1
|
Esmaeili E, Dezaki ES, Amini-Khoei H, Mokhtarian K, Abdizadeh R, Esmaili M, Raesi H. In Vitro Antileishmanial and Immune Modulation of Trigonelline Against Leishmania major. Parasite Immunol 2024; 46:e13076. [PMID: 39633249 DOI: 10.1111/pim.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
The mechanistic study of new pharmaceutical compounds is crucial for evaluating their efficacy, identifying potential side effects, and optimising drug formulations. This study aimed to investigate the mechanism of action of trigonelline on the promastigote and amastigote stages of Leishmania major (MRHO/IR/75/ER). An initial in silico study was conducted to examine the pharmacological effects of trigonelline using molecular docking to evaluate the potential binding affinity of trigonelline with nitrate, a crucial molecule in the macrophage immune response against Leishmania. In this experimental study, the inhibitory mechanism of trigonelline on promastigotes was evaluated by measuring metacaspase expression levels. In the amastigote stage of L. major, the expression levels of inducible nitric oxide synthase (iNOS), interleukin 12 (IL-12), interferon-gamma (IFN-γ), tumour necrosis factor alpha (TNF-α), transforming growth factor-β (TGF-β) and interleukin 10 (IL-10) genes were assessed using Real-time PCR. Trigonelline demonstrated a high-binding affinity to the iNOS molecule in computer modelling. In macrophages treated with various concentrations of trigonelline, glucantime and their combination, the expression levels of metacaspase, IL-12, TNF-α, IFN-γ and iNOS genes significantly increased compared to the control group (p < 0.05), whereas IL-10 and TGF-β gene expression levels significantly decreased (p < 0.05). Trigonelline exerts its antileishmanial effects through its high antioxidant properties, non-cytotoxicity to macrophages, and its ability to enhance apoptosis and cell cycle arrest in promastigotes of L. major.
Collapse
Affiliation(s)
- Elaheh Esmaeili
- Department of Parasitology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ebrahim Saedi Dezaki
- Department of Parasitology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossin Amini-Khoei
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kobra Mokhtarian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahman Abdizadeh
- Department of Parasitology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Esmaili
- Department Food and Druge, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hadi Raesi
- Department of Epidemiology and Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Zhang J, Xie X, Qin T, Yao H, Ling Z, Deng F, Yue X, He L. Development of novel nitric oxide production inhibitors based on the 7H-pyrrolo[2,3-d]pyrimidine scaffold. Mol Divers 2024:10.1007/s11030-024-10866-0. [PMID: 38709458 DOI: 10.1007/s11030-024-10866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
Nitric oxide (NO), the smallest signaling molecule known, can be excessively produced by overexpressed inducible nitric oxide synthase (iNOS), and eventually leads to multiple inflammatory related diseases. Thus, reducing the overexpression of NO represents as very potential anti-inflammatory strategy. In current study, a series of compounds were designed and synthesized based on the hybridization of 7H-pyrrolo[2,3-d]pyrimidine and cinnamamide fragments in order to develop novel NO production inhibitors. Among them, compound S2h displayed a vigorous inhibitory activity on NO production with an IC50 value of 3.21 ± 0.67 µM, which was much lower than that of the positive control Nω-nitro-L-arginine (L-NNA, IC50 = 28.36 ± 3.13 µM). Due to its obeying Lipinski's and Veber's rules that guarantee compounds with good oral bioavailability, S2h effectively suppressed the paw swelling in carrageenan-induced mice. Additionally, compound S2h formed clear interactions with iNOS protein according to the docking analysis. Therefore, compounds S2h is a promising lead compound for further development of potent iNOS inhibitors or anti-inflammatory agents.
Collapse
Affiliation(s)
- Jie Zhang
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Xie
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingsheng Qin
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Hualiang Yao
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Ling
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Fengyuan Deng
- College of Basic Medical Science, Key Laboratory of Basic Research on Regional Diseases, Guangxi Medical University, Guangxi, China
| | - Xiaoyang Yue
- College of Basic Medical Science, Key Laboratory of Basic Research on Regional Diseases, Guangxi Medical University, Guangxi, China.
| | - Linhong He
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Silva TF, Detoni MB, Concato-Lopes VM, Tomiotto-Pellissier F, Miranda-Sapla MM, Bortoleti BTDS, Gonçalves MD, Rodrigues ACJ, Sanfelice RA, Cruz EMS, Silva MSDS, Carloto ACM, Bidoia DL, Costa IN, Pavanelli WR, Conchon-Costa I. Leishmania amazonensis infection regulates oxidate stress in hyperglycemia and diabetes impairing macrophage's function and immune response. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167078. [PMID: 38364941 DOI: 10.1016/j.bbadis.2024.167078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Leishmaniasis is a group of infectious diseases caused by protozoa of the Leishmania genus and its immunopathogenesis results from an unbalanced immune response during the infection. Diabetes is a chronic disease resulting from dysfunction of the body's production of insulin or the ability to use it properly, leading to hyperglycemia causing tissue damage and impairing the immune system. AIMS The objective of this work was to evaluate the effects of hyperglycemia and diabetes during Leishmania amazonensis infection and how these conditions alter the immune response to the parasite. METHODS An in vitro hyperglycemic stimulus model using THP-1-derived macrophages and an in vivo experimental diabetes with streptozotocin (STZ) in C57BL/6 mice was employed to investigate the impact of diabetes and hyperglicemia in Leishmania amazonensis infection. RESULTS We observed that hyperglycemia impair the leishmanicidal capacity of macrophages derived from THP-1 cells and reverse the resistance profile that C57BL/6 mice have against infection by L. amazonensis, inducing more exacerbated lesions compared to non-diabetic animals. In addition, the hyperglycemic stimulus favored the increase of markers related to the phenotype of M2 macrophages. The induction of experimental diabetes in C57BL/6 mice resulted in a failure in the production of nitric oxide (NO) in the face of infection and macrophages from diabetic animals failed to process and present Leishmania antigens, being unable to activate and induce proliferation of antigen-specific lymphocytes. CONCLUSION Together, these data demonstrate that diabetes and hyperglycemia can impair the cellular immune response, mainly of macrophages, against infection by parasites of the genus Leishmania.
Collapse
Affiliation(s)
- Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil.
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Virgínia Márcia Concato-Lopes
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil; Department of Medical Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil; Department of Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil; Icahn School of Medicine, Mount Sinai Hospital, New York, NY, United States
| | - Manoela Daiele Gonçalves
- Biotransformation and Phytochemistry Laboratory, Department of Chemistry, State University of Londrina, Londrina, PR, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil; Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Raquel Arruda Sanfelice
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Ellen Mayara Souza Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Maria Stacy Dos Santos Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Danielle Lazarin Bidoia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
4
|
Albalawi AE, Shater AF, Alanazi AD, Almohammed HI. Unveiling of the antileishmanial activities of Linalool loaded zinc oxide nanocomposite through its potent antioxidant and immunomodulatory effects. Acta Trop 2024; 252:107155. [PMID: 38373527 DOI: 10.1016/j.actatropica.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
This study aimed to produce linalool loaded zinc oxide nanocomposite (LZNPs) and assess its in vitro and in vivo antileishmanial effects against Leishmania major. LZNPs was produced through the synthesis of an ethanolic solution containing polyvinyl alcohol. The average size of LZNPs was determined to be 105 nm. The findings indicated that LZNPs displayed significant (p < 0.01) antileishmanial effects on promastigotes and amastigotes. Following exposure of promastigotes to LZNPs, there was a notable rise in the percentage of early and late apoptotic cells from 9.0 to 57.2 %. The gene expression levels of iNOS, IFN-γ, and TNF-α in macrophages were upregulated in a dose-dependent approach following exposure to LZNPs. LZNPs alone and in conjunction with glucantime (Glu) resulted in a reduction in the diameter and parasite load of CL lesions in infected mice. Treatment of the CL-infected mice with LZNPs at 25 and 50 mg/kg mainly in combination with Glu-reduced the tissue level of malondialdehyde (MDA), increased both gene and protein expression of the antioxidant enzymes as well as raised the expression level of IFN-γ and IL-12 cytokines, whereas caused a significant reduction in the expression level of IL-4. The present study shows that LZNPs has potent antileishmanial effects and controls CL in a mice model through its antioxidant and immunomodulatory properties. Further investigation, especially in clinical trials, could explore the potential use of this nanocomposite in managing and treating CL.
Collapse
Affiliation(s)
- Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47912, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Hamdan I Almohammed
- General Science Department, Deanship of Supportive Studies, Alasala University, P. O. Box 12666, Dammam 31483, Saudi Arabia.
| |
Collapse
|
5
|
Noroozbeygi M, Keshavarzian N, Haji Molla Hoseini M, Haghdoust S, Yeganeh F. Comparison of the long-term and short-term protection in mouse model of Leishmania major infection following vaccination with Live Iranian Lizard Leishmania mixed with chitin microparticles. Parasite Immunol 2024; 46:e13018. [PMID: 37987175 DOI: 10.1111/pim.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Inducing long-term immunity is the primary goal of vaccination. Leishmanisation using non-pathogenic to human Leishmania spp. could be considered a reliable approach to immunising subjects against Leishmania infection. Here, we evaluated the long-term immune responses (14 weeks) after immunisation with either live- or killed-Iranian Lizard Leishmania (ILL) mixed with chitin microparticles (CMPs) against L. major infection in BALB/c mice. In total, nine groups of mice were included in the study. To evaluate short-term immunity, mice were immunised with live-ILL and CMPs and 3 weeks later were challenged with L. majorEGFP . To evaluate the long-term immunity, mice were immunised with either live- or killed-ILL both mixed with CMPs, and 14 weeks after immunisation, mice were challenged with L. majorEGFP . A group of healthy mice who received no injection was also included in the study. Eight weeks after the challenge with L. majorEGFP , all subjects were sacrificed and the parasite burden (quantitative real-time PCR and in vivo imaging), cytokines levels (IFN-γ, IL-4 and IL-10), Leishmania-specific antibody concentration, and total levels of IgG1 and IgG2a were measured. In addition, nitric oxide concentration and arginase activity were evaluated. Results showed that in mice that were immunised using live-ILL+CMP, the induced protective immune response lasted at least 14 weeks; since they were challenged with L. majorEGFP at the 14th -week post-immunisation, no open lesion was formed during the 8-week follow-up, and the footpad swelling was significantly lower than controls. They also showed a significant reduction in the parasite burden in splenocytes, compared to the control groups including the group that received killed-ILL+CMP. The observed protection was associated with a higher IFN-γ and a lower IL-10 production by splenocytes. Additionally, the results demonstrated that arginase activity was decreased in the ILL+CMP group compared to other groups. Immunisation with ILL alone reduced the parasite burden compared to non-immunised control; however, it was still significantly higher than the parasite burden in the ILL+CMP groups. In conclusion, the long-term immune response against L. major infection induced by Live-ILL+CMP was more competent than the response elicited by killed-ILL+CMP to protect mice against infection with L. majorEGFP .
