervention houses received house screens and LLINs, while control houses received only LLINs. Centre for Disease Control light traps, pyrethrum spray collections and human landing catches were used to assess the densities of indoor and outdoor host-seeking, indoor resting, and biting behavior of malaria vectors in 15 sentinel houses per study arm per sampling method. The protective efficacy of screens and LLINs was estimated through entomological inoculation rates (EIRs). There were 68% fewer indoor host-seeking Anopheles funestus (RR = 0.32, 95% CI 0.20-0.51, p < 0.05) and 63% fewer An. arabiensis (RR = 0.37, 95% CI 0.22-0.61, p < 0.05) in screened houses than unscreened houses. There was a significantly higher indoor biting rate for unscreened houses (6.75 bites/person/h [b/p/h]) than for screened houses (0 b/p/h) (χ2 = 6.67, df = 1, p < 0.05). The estimated indoor EIR in unscreened houses was 2.91 infectious bites/person/six months, higher than that in screened houses (1.88 infectious bites/person/six months). Closing eaves and screening doors and windows has the potential to reduce indoor densities of malaria vectors and malaria transmission.
Collapse
Affiliation(s)
- Kochelani Saili
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (O.P.S.); (T.E.N.); (U.F.); (C.M.M.)
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems & Public Health, University of Pretoria, Pretoria 0028, South Africa;
| | - Christiaan de Jager
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems & Public Health, University of Pretoria, Pretoria 0028, South Africa;
| | - Freddie Masaninga
- Country Office, World Health Organization, P.O. Box 32346, Lusaka 10101, Zambia;
| | - Onyango P. Sangoro
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (O.P.S.); (T.E.N.); (U.F.); (C.M.M.)
| | - Theresia E. Nkya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (O.P.S.); (T.E.N.); (U.F.); (C.M.M.)
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya 35063, Tanzania
| | - Likulunga Emmanuel Likulunga
- Department of Biological Sciences, University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Jacob Chirwa
- National Malaria Elimination Centre, P.O. Box 32509, Lusaka 10101, Zambia; (J.C.); (B.H.)
| | - Busiku Hamainza
- National Malaria Elimination Centre, P.O. Box 32509, Lusaka 10101, Zambia; (J.C.); (B.H.)
| | - Emmanuel Chanda
- WHO Regional Office for Africa, Cite du Djoue, Brazzaville P.O. Box 06, Congo
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (O.P.S.); (T.E.N.); (U.F.); (C.M.M.)
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (O.P.S.); (T.E.N.); (U.F.); (C.M.M.)
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems & Public Health, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
31
|
Akuoko OK, Dhikrullahi SB, Hinne IA, Mohammed AR, Owusu-Asenso CM, Coleman S, Dadzie SK, Kyerematen R, Boakye DA, Wilson MD, Afrane YA. Biting behaviour, spatio-temporal dynamics, and the insecticide resistance status of malaria vectors in different ecological zones in Ghana. Parasit Vectors 2024; 17:16. [PMID: 38195546 PMCID: PMC10775458 DOI: 10.1186/s13071-023-06065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND A significant decrease in malaria morbidity and mortality has been attained using long-lasting insecticide-treated nets and indoor residual spraying. Selective pressure from these control methods influences changes in vector bionomics and behavioural pattern. There is a need to understand how insecticide resistance drives behavioural changes within vector species. This study aimed to determine the spatio-temporal dynamics and biting behaviour of malaria vectors in different ecological zones in Ghana in an era of high insecticide use for public health vector control. METHODS Adult mosquitoes were collected during the dry and rainy seasons in 2017 and 2018 from five study sites in Ghana in different ecological zones. Indoor- and outdoor-biting mosquitoes were collected per hour from 18:00 to 06:00 h employing the human landing catch (HLC) technique. Morphological and molecular species identifications of vectors were done using identification keys and PCR respectively. Genotyping of insecticide-resistant markers was done using the TaqMan SNP genotyping probe-based assays. Detection of Plasmodium falciparum sporozoites was determined using PCR. RESULTS A total of 50,322 mosquitoes belonging to four different genera were collected from all the study sites during the sampling seasons in 2017 and 2018. Among the Anophelines were Anopheles gambiae s.l. 93.2%, (31,055/33,334), An. funestus 2.1%, (690/33,334), An. pharoensis 4.6%, (1545/33,334), and An. rufipes 0.1% (44/33,334). Overall, 76.4%, (25,468/33,334) of Anopheles mosquitoes were collected in the rainy season and 23.6%, (7866/33,334) in the dry season. There was a significant difference (Z = 2.410; P = 0.0160) between indoor-biting (51.1%; 15,866/31,055) and outdoor-biting An. gambiae s.l. (48.9%; 15,189/31,055). The frequency of the Vgsc-1014F mutation was slightly higher in indoor-biting mosquitoes (54.9%) than outdoors (45.1%). Overall, 44 pools of samples were positive for P. falciparum CSP giving an overall sporozoite rate of 0.1%. CONCLUSION Anopheles gambiae s.l. were more abundant indoors across all ecological zones of Ghana. The frequency of G119S was higher indoors than outdoors from all the study sites, but with higher sporozoite rates in outdoor mosquitoes in Dodowa and Kpalsogu. There is, therefore, an urgent need for a supplementary malaria control intervention to control outdoor-biting mosquitoes.
Collapse
Affiliation(s)
- Osei K Akuoko
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
| | - Shittu B Dhikrullahi
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac A Hinne
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
- Department of Biochemistry and Molecular Biology, CABNR, University of Nevada, Reno, NV, USA
| | - Abdul R Mohammed
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Christopher M Owusu-Asenso
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Sylvester Coleman
- Department of Clinical Microbiology - Vector Biology Laboratory, School of Medicine and Dentistry (SMD)-College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel K Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Rosina Kyerematen
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel A Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana.
