1
|
Odero JO, Dennis TPW, Polo B, Nwezeobi J, Boddé M, Nagi SC, Hernandez-Koutoucheva A, Nambunga IH, Bwanary H, Mkandawile G, Govella NJ, Kaindoa EW, Ferguson HM, Ochomo E, Clarkson CS, Miles A, Lawniczak MKN, Weetman D, Baldini F, Okumu FO. Discovery of Knock-Down Resistance in the Major African Malaria Vector Anopheles funestus. Mol Ecol 2024; 33:e17542. [PMID: 39374937 PMCID: PMC11537839 DOI: 10.1111/mec.17542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
A major insecticide resistance mechanism in insect pests is knock-down resistance (kdr) caused by mutations in the voltage-gated sodium channel (Vgsc) gene. Despite being common in most malaria Anopheles vector species, kdr mutations have never been observed in Anopheles funestus, the principal malaria vector in Eastern and Southern Africa, with resistance mainly being conferred by detoxification enzymes. In a parallel study, we monitored 10 populations of An. funestus in Tanzania for insecticide resistance unexpectedly identified resistance to a banned insecticide, DDT, in the Morogoro region. Through whole-genome sequencing of 333 An. funestus samples from these populations, we found eight novel amino acid substitutions in the Vgsc gene, including the kdr variant, L976F (equivalent to L995F in An. gambiae), in tight linkage disequilibrium with another (P1842S). The mutants were found only at high frequency in one region and were accompanied by weak signatures of a selective sweep, with a significant decline between 2017 and 2023. Notably, kdr L976F was strongly associated with survivorship to exposure to DDT insecticide, while no clear association was noted with a pyrethroid insecticide (deltamethrin). The WHO prequalifies no DDT products for vector control, and the chemical is banned in Tanzania. Widespread DDT contamination and a legacy of extensive countrywide stockpiles may have selected for this mutation. Continued monitoring is necessary to understand the origin of kdr in An. funestus, and the threat posed to insecticide-based vector control in Africa.
Collapse
Affiliation(s)
- Joel O. Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Tristan P. W. Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Brian Polo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joachim Nwezeobi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Marilou Boddé
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sanjay C. Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | | | - Ismail H. Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Hamis Bwanary
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Emmanuel W. Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Heather M. Ferguson
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Chris S. Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Moss S, Jones RT, Pretorius E, da Silva ET, Higgins M, Kristan M, Acford-Palmer H, Collins EL, Rodrigues A, Krishna S, Clark TG, Last A, Campino S. Phenotypic evidence of deltamethrin resistance and identification of selective sweeps in Anopheles mosquitoes on the Bijagós Archipelago, Guinea-Bissau. Sci Rep 2024; 14:22840. [PMID: 39354094 PMCID: PMC11445403 DOI: 10.1038/s41598-024-73996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Vector control in the Bijagós Archipelago of Guinea-Bissau currently relies on pyrethroid insecticide-treated nets. However, data on insecticide resistance in Guinea-Bissau is limited. This study identified deltamethrin resistance in the Anopheles gambiae sensu lato complex on Bubaque island using WHO tube tests in November 2022. Whole genome sequencing of An. gambiae sensu stricto mosquitoes identified six single nucleotide polymorphisms (SNPs) previously associated with, or putatively associated with, insecticide resistance: T791M, L995F, N1570Y, A1746S and P1874L in the vgsc gene, and L119V in the gste2 gene. Twenty additional non-synonymous SNPs were identified in insecticide-resistance associated genes. Four of these SNPs were present at frequencies over 5% in the population: T154S, I126F and G26S in the vgsc gene and A65S in ace1. Genome wide selection scans using Garud's H12 statistic identified two selective sweeps: one in chromosome X and one in chromosome 2R. Both selective sweeps overlap with metabolic genes previously associated with insecticide resistance, including cyp9k1 and the cyp6aa/cyp6p gene cluster. This study presents the first phenotypic testing for deltamethrin resistance and the first whole genome sequence data for Anophelesgambiae mosquitoes from the Bijagós, contributing data of significance for vector control policy in this region.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Robert T Jones
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth Pretorius
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eunice Teixeira da Silva
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Emma L Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amabelia Rodrigues
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Sanjeev Krishna
- Clinical Academic Group, Institute for Infection and Immunity, and St, George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Fouet C, Pinch MJ, Ashu FA, Ambadiang MM, Bouaka C, Batronie AJ, Hernandez CA, Rios DE, Penlap-Beng V, Kamdem C. Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with downregulation and mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608399. [PMID: 39185195 PMCID: PMC11343199 DOI: 10.1101/2024.08.17.608399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neonicotinoid insecticides act selectively on their nicotinic receptor targets leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergism test revealed that the sister taxa, Anopheles gambiae and An. coluzzii, from Yaounde, Cameroon, rely on cytochrome P450s to detoxify neonicotinoids and develop resistance. However, contrary to An. coluzzii, An. gambiae populations are evolving stronger resistance to several active ingredients facilitated by mutations and reduced expression of nicotinic acetylcholine receptors. Six mutations were detected in coding sequences of the β1 and α6 subunits, including two substitutions in one of the loops that modulate ligand binding and sensitivity. Allele frequencies were strongly correlated with a susceptibility gradient between An. coluzzii and An. gambiae suggesting that the mutations may play a key role in sensitivity. Messenger RNA expression levels of the β1, α3, and α7 subunits decreased dramatically, on average by 23.27, 17.50, 15.80-fold, respectively, in wild An. gambiae populations compared to a susceptible insectary colony. By contrast, only the β2 and α9-1 subunits were moderately downregulated (5.28 and 2.67-fold change, respectively) in field-collected An. coluzzii adults relative to susceptible colonized mosquitoes. Our findings provide critical information for the application and resistance management of neonicotinoids in malaria prevention.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Matthew J. Pinch
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Fred A. Ashu
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Marilene M. Ambadiang
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Calmes Bouaka
- Department of Vector Biology, Liverpool School of Tropical Medicine
| | - Anthoni J. Batronie
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Cesar A. Hernandez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Desiree E. Rios
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
4
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
5
|
Ito R, Kamiya M, Takayama K, Mori S, Matsumoto R, Takebayashi M, Ojima H, Fujimura S, Yamamoto H, Ohno M, Ihara M, Okajima T, Yamashita A, Colman F, Lycett GJ, Sattelle DB, Matsuda K. Unravelling nicotinic receptor and ligand features underlying neonicotinoid knockdown actions on the malaria vector mosquito Anopheles gambiae. Open Biol 2024; 14:240057. [PMID: 39043224 PMCID: PMC11265914 DOI: 10.1098/rsob.240057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agβ1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agβ1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.
Collapse
Affiliation(s)
- Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masaki Kamiya
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Sumito Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Rei Matsumoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Mayuka Takebayashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shota Fujimura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Haruki Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masayuki Ohno
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Fraser Colman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Gareth J. Lycett
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David B. Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
6
|
Lynd A, Gonahasa S, Staedke SG, Oruni A, Maiteki-Sebuguzi C, Hancock PA, Knight E, Dorsey G, Opigo J, Yeka A, Katureebe A, Kyohere M, Hemingway J, Kamya MR, McDermott D, Lucas ER, Donnelly MJ. LLIN Evaluation in Uganda Project (LLINEUP)-effects of a vector control trial on Plasmodium infection prevalence and genotypic markers of insecticide resistance in Anopheles vectors from 48 districts of Uganda. Sci Rep 2024; 14:14488. [PMID: 38914669 PMCID: PMC11196729 DOI: 10.1038/s41598-024-65050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Pyrethroid bednets treated with the synergist piperonyl butoxide (PBO) offer the possibility of improved vector control in mosquito populations with metabolic resistance. In 2017-2019, we conducted a large-scale, cluster-randomised trial (LLINEUP) to evaluate long-lasting insecticidal nets (LLINs) treated with a pyrethroid insecticide plus PBO (PBO LLINs), as compared to conventional, pyrethroid-only LLINs across 104 health sub-districts (HSDs) in Uganda. In LLINEUP, and similar trials in Tanzania, PBO LLINs were found to provide greater protection against malaria than conventional LLINs, reducing parasitaemia and vector density. In the LLINEUP trial, we conducted cross-sectional household entomological surveys at baseline and then every 6 months for two years, which we use here to investigate longitudinal changes in mosquito infection rate and genetic markers of resistance. Overall, 5395 female Anopheles mosquitoes were collected from 5046 households. The proportion of mosquitoes infected (PCR-positive) with Plasmodium falciparum did not change significantly over time, while infection with non-falciparum malaria decreased in An. gambiae s.s., but not An. funestus. The frequency of genetic markers associated with pyrethroid resistance increased significantly over time, but the rate of change was not different between the two LLIN types. The knock-down resistance (kdr) mutation Vgsc-995S declined over time as Vgsc-995F, the alternative resistance mutation at this codon, increased. Vgsc-995F appears to be spreading into Uganda. Distribution of LLINs in Uganda was previously found to be associated with reductions in parasite prevalence and vector density, but here we show that the proportion of infective mosquitoes remained stable across both PBO and non-PBO LLINs, suggesting that the potential for transmission persisted. The increased frequency of markers of pyrethroid resistance indicates that LLIN distribution favoured the evolution of resistance within local vectors and highlights the potential benefits of resistance management strategies.Trial registration: This study is registered with ISRCTN, ISRCTN17516395. Registered 14 February 2017, http://www.isrctn.com/ISRCTN17516395 .