Collapse
Affiliation(s)
- Mina Noroozbeygi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Keshavarzian
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Haghdoust
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Melo MGND, Reino IBDSM, Vaitkevicius-Antão V, Silva JMD, Júnior JNDS, Andrade AFD, Bezerra RP, Marques DDAV, Silva SDFFD, Araújo PSRD, Lorena VMBD, Morais RCSD, Paiva-Cavalcanti MD. Chlorella vulgaris extract and Imiquimod as new therapeutic targets for leishmaniasis: An immunological approach. Immunobiology 2024; 229:152779. [PMID: 38118344 DOI: 10.1016/j.imbio.2023.152779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The therapeutic regimen for the treatment of American Tegumentary Leishmaniasis (ATL) is targeted at the death of the parasite; therefore, it is essential to develop a treatment that can act on the parasite, combined with the modulation of the inflammatory profile. Thus, the aim of this study was to make an in vitro evaluation of the therapeutic potential of Chlorella vulgaris extract (CV) and Imiquimod for ATL. Selectivity indices (SI) were determined by inhibitory concentration assays (IC50) in L. braziliensis cells and cytotoxic concentrations (CC50) were measured in human cells using the MTT method, based on the CV microalgae extract (IC50 concentrations of 15.63 to 500 µg/mL; CC50 concentrations of 62.5-1000 µg/mL) in comparison with the reference drugs and Imiquimod. The immune response was evaluated in healthy human cells by gene expression (RT-qPCR) and cytokine production (Flow Cytometry). The CV extract (SI = 6.89) indicated promising results by showing higher SI than meglumine antimoniate (SI = 3.44) (reference drug). In all analyses, CV presented a protective profile by stimulating the production of Th1 profile cytokines to a larger extent than the reference drugs. Imiquimod showed a high expression for Tbx21, GATA3, RORc and Foxp3 genes, with increased production only of the TNF cytokine. Therefore, the data highlight the natural extract and Imiquimod as strong therapeutic or adjuvant candidates against ATL, owing to modulation of immune response profiles, low toxicity in human cells and toxic action on the parasite.
Collapse
Affiliation(s)
| | | | - Victor Vaitkevicius-Antão
- Department of Microbiology, Aggeu Magalhães Institute, Fiocruz Pernambuco Recife, Pernambuco, Brazil
| | - Jady Moreira da Silva
- Department of Microbiology, Aggeu Magalhães Institute, Fiocruz Pernambuco Recife, Pernambuco, Brazil; Federal University of Pernambuco, UFPE Recife, Pernambuco, Brazil
| | - José Noé da Silva Júnior
- Research Support Center, Federal Rural University of Pernambuco, UFRPE Recife, Pernambuco, Brazil
| | | | - Raquel Pedrosa Bezerra
- Research Support Center, Federal Rural University of Pernambuco, UFRPE Recife, Pernambuco, Brazil
| | | | | | - Paulo Sérgio Ramos de Araújo
- Federal University of Pernambuco, UFPE Recife, Pernambuco, Brazil; Departament of Parasitology, Aggeu Magalhães Institute, Fiocruz Pernambuco Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
7
|
Jesus MM, Lage DP, Vale DL, Freitas CS, Pimenta BL, Moreira GJL, Ramos FF, Pereira IAG, Bandeira RS, Ludolf F, Tavares GSV, Galdino AS, Duarte MC, Menezes-Souza D, Chávez-Fumagalli MA, Teixeira AL, Gonçalves DU, Roatt BM, Christodoulides M, Martins VT, Coelho EAF. Immunization with recombinant LiHyp1 protein plus adjuvant is protective against tegumentary leishmaniasis. Parasitol Res 2023; 122:2917-2931. [PMID: 37768367 DOI: 10.1007/s00436-023-07981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Tegumentary leishmaniasis (TL) is the main clinical manifestation of leishmaniasis, and it can cause the infected hosts to self-healing cutaneous lesions until mutilating scars in mucosal membranes, particularly in the nose and throat. The treatment against disease presents problems, and the diagnosis is hampered by variable sensitivity and/or specificity of the tests. In this context, the development of prophylactic vaccines could be considered as a strategy to control the disease. Previously, we showed that the recombinant LiHyp1 protein plus adjuvant protected mice from infection with Leishmania infantum, which causes visceral leishmaniasis. In the present study, we tested whether rLiHyp1 could induce protection against infection with L. amazonensis, a parasite species able to cause TL. We immunized BALB/c mice with rLiHyp1 plus saponin (rLiHyp1/S) or incorporated in micelles (rLiHyp1/M) as adjuvants and performed parasitological and immunological evaluations before and after infection. Results showed that after in vitro stimulation from spleen cell cultures using rLiHyp1 or a Leishmania antigenic extract (SLA), rLiHyp1/S and rLiHyp1/M groups developed a Th1-type immune response, which was characterized by high levels of IFN-γ, IL-2, TNF-α and IL-12 cytokines, nitrite, and IgG2a isotype antibodies when compared to values found in the control (saline, saponin, micelles alone) groups, which showed higher levels of anti-SLA IL-4, IL-10, and IgG1 antibodies before and after challenge. In addition, mice receiving rLiHyp1/S or rLiHyp1/M presented significant reductions in the lesion average diameter and parasite load in the infected tissue and internal organs. Blood samples were collected from healthy subjects and TL patients to obtain PBMC cultures, which were in vitro stimulated with rLiHyp1 or SLA, and results showed higher lymphoproliferation and IFN-γ production after stimulus using rLiHyp1, as compared to values found using SLA. These results suggest that rLiHyp1 plus adjuvant was protective against experimental TL and could also be considered for future studies as a vaccine candidate against human disease.
Collapse
Affiliation(s)
- Marcelo M Jesus
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno L Pimenta
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel J L Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexsandro S Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, MG, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Antônio L Teixeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, USA
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, England
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, Brazil.
| |
Collapse
|
8
|
Henriquez-Figuereo A, Alcon M, Moreno E, Sanmartín C, Espuelas S, Lucio HD, Jiménez-Ruiz A, Plano D. Next generation of selenocyanate and diselenides with upgraded leishmanicidal activity. Bioorg Chem 2023; 138:106624. [PMID: 37295238 DOI: 10.1016/j.bioorg.2023.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Nowadays, leishmaniasis is still treated with outdated drugs that present several obstacles related to their high toxicity, long duration, parenteral administration, high costs and drug resistance. Therefore, there is an urgent demand for safer and more effective novel drugs. Previous studies indicated that selenium compounds are promising derivatives for innovative therapy in leishmaniasis treatment. With this background, a new library of 20 selenocyanate and diselenide derivatives were designed based on structural features present in the leishmanicidal drug miltefosine. Compounds were initially screened against promastigotes of L. major and L. infantum and their cytotoxicity was evaluated in THP-1 cells. Compounds B8 and B9 were the most potent and less cytotoxic and were further screened for the intracellular back transformation assay. The results obtained revealed that B8 and B9 showed EC50 values of 7.7 µM and 5.7 µM, respectively, in L. major amastigotes, while they presented values of 6.0 µM and 7.4 µM, respectively, against L. infantum amastigotes. Furthermore, they exerted high selectivity (60 < SI > 70) towards bone marrow-derived macrophages. Finally, these compounds exhibited higher TryR inhibitory activity than mepacrine (IC50 7.6 and 9.2 µM, respectively), and induced nitric oxide (NO) and reactive oxygen species (ROS) production in macrophages. These results suggest that the compounds B8 and B9 could not only exert a direct leishmanicidal activity against the parasite but also present an indirect action by activating the microbicidal arsenal of the macrophage. Overall, these new generation of diselenides could constitute promising leishmanicidal drug candidates for further studies.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Pamplona, Spain; Institute of Tropical Health, University of Navarra, ISTUN, Pamplona, Spain
| | - Mercedes Alcon
- Universidad de Alcalá, Departamento de Biología de Sistemas, 28805 Alcalá de Henares, Madrid, Spain
| | - Esther Moreno
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Pamplona, Spain; Institute of Tropical Health, University of Navarra, ISTUN, Pamplona, Spain; IdisNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Pamplona, Spain; Institute of Tropical Health, University of Navarra, ISTUN, Pamplona, Spain; IdisNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Socorro Espuelas
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Pamplona, Spain; Institute of Tropical Health, University of Navarra, ISTUN, Pamplona, Spain; IdisNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Héctor de Lucio
- Universidad de Alcalá, Departamento de Biología de Sistemas, 28805 Alcalá de Henares, Madrid, Spain
| | - Antonio Jiménez-Ruiz
- Universidad de Alcalá, Departamento de Biología de Sistemas, 28805 Alcalá de Henares, Madrid, Spain
| | - Daniel Plano
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Pamplona, Spain; Institute of Tropical Health, University of Navarra, ISTUN, Pamplona, Spain; IdisNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
9
|
De Freitas JH, Bragato JP, Rebech GT, Costa SF, Dos Santos MO, Soares MF, Eugênio FDR, Dos Santos PSP, De Lima VMF. MicroRNA-21 and microRNA-148a affects PTEN, NO and ROS in canine leishmaniasis. Front Genet 2023; 14:1106496. [PMID: 37124626 PMCID: PMC10137164 DOI: 10.3389/fgene.2023.1106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Canine Visceral leishmaniasis (CanL) poses a severe public health threat in several countries. Disease progression depends on the degree of immune response suppression. MicroRNAs (miRs) modulate mRNA translation into proteins and regulate various cellular functions and pathways associated with immune responses. MiR-21 and miR-148a can alter the parasite load and M1 macrophages are the principal cells in dogs' leishmanicidal activity. A previous study found increased miR-21 and miR-148a in splenic leukocytes (SL) of dogs with CanL using microarray analysis and in silico analysis identified PTEN pathway targets. PTEN is involved in the immune regulation of macrophages. We measured PTEN and the production of reactive oxygen species (ROS) and nitric oxide (NO) before and after transfection SLs of dogs with CanL with mimic and inhibition of miR-21 and miR-148a. PTEN levels increased, NO and ROS decreased in SLs from dogs with CanL. Inhibition of miRNA-21 resulted in PTEN increase; in contrast, PTEN decreased after miR-148a inhibition. Nitrite (NO2) levels increased after transfection with miR-21 inhibitor but were decreased with miR-148a inhibitor. The increase in miR-21 promoted a reduction in ROS and NO levels, but miR-148a inhibition increased NO and reduced ROS. These findings suggest that miR-21 and miR-148a can participate in immune response in CanL, affecting PTEN, NO, and ROS levels.