| |
Collapse
|
32
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
33
|
Pai HH, Chang CY, Lin KC, Hsu EL. Rapid insecticide resistance bioassays for three major urban insects in Taiwan. Parasit Vectors 2023; 16:447. [PMID: 38042818 PMCID: PMC10693703 DOI: 10.1186/s13071-023-06055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Taiwan's warm and humid climate and dense population provide a suitable environment for the breeding of pests. The three major urban insects in Taiwan are house flies, cockroaches, and mosquitoes. In cases where a disease outbreak or high pest density necessitates chemical control, selecting the most effective insecticide is crucial. The resistance of pests to the selected environmental insecticide must be rapidly assessed to achieve effective chemical control and reduce environmental pollution. METHODS In this study, we evaluated the resistance of various pests, namely, house flies (Musca domestica L.), cockroaches (Blattella germanica L. and Periplaneta americana), and mosquitoes (Aedes aegypti and Ae. albopictus) against 10 commonly used insecticides. Rapid insecticide resistance bioassays were performed using discriminating doses or concentrations of the active ingredients of insecticides. RESULTS Five field strains of M. domestica (L.) are resistant to all 10 commonly used insecticides and exhibit cross- and multiple resistance to four types of pyrethroids and three types of organophosphates, propoxur, fipronil, and imidacloprid. None of the five field strains of P. americana are resistant to any of the tested insecticides, and only one strain of B. germanica (L.) is resistant to permethrin. One strain of Ae. albopictus is resistant to pirimiphos-methyl, whereas five strains of Ae. aegypti exhibit multiple resistance to pyrethroids, organophosphates, and other insecticides. CONCLUSIONS In the event of a disease outbreak or high pest density, rapid insecticide resistance bioassays may be performed using discriminating doses or concentrations to achieve precise and effective chemical control, reduce environmental pollution, and increase control efficacy.
Collapse
Affiliation(s)
- Hsiu-Hua Pai
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC).
| | - Chun-Yung Chang
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC)
| | - Kai-Chen Lin
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC)
| | - Err-Lieh Hsu
- Department of Entomology, National Taiwan University, Taipei, Taiwan (ROC)
| |
Collapse
|
34
|
Acford-Palmer H, Campos M, Bandibabone J, N'Do S, Bantuzeko C, Zawadi B, Walker T, Phelan JE, Messenger LA, Clark TG, Campino S. Detection of insecticide resistance markers in Anopheles funestus from the Democratic Republic of the Congo using a targeted amplicon sequencing panel. Sci Rep 2023; 13:17363. [PMID: 37833354 PMCID: PMC10575962 DOI: 10.1038/s41598-023-44457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Vector control strategies have been successful in reducing the number of malaria cases and deaths globally, but the spread of insecticide resistance represents a significant threat to disease control. Insecticide resistance has been reported across Anopheles (An.) vector populations, including species within the An. funestus group. These mosquitoes are responsible for intense malaria transmission across sub-Saharan Africa, including in the Democratic Republic of the Congo (DRC), a country contributing > 12% of global malaria infections and mortality events. To support the continuous efficacy of vector control strategies, it is essential to monitor insecticide resistance using molecular surveillance tools. In this study, we developed an amplicon sequencing ("Amp-seq") approach targeting An. funestus, and using multiplex PCR, dual index barcoding, and next-generation sequencing for high throughput and low-cost applications. Using our Amp-seq approach, we screened 80 An. funestus field isolates from the DRC across a panel of nine genes with mutations linked to insecticide resistance (ace-1, CYP6P4, CYP6P9a, GSTe2, vgsc, and rdl) and mosquito speciation (cox-1, mtND5, and ITS2). Amongst the 18 non-synonymous mutations detected, was N485I, in the ace-1 gene associated with carbamate resistance. Overall, our panel represents an extendable and much-needed method for the molecular surveillance of insecticide resistance in An. funestus populations.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Monica Campos
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Janvier Bandibabone
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Sévérin N'Do
- Médecins Sans Frontières (MSF) OCBA, Barcelona, Spain
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Chimanuka Bantuzeko
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
- Université Officielle de Bukavu (UOB), Bukavu, Democratic Republic of the Congo
| | - Bertin Zawadi
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Thomas Walker
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Jody E Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, USA
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
35
|
Nattoh G, Onyango B, Makhulu EE, Omoke D, Ang’ang’o LM, Kamau L, Gesuge MM, Ochomo E, Herren JK. Microsporidia MB in the primary malaria vector Anopheles gambiae sensu stricto is avirulent and undergoes maternal and horizontal transmission. Parasit Vectors 2023; 16:335. [PMID: 37749577 PMCID: PMC10519057 DOI: 10.1186/s13071-023-05933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/15/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The demonstration that the recently discovered Anopheles symbiont Microsporidia MB blocks malaria transmission in Anopheles arabiensis and undergoes vertical and horizontal transmission suggests that it is a promising candidate for the development of a symbiont-based malaria transmission-blocking strategy. The infection prevalence and characteristics of Microsporidia MB in Anopheles gambiae sensu stricto (s.s.), another primary vector species of malaria in Kenya, were investigated. METHODS Field-collected females were confirmed to be Microsporidia MB-positive after oviposition. Egg counts of Microsporidia MB-infected and non-infected individuals were used to infer the effects of Microsporidia MB on fecundity. The time to pupation, adult sex ratio and survival were used to determine if Microsporidia MB infection has similar characteristics in the host mosquitoes An. gambiae and An. arabiensis. The intensity of Microsporidia MB infection in tissues of the midgut and gonads, and in carcasses, was determined by quantitative polymerase chain reaction. To investigate horizontal transmission, virgin males and females that were either Microsporidia MB-infected or non-infected were placed in standard cages for 48 h and allowed to mate; transmission was confirmed by quantitative polymerase chain reaction targeting Microsporidia MB genes. RESULTS Microsporidia MB was found to naturally occur at a low prevalence in An. gambiae s.s. collected in western Kenya. Microsporidia MB shortened the development time from larva to pupa, but other fitness parameters such as fecundity, sex ratio, and adult survival did not differ between Microsporidia MB-infected and non-infected hosts. Microsporidia MB intensities were high in the male gonadal tissues. Transmission experiments indicated that Microsporidia MB undergoes both maternal and horizontal transmission in An. gambiae s.s. CONCLUSIONS The findings that Microsporidia MB naturally infects, undergoes maternal and horizontal transmission, and is avirulent in An. gambiae s.s. indicate that many of the characteristics of its infection in An. arabiensis hold true for the former. The results of the present study indicate that Microsporidia MB could be developed as a tool for the transmission-blocking of malaria across different Anopheles species.