Collapse
Affiliation(s)
- Amy Lynd
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Samuel Gonahasa
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Sarah G Staedke
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ambrose Oruni
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | - Erin Knight
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Grant Dorsey
- University of California, San Francisco, San Francisco, CA, 94110, USA
| | | | - Adoke Yeka
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Agaba Katureebe
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Mary Kyohere
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Daniel McDermott
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric R Lucas
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
7
|
Odero JO, Dennis TPW, Polo B, Nwezeobi J, Boddé M, Nagi SC, Hernandez-Koutoucheva A, Nambunga IH, Bwanary H, Mkandawile G, Govella NJ, Kaindoa EW, Ferguson HM, Ochomo E, Clarkson CS, Miles A, Lawniczak MKN, Weetman D, Baldini F, Okumu FO. Discovery of knock-down resistance in the major African malaria vector Anopheles funestus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584754. [PMID: 38854026 PMCID: PMC11160573 DOI: 10.1101/2024.03.13.584754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A major mechanism of insecticide resistance in insect pests is knock-down resistance (kdr) caused by mutations in the voltage-gated sodium channel (Vgsc) gene. Despite being common in most malaria Anopheles vector species, kdr mutations have never been observed in Anopheles funestus, the principal malaria vector in Eastern and Southern Africa. While monitoring 10 populations of An. funestus in Tanzania, we unexpectedly found resistance to DDT, a banned insecticide, in one location. Through whole-genome sequencing of 333 An. funestus samples from these populations, we found 8 novel amino acid substitutions in the Vgsc gene, including the kdr variant, L976F (L1014F in An. gambiae), in tight linkage disequilibrium with another (P1842S). The mutants were found only at high frequency in one region, with a significant decline between 2017 and 2023. Notably, kdr L976F was strongly associated with survivorship to the exposure to DDT insecticide, while no clear association was noted with a pyrethroid insecticide (deltamethrin). Further study is necessary to identify the origin and spread of kdr in An. funestus, and the potential threat to current insecticide-based vector control in Africa.
Collapse
Affiliation(s)
- Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Brian Polo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joachim Nwezeobi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Marilou Boddé
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | | | - Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Hamis Bwanary
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Heather M Ferguson
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Chris S Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mara K N Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Escobar D, González-Olvera G, Gómez-Rivera ÁS, Navarrete-Carballo J, Mis-Ávila P, Baack-Valle R, Escalante G, Reyes-Cabrera G, Correa-Morales F, Che-Mendoza A, Vazquez-Prokopec G, Lenhart A, Manrique-Saide P. Insecticide susceptibility status of Anopheles albimanus populations in historical malaria foci in Quintana Roo, Mexico. Malar J 2024; 23:165. [PMID: 38796456 PMCID: PMC11128101 DOI: 10.1186/s12936-024-04993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Mexico has experienced a significant reduction in malaria cases over the past two decades. Certification of localities as malaria-free areas (MFAs) has been proposed as a steppingstone before elimination is achieved throughout the country. The Mexican state of Quintana Roo is a candidate for MFA certification. Monitoring the status of insecticide susceptibility of major vectors is crucial for MFA certification. This study describes the susceptibility status of Anopheles albimanus, main malaria vector, from historically important malaria foci in Quintana Roo, using both phenotypic and genotypic approaches. METHODS Adult mosquito collections were carried out at three localities: Palmar (Municipality of Othon P. Blanco), Buenavista (Bacalar) and Puerto Morelos (Puerto Morelos). Outdoor human-landing catches were performed by pairs of trained staff from 18:00 to 22:00 during 3-night periods at each locality during the rainy season of 2022. Wild-caught female mosquitoes were exposed to diagnostic doses of deltamethrin, permethrin, malathion, pirimiphos-methyl or bendiocarb using CDC bottle bioassays. Mortality was registered at the diagnostic time and recovery was assessed 24 h after exposure. Molecular analyses targeting the Voltage-Gated Sodium Channel (vgsc) gene and acetylcholinesterase (ace-1) gene were used to screen for target site polymorphisms. An SNP analysis was carried out to identify mutations at position 995 in the vgsc gene and at position 280 in the ace-1 gene. RESULTS A total of 2828 anophelines were collected. The main species identified were Anopheles albimanus (82%) and Anopheles vestitipennis (16%). Mortalities in the CDC bottle bioassay ranged from 99% to 100% for all the insecticides and mosquito species. Sequence analysis was performed on 35 An. albimanus across the three localities; of those, 25 were analysed for vgsc and 10 for ace-1 mutations. All individuals showed wild type alleles. CONCLUSION The results demonstrated that An. albimanus populations from historical malaria foci in Quintana Roo are susceptible to the main insecticides used by the Ministry of Health.
Collapse
Affiliation(s)
- Denis Escobar
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Gabriela González-Olvera
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | | | - Juan Navarrete-Carballo
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Pedro Mis-Ávila
- Servicios Estatales de Salud de Quintana Roo, Chetumal, Quintana Roo, Mexico
| | - Raquel Baack-Valle
- Servicios Estatales de Salud de Quintana Roo, Chetumal, Quintana Roo, Mexico
| | - Guillermo Escalante
- Servicios Estatales de Salud de Quintana Roo, Chetumal, Quintana Roo, Mexico
| | - Gerardo Reyes-Cabrera
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Secretaría de Salud, Ciudad de México, Mexico
| | - Fabian Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Secretaría de Salud, Ciudad de México, Mexico
| | - Azael Che-Mendoza
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | | | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pablo Manrique-Saide
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico.
| |
Collapse
|
9
|
Connolly JB, Burt A, Christophides G, Diabate A, Habtewold T, Hancock PA, James AA, Kayondo JK, Lwetoijera DW, Manjurano A, McKemey AR, Santos MR, Windbichler N, Randazzo F. Considerations for first field trials of low-threshold gene drive for malaria vector control. Malar J 2024; 23:156. [PMID: 38773487 PMCID: PMC11110314 DOI: 10.1186/s12936-024-04952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK.
| | - Austin Burt
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - George Christophides
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Tibebu Habtewold
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, St. Mary's Campus, Imperial College London, London, UK
| | - Anthony A James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Jonathan K Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | | | - Alphaxard Manjurano
- Malaria Research Unit and Laboratory Sciences, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Andrew R McKemey
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - Michael R Santos
- Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - Nikolai Windbichler
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | | |
Collapse
|
10
|
Oruni A, Lynd A, Njoroge H, Onyige I, van’t Hof AE, Matovu E, Donnelly MJ. Pyrethroid resistance and gene expression profile of a new resistant An. gambiae colony from Uganda reveals multiple resistance mechanisms and overexpression of Glutathione-S-Transferases linked to survival of PBO-pyrethroid combination. Wellcome Open Res 2024; 9:13. [PMID: 38813466 PMCID: PMC11134160 DOI: 10.12688/wellcomeopenres.19404.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Background The effectiveness of long-lasting insecticidal nets (LLINs) are being threatened by growing resistance to pyrethroids. To restore their efficacy, a synergist, piperonyl butoxide (PBO) which inhibits cytochrome P450s has been incorporated into pyrethroid treated nets. A trial of PBO-LLINs was conducted in Uganda from 2017 and we attempted to characterize mechanisms of resistance that could impact intervention efficacy. Methods We established an Anopheles gambiae s.s colony in 2018 using female mosquitoes collected from Busia district in eastern Uganda. We first assessed the phenotypic resistance profile of this colony using WHO tube and net assays using a deltamethrin dose-response approach. The Busia colony was screened for known resistance markers and RT-qPCR targeting 15 genes previously associated with insecticide resistance was performed. Results The Busia colony had very high resistance to deltamethrin, permethrin and DDT. In addition, the colony had moderate resistance to alpha-cypermethrin and lambda-cyhalothrin but were fully susceptible to bendiocarb and fenitrothion. Exposure to PBO in combination with permethrin and deltamethrin resulted in higher mortality rates in both net and tube assays, with a higher mortality observed in net assays than tube assays. The kdr marker, Vgsc-995S was at very high frequency (91.7-98.9%) whilst the metabolic markers Coeae1d and Cyp4j5-L43F were at very low (1.3% - 11.5%) and moderate (39.5% - 44.7%) frequencies respectively. Our analysis showed that gene expression pattern in mosquitoes exposed to deltamethrin, permethrin or DDT only were similar in comparison to the susceptible strain and there was significant overexpression of cytochrome P450s, glutathione-s-transferases (GSTs) and carboxyl esterases (COEs). However, mosquitoes exposed to both PBO and pyrethroid strikingly and significantly only overexpressed closely related GSTs compared to unexposed mosquitoes while major cytochrome P450s were underexpressed. Conclusions The high levels of pyrethroid resistance observed in Busia appears associated with a wide range of metabolic gene families.