Collapse
|
10
|
Jayaraman A, Srinivasan S, Kar A, Harish B, Charan Raja MR, Uppuluri KB, Kar Mahapatra S. Oceanimonas sp. BPMS22-derived protein protease inhibitor induces anti-leishmanial immune responses through macrophage M2 to M1 repolarization. Int Immunopharmacol 2022; 112:109281. [DOI: 10.1016/j.intimp.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
|
11
|
Kopelyanskiy D, Desponds C, Prevel F, Rossi M, Migliorini R, Snäkä T, Eren RO, Claudinot S, Lye LF, Pasparakis M, Beverley SM, Fasel N. Leishmania guyanensis suppressed inducible nitric oxide synthase provoked by its viral endosymbiont. Front Cell Infect Microbiol 2022; 12:944819. [PMID: 36034693 PMCID: PMC9416488 DOI: 10.3389/fcimb.2022.944819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis.
Collapse
Affiliation(s)
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Romain Migliorini
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi Onur Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | - Lon-Fye Lye
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Stephen M. Beverley
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
12
|
Shen LX, Yang D, Chen RF, Liu DH. Talaromyces marneffei Influences Macrophage Polarization and Sterilization Ability via the Arginine Metabolism Pathway in Vitro. Am J Trop Med Hyg 2022; 107:tpmd210568. [PMID: 35895344 PMCID: PMC9490654 DOI: 10.4269/ajtmh.21-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/07/2022] [Indexed: 11/26/2022] Open
Abstract
The opportunistic fungal pathogen Talaromyces marneffei, which is endemic across a narrow band of tropical Southeast Asia and southern China, is an intracellular pathogen that causes systemic and lethal infection through the mononuclear phagocyte system. The mechanisms by which T. marneffei successfully replicates and escapes the immune system remain unclear. To investigate the role of arginine metabolism in the escape of T. marneffei from killer macrophages, we assessed inducible nitric oxide synthase (iNOS) and arginase expression, nitric oxide (NO) production, arginase and phagocytic activity, and the killing of T. marneffei in a coculture system. Our results indicate that T. marneffei induced macrophage polarization toward the M2 phenotype and regulated the arginine metabolism pathway by prolonging infection, thereby reducing antimicrobial activity and promoting fungal survival. Moreover, inhibiting T. marneffei-induced macrophage arginase activity with Nω-hydroxy-nor-arginine restored NO synthesis and strengthened fungal killing. These findings indicate that T. marneffei affects macrophage polarization and inhibits macrophage antimicrobial function via the arginine metabolism pathway.
Collapse
Affiliation(s)
- Lin-xia Shen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Department of Dermatology and Venereology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Di Yang
- Department of Dermatology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ri-feng Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Dong-hua Liu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
13
|
Vermare A, Guérin MV, Peranzoni E, Bercovici N. Dynamic CD8+ T Cell Cooperation with Macrophages and Monocytes for Successful Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14143546. [PMID: 35884605 PMCID: PMC9318008 DOI: 10.3390/cancers14143546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Innate and adaptive immunity mutually regulate one another in a dynamic fashion during immune responses. In infectious contexts, positive interactions between macrophages, monocytes and T cells are well recognized, but this is not the case in the field of cancer, where the growth of tumors disturbs the immune response. However, recent advances revealed that successful immunotherapy profoundly remodels the tumor microenvironment, promoting the activation of both T cells and myeloid cells. This review highlights the studies that hint at positive CD8+ T cell cooperation with monocytes and macrophages in this context, and discusses the potential mechanisms behind this. Abstract The essential roles endorsed by macrophages and monocytes are well established in response to infections, where they contribute to launching the differentiation of specific T-lymphocytes for long-term protection. This knowledge is the result of dynamic studies that can inspire the cancer field, particularly now that cancer immunotherapies elicit some tumor regression. Indeed, immune responses to cancer have mainly been studied after tumors have escaped immune attacks. In particular, the suppressive functions of macrophages were revealed in this context, introducing an obvious bias across the literature. In this review, we will focus on the ways inwhich monocytes and macrophages cooperate with T-lymphocytes, leading to successful immune responses. We will bring together the preclinical studies that have revealed the existence of such positive cooperation in the cancer field, and we will place particular emphasis on proposing the underlying mechanisms. Finally, we will give some perspectives to decipher the functional roles of such T-cell and myeloid cell interactions in the frame of human cancer immunotherapy.
Collapse
Affiliation(s)
- Anaïs Vermare
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France;
- Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | | | | | - Nadège Bercovici
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France;
- Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
- Correspondence:
| |
Collapse
|
14
|
Khandibharad S, Singh S. Artificial intelligence channelizing protein-peptide interactions pipeline for host-parasite paradigm in IL-10 and IL-12 reciprocity by SHP-1. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166466. [PMID: 35750267 DOI: 10.1016/j.bbadis.2022.166466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022]
Abstract
Identification of molecular targets in any cellular phenomena is a challenge and a path that one endeavors upon independently. We have identified a phosphatase SHP-1 as a point of intervention of IL-10 and IL-12 reciprocity in leishmaniasis. The therapeutic model that we have developed uniquely targets this protein but the pipeline in general can be used by the researchers for their unique targets. Naturally occurring peptides are well known for their biochemical participation in cellular functions hence we were motivated to use this uniqueness of physico-chemical properties of peptides conferred by amino acids through machine learning to channelize a mode of therapeutic exploration in infectious disease. Using computational approaches, we identified high order sequence conservation and similarity in SHP-1 sequence which was also evolutionarily conserved, complete structure of Mouse SHP-1 was predicted and validated, a unique motif of the same was identified against which library of synthetic peptides were designed and validated followed by screening the library by docking them with MuSHP-1 protein structure. Our findings showed 3 peptides had high binding affinity and in future can be validated using cell based and in vivo assays.
Collapse
Affiliation(s)
- Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, INDIA
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, INDIA.
| |
Collapse
|
15
|
Dipeptidylcarboxypeptidase of Leishmania donovani: A potential vaccine molecule against experimental visceral leishmaniasis. Cell Immunol 2022; 375:104529. [DOI: 10.1016/j.cellimm.2022.104529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
|
16
|
Skariah S, Sultan AA, Mordue DG. IFN-induced cell-autonomous immune mechanisms in the control of intracellular protozoa. Parasitol Res 2022; 121:1559-1571. [DOI: 10.1007/s00436-022-07514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
17
|
Haghdoust S, Noroozbeygi M, Hajimollahoseini M, Masooleh MM, Yeganeh F. A candidate vaccine composed of live nonpathogenic Iranian Lizard Leishmania mixed with Chitin microparticles protects mice against Leishmania major infection. Acta Trop 2022; 227:106298. [PMID: 34971566 DOI: 10.1016/j.actatropica.2021.106298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND The protective effect of immunization using Iranian Lizard Leishmania (ILL) mixed with CpG oligodeoxynucleotides (CpG-ODN) was demonstrated in a previous study. Here, we report the effect of leishmanization using ILL mixed with chitin microparticles (CMPs) as an adjuvant against L. major infection in BALB/c mice. METHODS Briefly, 2 × 107 live ILL were mixed with 10 µg CMPs (<40 μm in size) (ILL+CMP) and were injected subcutaneously into the right footpad of BALB/c mice. Three control groups were included in the study and received ILL, chitin, and PBS respectively. Three weeks later, mice were challenged with 2 × 105 live L. majorEGFP promastigotes, which were inoculated into the left footpad. The infection course was monitored using footpad swelling measurement and in vivo imaging. Eleven weeks after the challenge, all mice were sacrificed and parasite burden was measured in the spleen and the draining lymph node using three different methods including real-time PCR, flow cytometry, and direct fluorescent microscopy. In addition, cytokines levels (IFN-γ and IL-10), and nitric oxide production were assayed in splenocytes. RESULTS Mice immunized with ILL+CMP had a smaller footpad diameter in comparison to control groups and notably, no lesion was developed at the inoculation site. Additionally, in vivo imaging study revealed that there was no detectable fluorescence in the ILL+CMP group footpad by the end of the tenth week. This finding was confirmed by three methods used for parasite burden assays. Moreover, higher IFN-γ level was observed in mice immunized with ILL+CMP in comparison with other groups. On the other hand, nitric oxide concentration was higher in the ILL control group. CONCLUSION ILL mixed with chitin microparticles is an effective vaccine against leishmaniasis in BALB/c mice. This vaccine is able to induce an adequate immune response to decrease the parasite burden and prevent lesion formation. Further studies are needed to evaluate long-lasting immunity, especially in experimental outbreed models.