Collapse
Grants
- I-1-F-5852-1 The International Foundation for Science, Stockholm, Sweden
- Open Philanthropy (SYMBIOVECTOR Track A) and the Bill and Melinda Gates Foundation (INV0225840) International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- SMBV-FFT The Childrens' Investment Fund Foundation
- AV/AASS/006 The ANTi-VeC network
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
- Open Philanthropy (SYMBIOVECTOR Track A) and the Bill and Melinda Gates Foundation (INV0225840)
- The Childrens’ Investment Fund Foundation
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Nairobi, Kenya
Collapse
Affiliation(s)
- Godfrey Nattoh
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biological Sciences, Kaimosi Friends University, Kaimosi, Kenya
| | - Brenda Onyango
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Diana Omoke
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Lilian Mbaisi Ang’ang’o
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Luna Kamau
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Nairobi, Kenya
| | - Maxwell Machani Gesuge
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric Ochomo
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
36
|
Nguiffo-Nguete D, Mugenzi LMJ, Manzambi EZ, Tchouakui M, Wondji M, Tekoh T, Watsenga F, Agossa F, Wondji CS. Evidence of intensification of pyrethroid resistance in the major malaria vectors in Kinshasa, Democratic Republic of Congo. Sci Rep 2023; 13:14711. [PMID: 37679465 PMCID: PMC10484898 DOI: 10.1038/s41598-023-41952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Assessing patterns and evolution of insecticide resistance in malaria vectors is a prerequisite to design suitable control strategies. Here, we characterised resistance profile in Anopheles gambiae and Anopheles funestus in Kinshasa and assess the level of aggravation by comparing to previous 2015 estimates. Both species collected in July 2021 were highly resistant to pyrethroids at 1×, 5× and 10× concentrations (mortality < 90%) and remain fully susceptible to bendiocarb and pirimiphos methyl. Compared to 2015, Partial recovery of susceptibility was observed in A. gambiae after PBO synergist assays for both permethrin and α-cypermethrin and total recovery of susceptibility was observed for deltamethrin in 2021. In addition, the efficacy of most bednets decreased significantly in 2021. Genotyping of resistance markers revealed a near fixation of the L1014-Kdr mutation (98.3%) in A. gambiae in 2021. The frequency of the 119F-GSTe2 resistant significantly increased between 2015 and 2021 (19.6% vs 33.3%; P = 0.02) in A. funestus. Transcriptomic analysis also revealed a significant increased expression (P < 0.001) of key cytochrome P450s in A. funestus notably CYP6P9a. The escalation of pyrethroid resistance observed in Anopheles populations from Kinshasa coupled with increased frequency/expression level of resistance genes highlights an urgent need to implement tools to improve malaria vector control.
Collapse
Affiliation(s)
- Daniel Nguiffo-Nguete
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
| | - Emile Zola Manzambi
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
| | - Murielle Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L35QA, UK
| | - Theofelix Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Francis Watsenga
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Fiacre Agossa
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L35QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
37
|
Muthu Lakshmi Bavithra C, Murugan M, Pavithran S, Naveena K. Enthralling genetic regulatory mechanisms meddling insecticide resistance development in insects: role of transcriptional and post-transcriptional events. Front Mol Biosci 2023; 10:1257859. [PMID: 37745689 PMCID: PMC10511911 DOI: 10.3389/fmolb.2023.1257859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Insecticide resistance in insects severely threatens both human health and agriculture, making insecticides less compelling and valuable, leading to frequent pest management failures, rising input costs, lowering crop yields, and disastrous public health. Insecticide resistance results from multiple factors, mainly indiscriminate insecticide usage and mounted selection pressure on insect populations. Insects respond to insecticide stress at the cellular level by modest yet significant genetic propagations. Transcriptional, co-transcriptional, and post-transcriptional regulatory signals of cells in organisms regulate the intricate processes in gene expressions churning the genetic information in transcriptional units into proteins and non-coding transcripts. Upregulation of detoxification enzymes, notably cytochrome P450s (CYPs), glutathione S-transferases (GSTs), esterases [carboxyl choline esterase (CCE), carboxyl esterase (CarE)] and ATP Binding Cassettes (ABC) at the transcriptional level, modification of target sites, decreased penetration, or higher excretion of insecticides are the noted insect physiological responses. The transcriptional regulatory pathways such as AhR/ARNT, Nuclear receptors, CncC/Keap1, MAPK/CREB, and GPCR/cAMP/PKA were found to regulate the detoxification genes at the transcriptional level. Post-transcriptional changes of non-coding RNAs (ncRNAs) such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and epitranscriptomics, including RNA methylation, are reported in resistant insects. Additionally, genetic modifications such as mutations in the target sites and copy number variations (CNV) are also influencing insecticide resistance. Therefore, these cellular intricacies may decrease insecticide sensitivity, altering the concentrations or activities of proteins involved in insecticide interactions or detoxification. The cellular episodes at the transcriptional and post-transcriptional levels pertinent to insecticide resistance responses in insects are extensively covered in this review. An overview of molecular mechanisms underlying these biological rhythms allows for developing alternative pest control methods to focus on insect vulnerabilities, employing reverse genetics approaches like RNA interference (RNAi) technology to silence particular resistance-related genes for sustained insect management.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Kathirvel Naveena
- Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
38
|
Kirosingh AS, Delmastro A, Kakuru A, van der Ploeg K, Bhattacharya S, Press KD, Ty M, Parte LDL, Kizza J, Muhindo M, Devachanne S, Gamain B, Nankya F, Musinguzi K, Rosenthal PJ, Feeney ME, Kamya M, Dorsey G, Jagannathan P. Malaria-specific Type 1 regulatory T cells are more abundant in first pregnancies and associated with placental malaria. EBioMedicine 2023; 95:104772. [PMID: 37634385 PMCID: PMC10474374 DOI: 10.1016/j.ebiom.2023.104772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Malaria in pregnancy (MIP) causes higher morbidity in primigravid compared to multigravid women; however, the correlates and mechanisms underlying this gravidity-dependent protection remain incompletely understood. We aimed to compare the cellular immune response between primigravid and multigravid women living in a malaria-endemic region and assess for correlates of protection against MIP. METHODS We characterised the second trimester cellular immune response among 203 primigravid and multigravid pregnant women enrolled in two clinical trials of chemoprevention in eastern Uganda, utilizing RNA sequencing, flow cytometry, and functional assays. We compared responses across gravidity and determined associations with parasitaemia during pregnancy and placental malaria. FINDINGS Using whole blood RNA sequencing, no significant differentially expressed genes were identified between primigravid (n = 12) and multigravid (n = 11) women overall (log 2(FC) > 2, FDR < 0.1). However, primigravid (n = 49) women had higher percentages of malaria-specific, non-naïve CD4+ T cells that co-expressed IL-10 and IFNγ compared with multigravid (n = 85) women (p = 0.000023), and higher percentages of these CD4+ T cells were associated with greater risks of parasitaemia in pregnancy (Rs = 0.49, p = 0.001) and placental malaria (p = 0.0073). These IL-10 and IFNγ co-producing CD4+ T cells had a genomic signature of Tr1 cells, including expression of transcription factors cMAF and BATF and cell surface makers CTLA4 and LAG-3. INTERPRETATION Malaria-specific Tr1 cells were highly prevalent in primigravid Ugandan women, and their presence correlated with a higher risk of malaria in pregnancy. Understanding whether suppression of Tr1 cells plays a role in naturally acquired gravidity-dependent immunity may aid the development of new vaccines or treatments for MIP. FUNDING This work was funded by NIH (PO1 HD059454, U01 AI141308, U19 AI089674, U01 AI155325, U01 AI150741), the March of Dimes (Basil O'Connor award), and the Bill and Melinda Gates Foundation (OPP 1113682).