Collapse
Affiliation(s)
- Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, L3 5QA, UK
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Central Region, Uganda
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, L3 5QA, UK
| | - Harun Njoroge
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, L3 5QA, UK
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Ismail Onyige
- Infectious Diseases Research Collaboration, Kampala, Central Region, Uganda
| | - Arjen E. van’t Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, L3 5QA, UK
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Central Region, Uganda
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, L3 5QA, UK
| |
Collapse
|
11
|
Pazmiño-Betancourth M, Ochoa-Gutiérrez V, Ferguson HM, González-Jiménez M, Wynne K, Baldini F, Childs D. Evaluation of diffuse reflectance spectroscopy for predicting age, species, and cuticular resistance of Anopheles gambiae s.l under laboratory conditions. Sci Rep 2023; 13:18499. [PMID: 37898634 PMCID: PMC10613238 DOI: 10.1038/s41598-023-45696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023] Open
Abstract
Mid-infrared spectroscopy (MIRS) combined with machine learning analysis has shown potential for quick and efficient identification of mosquito species and age groups. However, current technology to collect spectra is destructive to the sample and does not allow targeting specific tissues of the mosquito, limiting the identification of other important biological traits such as insecticide resistance. Here, we assessed the use of a non-destructive approach of MIRS for vector surveillance, micro diffuse reflectance spectroscopy (µDRIFT) using mosquito legs to identify species, age and cuticular insecticide resistance within the Anopheles gambiae s.l. complex. These mosquitoes are the major vectors of malaria in Africa and the focus on surveillance in malaria control programs. Legs required significantly less scanning time and showed more spectral consistence compared to other mosquito tissues. Machine learning models were able to identify An. gambiae and An. coluzzii with an accuracy of 0.73, two ages groups (3 and 10 days old) with 0.77 accuracy and we obtained accuracy of 0.75 when identifying cuticular insecticide resistance. Our results highlight the potential of different mosquito tissues and µDRIFT as tools for biological trait identification on mosquitoes that transmit malaria. These results can guide new ways of identifying mosquito traits which can help the creation of innovative surveillance programs by adapting new technology into mosquito surveillance and control tools.
Collapse
Affiliation(s)
- Mauro Pazmiño-Betancourth
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Victor Ochoa-Gutiérrez
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Heather M Ferguson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David Childs
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
12
|
Yunta C, Ooi JMF, Oladepo F, Grafanaki S, Pergantis SA, Tsakireli D, Ismail HM, Paine MJI. Chlorfenapyr metabolism by mosquito P450s associated with pyrethroid resistance identifies potential activation markers. Sci Rep 2023; 13:14124. [PMID: 37644079 PMCID: PMC10465574 DOI: 10.1038/s41598-023-41364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Chlorfenapyr is a pro-insecticide increasingly used in combination with pyrethroids such as a-cypermethrin or deltamethrin in insecticide treated bednets (ITNs) to control malaria transmitted by pyrethroid-resistant mosquito populations. Chlorfenapyr requires P450 activation to produce tralopyril and other bioactive metabolites. Pyrethroid resistance is often associated with elevated levels of chemoprotective P450s with broad substrate specificity, which could influence chlorfenapyr activity. Here, we have investigated chlorfenapyr metabolism by a panel of eight P450s commonly associated with pyrethroid resistance in An. gambiae and Ae. aegypti, the major vectors of malaria and arboviruses. Chlorfenapyr was activated to tralopyril by An. gambiae CYP6P3, CYP9J5, CYP9K1 and Ae. aegypti, CYP9J32. The Kcat/KM value of 0.66 μM-1 min-1 for CYP9K1 was, 6.7 fold higher than CYP6P3 and CYP9J32 (both 0.1 μM-1 min-1) and 22-fold higher than CYP9J5 (0.03 μM-1 min-1). Further investigation of the effect of -cypermethrin equivalent to the ratios used with chlorfenapyr in bed nets (~ 1:2 molar ratio) resulted in a reduction in chlorfenapyr metabolism by CYP6P3 and CYP6K1 of 76.8% and 56.8% respectively. This research provides valuable insights into the metabolism of chlorfenapyr by mosquito P450s and highlights the need for continued investigation into effective vector control strategies.
Collapse
Affiliation(s)
- Cristina Yunta
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Jocelyn M F Ooi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Sofia Grafanaki
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 700 13, Greece
| | - Spiros A Pergantis
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 700 13, Greece
| | - Dimitra Tsakireli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, 100 N. Plastira Street, Heraklion, 700 13, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, Athens, 118 55, Greece
| | - Hanafy M Ismail
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Mark J I Paine
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
13
|
Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Kétoh GK, Koudou BG, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Cerdeira LT, Clarkson CS, Kwiatkowski DP, Miles A, Donnelly MJ, Weetman D. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae and Anopheles coluzzii. Nat Commun 2023; 14:4946. [PMID: 37587104 PMCID: PMC10432508 DOI: 10.1038/s41467-023-40693-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Constant V Edi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire
| | - Guillaume K Kétoh
- Laboratory of Ecology and Ecotoxicology, Department of Zoology, Faculty of Sciences, Université de Lomé, 01 B.P. 1515, Lomé, Togo
| | - Benjamin G Koudou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Louise T Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
14
|
Lynd A, Gonahasa S, Staedke SG, Oruni A, Maiteki-Sebuguzi C, Hancock P, Knight E, Dorsey G, Opigo J, Yeka A, Katureebe A, Kyohere M, Hemingway J, Kamya MR, McDermott D, Lucas ER, Donnelly MJ. LLIN Evaluation in Uganda Project (LLINEUP) - Plasmodium infection prevalence and genotypic markers of insecticide resistance in Anopheles vectors from 48 districts of Uganda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.31.23293323. [PMID: 37577716 PMCID: PMC10418296 DOI: 10.1101/2023.07.31.23293323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background In 2017-2019, we conducted a large-scale, cluster-randomised trial (LLINEUP) to evaluate long-lasting insecticidal nets (LLINs) treated with a pyrethroid insecticide plus the synergist piperonyl butoxide (PBO LLINs), as compared to conventional, pyrethroid-only LLINs across 104 health sub-districts (HSDs) in Uganda. In LLINEUP, and similar trials in Tanzania, PBO LLINs were found to provide greater protection against malaria than conventional LLINs, reducing parasitaemia and vector density. In the LLINEUP trial, cross-sectional entomological surveys were carried out at baseline and then every 6 months for two years. In each survey, ten households per HSD were randomly selected for indoor household entomological collections. Results Overall, 5395 female Anopheles mosquitoes were collected from 5046 households. The proportion of mosquitoes infected with Plasmodium falciparum did not change significantly over time, while infection with non-falciparum malaria decreased in An. gambiae s.s, but not An. funestus. The frequency of genetic markers associated with pyrethroid resistance increased significantly over time, but the rate of change was not different between the two LLIN types. The knock-down resistance (kdr) mutation Vgsc-995S declined over time as Vgsc-995F, the alternative resistance mutation at this codon, increased. Vgsc-995F appears to be spreading into Uganda. Conclusions Distribution of LLINs in Uganda was associated with reductions in parasite prevalence and vector density, but the proportion of infective mosquitoes remained stable, suggesting that the potential for transmission persisted. The increased frequency of markers of pyrethroid resistance indicates that LLIN distribution favoured the evolution of resistance within local vectors and highlights the potential benefits of resistance management strategies.Trial registration:: This study is registered with ISRCTN, ISRCTN17516395. Registered 14 February 2017, http://www.isrctn.com/ISRCTN17516395.