Collapse
|
18
|
Khandibharad S, Singh S. Computational System Level Approaches for Discerning Reciprocal Regulation of IL10 and IL12 in Leishmaniasis. Front Genet 2022; 12:784664. [PMID: 35126456 PMCID: PMC8807686 DOI: 10.3389/fgene.2021.784664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
IL12 and IL10 are two of the major cytokines which control the fate of Leishmaniasis. This paper presents two models healthy state and diseased state which shows how secretion of IL12 is responsible for parasite elimination and IL10 can jeopardize the parasite elimination and promote its survival. Epigenetic modification in the host IL12 and IL10 promoter can decide the fate of parasites. It was observed that reciprocal relationship exists between IL12 and IL10 and that is majorly controlled by a transcription factor NFAT5 from Rel family of transcription factors. By targeting this transcription factor at the cellular level, it might be possible to modulate the release of powerful pro-inflammatory cytokines, thereby reducing parasite survival. The mathematical models developed here serves as a step towards finding a key component that can pave a way for therapeutic investigation.
Collapse
|
19
|
Khademvatan S, Amani S, Mohebodini M, Jafari M, Kumar V. Ficus carica hairy roots: In vitro anti-leishmanial activity against Leishmania major promastigotes and amastigotes. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.345945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Barros-Gonçalves TDD, Saavedra AF, da Silva-Couto L, Ribeiro-Romão RP, Bezerra-Paiva M, Gomes-Silva A, Carvalho VF, Da-Cruz AM, Pinto EF. Increased levels of cortisol are associated with the severity of experimental visceral leishmaniasis in a Leishmania (L.) infantum-hamster model. PLoS Negl Trop Dis 2021; 15:e0009987. [PMID: 34813597 PMCID: PMC8651114 DOI: 10.1371/journal.pntd.0009987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/07/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
Background Several infectious diseases are associated with hypothalamic-pituitary-adrenal (HPA) axis disorders by elevating circulating glucocorticoids (GCs), which are known to have an immunosuppressive potential. We conducted this study in golden hamsters, a suitable model for human visceral leishmaniasis (VL), to investigate the relationship of Leishmania (L.) infantum infection on cortisol production and VL severity. Methods L. infantum-infected (n = 42) and uninfected hamsters (n = 30) were followed-up at 30, 120, and 180 days post-infection (dpi). Plasma cortisol was analyzed by radioimmunoassay and cytokines, inducible nitric oxide synthase (iNOS), and arginase by RT-qPCR. Results All hamsters showed splenomegaly at 180 dpi. Increased parasite burden was associated with higher arginase expression and lower iNOS induction. Cortisol levels were elevated in infected animals in all-time points evaluated. Except for monocytes, all other leucocytes showed a strong negative correlation with cortisol, while transaminases were positively correlated. Immunological markers as interleukin (IL)-6, IL-1β, IL-10, and transforming growth-factor-β (TGF-β) were positively correlated to cortisol production, while interferon-γ (IFN-γ) presented a negative correlation. A network analysis showed cortisol as an important knot linking clinical status and immunological parameters. Conclusions These results suggest that L. infantum increases the systemic levels of cortisol, which showed to be associated with hematological, biochemical, and immunological parameters associated to VL severity. Visceral leishmaniasis (VL) is an infectious disease that is common in most tropical countries. VL has high morbidity and leads to death if not properly treated. In Brazil, Leishmania (Leishmania) infantum is the main causative agent of VL. Golden hamsters have proven to be a suitable model for VL. Despite the importance of hypothalamic-pituitary-adrenal (HPA) axis disturbances in infectious disease, few studies have addressed this issue in VL. In this study, we showed that L. infantum-infected hamsters present augmented levels of plasmatic cortisol in association with increased spleen parasite burden. Indeed, a strong positive correlation was observed between cortisol and biochemical parameters (AST/ALT/ALP) related to liver damage, as well as pro-inflammatory cytokines (IL-6 and IL-1β), anti-inflammatory cytokines (IL-10 and TGF-β), and the arginase enzyme that may favor the progression of infection. On the other side, cortisol was negatively correlated with leucocytes, except monocytes, and with IFN-γ and iNOS, which are involved in parasite-killing macrophage function. These results shed light on an unexplored aspect of VL pathogenesis, which is the importance of cortisol production in the disease-associated immune dysfunction.
Collapse
Affiliation(s)
| | - Andrea F. Saavedra
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Luzinei da Silva-Couto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Raquel P. Ribeiro-Romão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Milla Bezerra-Paiva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Adriano Gomes-Silva
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Vinicius F. Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), CNPq, Rio de Janeiro, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), CNPq, Rio de Janeiro, Brazil
- Disciplina de Parasitologia-DMIP, Faculdade de Ciências Médicas, UERJ, Rio de Janeiro, Brazil
- Rede de Pesquisas em Saúde do Estado do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil
| | - Eduardo F. Pinto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Rede de Pesquisas em Saúde do Estado do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
21
|
Nikpour S, Tabatabaie F, Sharifi I, Mostafavi M, Oliaee RT, Sharifi F, Babaei Z, Jafari E, Salarkia E, Shahbazzadeh D. The Fraction of the Snake Venom, Its Leishmanicidal Effect, and the Stimulation of an Anti- Leishmania Response in Infected Macrophages. Endocr Metab Immune Disord Drug Targets 2021; 21:1115-1124. [PMID: 33176669 DOI: 10.2174/1871530320999201110211222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Due to the lack of an effective vaccine and complexity of the control measures against vectors and reservoir hosts, the control of leishmaniasis depends primarily on chemotherapy. This study was aimed to assess the snake venom, Naja naja oxiana fraction 11(NNOVF11) on Leishmania infantum and its broad mode of action. METHODS A wide range of in vitro advanced assays including high-performance liquid chromatography (HPLC), MTT (3-[4, 5-Dimethylthiazol-2-yl]-2, 5diphenyltetrazolium bromide; Thiazolyl blue), macrophage assays, quantitative real-time polymerase chain reaction (qPCR), flow cytometry and enzyme- linked immunosorbent assay (ELISA) on L. infantum promastigote and amastigote stages were used. IC50 values of L. infantum stages, CC50 value, and apoptosis were also analyzed. RESULTS The NNOV-F11 demonstrated strong antileishmanial activity against L. infantum stages in a dose-dependent manner compared to the untreated control group. Interleukin (IL)-12, TNF-α, and iNOS genes expression as the indicators of T helper(h)1 response significantly increased; in contrast, the expression level of IL-10, as the representative of Th2 response significantly decreased (p < 0.001). Reactive oxygen species (ROS) detection showed a significant increase (p < 0.001) after treatment with different concentrations of NNOV-F11, unlike arginase (ARG) activity, which displayed a significant reduction (p < 0.001). CONCLUSION NNOV-F11 possessed a potent inhibitory effect on L. infantum stages with the multifunctional and broad mode of actions, which promoted the immunomodulatory role, induced ROS production, stimulated apoptotic-like mechanisms, and inhibited L-ARG activity, which collectively led to the parasite death. Further studies are crucial to assess the effect of the NNOV-F11 on animal models or clinical settings.
Collapse
Affiliation(s)
- Saeideh Nikpour
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tabatabaie
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh T Oliaee
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Delavar Shahbazzadeh
- Laboratory of Venom and Biotherapeutics Molecules, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Wu Y, Fu H, Yang X, Leng F, Huang Y, Deng H, Xiang Q, Zhang S. Polygalaxanthone III downregulates inflammation in the lipopolysaccharide-stimulated RAW264.7 macrophages: A quantibody array analysis. J Pharmacol Sci 2021; 147:184-191. [PMID: 34384566 DOI: 10.1016/j.jphs.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Polygala japonica Houtt. (PJ), a member of the Polygala L. family that is suggested to exhibit detoxification properties in traditional Chinese medicine, is often used to treat upper respiratory tract infections. The anti-inflammatory effects of four main components of PJ (POL, PS-XLIX, PS-E, and PS-F) were examined using the LPS(0.3 μg·mL-1)-stimulated RAW264.7 macrophage model. The levels of NO, ROS, and iNOS were examined to analyze the anti-inflammatory activity of POL. Additionally, the levels of extracellular inflammation-related cytokines and chemokines were measured using quantibody array. The KEGG pathway analysis was performed to examine the anti-inflammatory mechanism of POL. The levels of NO in the POL-pretreated group were significantly downregulated when compared with those in the PS-E-pretreated, PS-F-pretreated, and PS-XLIX-pretreated groups. POL significantly inhibited the changes of iNOS, ROS, and inflammatory factors caused by LPS stimulation (p < 0.001). The expression levels of IL21 and GM-CSF were examined using qPCR, while those of JAK-STAT signaling pathway-related proteins in the LPS-stimulated RAW264.7 macrophages were analyzed using western blotting. POL significantly downregulated the expression of IL-21 and GM-CSF. The anti-inflammatory mechanism of POL is mediated through the JAK-STAT pathway. Thus, this study demonstrated that POL is an anti-inflammatory component of PJ and elucidated its mechanism.
Collapse
Affiliation(s)
- Yinan Wu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Fu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobin Yang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fang Leng
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yadong Huang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Hong Deng
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Xiang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.
| | - Shu Zhang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
23
|
Valéria Amorim L, de Lima Moreira D, Muálem de Moraes Alves M, Jessé Ramos Y, Pereira Costa Sobrinho E, Arcanjo DDR, Rodrigues de Araújo A, de Souza de Almeida Leite JR, das Chagas Pereira de Andrade F, Mendes AN, Aécio de Amorim Carvalho F. Anti-Leishmania activity of extracts from Piper cabralanum C.DC. (Piperaceae). ACTA ACUST UNITED AC 2021; 76:229-241. [PMID: 33660490 DOI: 10.1515/znc-2020-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
Species of Piperaceae are known by biological properties, including antiparasitic such as leishmanicidal, antimalarial and in the treatment of schistosomiasis. The aim of this work was to evaluate the antileishmania activity, cytotoxic effect, and macrophage activation patterns of the methanol (MeOH), hexane (HEX), dichloromethane (DCM) and ethyl acetate (EtOAc) extract fractions from the leaves of Piper cabralanum C.DC. The MeOH, HEX and DCM fractions inhibited Leishmanina amazonensis promastigote-like forms growth with a half maximal inhibitory concentration (IC50) of 144.54, 59.92, and 64.87 μg/mL, respectively. The EtOAc fraction did not show any relevant activity. The half maximal cytotoxic concentration (CC50) for macrophages were determined as 370.70, 83.99, 113.68 and 607 μg/mL for the MeOH, HEX and DCM fractions, respectively. The macrophage infectivity was concentration-dependent, especially for HEX and DCM. MeOH, HEX and DCM fractions showed activity against L. amazonensis with low cytotoxicity to murine macrophages and lowering infectivity by the parasite. Our results provide support for in vivo studies related to a potential application of P. cabralanum extract and fractions as a promising natural resource in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Layane Valéria Amorim
- Antileishmania Activity Laboratory, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Davyson de Lima Moreira
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Ygor Jessé Ramos
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Daniel Dias Rufino Arcanjo
- Department of Biophysics and Physiology, Laboratory of Funcional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Alyne Rodrigues de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, Piauí, Brazil
| | | | | | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology, Laboratory of Innovation on Science and Technology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | |
Collapse
|
24
|
Jobin K, Müller DN, Jantsch J, Kurts C. Sodium and its manifold impact on our immune system. Trends Immunol 2021; 42:469-479. [PMID: 33962888 DOI: 10.1016/j.it.2021.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings.