Collapse
Affiliation(s)
| | | | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Maureen Ty
- Stanford University School of Medicine, Stanford, USA
| | | | | | | | | | - Benoit Gamain
- Université Paris Cité, INSERM, BIGR, F-75014 Paris, France
| | | | | | | | | | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Makerere University, Kampala, Uganda
| | | | | |
Collapse
|
39
|
Tchouakui M, Thiomela RF, Nchoutpouen E, Menze BD, Ndo C, Achu D, Tabue RN, Njiokou F, Joel A, Wondji CS. High efficacy of chlorfenapyr-based net Interceptor ® G2 against pyrethroid-resistant malaria vectors from Cameroon. Infect Dis Poverty 2023; 12:81. [PMID: 37641108 PMCID: PMC10463949 DOI: 10.1186/s40249-023-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The increasing reports of resistance to pyrethroid insecticides associated with reduced efficacy of pyrethroid-only interventions highlight the urgency of introducing new non-pyrethroid-only control tools. Here, we investigated the performance of piperonyl-butoxide (PBO)-pyrethroid [Permanet 3.0 (P3.0)] and dual active ingredients (AI) nets [Interceptor G2 (IG2): containing pyrethroids and chlorfenapyr and Royal Guard (RG): containing pyrethroids and pyriproxyfen] compared to pyrethroid-only net Royal Sentry (RS) against pyrethroid-resistant malaria vectors in Cameroon. METHODS The efficacy of these tools was firstly evaluated on Anopheles gambiae s.l. and Anopheles funestus s.l. from Gounougou, Mibellon, Mangoum, Nkolondom, and Elende using cone/tunnel assays. In addition, experimental hut trials (EHT) were performed to evaluate the performance of unwashed and 20 times washed nets in semi-field conditions. Furthermore, pyrethroid-resistant markers were genotyped in dead vs alive, blood-fed vs unfed mosquitoes after exposure to the nets to evaluate the impact of these markers on net performance. The XLSTAT software was used to calculate the various entomological outcomes and the Chi-square test was used to compare the efficacy of various nets. The odds ratio and Fisher exact test were then used to establish the statistical significance of any association between insecticide resistance markers and bed net efficacy. RESULTS Interceptor G2 was the most effective net against wild pyrethroid-resistant An. funestus followed by Permanet 3.0. In EHT, this net induced up to 87.8% mortality [95% confidence interval (CI): 83.5-92.1%) and 55.6% (95% CI: 48.5-62.7%) after 20 washes whilst unwashed pyrethroid-only net (Royal Sentry) killed just 18.2% (95% CI: 13.4-22.9%) of host-seeking An. funestus. The unwashed Permanet 3.0 killed up to 53.8% (95% CI: 44.3-63.4%) of field-resistant mosquitoes and 47.2% (95% CI: 37.7-56.7%) when washed 20 times, and the Royal Guard 13.2% (95% CI: 9.0-17.3%) for unwashed net and 8.5% (95% CI: 5.7-11.4%) for the 20 washed net. Interceptor G2, Permanet 3.0, and Royal Guard provided better personal protection (blood-feeding inhibition 66.2%, 77.8%, and 92.8%, respectively) compared to pyrethroid-only net Royal Sentry (8.4%). Interestingly, a negative association was found between kdrw and the chlorfenapyr-based net Interceptor G2 (χ2 = 138; P < 0.0001) with homozygote-resistant mosquitoes predominantly found in the dead ones. CONCLUSIONS The high mortality recorded with Interceptor G2 against pyrethroid-resistant malaria vectors in this study provides first semi-field evidence of high efficacy against these major malaria vectors in Cameroon encouraging the implementation of this novel net for malaria control in the country. However, the performance of this net should be established in other locations and on other major malaria vectors before implementation at a large scale.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
| | - Riccado F Thiomela
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Elysee Nchoutpouen
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Cyrille Ndo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Dorothy Achu
- Ministry of Public Health, National Malaria Control Programme, P.O. Box 14386, Yaounde, Cameroon
| | - Raymond N Tabue
- Ministry of Public Health, National Malaria Control Programme, P.O. Box 14386, Yaounde, Cameroon
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Ateba Joel
- Ministry of Public Health, National Malaria Control Programme, P.O. Box 14386, Yaounde, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
40
|
Zoungbédji DM, Padonou GG, Konkon AK, Hougbe S, Sagbohan H, Kpanou C, Salako AS, Ossè R, Aïkpon R, Afoukou C, Sidick A, Akinro B, Chitou S, Gnanguénon V, Condo P, Hassani AS, Impoinvil D, Akogbéto M. Assessing the susceptibility and efficacy of traditional neurotoxic (pyrethroid) and new-generation insecticides (chlorfenapyr, clothianidin, and pyriproxyfen), on wild pyrethroid-resistant populations of Anopheles gambiae from southern Benin. Malar J 2023; 22:245. [PMID: 37626366 PMCID: PMC10463682 DOI: 10.1186/s12936-023-04664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The objective of this study was to determine the susceptibility of wild Anopheles gambiae sensu lato (s.l.) from southern Benin to the new insecticides (chlorfenapyr (CFP), pyriproxyfen (PPF), and clothianidin (CTD)) and assess the efficacy of insecticide-treated bed nets (ITNs) that contain these new products. METHODS Wild An. gambiae from the Benin communes of Allada, Ifangni, Akpro-Missérété, and Porto-Novo were tested for their susceptibility to CFP and PPF using the WHO bottle tests, and pyrethroids (alpha-cypermethrin, deltamethrin, and permethrin) and CTD using WHO tube tests. WHO cone tests were used to evaluate the efficacy of Interceptor® (which contains alpha-cypermethrin (ACM) only), Interceptor® G2, (CFP + ACM), and Royal Guard® nets (PPF + ACM). The ovaries of blood-fed An. gambiae from Ifangni exposed to a new PPF net were dissected, and egg development status was examined using Christopher's stages to determine the fertility status of the mosquitoes. Using a standardized protocol, the oviposition rate and oviposition inhibition rate were calculated from live blood-fed An. gambiae placed in oviposition chambers after exposure to PPF. RESULTS In all four mosquito populations, pyrethroid mortality ranged from 5 to 80%, while chlorfenapyr and clothianidin mortality ranged from 98 to 100%. At Ifangni, all mosquitoes exposed to Royal Guard® nets were infertile (100%) while the majority (74.9%) of mosquitoes exposed to Interceptor® nets had fully developed their eggs to Christopher's stage V. The oviposition inhibition rate after exposure of the mosquitoes to the PPF was 99% for the wild population of An. gambiae s.l. and the susceptible laboratory strain, An. gambiae sensu stricto (Kisumu). CONCLUSIONS The results of this study suggest that pyrethroid-resistant An. gambiae from the selected communes in southern Benin are susceptible to chlorfenapyr, clothianidin, and pyriproxyfen. In addition, based on bioassay results, new and unused Interceptor® G2 and Royal Guard® nets were effective on Ifangni's mosquito populations. Despite the availability of new effective insecticides, continued vigilance is needed in Benin. Therefore, monitoring of resistance to these insecticides will continue to periodically update the Benin national insecticide resistance database and management plan.