Collapse
Affiliation(s)
- Amy Lynd
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Samuel Gonahasa
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Sarah G Staedke
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Ambrose Oruni
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | - Erin Knight
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Grant Dorsey
- University of California, San Francisco, San Francisco, CA 94110 USA
| | | | - Adoke Yeka
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Agaba Katureebe
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Mary Kyohere
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Moses R Kamya
- Makerere University College of Health Sciences
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Daniel McDermott
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Eric R Lucas
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
15
|
Shi P, Shen XJ, Chen JC, Zhang YJ, Cao LJ, Pang BS, Liu LH, Zhang MM, Hoffmann AA, Wei SJ. KASP genotyping and semi-quantitation of G275E mutation in the α6 subunit of Thrips palmi nAChR gene conferring spinetoram resistance. PEST MANAGEMENT SCIENCE 2023; 79:1777-1782. [PMID: 36627758 DOI: 10.1002/ps.7353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pesticide resistance is a long-standing and growing problem in the chemical control of invertebrate pests. Molecular diagnostic methods can facilitate pesticide resistance management by accurately and efficiently detecting resistant mutations and their frequency. In this study, the kompetitive allele specific PCR (KASP) approach, a technology for high-throughput single nucleotide polymorphism (SNP) genotyping, is validated as a useful method for characterizing genotypes at a pesticide-resistance locus for the first time. We focus on the spinetoram resistance mutation of G275E in the nicotinic acetylcholine receptor alpha 6 (nAChR α6) subunit gene of Thrips palmi. RESULTS Of the 341 individuals of Thrips palmi tested, 98.24% were successfully genotyped, with 100% concordance with Sanger sequencing results. We then quantitatively mixed genomic DNA of known genotypes to establish 21 DNA mixtures with a resistant allele frequency ranging from 0 to 100% at steps of 5%. The linear discriminant analysis (LDA) showed that 75.8% of original grouped cases were correctly classified; six groups had no overlap in membership (resistant allele frequency: 0%, 5%, 10-75%, 80-85%, 90-95%, and 100%). When we chose 11 pooled samples with 10% steps for LDA, 84.4% of original grouped cases were correctly classified; seven groups had no overlap in membership (0%, 10%, 20-30%, 40-70%, 80%, 90%, 100%). The results indicated that KASP applied to pooled samples may provide a semi-quantitative estimate of resistance. CONCLUSIONS Our study points to the suitability of KASP for high-throughput genotyping of genotypes affecting pesticide resistance and semi-quantitative assessments of resistance allele frequencies in populations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pan Shi
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu-Jie Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin-Shuang Pang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Hua Liu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ming-Ming Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
16
|
Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Ketoh GK, Koudou BG, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Cerdeira LT, Clarkson CS, Kwiatkowski DP, Miles A, Donnelly MJ, Weetman D. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae s.l. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523889. [PMID: 36712022 PMCID: PMC9882144 DOI: 10.1101/2023.01.13.523889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Constant V Edi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Guillaume K Ketoh
- Laboratory of Ecology and Ecotoxicology, Department of Zoology, Faculty of Sciences, Université de Lomé, 01 B.P: 1515 Lomé 01, Togo
| | - Benjamin G Koudou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Louise T Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
17
|
Collins EL, Phelan JE, Hubner M, Spadar A, Campos M, Ward D, Acford-Palmer H, Gomes AR, Silva K, Ferrero Gomez L, Clark TG, Campino S. A next generation targeted amplicon sequencing method to screen for insecticide resistance mutations in Aedes aegypti populations reveals a rdl mutation in mosquitoes from Cabo Verde. PLoS Negl Trop Dis 2022; 16:e0010935. [PMID: 36512510 PMCID: PMC9746995 DOI: 10.1371/journal.pntd.0010935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aedes mosquito vectors transmit many viruses of global health concern, including dengue, chikungunya and Zika. These vector-borne viral diseases have a limited number of treatment options, and vaccines vary in their effectiveness. Consequently, integrated vector management is a primary strategy for disease control. However, the increasing emergence and spread of insecticide resistance is threatening the efficacy of vector control methods. Identifying mutations associated with resistance in vector populations is important to monitor the occurrence and evolution of insecticide resistance and inform control strategies. Rapid and cost-effective genome sequencing approaches are urgently needed. Here we present an adaptable targeted amplicon approach for cost-effective implementation within next generation sequencing platforms. This approach can identify single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) in genes involved in insecticide resistance in Aedes aegypti mosquitoes. We designed and tested eleven amplicons, which included segments of the ace-1 (carbamate target), the Voltage-Gated Sodium Channel (vgsc; pyrethroids, DDT and organochlorines), and rdl (dieldrin) genes; thereby covering established knockdown resistance (kdr) mutations (e.g., S989P, I1011M/V, V1016G/I and F1534C), with the potential to identify novel ones. The amplicon assays were designed with internal barcodes, to facilitate multiplexing of large numbers of mosquitoes at low cost, and were sequenced using an Illumina platform. Our approach was evaluated on 152 Ae. aegypti mosquitoes collected in Cabo Verde, an archipelago with a history of arbovirus outbreaks. The amplicon sequence data revealed 146 SNPs, including four non-synonymous polymorphisms in the vgsc gene, one in ace-1 and the 296S rdl mutation previously associated with resistance to organochlorines. The 296S rdl mutation was identified in 98% of mosquitoes screened, consistent with the past use of an organochlorine compound (e.g., DDT). Overall, our work shows that targeted amplicon sequencing is a rapid, robust, and cost-effective tool that can be used to perform high throughput monitoring of insecticide resistance.
Collapse
Affiliation(s)
- Emma L. Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jody E. Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Magdalena Hubner
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Monica Campos
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel Ward
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ana Rita Gomes
- Laboratory of Pathogen-Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| | - Keily Silva
- Universidade Jean Piaget (UniPiaget), Praia, Cabo Verde
| | | | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Molecular Characterization of Octopamine/Tyramine Receptor Gene of Amitraz-Resistant Rhipicephalus ( Boophilus) decoloratus Ticks from Uganda. Microorganisms 2022; 10:microorganisms10122384. [PMID: 36557637 PMCID: PMC9788083 DOI: 10.3390/microorganisms10122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
We previously reported the emergence of amitraz-resistant Rhipicephalus (Boophilus) decoloratus ticks in the western region of Uganda. This study characterized the octopamine/tyramine receptor gene (OCT/Tyr) of amitraz-resistant and -susceptible R. (B.) decoloratus ticks from four regions of Uganda. The OCT/Tyr gene was amplified from genomic DNA of 17 R. (B.) decoloratus larval populations of known susceptibility to amitraz. The amplicons were purified, cloned and sequenced to determine mutations in the partial coding region of the OCT/Tyr gene. The amplified R. (B.) decoloratus OCT/Tyr gene was 91-100% identical to the R. (B.) microplus OCT/Tyr gene. Up to 24 single nucleotide polymorphisms (SNPs) were found in the OCT/Tyr gene from ticks obtained from high acaricide pressure areas, compared to 8 from the low acaricide pressure areas. A total of eight amino acid mutations were recorded in the partial OCT/Tyr gene from ticks from the western region, and four of them were associated with amitraz-resistant tick populations. The amino acid mutations M1G, L16F, D41G and V72A were associated with phenotypic resistance to amitraz with no specific pattern. Phylogenetic analysis revealed that the OCT/Tyr gene sequence from this study clustered into two distinct groups that separated the genotype from high acaricide pressure areas from the susceptible populations. In conclusion, this study is the first to characterize the R. (B.) decoloratus OCT/Tyr receptor gene and reports four novel amino acid mutations associated with phenotypic amitraz resistance in Uganda. However, lack of mutations in the ORF of the OCT/Tyr gene fragment for some of the amitraz-resistant R. (B.) decoloratus ticks could suggest that other mechanisms of resistance may be responsible for amitraz resistance, hence the need for further investigation.
Collapse
|
19
|
Hin S, Paust N, Rombach M, Lüddecke J, Specht M, Zengerle R, Mitsakakis K. Magnetophoresis in Centrifugal Microfluidics at Continuous Rotation for Nucleic Acid Extraction. MICROMACHINES 2022; 13:2112. [PMID: 36557411 PMCID: PMC9787563 DOI: 10.3390/mi13122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Centrifugal microfluidics enables fully automated molecular diagnostics at the point-of-need. However, the integration of solid-phase nucleic acid extraction remains a challenge. Under this scope, we developed the magnetophoresis under continuous rotation for magnetic bead-based nucleic acid extraction. Four stationary permanent magnets are arranged above a cartridge, creating a magnetic field that enables the beads to be transported between the chambers of the extraction module under continuous rotation. The centrifugal force is maintained to avoid uncontrolled spreading of liquids. We concluded that below a frequency of 5 Hz, magnetic beads move radially inwards. In support of magnetophoresis, bead inertia and passive geometrical design features allow to control the azimuthal bead movement between chambers. We then demonstrated ferrimagnetic bead transfer in liquids with broad range of surface tension and density values. Furthermore, we extracted nucleic acids from lysed Anopheles gambiae mosquitoes reaching comparable results of eluate purity (LabDisk: A260/A280 = 1.6 ± 0.04; Reference: 1.8 ± 0.17), and RT-PCR of extracted RNA (LabDisk: Ct = 17.9 ± 1.6; Reference: Ct = 19.3 ± 1.7). Conclusively, magnetophoresis at continuous rotation enables easy cartridge integration and nucleic acid extraction at the point-of-need with high yield and purity.