Collapse
Affiliation(s)
- Katarzyna Jobin
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, Würzburg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, and Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany.
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Nitric-oxide releasing chitosan nanoparticles towards effective treatment of cutaneous leishmaniasis. Nitric Oxide 2021; 113-114:31-38. [PMID: 33940194 DOI: 10.1016/j.niox.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022]
Abstract
Cutaneous leishmaniasis (CL) is a major public health problem caused by Leishmania parasites that produce destructive and disfiguring skin conditions. There is an urgent need for alternative topical therapies due to the limitations of current systemic treatments. Recently, we have synthesized nitric oxide-releasing chitosan nanoparticles (NONPs) and shown their potential in vitro against Leishmania amazonensis. Herein we evaluated the application of NONPs for the treatment of CL on infected BALB/c mice. Mice were treated with topical administration of increasing concentrations of NONPs and disease progression was investigated regarding parasite load, lesion thickness, and pain score. As a result, we observed a dose-dependent NONPs effect. Parasite burden and lesion thickness were substantially lower on animals receiving NONPs at a 2 mM concentration compared to untreated control. Moreover, the clinical presentation of the lesions did not show any visible signs of ulcer, suggesting clinical healing in these animals. This successful outcome was sustained for at least 21 days after therapy even in one single dose. Thus, we demonstrate that NONPs are suitable for topical administration, and represent an attractive approach to treat CL.
Collapse
|
26
|
Hu Q, Shi J, Zhang J, Wang Y, Guo Y, Zhang Z. Progress and Prospects of Regulatory Functions Mediated by Nitric Oxide on Immunity and Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qian Hu
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Jingyu Shi
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Jiao Zhang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yi Wang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Zhiping Zhang
- Tongji School of Pharmacy, National Engineering Research Centre for Nanomedicine, Hubei Engineering Research Centre for Novel Drug Delivery System Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
27
|
de Freitas E Silva R, von Stebut E. Unraveling the Role of Immune Checkpoints in Leishmaniasis. Front Immunol 2021; 12:620144. [PMID: 33776999 PMCID: PMC7990902 DOI: 10.3389/fimmu.2021.620144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis are Neglected Tropical Diseases affecting millions of people every year in at least 98 countries and is one of the major unsolved world health issues. Leishmania is a parasitic protozoa which are transmitted by infected sandflies and in the host they mainly infect macrophages. Immunity elicited against those parasites is complex and immune checkpoints play a key role regulating its function. T cell receptors and their respective ligands, such as PD-1, CTLA-4, CD200, CD40, OX40, HVEM, LIGHT, 2B4 and TIM-3 have been characterized for their role in regulating adaptive immunity against different pathogens. However, the exact role those receptors perform during Leishmania infections remains to be better determined. This article addresses the key role immune checkpoints play during Leishmania infections, the limiting factors and translational implications.
Collapse
Affiliation(s)
| | - Esther von Stebut
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Kupani M, Sharma S, Pandey RK, Kumar R, Sundar S, Mehrotra S. IL-10 and TGF-β Induced Arginase Expression Contributes to Deficient Nitric Oxide Response in Human Visceral Leishmaniasis. Front Cell Infect Microbiol 2021; 10:614165. [PMID: 33680983 PMCID: PMC7930829 DOI: 10.3389/fcimb.2020.614165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/31/2020] [Indexed: 12/01/2022] Open
Abstract
Nitric oxide (NO) is an anti-microbial effector of the innate immune system which plays major role in non-specific killing of various pathogens including protozoan parasites. However, due to subversion of the host’s immune processes by pathogens, suboptimal production of NO is frequently found in many infection models. Previous studies have shown suppressed NO production during Leishmania donovani infection, the causative agent of visceral leishmaniasis (VL). Availability of L-Arginine, a semi-essential amino acid is required for inducible nitric oxide synthase (iNOS) mediated NO production. However, arginase is another enzyme, which if expressed concomitantly, may strongly compete for L-Arginine, and suppress NO production by iNOS. In the present study, plasma nitrite and arginase levels were measured in VL patients before and after successful drug treatment, endemic and non-endemic healthy donors. We observed significantly lower NO levels in the plasma of VL patients as compared to endemic controls, which improved significantly post-treatment. Significantly elevated arginase activity was also observed in the plasma of VL patients, which may be associated with NO deficiency. VL patients also showed significantly higher levels of IL-10 and TGF-β, which are known to regulate expression of arginase in various immune cells. In vitro studies with human peripheral blood mononuclear cells (PBMCs) further corroborated the role of IL-10 and TGF-β in arginase mediated suppression of NO production.
Collapse
Affiliation(s)
- Manu Kupani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Smriti Sharma
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajeev Kumar Pandey
- Research and Development Division, Thermo Fisher Scientific, Bangalore, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
29
|
Development of new combination anti-leishmanial complexes: Triphenyl Sb(V) mono-hydroxy mono-quinolinolates. J Inorg Biochem 2021; 219:111385. [PMID: 33894637 DOI: 10.1016/j.jinorgbio.2021.111385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
In seeking to develop single entity combination anti-Leishmanial complexes six heteropletic organometallic Sb(V) hydroxido quinolinolate complexes of general formula [SbPh3(C9H4NORR')(OH)] have been synthesised and characterised, derived from a series of halide substituted quinolinols (8-hydroxyquinolines). Single crystal X-ray diffraction on all the complexes show a common distorted six-coordinate octahedral environment at the Sb(V) centre, with the aryl groups and nitrogen atom of quinolinolate ligand bonding in the equatorial planes, with the two oxygen atoms (hydroxyl and quinolinolate) occupying the axial plane in an almost linear configuration. Each complex was tested for their anti-promastigote activity and mammalian cytotoxicity and a selectivity indices established. The complexes displayed excellent anti-promastigote activity (IC50: 2.03-3.39 μM) and varied mammalian cytotoxicity (IC50: 12.7-46.9 μM), leading to a selectivity index range of 4.52-16.7. All complexes displayed excellent anti-amastigote activity with a percentage infection range of 2.25%-9.00%. All complexes performed substantially better than the parent quinolinols and comparable carboxylate complexes [SbPh3(O2CRR')2] indicating the synergistic role of the Sb(V) and quinolinol moieties in increasing parasite mortality. Two of the complexes [SbPh3(C9H4NOBr2)(OH)] 4, [SbPh3(C9H4NOI2)(OH)] 5, provide an ideal combination of high selective and good activity towards the leishmanial amastigotes and offer the potential as good lead compounds.
Collapse
|
30
|
Soto M, Ramírez L, Solana JC, Cook ECL, Hernández-García E, Charro-Zanca S, Redondo-Urzainqui A, Reguera RM, Balaña-Fouce R, Iborra S. Resistance to Experimental Visceral Leishmaniasis in Mice Infected With Leishmania infantum Requires Batf3. Front Immunol 2020; 11:590934. [PMID: 33362772 PMCID: PMC7758202 DOI: 10.3389/fimmu.2020.590934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Unveiling the protective immune response to visceral leishmaniasis is critical for a rational design of vaccines aimed at reducing the impact caused by this fatal, if left untreated, vector-borne disease. In this study we sought to determine the role of the basic leucine zipper transcription factor ATF-like 3 (Batf3) in the evolution of infection with Leishmania infantum, the causative agent of human visceral leishmaniasis in the Mediterranean Basin and Latin America. For that, Batf3-deficient mice in C57BL/6 background were infected with an L. infantum strain expressing the luciferase gene. Bioluminescent imaging, as well as in vitro parasite titration, demonstrated that Batf3-deficient mice were unable to control hepatic parasitosis as opposed to wild-type C57BL/6 mice. The impaired microbicide capacities of L. infantum-infected macrophages from Batf3-deficient mice mainly correlated with a reduction of parasite-specific IFN-γ production. Our results reinforce the implication of Batf3 in the generation of type 1 immunity against infectious diseases.
Collapse
Affiliation(s)
- Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Carlos Solana
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emma C L Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Charro-Zanca
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| | | | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
31
|
Cardoso FDO, Zaverucha-do-Valle T, Almeida-Souza F, Abreu-Silva AL, Calabrese KDS. Modulation of Cytokines and Extracellular Matrix Proteins Expression by Leishmania amazonensis in Susceptible and Resistant Mice. Front Microbiol 2020; 11:1986. [PMID: 32983013 PMCID: PMC7487551 DOI: 10.3389/fmicb.2020.01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Leishmaniases are a complex of diseases with a broad spectrum of clinical forms, which depend on the parasite species, immunological status, and genetic background of the host. In the Leishmania major model, susceptibility is associated with the Th2 pattern of cytokines production, while resistance is associated with Th1 response. However, the same dichotomy does not occur in L. amazonensis-infected mice. Cytokines are key players in these diseases progression, while the extracellular matrix (ECM) components participate in the process of parasite invasion as well as lesion healing. In this article, we analyzed the influence of host genetics on the expression of cytokines, inducible nitric oxide synthase (iNOS), and ECM proteins, as well as the parasite load in mice with different genetic backgrounds infected by L. amazonensis. C57BL/10 and C3H/He mice were subcutaneously infected with 106L. amazonensis promastigotes. Lesion kinetics, parasite load, cytokines, iNOS, and ECM proteins expression were measured by quantitative PCR (qPCR) in the footpad, draining lymph nodes, liver, and spleen at early (24 h and 30 days) and late phase (120 and 180 days) of infection. Analysis of lesion kinetics showed that C57BL/10 mice developed ulcerative lesions at the inoculation site after L. amazonensis infection, while C3H/He showed slight swelling in the footpad 180 days after infection. C57BL/10 showed progressive enhancement of parasite load in all analyzed organs, while C3H/He mice showed extremely low parasite loads. Susceptible C57BL/10 mice showed high levels of TGF-β mRNA in the footpad early in infection and high levels of proinflammatory cytokines mRNA (IL-12, TNF-α, and IFN-γ) and iNOS in the late phase of the infection. There is an association between increased expression of fibronectin, laminin, collagen III and IV, and TGF-β. On the other hand, resistant C3H/He mice presented a lower repertory of cytokines mRNA expression when compared with susceptible C57BL/10 mice, basically producing TNF-α, collagen IV, and laminin early in infection. The findings of our study indicate that L. amazonensis infection induces different cytokine expression in resistant and susceptible mice but not like the L. major model. An organ-compartmentalized cytokine response was observed in our model. Host genetics determine this response, which modulates ECM proteins expression.