Collapse
Affiliation(s)
- David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin.
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Godomey, Benin.
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Godomey, Benin
| | - Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Godomey, Benin
| | - Steve Hougbe
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Hermann Sagbohan
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Godomey, Benin
| | - Casimir Kpanou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | | | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Rock Aïkpon
- Programme National de Lutte Contre Le Paludisme, Cotonou, Benin
| | | | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Saïd Chitou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Virgile Gnanguénon
- US President's Malaria Initiative, US Agency for International Development, Cotonou, Benin
| | - Patrick Condo
- US President's Malaria Initiative, US Agency for International Development, Cotonou, Benin
| | - Ahmed Saadani Hassani
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Cotonou, Benin
| | - Daniel Impoinvil
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, USA
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| |
Collapse
|
41
|
Lu HZ, Sui Y, Lobo NF, Fouque F, Gao C, Lu S, Lv S, Deng SQ, Wang DQ. Challenge and opportunity for vector control strategies on key mosquito-borne diseases during the COVID-19 pandemic. Front Public Health 2023; 11:1207293. [PMID: 37554733 PMCID: PMC10405932 DOI: 10.3389/fpubh.2023.1207293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Mosquito-borne diseases are major global health problems that threaten nearly half of the world's population. Conflicting resources and infrastructure required by the coronavirus disease 2019 (COVID-19) global pandemic have resulted in the vector control process being more demanding than ever. Although novel vector control paradigms may have been more applicable and efficacious in these challenging settings, there were virtually no reports of novel strategies being developed or implemented during COVID-19 pandemic. Evidence shows that the COVID-19 pandemic has dramatically impacted the implementation of conventional mosquito vector measures. Varying degrees of disruptions in malaria control and insecticide-treated nets (ITNs) and indoor residual spray (IRS) distributions worldwide from 2020 to 2021 were reported. Control measures such as mosquito net distribution and community education were significantly reduced in sub-Saharan countries. The COVID-19 pandemic has provided an opportunity for innovative vector control technologies currently being developed. Releasing sterile or lethal gene-carrying male mosquitoes and novel biopesticides may have advantages that are not matched by traditional vector measures in the current context. Here, we review the effects of COVID-19 pandemic on current vector control measures from 2020 to 2021 and discuss the future direction of vector control, taking into account probable evolving conditions of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hong-Zheng Lu
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan Sui
- Brown School, Washington University, St. Louis, MO, United States
| | - Neil F. Lobo
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Florence Fouque
- Research for Implementation Unit, The Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Chen Gao
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shenning Lu
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Shan Lv
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Duo-Quan Wang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Sanei-Dehkordi A, Ghasemian A, Zarenezhad E, Qasemi H, Nasiri M, Osanloo M. Nanoliposomes containing three essential oils from the Artemisia genus as effective larvicides against Aedes aegypti and Anopheles stephensi. Sci Rep 2023; 13:11002. [PMID: 37420038 PMCID: PMC10328918 DOI: 10.1038/s41598-023-38284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
Aedes aegypti and Anopheles stephensi have challenged human health by transmitting several infectious disease agents, such as malaria, dengue fever, and yellow fever. Larvicides, especially in endemic regions, is an effective approach to the control of mosquito-borne diseases. In this study, the composition of three essential oil from the Artemisia L. family was analyzed by Gas Chromatography-Mass Spectrometry. Afterward, nanoliposomes containing essential oils of A. annua, A. dracunculus, and A. sieberi with particle sizes of 137 ± 5, 151 ± 6, and 92 ± 5 nm were prepared. Besides, their zeta potential values were obtained at 32 ± 0.5, 32 ± 0.6, and 43 ± 1.7 mV. ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) confirmed the successful loading of the essential oils. Moreover, The LC50 values of nanoliposomes against Ae. aegypti larvae were 34, 151, and 197 µg/mL. These values for An.stephensi were obtained as 23 and 90, and 140 µg/mL, respectively. The results revealed that nanoliposomes containing A. dracunculus exerted the highest potential larvicidal effect against Ae. aegypti and An. stephensi, which can be considered against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasemi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
43
|