Collapse
Affiliation(s)
- Sebastian Hin
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- IMTEK—Laboratory for MEMS Applications, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Markus Rombach
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Jan Lüddecke
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Mara Specht
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- IMTEK—Laboratory for MEMS Applications, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- IMTEK—Laboratory for MEMS Applications, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
20
|
Lv Y, Wen S, Ding Y, Gao X, Chen X, Yan K, Yang F, Pan Y, Shang Q. Functional Validation of the Roles of Cytochrome P450s in Tolerance to Thiamethoxam and Imidacloprid in a Field Population of Aphis gossypii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14339-14351. [PMID: 36165284 DOI: 10.1021/acs.jafc.2c04867] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Field populations of Aphis gossypii (SDR) have evolved high resistance to neonicotinoids, including thiamethoxam and imidacloprid. Synergism bioassays and transcriptomic comparison of the SDR and susceptible (SS) strains revealed that the cytochrome P450s may contribute to the neonicotinoid resistance evolution. The transcripts of some P450s were constitutively overexpressed in the SDR strain, and many genes showed expression plasticity under insecticide exposure. Drosophila that ectopically expressed CYPC6Y9, CYP4CK1, CYP6DB1, and CYP6CZ1 showed greater resistance (>8.0-fold) to thiamethoxam, and Drosophila that expressed CYPC6Y9, CYP6CY22, CYP6CY18, and CYP6D subfamily genes showed greater resistance (>5-fold) to imidacloprid. Five P450 genes that caused thiamethoxam resistance also conferred resistance to α-cypermethrin. Furthermore, the knockdown of CYP4CK1, CYP6CY9, CYP6CY18, CYPC6Y22, CYP6CZ1, and CYP6DB1 dramatically increased the sensitivity of the SDR strain to thiamethoxam or imidacloprid. These results indicate the involvement of multiple P450 genes, rather than one key gene, in neonicotinoid resistance in field populations.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shuyun Wen
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
21
|
Campos M, Phelan J, Spadar A, Collins E, Gonçalves A, Pelloquin B, Vaselli NM, Meiwald A, Clark E, Stica C, Orsborne J, Sylla M, Edi C, Camara D, Mohammed AR, Afrane YA, Kristan M, Walker T, Gomez LF, Messenger LA, Clark TG, Campino S. High-throughput barcoding method for the genetic surveillance of insecticide resistance and species identification in Anopheles gambiae complex malaria vectors. Sci Rep 2022; 12:13893. [PMID: 35974073 PMCID: PMC9381500 DOI: 10.1038/s41598-022-17822-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
Surveillance of malaria vector species and the monitoring of insecticide resistance are essential to inform malaria control strategies and support the reduction of infections and disease. Genetic barcoding of mosquitoes is a useful tool to assist the high-throughput surveillance of insecticide resistance, discriminate between sibling species and to detect the presence of Plasmodium infections. In this study, we combined multiplex PCR, custom designed dual indexing, and Illumina next generation sequencing for high throughput single nucleotide polymorphism (SNP)-profiling of four species from the Anopheles (An.) gambiae complex (An. gambiae sensu stricto, An. coluzzii, An. arabiensis and An. melas). By amplifying and sequencing only 14 genetic fragments (500 bp each), we were able to simultaneously detect Plasmodium infection; insecticide resistance-conferring SNPs in ace1, gste2, vgsc and rdl genes; the partial sequences of nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and intergenic spacers (IGS), Short INterspersed Elements (SINE), as well as mitochondrial genes (cox1 and nd4) for species identification and genetic diversity. Using this amplicon sequencing approach with the four selected An. gambiae complex species, we identified a total of 15 non-synonymous mutations in the insecticide target genes, including previously described mutations associated with resistance and two new mutations (F1525L in vgsc and D148E in gste2). Overall, we present a reliable and cost-effective high-throughput panel for surveillance of An. gambiae complex mosquitoes in malaria endemic regions.
Collapse
Affiliation(s)
- Monica Campos
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Adéritow Gonçalves
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, 719, Cabo Verde
| | - Bethanie Pelloquin
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- School of Tropical Medicine and Global Health, University of Nagasaki, Nagasaki, Japan
| | - Natasha Marcella Vaselli
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anne Meiwald
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caleb Stica
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James Orsborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Moussa Sylla
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
| | - Constant Edi
- Centre Suisse de Recherches Scientifiques en Cote d'Ivoire, Abidjan, Côte d'Ivoire
| | - Denka Camara
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé, BP. 595, Conakry, Guinea
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Louisa A Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
22
|
Njoroge H, van't Hof A, Oruni A, Pipini D, Nagi S, Lynd A, Lucas ER, Tomlinson S, Grau‐Bove X, McDermott D, Wat'senga FT, Manzambi EZ, Agossa FR, Mokuba A, Irish S, Kabula B, Mbogo C, Bargul J, Paine MJI, Weetman D, Donnelly MJ. Identification of a rapidly-spreading triple mutant for high-level metabolic insecticide resistance in Anopheles gambiae provides a real-time molecular diagnostic for antimalarial intervention deployment. Mol Ecol 2022; 31:4307-4318. [PMID: 35775282 PMCID: PMC9424592 DOI: 10.1111/mec.16591] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
Studies of insecticide resistance provide insights into the capacity of populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs). Resistance in the major malaria vectors has increased in concert with the expansion of LLIN distributions. Identifying genetic mechanisms underlying high-level resistance is crucial for the development and deployment of resistance-breaking tools. Using the Anopheles gambiae 1000 genomes (Ag1000g) data we identified a very recent selective sweep in mosquitoes from Uganda which localized to a cluster of cytochrome P450 genes. Further interrogation revealed a haplotype involving a trio of mutations, a nonsynonymous point mutation in Cyp6p4 (I236M), an upstream insertion of a partial Zanzibar-like transposable element (TE) and a duplication of the Cyp6aa1 gene. The mutations appear to have originated recently in An. gambiae from the Kenya-Uganda border, with stepwise replacement of the double-mutant (Zanzibar-like TE and Cyp6p4-236 M) with the triple-mutant haplotype (including Cyp6aa1 duplication), which has spread into the Democratic Republic of Congo and Tanzania. The triple-mutant haplotype is strongly associated with increased expression of genes able to metabolize pyrethroids and is strongly predictive of resistance to pyrethroids most notably deltamethrin. Importantly, there was increased mortality in mosquitoes carrying the triple-mutation when exposed to nets cotreated with the synergist piperonyl butoxide (PBO). Frequencies of the triple-mutant haplotype remain spatially variable within countries, suggesting an effective marker system to guide deployment decisions for limited supplies of PBO-pyrethroid cotreated LLINs across African countries.
Collapse
Affiliation(s)
- Harun Njoroge
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine CoastKEMRI‐Wellcome Trust Research ProgrammeKilifiKenya
| | - Arjen van't Hof
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Ambrose Oruni
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- College of Veterinary MedicineAnimal Resources and Bio‐securityMakerere UniversityKampalaUganda
| | - Dimitra Pipini
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Sanjay C. Nagi
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Amy Lynd
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Eric R. Lucas
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Sean Tomlinson
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Xavi Grau‐Bove
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Daniel McDermott
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | | | - Emile Z. Manzambi
- Institut National de Recherche BiomédicaleKinshasaDemocratic Republic of Congo
| | - Fiacre R. Agossa
- USAID President's Malaria Initiative, VectorLink Project, Abt AssociatesRockvilleMarylandUSA
| | - Arlette Mokuba
- USAID President's Malaria Initiative, VectorLink Project, Abt AssociatesRockvilleMarylandUSA
| | - Seth Irish
- U.S. President's Malaria Initiative and Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Bilali Kabula
- Amani Research CentreNational Institute for Medical ResearchTanzania
| | - Charles Mbogo
- Population Health UnitKEMRI‐Wellcome Trust Research ProgrammeNairobiKenya
- KEMRI‐Centre for Geographic Medicine Research CoastKilifiKenya
| | - Joel Bargul
- Department of BiochemistryJomo Kenyatta University of Agriculture and TechnologyJujaKenya
- The Animal Health DepartmentInternational Centre of Insect Physiology and EcologyNairobiKenya
| | - Mark J. I. Paine
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - David Weetman
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Martin J. Donnelly
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Parasites and Microbes ProgrammeWellcome Sanger InstituteCambridgeUK
| |
Collapse
|
23
|
Shirani-Bidabadi L, Oshaghi MA, Enayati AA, Akhavan AA, Zahraei-Ramazani AR, Yaghoobi-Ershadi MR, Rassi Y, Aghaei-Afshar A, Koosha M, Arandian MH, Ghanei M, Ghassemi M, Vatandoost H. Molecular and Biochemical Detection of Insecticide Resistance in the Leishmania Vector, Phlebotomus papatasi (Diptera: Psychodidae) to Dichlorodiphenyltrichloroethane and Pyrethroids, in Central Iran. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1347-1354. [PMID: 35595289 DOI: 10.1093/jme/tjac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to explore resistance markers and possible biochemical resistance mechanisms in the Phlebotomine sand fly Phlebotomus papatasi in Esfahan Province, central Iran. Homogenous resistant strains of sand flies were obtained by exposing P. papatasi collected from Esfahan to a single diagnostic dose of DDT. The adults from the colony were tested with papers impregnated with four pyrethroid insecticides: Permethrin 0.75%, Deltamethrin 0.05%, Cyfluthrin 0.15%, and Lambdacyhalothrin 0.05% to determine levels of cross-resistance. To discover the presence of mutations, a 440 base pair fragment of the voltage gated sodium channel (VGSC) gene was amplified and sequenced in both directions for the susceptible and resistant colonies. We also assayed the amount of four enzymes that play a key role in insecticide detoxification in the resistant colonies. A resistance ratio (RR) of 2.52 folds was achieved during the selection of resistant strains. Sequence analysis revealed no knockdown resistance (kdr) mutations in the VGSC gene. Enzyme activity ratio of the resistant candidate and susceptible colonies were calculated for α-esterases (3.78), β-esterases (3.72), mixed function oxidases (MFO) (3.21), and glutathione-S-transferases (GST) (1.59). No cross-resistance to the four pyrethroids insecticides was observed in the DDT resistant colony. The absence of kdr mutations in the VGSC gene suggests that alterations in esterase and MFO enzymes are responsible for the resistant of P. papatasi to DDT in central Iran. This information could have significant predictive utility in managing insecticide resistant in this Leishmania vector.