Collapse
Affiliation(s)
- Flávia de Oliveira Cardoso
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tânia Zaverucha-do-Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Souza
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, São Luís, Brazil
| | - Ana Lúcia Abreu-Silva
- Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, São Luís, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Macháček T, Šmídová B, Pankrác J, Majer M, Bulantová J, Horák P. Nitric oxide debilitates the neuropathogenic schistosome Trichobilharzia regenti in mice, partly by inhibiting its vital peptidases. Parasit Vectors 2020; 13:426. [PMID: 32819437 PMCID: PMC7439556 DOI: 10.1186/s13071-020-04279-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Avian schistosomes, the causative agents of human cercarial dermatitis (or swimmer’s itch), die in mammals but the mechanisms responsible for parasite elimination are unknown. Here we examined the role of reactive nitrogen species, nitric oxide (NO) and peroxynitrite, in the immune response of mice experimentally infected with Trichobilharzia regenti, a model species of avian schistosomes remarkable for its neuropathogenicity. Methods Inducible NO synthase (iNOS) was localized by immunohistochemistry in the skin and the spinal cord of mice infected by T. regenti. The impact of iNOS inhibition by aminoguanidine on parasite burden and growth was then evaluated in vivo. The vulnerability of T. regenti schistosomula to NO and peroxynitrite was assessed in vitro by viability assays and electron microscopy. Additionally, the effect of NO on the activity of T. regenti peptidases was tested using a fluorogenic substrate. Results iNOS was detected around the parasites in the epidermis 8 h post-infection and also in the spinal cord 3 days post-infection (dpi). Inhibition of iNOS resulted in slower parasite growth 3 dpi, but the opposite effect was observed 7 dpi. At the latter time point, moderately increased parasite burden was also noticed in the spinal cord. In vitro, NO did not impair the parasites, but inhibited the activity of T. regenti cathepsins B1.1 and B2, the peptidases essential for parasite migration and digestion. Peroxynitrite severely damaged the surface tegument of the parasites and decreased their viability in vitro, but rather did not participate in parasite clearance in vivo. Conclusions Reactive nitrogen species, specifically NO, do not directly kill T. regenti in mice. NO promotes the parasite growth soon after penetration (3 dpi), but prevents it later (7 dpi) when also suspends the parasite migration in the CNS. NO-related disruption of the parasite proteolytic machinery is partly responsible for this effect. ![]()
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia.
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Pankrác
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia.,Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
33
|
A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitope-containing chimeric protein protects mice against Leishmania infantum infection. NPJ Vaccines 2020; 5:75. [PMID: 32821440 PMCID: PMC7426426 DOI: 10.1038/s41541-020-00224-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Abstract
Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are currently no prophylactic vaccines. In this study, we designed in silico a synthetic recombinant vaccine against visceral leishmaniasis (VL) called ChimeraT, which contains specific T-cell epitopes from Leishmania Prohibitin, Eukaryotic Initiation Factor 5a and the hypothetical LiHyp1 and LiHyp2 proteins. Subcutaneous delivery of ChimeraT plus saponin stimulated a Th1 cell-mediated immune response and protected mice against L. infantum infection, significantly reducing the parasite load in distinct organs. ChimeraT/saponin vaccine stimulated significantly higher levels of IFN-γ, IL-12, and GM-CSF cytokines by both murine CD4+ and CD8+ T cells, with correspondingly low levels of IL-4 and IL-10. Induced antibodies were predominantly IgG2a isotype and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide. ChimeraT also induced lymphoproliferative responses in peripheral blood mononuclear cells from VL patients after treatment and healthy subjects, as well as higher IFN-γ and lower IL-10 secretion into cell supernatants. Thus, ChimeraT associated with a Th1 adjuvant could be considered as a potential vaccine candidate to protect against human disease.
Collapse
|
34
|
Liposomal Formulation of ChimeraT, a Multiple T-Cell Epitope-Containing Recombinant Protein, Is a Candidate Vaccine for Human Visceral Leishmaniasis. Vaccines (Basel) 2020; 8:vaccines8020289. [PMID: 32526867 PMCID: PMC7349940 DOI: 10.3390/vaccines8020289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are no human vaccines in use routinely. The purpose of this study was to examine the immunogenicity of ChimeraT, a novel synthetic recombinant vaccine against visceral leishmaniasis (VL), incorporated into a human-compatible liposome formulation. Methods: BALB/c mice were immunized subcutaneously with ChimeraT/liposome vaccine, ChimeraT/saponin adjuvant, or ChimeraT/saline and immune responses examined in vitro and in vivo. Results: Immunization with the ChimeraT/liposome formulation induced a polarized Th1-type response and significant protection against L. infantum infection. ChimeraT/liposome vaccine stimulated significantly high levels of interferon (IFN)-γ, interleukin (IL)-12, and granulocyte macrophage-colony stimulating factor (GM-CSF) cytokines by both CD4 and CD8 T-cells, with correspondingly lower levels of IL-4 and IL-10 cytokines. Induced antibodies were predominantly IgG2a isotype, and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide (NO). Furthermore, we examined a small number of treated VL patients and found higher levels of circulating anti-ChimeraT protein IgG2 antibodies, compared to IgG1 levels. Conclusions: Overall, the liposomal formulation of ChimeraT induced a protective Th1-type immune response and thus could be considered in future studies as a vaccine candidate against human VL.
Collapse
|
35
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
36
|
Duffin RN, Blair VL, Kedzierski L, Andrews PC. Alkyl gallium(III) quinolinolates: A new class of highly selective anti-leishmanial agents. Eur J Med Chem 2019; 186:111895. [PMID: 31771825 DOI: 10.1016/j.ejmech.2019.111895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
A series of eight alkyl gallium complexes of general formulae [GaMe2(L)] and [Ga(Me)2L] have been synthesised, characterised and their antimicrobial activity against bacteria, cancer cells and Leishmania assessed. All eight complexes are novel, with the solid-state structures of all complexes successfully authenticated by single crystal X-ray diffraction. The dimethyl complexes all adopt a four-coordinate tetrahedral confirmation, while the monomethyl complexes are five-coordinate trigonal bipyramidal. All complexes were screened for their anti-bacterial activity either by solution state diffusion, or a solid-state stab test. The five soluble complexes underwent testing against two differing mammalian cell controls, with excellent selectivity observed against COS-7 cells, with an IC50 range of 88.5 μM to ≥100 μM. Each soluble complex was also tested for their anti-cancer capabilities, with no significant activity observed. Excellent activity was exhibited against the protozoan parasite Leishmania major (strain: V121) in both the promastigote and amastigote forms, with IC50 values ranging from 1.11 μM-13.4 μM for their anti-promastigote activity and % infection values of 3.5% ± 0.65-11.5% ± 0.65 for the more clinically relevant amastigote. Selectivity indices for each were found to be in the ranges of 6.61-64.7, with significant selectivity noted for two of the complexes. At minimum, the gallium complexes show a 3-fold enhancement in activity towards the Leishmaniaamastigotes over the parent quinolinols alone.
Collapse
Affiliation(s)
- Rebekah N Duffin
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Victoria L Blair
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Lukasz Kedzierski
- Faculty of Veterinary and Agricultural Sciences at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
37
|
Abstract
Quorum sensing is a type of cellular communication that was first described in bacteria, consisting of gene expression regulation in response to changes in cell-population density. Bacteria synthesize and secrete diffusive molecules called autoinducers, which concentration varies accordingly with cell density and can be detected by the producing cells themselves. Once autoinducer concentration reaches a critical threshold, all bacteria within the autoinducer-rich environment react by modifying their genetic expression and adopt a coordinated behavior (e.g., biofilm formation, virulence factor expression, or swarming motility). Recent advances highlight the possibility that such type of communication is not restricted to bacteria, but can exist among other cell types, including immune cells and more specifically monocyte-derived cells (1). For such cells, quorum sensing mechanisms may not only regulate their population size and synchronize their behavior at homeostasis but also alter their activity and function in unexpected ways during immune reactions. Although the nature of immune autoinducers and cellular mechanisms remains to be fully characterized, quorum sensing mechanisms in the immune system challenge our traditional conception of immune cell interactions and likely represent an important mode of communication at homeostasis or during an immune response. In this mini-review, we briefly present the prototypic features of quorum sensing in bacteria and discuss the existing evidence for quorum sensing within the immune system. Mainly, we review quorum sensing mechanisms among monocyte-derived cells, such as the regulation of inflammation by the density of monocyte-derived cells that produce nitric oxide and discuss the relevance of such models in the context of immune-related pathologies.