Hilton ER, Rabeherisoa S, Ramandimbiarijaona H, Rajaratnam J, Belemvire A, Kapesa L, Zohdy S, Dentinger C, Gandaho T, Jacob D, Burnett S, Razafinjato C. Using routine health data to evaluate the impact of indoor residual spraying on malaria transmission in Madagascar. BMJ Glob Health 2023; 8:e010818. [PMID: 37463785 PMCID: PMC10357738 DOI: 10.1136/bmjgh-2022-010818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Indoor residual spraying (IRS) and insecticide-treated bed nets (ITNs) are cornerstone malaria prevention methods in Madagascar. This retrospective observational study uses routine data to evaluate the impacts of IRS overall, sustained IRS exposure over multiple years and level of spray coverage (structures sprayed/found) in nine districts where non-pyrethroid IRS was deployed to complement standard pyrethroid ITNs from 2017 to 2020. METHODS Multilevel negative-binomial generalised linear models were fit to estimate the effects of IRS exposure overall, consecutive years of IRS exposure and spray coverage level on monthly all-ages population-adjusted malaria cases confirmed by rapid diagnostic test at the health facility level. The study period extended from July 2016 to June 2021. Facilities with missing data and non-geolocated communes were excluded. Facilities in IRS districts were matched with control facilities by propensity score analysis. Models were controlled for ITN survivorship, mass drug administration coverage, precipitation, enhanced vegetation index, seasonal effects and district. Predicted cases under a counterfactual no IRS scenario and number of cases averted by IRS were estimated using the fitted models. RESULTS Exposure to IRS overall reduced case incidence by an estimated 30.3% from 165.8 cases per 1000 population (95% CI=139.7 to 196.7) under a counterfactual no IRS scenario, to 114.3 (95% CI=96.5 to 135.3) over 12 months post-IRS campaign in nine districts. A third year of IRS reduced malaria cases 30.9% more than a first year (incidence rate ratio (IRR)=0.578, 95% CI=0.578 to 0.825, p<0.001) and 26.7% more than a second year (IRR=0.733, 95% CI=0.611 to 0.878, p=0.001). There was no significant difference between the first and second year (p>0.05). Coverage of 86%-90% was associated with a 19.7% reduction in incidence (IRR=0.803, 95% CI=0.690 to 0.934, p=0.005) compared with coverage ≤85%, although these results were not robust to sensitivity analysis. CONCLUSION This study demonstrates that non-pyrethroid IRS appears to substantially reduce malaria incidence in Madagascar and that sustained implementation of IRS over three years confers additional benefits.
Collapse
Affiliation(s)
| | - Saraha Rabeherisoa
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| | - Herizo Ramandimbiarijaona
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| | - Julie Rajaratnam
- Center for Digital and Data Excellence, PATH, Seattle, Washington, USA
| | - Allison Belemvire
- US Agency for International Development, US President's Malaria Initiative, Washington, District of Columbia, USA
| | - Laurent Kapesa
- US Agency for International Development, US President's Malaria Initiative, Antananarivo, Madagascar
| | - Sarah Zohdy
- Entomology Branch, US Centers for Disease Control and Prevention, US President's Malaria Initiative, Atlanta, Georgia, USA
| | - Catherine Dentinger
- Entomology Branch, US Centers for Disease Control and Prevention, US President's Malaria Initiative, Atlanta, Georgia, USA
| | - Timothee Gandaho
- PMI VectorLink Project, Abt Associates, Rockville, Maryland, USA
| | - Djenam Jacob
- PMI VectorLink Project, Abt Associates, Rockville, Maryland, USA
| | - Sarah Burnett
- PMI VectorLink Project, PATH, Washington, District of Columbia, USA
| | - Celestin Razafinjato
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| |
Collapse
|
44
|
Kouadio FPA, Sika AN, Fodjo BK, Sadia CG, Oyou SK, Ouattara AF, Mouhamadou CS. Phenotypic resistance to pyrethroid associated to metabolic mechanism in Vgsc-L995F-resistant Anopheles gambiae malaria mosquitoes. Wellcome Open Res 2023; 8:118. [PMID: 37396200 PMCID: PMC10308139 DOI: 10.12688/wellcomeopenres.19126.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Background: The indiscriminate use of insecticides in agriculture and public health lead to a selection of resistance mechanisms in malaria vectors compromising vector control tools and strategies. This study investigated the metabolic response in the Vgsc-L995F Anopheles gambiae Tiassalé resistance strain after long-term exposure of larvae and adults to deltamethrin insecticide. Methods: Vgsc-L995F An. gambiae Tiassalé strain larvae were exposed over 20 generations to deltamethrin (LS) and adults to PermaNet 2.0 (AS) and combining exposure at larvae and adult stages (LAS) and compared to unexposed (NS) group. All four groups were subjected to the standard World Health Organization (WHO) susceptibility tube tests using deltamethrin (0.05%), bendiocarb (0.1%) and malathion (5%). Vgsc-L995F/S knockdown-resistance ( kdr) mutation frequency was screened using multiplex assays based on Taqman real-time polymerase chain reaction (PCR) method. Additionally, expression levels of detoxification enzymes associated to pyrethroid resistance, including CYP4G16, CYP6M2, CYP6P1, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, and glutathione S-transferase GSTe2 were measured. Results: Our results indicated that deltamethrin resistance was a response to insecticide selection pressure in LS, AS and LAS groups, while susceptibility was observed in NS group. The vectors showed varied mortality rates with bendiocarb and full susceptibility to malathion throughout the selection with LS, AS and LAS groups. Vgsc-L995F mutation stayed at high allelic frequency level in all groups with a frequency between 87% and 100%. Among the overexpressed genes, CYP6P4 gene was the most overexpressed in LS, AS and LAS groups. Conclusion: Long-term exposure of larvae and adults of Vgsc-L995F resistant- An. gambiae Tiassalé strain to deltamethrin and PermaNet 2.0 net induced resistance to deltamethrin under a significant effect of cytochromes P450 detoxification enzymes. These outcomes highlight the necessity of investigating metabolic resistance mechanisms in the target population and not solely kdr resistance mechanisms prior the implementation of vector control strategies for a better impact.