Collapse
Affiliation(s)
- Leila Shirani-Bidabadi
- Department of Vector Biology and Control, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Zahraei-Ramazani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abass Aghaei-Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Arandian
- Esfahan Health Research Station, National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanei
- Esfahan Health Research Station, National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghassemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Sudo M, Osakabe M. freqpcr: Estimation of population allele frequency using qPCR ΔΔCq measures from bulk samples. Mol Ecol Resour 2022; 22:1380-1393. [PMID: 34882971 PMCID: PMC9300209 DOI: 10.1111/1755-0998.13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
PCR techniques, both quantitative (qPCR) and nonquantitative, have been used to estimate the frequency of a specific allele in a population. However, the labour required to sample numerous individuals and subsequently handle each sample renders the quantification of rare mutations (e.g., pesticide resistance gene mutations at the early stages of resistance development) challenging. Meanwhile, pooling DNA from multiple individuals as a "bulk sample" combined with qPCR may reduce handling costs. The qPCR output for a bulk sample, however, contains uncertainty owing to variations in DNA yields from each individual, in addition to measurement errors. In this study, we have developed a statistical model to estimate the frequency of the specific allele and its confidence interval when the sample allele frequencies are obtained in the form of ΔΔCq in the qPCR analyses on multiple bulk samples collected from a population. We assumed a gamma distribution as the individual DNA yield and developed an R package for parameter estimation, which was verified using real DNA samples from acaricide-resistant spider mites, as well as a numerical simulation. Our model resulted in unbiased point estimates of the allele frequency compared with simple averaging of the ΔΔCq values. The confidence intervals suggest that dividing the bulk samples into more parts will improve precision if the total number of individuals is equal; however, if the cost of PCR analysis is higher than that of sampling, increasing the total number and pooling them into a few bulk samples may also yield comparable precision.
Collapse
Affiliation(s)
- Masaaki Sudo
- Division of Fruit Tree and Tea Pest Control ResearchInstitute for Plant ProtectionNARO: Kanaya Tea Research StationShimadaJapan
| | - Masahiro Osakabe
- Laboratory of Ecological InformationGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
25
|
Yamanaka T, Kitabayashi S, Jouraku A, Kanamori H, Kuwazaki S, Sudo M. A feasibility trial of genomics-based diagnosis detecting insecticide resistance of the diamondback moth. PEST MANAGEMENT SCIENCE 2022; 78:1573-1581. [PMID: 34981630 DOI: 10.1002/ps.6776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insecticide resistance management has been key for crop protection for over 70 years and is increasingly important because the development of new active ingredients has decreased in recent years. By monitoring the development of resistance in a timely manner, we can effectively prolong insecticide efficacy. Genomic-based diagnosis can reliably predict resistance development if information on resistant mutations against major pesticides is available. Here, we developed a feasibility trial of genomics-based diagnosis of insecticide resistance in diamondback moth (Plutella xylostella) populations in Nagano Prefecture, Japan. Amplicon sequencing analyses using a next-generation sequencer (Illumina MiSeq) for major insecticides, including diamides, pyrethroids, Bacillus thuringiensis (Bt) toxin (Cry1Ac), organophosphates, and spinosyns, were conducted. RESULTS Mutations related to the resistance of pyrethroids, organophosphates, and diamides (flubendiamide and chlorantraniliprole) prevailed, while those of a diamide (cyantraniliprole), Bt (Cry1Ac), and spinosyns were scanty, suggesting that they are still effective. The results of the genomics-based diagnosis were generally concordant with the results of bioassays. Resistance development tendencies were generally uniform across Nagano. CONCLUSION An insecticide-resistance management campaign can be conducted in Nagano Prefecture with a quick genomic-based diagnosis in early spring while bioassay is the only option for monitoring resistances whose mutations are unavailable. Our study is the first step in the future management of insecticide resistance in all significant pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Takehiko Yamanaka
- Research Center for Agricultural Information Technology, NARO, Tsukuba, Japan
| | | | - Akiya Jouraku
- Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | | | - Seigo Kuwazaki
- Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Masaaki Sudo
- Institute for Plant Protection, NARO, Shimada, Japan
| |
Collapse
|
26
|
Detection and population genetic analysis of kdr L1014F variant in eastern Ethiopian Anopheles stephensi. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105235. [PMID: 35123054 DOI: 10.1016/j.meegid.2022.105235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
Anopheles stephensi is a malaria vector that has been recently introduced into East Africa, where it threatens to increase malaria disease burden. The use of insecticides, especially pyrethroids, is still one of the primary malaria vector control strategies worldwide. The knockdown resistance (kdr) mutation in the IIS6 transmembrane segment of the voltage-gated sodium channel (vgsc) is one of the main molecular mechanisms of pyrethroid resistance in Anopheles. Extensive pyrethroid resistance in An. stephensi has been previously reported in Ethiopia. Thus, it is important to determine whether or not the kdr mutation is present in An. stephensi populations in Ethiopia to inform vector control strategies. In the present study, the kdr locus was analyzed in An. stephensi collected from ten urban sites (Awash Sebat Kilo, Bati, Dire Dawa, Degehabur, Erer Gota, Godey, Gewane, Jigjiga, Semera, and Kebridehar) situated in Somali, Afar, and Amhara regions, and Dire Dawa Administrative City, to evaluate the frequency and evolution of kdr mutations and the association of the mutation with permethrin resistance phenotypes. Permethrin is one of the pyrethroid insecticides used for vector control in eastern Ethiopia. DNA extractions were performed on adult mosquitoes from CDC light trap collections and those raised from larval and pupal collections. PCR and targeted sequencing were used to analyze the IIS6 transmembrane segment of the vgsc gene. Of 159 An. stephensi specimens analyzed from the population survey, nine (5.7%) carried the kdr mutation (L1014F). An. stephensi with kdr mutations were only observed from Bati, Degehabur, Dire Dawa, Gewane, and Semera. We further selected randomly twenty resistant and twenty susceptible An. stephensi mosquitoes from Dire Dawa post-exposure to permethrin and investigated the role of kdr in pyrethroid resistance by comparing the vgsc gene in the two populations. We found no kdr mutations in the permethrin-resistant mosquitoes. Population genetic analysis of the sequences, including neighboring introns, revealed limited evidence of non-neutral evolution (e.g., selection) at this locus. The low kdr mutation frequency detected and the lack of kdr mutation in the permethrin-resistant mosquitoes suggest the existence of other molecular mechanisms of pyrethroid resistance in eastern Ethiopian An. stephensi.