Collapse
Affiliation(s)
- Jérémy Postat
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Paris, France
- Sorbonne Paris Cité, Cellule Pasteur, University Paris Diderot, Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Paris, France
| |
Collapse
|
38
|
Hohman LS, Peters NC. CD4 + T Cell-Mediated Immunity against the Phagosomal Pathogen Leishmania: Implications for Vaccination. Trends Parasitol 2019; 35:423-435. [PMID: 31080088 DOI: 10.1016/j.pt.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022]
Abstract
The generation of an efficacious vaccine that elicits protective CD4+ T cell-mediated immunity has been elusive. The lack of a vaccine against the Leishmania parasite is particularly perplexing as infected individuals acquire life-long immunity to reinfection. Experimental observations suggest that the relationship between immunological memory and protection against Leishmania is not straightforward and that a new paradigm is required to inform vaccine design. These observations include: (i) induction of Th1 memory is a component of protective immunity, but is not sufficient; (ii) memory T cells may be protective only if they generate circulating effector cells prior to, not after, challenge; and (iii) the low-dose/high-inflammation conditions of physiological vector transmission compromises vaccine efficacy. Understanding the implications of these observations is likely key to efficacious vaccination.
Collapse
Affiliation(s)
- Leah S Hohman
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, AB, T2N 4Z6, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
39
|
Janela B, Patel AA, Lau MC, Goh CC, Msallam R, Kong WT, Fehlings M, Hubert S, Lum J, Simoni Y, Malleret B, Zolezzi F, Chen J, Poidinger M, Satpathy AT, Briseno C, Wohn C, Malissen B, Murphy KM, Maini AA, Vanhoutte L, Guilliams M, Vial E, Hennequin L, Newell E, Ng LG, Musette P, Yona S, Hacini-Rachinel F, Ginhoux F. A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils. Immunity 2019; 50:1069-1083.e8. [PMID: 30926233 DOI: 10.1016/j.immuni.2019.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 01/15/2023]
Abstract
Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAM+CD59+Ly-6D+ cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.
Collapse
Affiliation(s)
- Baptiste Janela
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A(∗)STAR), 11 Mandalay Rd., Singapore 308232, Singapore
| | - Amit A Patel
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Rasha Msallam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Michael Fehlings
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Sandra Hubert
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Yannick Simoni
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Nestlé Skin Health R&D/GALDERMA, La Tour-de-Peilz 1814, Switzerland
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Ansuman T Satpathy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Carlos Briseno
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Christian Wohn
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille 13288, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille 13288, France; Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille 13288, France
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Alexander A Maini
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | - Leen Vanhoutte
- Transgenic Mouse Core Facility, VIB-UGnet Center for Inflammation Research, Technologiepark 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, Ghent 9052, Belgium
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, Ghent 9052, Belgium; Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGnet Center for Inflammation Research, Technologiepark 71, Ghent 9052, Belgium
| | - Emmanuel Vial
- Nestlé Skin Health R&D/GALDERMA, La Tour-de-Peilz 1814, Switzerland
| | | | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Philippe Musette
- Department of Dermatology, Avicenne Hospital and INSERM U1125, Bobigny 93000, France
| | - Simon Yona
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | | | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A(∗)STAR), 11 Mandalay Rd., Singapore 308232, Singapore.
| |
Collapse
|
40
|
Müller DN, Wilck N, Haase S, Kleinewietfeld M, Linker RA. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat Rev Immunol 2019; 19:243-254. [PMID: 30644452 DOI: 10.1038/s41577-018-0113-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During tissue inflammation, immune cells infiltrate the interstitial space of target organs, where they sense and adapt to local environmental stimuli. Such stimuli include not only pathogens but also local factors such as the levels of oxygenation, nutrients and electrolytes. An important electrolyte in this regard is sodium (Na+). Recent in vivo findings have shown a role of Na+ storage in the skin for electrolyte homeostasis. Thereby, Na+ intake may influence the activation status of the immune system through direct effects on T helper cell subsets and innate immune cells in tissues such as the skin and other target organs. Furthermore, high Na+ intake has been shown to alter the composition of the intestinal microbiota, with indirect effects on immune cells. The results suggest regulatory roles for Na+ in cardiovascular disease, inflammation, infection and autoimmunity.
Collapse
Affiliation(s)
- Dominik N Müller
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Nicola Wilck
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Division of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Haase
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC) Hasselt University, Diepenbeek, Belgium
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
41
|
Nascimento NRFD, Aguiar FLND, Santos CF, Costa AML, Hardoim DDJ, Calabrese KDS, Almeida-Souza F, Sousa EHSD, Lopes LGDF, Teixeira MJ, Pereira VS, Brilhante RSN, Rocha MFG. In vitro and in vivo leishmanicidal activity of a ruthenium nitrosyl complex against Leishmania (Viannia) braziliensis. Acta Trop 2019; 192:61-65. [PMID: 30689977 DOI: 10.1016/j.actatropica.2019.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. There are many complications presented by the current treatment, as high toxicity, high cost and parasite resistance, making the development of new therapeutic agents indispensable. The present study aims to evaluate the leishmanicidal potential of ruthenium nitrosyl complex cis-[Ru(bpy)2(SO3)(NO)](PF6) against Leishmania (Viannia) braziliensis. The effect of this metal complex on parasite-host interaction was evaluated by in vitro efficacy test in dermal fibrobast cells in the presence of different concentrations (1, 10, 50 and 100 μM) and by in vivo efficacy tests performed in the presence of two different concentrations of complex (100 μg/kg/day or 300 μg/kg/day) evaluating its effect on the size of the lesion and the number of parasites present in the draining lymph nodes in hamsters. Even at the lowest concentration of 1 μM of ruthenium complex, it was observed a significant decrease of the infected cells, after 24 h exposure in vitro, with total reduction at 50 μM of the ruthenium complex. In the in vivo cutaneous infection model, administration of daily doses of 300 μg/kg/day of complex reduced significantly lesion size by 51% (p < 0.05), with a 99.9% elimination of the parasites found in the lymph nodes (p < 0.001). The results suggest a promising leishmanicidal effect by that ruthenium nitrosyl complex against L. (V.) braziliensis.
Collapse
|
42
|
A Metabolism-Based Quorum Sensing Mechanism Contributes to Termination of Inflammatory Responses. Immunity 2018; 49:654-665.e5. [DOI: 10.1016/j.immuni.2018.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
|
43
|
Calegari-Silva TC, Vivarini ÁC, Pereira RDMS, Dias-Teixeira KL, Rath CT, Pacheco ASS, Silva GBL, Pinto CAS, Dos Santos JV, Saliba AM, Corbett CEP, de Castro Gomes CM, Fasel N, Lopes UG. Leishmania amazonensis downregulates macrophage iNOS expression via Histone Deacetylase 1 (HDAC1): a novel parasite evasion mechanism. Eur J Immunol 2018; 48:1188-1198. [PMID: 29645094 DOI: 10.1002/eji.201747257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/16/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The induced expression of nitric oxide synthase (iNOS) controls the intracellular growth of Leishmania in infected macrophages. Histones deacetylases (HDACs) negatively regulate gene expression through the formation of complexes containing transcription factors such as NF-κB p50/50. Herein, we demonstrated the occupancy of p50/p50_HDAC1 to iNOS promoter associated with reduced levels of H3K9Ac. Remarkably, we found increased levels of HDAC1 in L. amazonensis-infected macrophages. HDAC1 upregulation was not found in L. major-infected macrophages. The parasite intracellular load was reduced in HDAC1 knocked-down macrophages, which presented increased nitric oxide levels. HDAC1 silencing led to the occupancy of CBP/p300 to iNOS promoter and the rise of H3K9Ac modification. Importantly, the immunostaining of skin samples from hiporeactive cutaneous leishmaniasis patients infected with L. amazonensis, revealed high levels of HDAC1. In brief, L. amazonensis induces HDAC1 in infected macrophages, which contribute to parasite survival and is associated to hiporeactive stage found in L. amazonensis infected patients.
Collapse
Affiliation(s)
- Teresa C Calegari-Silva
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Áislan C Vivarini
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Renata de M S Pereira
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Karina L Dias-Teixeira
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Carolina T Rath
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Amanda S S Pacheco
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Gabrielle B L Silva
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Charlene A S Pinto
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - José V Dos Santos
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Alessandra M Saliba
- Departamento de Microbiologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | - Carlos E P Corbett
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Nicolas Fasel
- Departamento of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ulisses G Lopes
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
44
|
Ayotte Y, Bilodeau F, Descoteaux A, LaPlante SR. Fragment-Based Phenotypic Lead Discovery: Cell-Based Assay to Target Leishmaniasis. ChemMedChem 2018; 13:1377-1386. [PMID: 29722149 DOI: 10.1002/cmdc.201800161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/20/2018] [Indexed: 12/24/2022]
Abstract
A rapid and practical approach for the discovery of new chemical matter for targeting pathogens and diseases is described. Fragment-based phenotypic lead discovery (FPLD) combines aspects of traditional fragment-based lead discovery (FBLD), which involves the screening of small-molecule fragment libraries to target specific proteins, with phenotypic lead discovery (PLD), which typically involves the screening of drug-like compounds in cell-based assays. To enable FPLD, a diverse library of fragments was first designed, assembled, and curated. This library of soluble, low-molecular-weight compounds was then pooled to expedite screening. Axenic cultures of Leishmania promastigotes were screened, and single hits were then tested for leishmanicidal activity against intracellular amastigote forms in infected murine bone-marrow-derived macrophages without evidence of toxicity toward mammalian cells. These studies demonstrate that FPLD can be a rapid and effective means to discover hits that can serve as leads for further medicinal chemistry purposes or as tool compounds for identifying known or novel targets.