Collapse
Affiliation(s)
- France-Paraudie A. Kouadio
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Angèle N. Sika
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Behi K. Fodjo
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Christabelle G. Sadia
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Sébastien K. Oyou
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
| | - Allassane F. Ouattara
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Chouaïbou S. Mouhamadou
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
| |
Collapse
|
45
|
Koffi AA, Camara S, Ahoua Alou LP, Oumbouke WA, Wolie RZ, Tia IZ, Sternberg ED, Yapo FHA, Koffi FM, Assi SB, Cook J, Thomas MB, N'Guessan R. Anopheles vector distribution and malaria transmission dynamics in Gbêkê region, central Côte d'Ivoire. Malar J 2023; 22:192. [PMID: 37349819 DOI: 10.1186/s12936-023-04623-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND A better understanding of vector distribution and malaria transmission dynamics at a local scale is essential for implementing and evaluating effectiveness of vector control strategies. Through the data gathered in the framework of a cluster randomized controlled trial (CRT) evaluating the In2Care (Wageningen, Netherlands) Eave Tubes strategy, the distribution of the Anopheles vector, their biting behaviour and malaria transmission dynamics were investigated in Gbêkê region, central Côte d'Ivoire. METHODS From May 2017 to April 2019, adult mosquitoes were collected monthly using human landing catches (HLC) in twenty villages in Gbêkê region. Mosquito species wereidentified morphologically. Monthly entomological inoculation rates (EIR) were estimated by combining the HLC data with mosquito sporozoite infection rates measured in a subset of Anopheles vectors using PCR. Finally, biting rate and EIR fluctuations were fit to local rainfall data to investigate the seasonal determinants of mosquito abundance and malaria transmission in this region. RESULTS Overall, Anopheles gambiae, Anopheles funestus, and Anopheles nili were the three vector complexes found infected in the Gbêkê region, but there was a variation in Anopheles vector composition between villages. Anopheles gambiae was the predominant malaria vector responsible for 84.8% of Plasmodium parasite transmission in the area. An unprotected individual living in Gbêkê region received an average of 260 [222-298], 43.5 [35.8-51.29] and 3.02 [1.96-4] infected bites per year from An. gambiae, An. funestus and An. nili, respectively. Vector abundance and malaria transmission dynamics varied significantly between seasons and the highest biting rate and EIRs occurred in the months of heavy rainfall. However, mosquitoes infected with malaria parasites remained present in the dry season, despite the low density of mosquito populations. CONCLUSION These results demonstrate that the intensity of malaria transmission is extremely high in Gbêkê region, especially during the rainy season. The study highlights the risk factors of transmission that could negatively impact current interventions that target indoor control, as well as the urgent need for additional vector control tools to target the population of malaria vectors in Gbêkê region and reduce the burden of the disease.
Collapse
Affiliation(s)
- Alphonsine A Koffi
- Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Soromane Camara
- Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire.
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Welbeck A Oumbouke
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Innovative Vector Control Consortium, IVCC, Liverpool, UK
| | - Rosine Z Wolie
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Innocent Z Tia
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Centre d'Entomologie Médicale et Vétérinaire, Université Allassane Ouattara, Bouaké, Côte d'Ivoire
| | | | - Florent H A Yapo
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Fernand M Koffi
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Serge B Assi
- Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Jackie Cook
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthew B Thomas
- Department of Entomology & Nematology, The University of Florida, Gainesville, FL, USA
| | - Raphael N'Guessan
- Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC), Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
46
|
Odjo EM, Salako AS, Padonou GG, Yovogan B, Adoha CJ, Adjottin B, Sominahouin AA, Sovi A, Osse R, Kpanou CD, Sagbohan HW, Djenontin A, Agbangla C, Akogbeto MC. What can be learned from the residual efficacy of three formulations of insecticides (pirimiphos-methyl, clothianidin and deltamethrin mixture, and clothianidin alone) in large-scale in community trial in North Benin, West Africa? Malar J 2023; 22:150. [PMID: 37158866 PMCID: PMC10165746 DOI: 10.1186/s12936-023-04572-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND In Alibori and Donga, two departments of high malaria incidence of Northern Benin, pirimiphos-methyl, mixture deltamethrin + clothianidin, as well as clothianidin were used at large scale for IRS. The present study aimed to assess the residual efficacy of these products. METHODS Immatures of Anopheles gambiae sensu lato (s.l.) collected in the communes of Kandi and Gogounou (Department of Alibori), Djougou and Copargo (Department of Donga) were reared until adulthood. Females aged 2-5 days were used for susceptibility tube tests following the WHO protocol. The tests were conducted with deltamethrin (0.05%), bendiocarb (0.1%), pirimiphos-methyl (0.25%) and clothianidin (2% weight per volume). For cone tests performed on cement and mud walls, the An. gambiae Kisumu susceptible strain was used. After the quality control of the IRS performed 1-week post-campaign, the evaluation of the residual activity of the different tested insecticides/mixture of insecticides was conducted on a monthly basis. RESULTS Over the three study years, deltamethrin resistance was observed in all the communes. With bendiocarb, resistance or possible resistance was observed. In 2019 and 2020, full susceptibility to pirimiphos-methyl was observed, while possible resistance to the same product was detected in 2021 in Djougou, Gogounou and Kandi. With clothianidin, full susceptibility was observed 4-6 days post-exposure. The residual activity lasted 4-5 months for pirimiphos-methyl, and 8-10 months for clothianidin and the mixture deltamethrin + clothianidin. A slightly better efficacy of the different tested products was observed on cement walls compared to the mud walls. CONCLUSION Overall, An. gambiae s.l. was fully susceptible to clothianidin, while resistance/possible resistance was observed the other tested insecticides. In addition, clothianidin-based insecticides showed a better residual activity compared to pirimiphos-methyl, showing thus their ability to provide an improved and prolonged control of pyrethroid resistant vectors.
Collapse
Affiliation(s)
- Esdras Mahoutin Odjo
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin.
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin.
| | | | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Boulais Yovogan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Constantin Jésukèdè Adoha
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Bruno Adjottin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Faculté d'Agronomie de l'Université de Parakou, Parakou, Benin
| | - Razaki Osse
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Université Nationale d'Agriculture de Porto-Novo, Porto-Novo, Benin
| | - Casimir D Kpanou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Hermann W Sagbohan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Armel Djenontin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Clement Agbangla
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Direction Générale de la Recherche Scientifique, Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Cotonou, Benin
| | | |
Collapse
|
47
|
Vidal-Albalat A, Kindahl T, Rajeshwari R, Lindgren C, Forsgren N, Kitur S, Tengo LS, Ekström F, Kamau L, Linusson A. Structure-Activity Relationships Reveal Beneficial Selectivity Profiles of Inhibitors Targeting Acetylcholinesterase of Disease-Transmitting Mosquitoes. J Med Chem 2023; 66:6333-6353. [PMID: 37094110 PMCID: PMC10184127 DOI: 10.1021/acs.jmedchem.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Insecticide resistance jeopardizes the prevention of infectious diseases such as malaria and dengue fever by vector control of disease-transmitting mosquitoes. Effective new insecticidal compounds with minimal adverse effects on humans and the environment are therefore urgently needed. Here, we explore noncovalent inhibitors of the well-validated insecticidal target acetylcholinesterase (AChE) based on a 4-thiazolidinone scaffold. The 4-thiazolidinones inhibit AChE1 from the mosquitoes Anopheles gambiae and Aedes aegypti at low micromolar concentrations. Their selectivity depends primarily on the substitution pattern of the phenyl ring; halogen substituents have complex effects. The compounds also feature a pendant aliphatic amine that was important for activity; little variation of this group is tolerated. Molecular docking studies suggested that the tight selectivity profiles of these compounds are due to competition between two binding sites. Three 4-thiazolidinones tested for in vivo insecticidal activity had similar effects on disease-transmitting mosquitoes despite a 10-fold difference in their in vitro activity.