Collapse
|
27
|
Alvarez MVN, Alonso DP, Kadri SM, Rufalco-Moutinho P, Bernardes IAF, de Mello ACF, Souto AC, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE, Ribolla PEM. Nyssorhynchus darlingi genome-wide studies related to microgeographic dispersion and blood-seeking behavior. Parasit Vectors 2022; 15:106. [PMID: 35346342 PMCID: PMC8961893 DOI: 10.1186/s13071-022-05219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Brazil, malaria is concentrated in the Amazon Basin, where more than 99% of the annual cases are reported. The main goal of this study was to investigate the population structure and genetic association of the biting behavior of Nyssorhynchus (also known as Anopheles) darlingi, the major malaria vector in the Amazon region of Brazil, using low-coverage genomic sequencing data. METHODS Samples were collected in the municipality of Mâncio Lima, Acre state, Brazil between 2016 and 2017. Different approaches using genotype imputation and no gene imputation for data treatment and low-coverage sequencing genotyping were performed. After the samples were genotyped, population stratification analysis was performed. RESULTS Weak but statistically significant stratification signatures were identified between subpopulations separated by distances of approximately 2-3 km. Genome-wide association studies (GWAS) were performed to compare indoor/outdoor biting behavior and blood-seeking at dusk/dawn. A statistically significant association was observed between biting behavior and single nucleotide polymorphism (SNP) markers adjacent to the gene associated with cytochrome P450 (CYP) 4H14, which is associated with insecticide resistance. A statistically significant association between blood-seeking periodicity and SNP markers adjacent to genes associated with the circadian cycle was also observed. CONCLUSION The data presented here suggest that low-coverage whole-genome sequencing with adequate processing is a powerful tool to genetically characterize vector populations at a microgeographic scale in malaria transmission areas, as well as for use in GWAS. Female mosquitoes entering houses to take a blood meal may be related to a specific CYP4H14 allele, and female timing of blood-seeking is related to circadian rhythm genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY USA
| | | |
Collapse
|
28
|
Williams J, Cowlishaw R, Sanou A, Ranson H, Grigoraki L. In vivo functional validation of the V402L voltage gated sodium channel mutation in the malaria vector An. gambiae. PEST MANAGEMENT SCIENCE 2022; 78:1155-1163. [PMID: 34821465 DOI: 10.1002/ps.6731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pyrethroids are the most widely used insecticides for the control of malaria transmitting Anopheles gambiae mosquitoes and rapid increase in resistance to this insecticide class is of major concern. Pyrethroids target the Voltage Gated Sodium Channels (VGSCs), that have a key role in the normal function of the mosquitoes' nervous system. VGSC mutations L995F and L995S have long been associated with pyrethroid resistance and screening for their presence is routine in insecticide resistance management programs. Recently, a VGSC haplotype containing two amino acid substitutions associated with resistance in other species, V402L and I1527T, was identified. These two VGSC mutations are found in tight linkage and are mutually exclusive to the classical L995F/S mutations. RESULTS We identify the presence of the V402L-I1527T haplotype in resistant An. coluzzii colonized strains and in field populations from Burkina Faso, at frequencies higher than previously reported; in some cases almost reaching fixation. Functional validation of V402L in insecticide resistance using a CRISPR/Cas9 genome modified line showed that it confers reduced mortality after exposure to all tested pyrethroids and DDT, but at lower levels compared to L995F. In contrast to L995F however, no fitness costs were identified for mosquitoes carrying V402L under laboratory conditions. CONCLUSION The V402L substitution confers pyrethroid resistance in An. gambiae in the absence of any other VGSC substitution and/or alternative resistance mechanisms. The lower fitness cost associated with this kdr mutation may provide a selective advantage over the classical kdr in some settings and genotyping at this locus should be added in the list of resistant alleles for routine screening.
Collapse
Affiliation(s)
- Jessica Williams
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ruth Cowlishaw
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Antoine Sanou
- Service Scientifique et Technique, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Linda Grigoraki
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
29
|
Hancock PA, Lynd A, Wiebe A, Devine M, Essandoh J, Wat'senga F, Manzambi EZ, Agossa F, Donnelly MJ, Weetman D, Moyes CL. Modelling spatiotemporal trends in the frequency of genetic mutations conferring insecticide target-site resistance in African mosquito malaria vector species. BMC Biol 2022; 20:46. [PMID: 35164747 PMCID: PMC8845222 DOI: 10.1186/s12915-022-01242-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides for malaria vector control, threatens the continued efficacy of vector control tools. Target-site resistance is an important genetic resistance mechanism caused by mutations in the voltage-gated sodium channel (Vgsc) gene that encodes the pyrethroid target-site. Understanding the geographic distribution of target-site resistance, and temporal trends across different vector species, can inform strategic deployment of vector control tools. RESULTS We develop a Bayesian statistical spatiotemporal model to interpret species-specific trends in the frequency of the most common resistance mutations, Vgsc-995S and Vgsc-995F, in three major malaria vector species Anopheles gambiae, An. coluzzii, and An. arabiensis over the period 2005-2017. The models are informed by 2418 observations of the frequency of each mutation in field sampled mosquitoes collected from 27 countries spanning western and eastern regions of Africa. For nine selected countries, we develop annual predictive maps which reveal geographically structured patterns of spread of each mutation at regional and continental scales. The results show associations, as well as stark differences, in spread dynamics of the two mutations across the three vector species. The coverage of ITNs was an influential predictor of Vgsc allele frequencies, with modelled relationships between ITN coverage and allele frequencies varying across species and geographic regions. We found that our mapped Vgsc allele frequencies are a significant partial predictor of phenotypic resistance to the pyrethroid deltamethrin in An. gambiae complex populations. CONCLUSIONS Our predictive maps show how spatiotemporal trends in insecticide target-site resistance mechanisms in African An. gambiae vary across individual vector species and geographic regions. Molecular surveillance of resistance mechanisms will help to predict resistance phenotypes and track their spread.
Collapse
Affiliation(s)
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | | | - Maria Devine
- Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - Francis Wat'senga
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Emile Z Manzambi
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Fiacre Agossa
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd 16, Rockville, MD, 20852, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | | |
Collapse
|
30
|
Matowo J, Weetman D, Pignatelli P, Wright A, Charlwood JD, Kaaya R, Shirima B, Moshi O, Lukole E, Mosha J, Manjurano A, Mosha F, Rowland M, Protopopoff N. Expression of pyrethroid metabolizing P450 enzymes characterizes highly resistant Anopheles vector species targeted by successful deployment of PBO-treated bednets in Tanzania. PLoS One 2022; 17:e0249440. [PMID: 35073324 PMCID: PMC8786186 DOI: 10.1371/journal.pone.0249440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Long lasting insecticidal nets (LLINs) are a proven tool to reduce malaria transmission, but in Africa efficacy is being reduced by pyrethroid resistance in the major vectors. A previous study that was conducted in Muleba district, Tanzania indicated possible involvement of cytochrome P450 monooxygenases in a pyrethroid resistance in An. gambiae population where pre-exposure to piperonyl butoxide (PBO) followed by permethrin exposure in CDC bottle bioassays led to partial restoration of susceptibility. PBO is a synergist that can block pyrethroid-metabolizing enzymes in a mosquito. Insecticide resistance profiles and underlying mechanisms were investigated in Anopheles gambiae and An. funestus from Muleba during a cluster randomized trial. Diagnostic dose bioassays using permethrin, together with intensity assays, suggest pyrethroid resistance that is both strong and very common, but not extreme. Transcriptomic analysis found multiple P450 genes over expressed including CYP6M2, CYP6Z3, CYP6P3, CYP6P4, CYP6AA1 and CYP9K1 in An. gambiae and CYP6N1, CYP6M7, CYP6M1 and CYP6Z1 in An. funestus. Indeed, very similar suites of P450 enzymes commonly associated with resistant populations elsewhere in Africa were detected as over expressed suggesting a convergence of mechanisms across Sub-Saharan African malaria vectors. The findings give insight into factors that may correlate with pyrethroid PBO LLIN success, broadly supporting model predictions, but revision to guidelines previously issued by the World Health Organization is warranted.
Collapse
Affiliation(s)
- Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- * E-mail:
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alexandra Wright
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jacques D. Charlwood
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Kaaya
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Boniface Shirima
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Oliva Moshi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Eliud Lukole
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Jacklin Mosha
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alphaxard Manjurano
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
31
|
Makunin A, Korlević P, Park N, Goodwin S, Waterhouse RM, von Wyschetzki K, Jacob CG, Davies R, Kwiatkowski D, St Laurent B, Ayala D, Lawniczak MKN. A targeted amplicon sequencing panel to simultaneously identify mosquito species and Plasmodium presence across the entire Anopheles genus. Mol Ecol Resour 2022; 22:28-44. [PMID: 34053186 PMCID: PMC7612955 DOI: 10.1111/1755-0998.13436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/19/2021] [Indexed: 01/04/2023]
Abstract
Anopheles is a diverse genus of mosquitoes comprising over 500 described species, including all known human malaria vectors. While a limited number of key vector species have been studied in detail, the goal of malaria elimination calls for surveillance of all potential vector species. Here, we develop a multilocus amplicon sequencing approach that targets 62 highly variable loci in the Anopheles genome and two conserved loci in the Plasmodium mitochondrion, simultaneously revealing both the mosquito species and whether that mosquito carries malaria parasites. We also develop a cheap, nondestructive, and high-throughput DNA extraction workflow that provides template DNA from single mosquitoes for the multiplex PCR, which means specimens producing unexpected results can be returned to for morphological examination. Over 1000 individual mosquitoes can be sequenced in a single MiSeq run, and we demonstrate the panel's power to assign species identity using sequencing data for 40 species from Africa, Southeast Asia, and South America. We also show that the approach can be used to resolve geographic population structure within An. gambiae and An. coluzzii populations, as the population structure determined based on these 62 loci from over 1000 mosquitoes closely mirrors that revealed through whole genome sequencing. The end-to-end approach is quick, inexpensive, robust, and accurate, which makes it a promising technique for very large-scale mosquito genetic surveillance and vector control.