Collapse
Affiliation(s)
- Yann Ayotte
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - François Bilodeau
- NMX Research and Solutions Inc., 500 boulevard Cartier, Laval, Québec, H7V 5B7, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Steven R LaPlante
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
45
|
Schatz V, Neubert P, Rieger F, Jantsch J. Hypoxia, Hypoxia-Inducible Factor-1α, and Innate Antileishmanial Immune Responses. Front Immunol 2018. [PMID: 29520262 PMCID: PMC5827161 DOI: 10.3389/fimmu.2018.00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low oxygen environments and accumulation of hypoxia-inducible factors (HIFs) are features of infected and inflamed tissues. Here, we summarize our current knowledge on oxygen levels found in Leishmania-infected tissues and discuss which mechanisms potentially contribute to local tissue oxygenation in leishmanial lesions. Moreover, we review the role of hypoxia and HIF-1 on innate antileishmanial immune responses.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Franz Rieger
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
46
|
Bosquiroli LSS, dos Santos Ferreira AC, Farias KS, da Costa EC, Matos MDFC, Kadri MCT, Rizk YS, Alves FM, Perdomo RT, Carollo CA, Pinto de Arruda CC. In Vitro antileishmania activity of sesquiterpene-rich essential oils from Nectandra species. PHARMACEUTICAL BIOLOGY 2017; 55:2285-2291. [PMID: 29185382 PMCID: PMC6130651 DOI: 10.1080/13880209.2017.1407803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT New antileishmanias are needed because of toxicity, high cost and resistance problems associated with available drugs. Nectandra (Lauraceae) produces several classes of compounds but its essential oil has not previously been reported to have antileishmania activity. OBJECTIVE We evaluated the cytotoxicity and antileishmania activity of essential oils from Nectandra amazonum Nees, N. gardneri Meisn., N. hihua (Ruiz & Pav.) Rohwer and N. megapotamica (Spreng.) Mez. MATERIALS AND METHODS Nectandra oils were extracted from stem bark/leaves by hydrodistillation and compounds were identified by GC-MS. Oils were tested against Leishmania infantum and L. amazonensis intracellular amastigotes and nitric oxide production was evaluated. Cytotoxicity was achieved on NIH/3T3 and J774.A1 cells for the selectivity index (SI). RESULTS AND DISCUSSION Nectandra gardneri was active against L. infantum and L. amazonensis (IC50 = 2.7 ± 1.3/2.1 ± 1.06 μg/mL) and contained 85.4% sesquiterpenes, of which 58.2% was intermediol. Besides low cytotoxicity (SI >11.3), N. gardneri induced a significant increase in NO production by L. infantum-infected macrophages. Nectandra hihua had the best activity on L. infantum amastigotes (IC50 = 0.2 ± 1.1 μg/mL). This oil was 89.0% sesquiterpenes, with 28.1% bicyclogermacrene. The two specimens of N. megapotamica had different activities on amastigotes. The one richer in sesquiterpenes (49.9%) was active against both species (IC50 = 12.5 ± 1.4/21.3 ± 1.2) and had phenylpropanoid E-asarone as the main compound (42.4%). Nectandra amazonum showed moderate activity on both the species (IC50 = 31.9 ± 2.0/22.1 ± 1.3 μg/mL) and low selectivity (0.9 < SI >2.6), probably due to the major presence of β-caryophyllene (28.5%). CONCLUSIONS Our data identify compounds that can now be isolated and used for the development of new antileishmanias.
Collapse
Affiliation(s)
- Lauriane Serpa Silva Bosquiroli
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Ana Caroline dos Santos Ferreira
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Katyuce Souza Farias
- Laboratório de Produtos Naturais e Espectrometria de Massas – LaPNEM, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Eduarda Carneiro da Costa
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Maria de Fátima Cepa Matos
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Mônica Cristina Toffoli Kadri
- Laboratório de Biofisiofarmacologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Yasmin Silva Rizk
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Flávio Macedo Alves
- Herbário CG-MS, CCBS, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Renata Trentin Perdomo
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas – LaPNEM, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| | - Carla Cardozo Pinto de Arruda
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
| |
Collapse
|
47
|
Lima JB, Araújo-Santos T, Lázaro-Souza M, Carneiro AB, Ibraim IC, Jesus-Santos FH, Luz NF, Pontes SDM, Entringer PF, Descoteaux A, Bozza PT, Soares RP, Borges VM. Leishmania infantum lipophosphoglycan induced-Prostaglandin E 2 production in association with PPAR-γ expression via activation of Toll like receptors-1 and 2. Sci Rep 2017; 7:14321. [PMID: 29084985 PMCID: PMC5662570 DOI: 10.1038/s41598-017-14229-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023] Open
Abstract
Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.
Collapse
Affiliation(s)
- Jonilson Berlink Lima
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), 47808-021, Barreiras, BA, Brazil
| | - Théo Araújo-Santos
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), 47808-021, Barreiras, BA, Brazil
| | - Milena Lázaro-Souza
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Alan Brito Carneiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, FIOCRUZ-RJ, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Izabela Coimbra Ibraim
- René Rachou Institut, Oswaldo Cruz Foundation (FIOCRUZ-MG), 30190-002, Belo Horizonte, MG, Brazil
| | - Flávio Henrique Jesus-Santos
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Nívea Farias Luz
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil
| | - Sara de Moura Pontes
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Petter Franco Entringer
- Federal University of Rio de Janeiro (UFRJ), NUPEM, Campus Macaé, 27933-378, Macaé, RJ, Brazil
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, H7V 1B7, Laval, Canada
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, FIOCRUZ-RJ, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Pedro Soares
- René Rachou Institut, Oswaldo Cruz Foundation (FIOCRUZ-MG), 30190-002, Belo Horizonte, MG, Brazil.
| | - Valéria Matos Borges
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil. .,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil.
| |
Collapse
|
48
|
Santos AL, Yamamoto ES, Passero LFD, Laurenti MD, Martins LF, Lima ML, Uemi M, Soares MG, Lago JHG, Tempone AG, Sartorelli P. Antileishmanial Activity and Immunomodulatory Effects of Tricin Isolated from Leaves of Casearia arborea (Salicaceae). Chem Biodivers 2017; 14. [PMID: 28054741 DOI: 10.1002/cbdv.201600458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023]
Abstract
Bioactivity-guided fractionation of antileishmanial active extract from leaves of Casearia arborea led to isolation of three metabolites: tricin (1), 1',6'-di-O-β-d-vanilloyl glucopyranoside (2) and vanillic acid (3). Compound 1 demonstrated the highest activity against the intracellular amastigotes of Leishmania infantum, with an IC50 value of 56 μm. Tricin (1) demonstrated selectivity in mammalian cells (SI > 7) and elicited immunomodulatory effect on host cells. The present work suggests that tricin modulated the respiratory burst of macrophages to a leishmanicidal state, contributing to the parasite elimination. Therefore, the natural compound tricin could be further explored in drug design studies for leishmaniasis treatment.
Collapse
Affiliation(s)
- Augusto L Santos
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, n° 275 - Jd. Eldorado, CEP 09972-270, Diadema, São Paulo, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, CEP 01246-903, São Paulo, SP, Brazil
| | - Luiz Felipe D Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n - Parque Bitaru, CEP 11330-900, São Vicente, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, CEP 01246-903, São Paulo, SP, Brazil
| | - Ligia F Martins
- Center of Parasitology and Mycology, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355 - Cerqueira César, CEP 01246-000, São Paulo, SP, Brazil
| | - Marta L Lima
- Center of Parasitology and Mycology, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355 - Cerqueira César, CEP 01246-000, São Paulo, SP, Brazil.,São Paulo Tropical Medicine Institute, University of São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, CEP 05403-000, São Paulo, SP, Brazil
| | - Miriam Uemi
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, n° 275 - Jd. Eldorado, CEP 09972-270, Diadema, São Paulo, Brazil
| | - Marisi G Soares
- Chemistry Institute, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700 Centro, CEP 37130-001, Alfenas, MG, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, CEP 09210-580, Santo Andre, SP, Brazil
| | - Andre G Tempone
- Center of Parasitology and Mycology, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355 - Cerqueira César, CEP 01246-000, São Paulo, SP, Brazil
| | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, n° 275 - Jd. Eldorado, CEP 09972-270, Diadema, São Paulo, Brazil
| |
Collapse
|
49
|
Lima MHF, Sacramento LA, Quirino GFS, Ferreira MD, Benevides L, Santana AKM, Cunha FQ, Almeida RP, Silva JS, Carregaro V. Leishmania infantum Parasites Subvert the Host Inflammatory Response through the Adenosine A2 A Receptor to Promote the Establishment of Infection. Front Immunol 2017; 8:815. [PMID: 28775724 PMCID: PMC5517451 DOI: 10.3389/fimmu.2017.00815] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Adenosine is an endogenously released purine nucleoside that signals through four widely expressed G protein-coupled receptors: A1, A2A, A2B, and A3. Of these, A2AR is recognized as mediating major adenosine anti-inflammatory activity. During cutaneous leishmaniasis, adenosine induces immunosuppression, which promotes the establishment of infection. Herein, we demonstrated that A2AR signaling is exploited by Leishmania infantum parasites, the etiologic agent that causes Visceral Leishmaniasis, to successfully colonize the vertebrate host. A2AR gene-deleted mice exhibited a well-developed cellular reaction with a strong Th1 immune response in the parasitized organs. An intense infiltration of activated neutrophils into the disease-target organs was observed in A2AR−/− mice. These cells were characterized by high expression of CXCR2 and CD69 on their cell surfaces and increased cxcl1 expression. Interestingly, this phenotype was mediated by IFN-γ on the basis that a neutralizing antibody specific to this cytokine prevented neutrophilic influx into parasitized organs. In evaluating the immunosuppressive effects, we identified a decreased number of CD4+ FOXP3+ T cells and reduced il10 expression in A2AR−/− infected mice. During ex vivo cell culture, A2AR−/− splenocytes produced smaller amounts of IL-10. In conclusion, we demonstrated that the A2AR signaling pathway is detrimental to development of Th1-type adaptive immunity and that this pathway could be associated with the regulatory process. In particular, it promotes parasite surveillance.
Collapse
Affiliation(s)
- Mikhael H F Lima
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lais A Sacramento
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo F S Quirino
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcela D Ferreira
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciana Benevides
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alynne K M Santana
- Laboratory of Molecular Biology, Center for Biology and Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Fernando Q Cunha
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Laboratory of Inflammation and Pain, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roque P Almeida
- Laboratory of Molecular Biology, Center for Biology and Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - João S Silva
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Carregaro
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
50
|
Badirzadeh A, Taheri T, Taslimi Y, Abdossamadi Z, Heidari-Kharaji M, Gholami E, Sedaghat B, Niyyati M, Rafati S. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites. PLoS Negl Trop Dis 2017; 11:e0005774. [PMID: 28708893 PMCID: PMC5529023 DOI: 10.1371/journal.pntd.0005774] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity.
Collapse
Affiliation(s)
- Alireza Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Heidari-Kharaji
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Baharehsadat Sedaghat
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|