Collapse
Affiliation(s)
| | - Tomas Kindahl
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | | | | | - Nina Forsgren
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Stanley Kitur
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Laura Sela Tengo
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Fredrik Ekström
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Anna Linusson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
48
|
Messenger LA, Furnival-Adams J, Chan K, Pelloquin B, Paris L, Rowland M. Vector control for malaria prevention during humanitarian emergencies: a systematic review and meta-analysis. Lancet Glob Health 2023; 11:e534-e545. [PMID: 36925174 DOI: 10.1016/s2214-109x(23)00044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Humanitarian emergencies can lead to population displacement, food insecurity, severe health system disruptions, and malaria epidemics among individuals who are immunologically naive. We aimed to assess the impact of different vector control interventions on malaria disease burden during humanitarian emergencies. METHODS In this systematic review and meta-analysis, we searched ten electronic databases and two clinical trial registries from database inception to Oct 19, 2020, with no restrictions on language or study design. We also searched grey literature from 59 stakeholders. Studies were eligible if the population was affected by a humanitarian emergency in a malaria endemic region. We included studies assessing any vector control intervention and in which the primary outcome of interest was malaria infection risk. Reviewers (LAM, JF-A, KC, BP, and LP) independently extracted information from eligible studies, without masking of author or publication, into a database. We did random-effects meta-analyses to calculate pooled risk ratios (RRs) for randomised controlled trials, odds ratios (ORs) for dichotomous outcomes, and incidence rate ratios (IRR) for clinical malaria in non-randomised studies. Certainty of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. This study is registered with PROSPERO, CRD42020214961. FINDINGS Of 12 475 studies screened, 22 studies were eligible for inclusion in our meta-analysis. All studies were conducted between Sept 1, 1989, and Dec 31, 2018, in chronic emergencies, with 616 611 participants from nine countries, evaluating seven different vector control interventions. Insecticide-treated nets significantly decreased Plasmodium falciparum incidence (RR 0·55 [95% CI 0·37-0·79]; high certainty) and Plasmodium vivax incidence (RR 0·69 [0·51-0·94]; high certainty). Evidence for an effect of indoor residual spraying on P falciparum (IRR 0·57 [95% CI 0·53-0·61]) and P vivax (IRR 0·51 [0·49-0·52]) incidence was of very low certainty. Topical repellents were associated with reductions in malaria infection (RR 0·58 [0·35-0·97]; moderate certainty). Moderate-to-high certainty evidence for an effect of insecticide-treated chaddars (equivalent to shawls or blankets) and insecticide-treated cattle on malaria outcomes was evident in some emergency settings. There was very low certainty evidence for the effect of insecticide-treated clothing. INTERPRETATION Study findings strengthen and support WHO policy recommendations to deploy insecticide-treated nets during chronic humanitarian emergencies. There is an urgent need to evaluate and adopt novel interventions for malaria control in the acute phase of humanitarian emergencies. FUNDING WHO Global Malaria Programme.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, USA.
| | - Joanna Furnival-Adams
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Kallista Chan
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Bethanie Pelloquin
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; School of Tropical Medicine and Global Health, University of Nagasaki, Nagasaki, Japan
| | | | - Mark Rowland
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
49
|
An S, Liu W, Fu J, Zhang Z, Zhang R. Molecular identification of the chitinase genes in Aedes albopictus and essential roles of AaCht10 in pupal-adult transition. Parasit Vectors 2023; 16:120. [PMID: 37005671 PMCID: PMC10068161 DOI: 10.1186/s13071-023-05733-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/11/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Aedes albopictus is an increasingly serious threat in public health due to it is vector of multiple arboviruses that cause devastating human diseases, as well as its widening distribution in recent years. Insecticide resistance is a serious problem worldwide that limits the efficacy of chemical control strategies against Ae. albopictus. Chitinase genes have been widely recognized as attractive targets for the development of effective and environmentally safe insect management measures. METHODS Chitinase genes of Ae. albopictus were identified and characterized on the basis of bioinformatics search of the referenced genome. Gene characterizations and phylogenetic relationships of chitinase genes were investigated, and spatio-temporal expression pattern of each chitinase gene was evaluated using qRT-PCR. RNA interference (RNAi) was used to suppress the expression of AaCht10, and the roles of AaCht10 were verified based on phynotype observations, chitin content analysis and hematoxylin and eosin (H&E) stain of epidermis and midgut. RESULTS Altogether, 14 chitinase-related genes (12 chitinase genes and 2 IDGFs) encoding 17 proteins were identified. Phylogenetic analysis showed that all these AaChts were classified into seven groups, and most of them were gathered into group IX. Only AaCht5-1, AaCht10 and AaCht18 contained both catalytic and chitin-binding domains. Different AaChts displayed development- and tissue-specific expression profiling. Suppression of the expression of AaCht10 resulted in abnormal molting, increased mortality, decreased chitin content and thinning epicuticle, procuticle and midgut wall of pupa. CONCLUSIONS Findings of the present study will aid in determining the biological functions of AaChts and also contribute to using AaChts as potential target for mosquito management.
Collapse
Affiliation(s)
- Sha An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Wenjuan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Jingwen Fu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Zhong Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| | - Ruiling Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
- School of Laboratory Animal (Shandong Laboratory Animal Center), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| |
Collapse
|
50
|
Iľko I, Peterková V, Heregová M, Strelková L, Preinerová K, Derka T, Boršová K, Čabanová V. The study on biocidal resistance of mosquitoes of genus Culex and Aedes to commonly used biocides cypermethrin and deltamethrin in Central Europe. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|