Collapse
Affiliation(s)
- Alex Makunin
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Petra Korlević
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Naomi Park
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | | | | | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- CIRMF, Franceville, Gabon
| | | |
Collapse
|
32
|
Genome evolution in an agricultural pest following adoption of transgenic crops. Proc Natl Acad Sci U S A 2021; 118:2020853118. [PMID: 34930832 PMCID: PMC8719884 DOI: 10.1073/pnas.2020853118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/14/2022] Open
Abstract
Evolution of resistance to management approaches in agricultural landscapes is common and results in economic losses. Early detection of pest resistance prior to significant crop damage would benefit the agricultural community. It has been hypothesized that new genomic approaches could track molecular signals of emerging resistance and trigger efforts to preempt widespread damage. We tested this hypothesis by quantifying genomic changes in the pest Helicoverpa zea over a 15-y period concurrent with commercialization of transgenic Bacillus thuringiensis–expressing crops and their subsequent loss of efficacy. Our results demonstrate the complex nature of evolution in agricultural ecosystems and provide insight into the potential and pitfalls of using genomic approaches for resistance monitoring. Replacing synthetic insecticides with transgenic crops for pest management has been economically and environmentally beneficial, but these benefits erode as pests evolve resistance. It has been proposed that novel genomic approaches could track molecular signals of emerging resistance to aid in resistance management. To test this, we quantified patterns of genomic change in Helicoverpa zea, a major lepidopteran pest and target of transgenic Bacillus thuringiensis (Bt) crops, between 2002 and 2017 as both Bt crop adoption and resistance increased in North America. Genomic scans of wild H. zea were paired with quantitative trait locus (QTL) analyses and showed the genomic architecture of field-evolved Cry1Ab resistance was polygenic, likely arising from standing genetic variation. Resistance to pyramided Cry1A.105 and Cry2Ab2 toxins was controlled by fewer loci. Of the 11 previously described Bt resistance genes, 9 showed no significant change over time or major effects on resistance. We were unable to rule out a contribution of aminopeptidases (apns), as a cluster of apn genes were found within a Cry-associated QTL. Molecular signals of emerging Bt resistance were detectable as early as 2012 in our samples, and we discuss the potential and pitfalls of whole-genome analysis for resistance monitoring based on our findings. This first study of Bt resistance evolution using whole-genome analysis of field-collected specimens demonstrates the need for a more holistic approach to examining rapid adaptation to novel selection pressures in agricultural ecosystems.
Collapse
|
33
|
Ingham VA, Tennessen JA, Lucas ER, Elg S, Yates HC, Carson J, Guelbeogo WM, Sagnon N, Hughes GL, Heinz E, Neafsey DE, Ranson H. Integration of whole genome sequencing and transcriptomics reveals a complex picture of the reestablishment of insecticide resistance in the major malaria vector Anopheles coluzzii. PLoS Genet 2021; 17:e1009970. [PMID: 34941884 PMCID: PMC8741062 DOI: 10.1371/journal.pgen.1009970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 11/27/2021] [Indexed: 11/24/2022] Open
Abstract
Insecticide resistance is a major threat to gains in malaria control, which have been stalling and potentially reversing since 2015. Studies into the causal mechanisms of insecticide resistance are painting an increasingly complicated picture, underlining the need to design and implement targeted studies on this phenotype. In this study, we compare three populations of the major malaria vector An. coluzzii: a susceptible and two resistant colonies with the same genetic background. The original colonised resistant population rapidly lost resistance over a 6-month period, a subset of this population was reselected with pyrethroids, and a third population of this colony that did not lose resistance was also available. The original resistant, susceptible and re-selected colonies were subject to RNAseq and whole genome sequencing, which identified a number of changes across the transcriptome and genome linked with resistance. Firstly, an increase in the expression of genes within the oxidative phosphorylation pathway were seen in both resistant populations compared to the susceptible control; this translated phenotypically through an increased respiratory rate, indicating that elevated metabolism is linked directly with resistance. Genome sequencing highlighted several blocks clearly associated with resistance, including the 2Rb inversion. Finally, changes in the microbiome profile were seen, indicating that the microbial composition may play a role in the resistance phenotype. Taken together, this study reveals a highly complicated phenotype in which multiple transcriptomic, genomic and microbiome changes combine to result in insecticide resistance.
Collapse
Affiliation(s)
- Victoria A. Ingham
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Parasitology Unit, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Jacob A. Tennessen
- The Broad Institute, Cambridge, Massachusetts, United States of America
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Eric R. Lucas
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sara Elg
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Jessica Carson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ougadougou, Burkina Faso
| | - Grant L. Hughes
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eva Heinz
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniel E. Neafsey
- The Broad Institute, Cambridge, Massachusetts, United States of America
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
34
|
Yin J, Yamba F, Zheng C, Zhou S, Smith SJ, Wang L, Li H, Xia Z, Xiao N. Molecular Detection of Insecticide Resistance Mutations in Anopheles gambiae from Sierra Leone Using Multiplex SNaPshot and Sequencing. Front Cell Infect Microbiol 2021; 11:666469. [PMID: 34490134 PMCID: PMC8416995 DOI: 10.3389/fcimb.2021.666469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
Vector control interventions including long-lasting insecticidal nets and indoor residual spraying are important for malaria control and elimination. And effectiveness of these interventions depends entirely on the high level of susceptibility of malaria vectors to insecticides. However, the insecticide resistance in majority of mosquito vector species across African countries is a serious threat to the success of vector control efforts with the extensive use of insecticides, while no data on insecticide resistance was reported from Sierra Leone in the past decade. In the present study, the polymerase chain reaction was applied for the identification of species of 757 dry adult female Anopheles gambiae mosquitoes reared from larvae collected from four districts in Sierra Leone during May and June 2018. And the mutations of kdr, rdl, ace-1 genes in An. gambiae were detected using SNaPshot and sequencing. As a result, one sample from Western Area Rural district belonged to Anopheles melas, and 748 An. gambiae were identified. Furthermore, the rdl mutations, kdr west mutations and ace-1 mutation were found. The overall frequency was 35.7%, 0.3%, 97.6% and 4.5% in A296G rdl, A296S rdl, kdrW and ace-1, respectively. The frequencies of A296G rdl mutation (P < 0.001), kdrW mutation (P = 0.001) and ace-1 mutation (P < 0.001) were unevenly distributed in four districts, respectively, while no statistical significance was found in A296S rdl mutation (P = 0.868). In addition, multiple resistance patterns were also found. In conclusion, multiple mutations involved in insecticide resistance in An. gambiae populations in Sierra Leone were detected in the kdrW, A296G rdl and ace-1 alleles in the present study. It is necessary to monitor vector susceptibility levels to insecticides used in this country, and update the insecticide resistance monitoring and management strategy.
Collapse
Affiliation(s)
- Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Frederick Yamba
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Canjun Zheng
- Division of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Samuel Juana Smith
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Lili Wang
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongmei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| |
Collapse
|
35
|
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife 2021; 10:e65655. [PMID: 34355693 PMCID: PMC8346280 DOI: 10.7554/elife.65655] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.
Collapse
Affiliation(s)
- Alice Namias
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Ndey Bassin Jobe
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| | - Krijn Petrus Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Biodesign Institute, Tempe, United States
- ISGlobal, Carrer del Rosselló, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, Mozambique
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| |
Collapse
|
36
|
CRISPR/Cas9 modified An. gambiae carrying kdr mutation L1014F functionally validate its contribution in insecticide resistance and combined effect with metabolic enzymes. PLoS Genet 2021; 17:e1009556. [PMID: 34228718 PMCID: PMC8284791 DOI: 10.1371/journal.pgen.1009556] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Insecticide resistance in Anopheles mosquitoes is a major obstacle in maintaining the momentum in reducing the malaria burden; mitigating strategies require improved understanding of the underlying mechanisms. Mutations in the target site of insecticides (the voltage gated sodium channel for the most widely used pyrethroid class) and over-expression of detoxification enzymes are commonly reported, but their relative contribution to phenotypic resistance remain poorly understood. Here we present a genome editing pipeline to introduce single nucleotide polymorphisms in An. gambiae which we have used to study the effect of the classical kdr mutation L1014F (L995F based on An. gambiae numbering), one of the most widely distributed resistance alleles. Introduction of 1014F in an otherwise fully susceptible genetic background increased levels of resistance to all tested pyrethroids and DDT ranging from 9.9-fold for permethrin to >24-fold for DDT. The introduction of the 1014F allele was sufficient to reduce mortality of mosquitoes after exposure to deltamethrin treated bednets, even as the only resistance mechanism present. When 1014F was combined with over-expression of glutathione transferase Gste2, resistance to permethrin increased further demonstrating the critical combined effect between target site resistance and detoxification enzymes in vivo. We also show that mosquitoes carrying the 1014F allele in homozygosity showed fitness disadvantages including increased mortality at the larval stage and a reduction in fecundity and adult longevity, which can have consequences for the strength of selection that will apply to this allele in the field. Escalation of pyrethroid resistance in Anopheles mosquitoes threatens to reduce the effectiveness of our most important tools in malaria control. Studying the mechanisms underlying insecticide resistance is critical to design mitigation strategies. Here, using genome modified mosquitoes, we functionally characterize the most prevalent mutation in resistant mosquitoes, showing that it confers substantial levels of resistance to all tested pyrethroids and undermines the performance of pyrethroid-treated nets. Furthermore, we show that combining this mutation with elevated levels of a detoxification enzyme further increases resistance. The pipeline we have developed provides a robust approach to quantifying the contribution of different combinations of resistance mechanisms to the overall phenotype, providing the missing link between resistance monitoring and predictions of resistance impact.
Collapse
|
37
|
Sudo M, Yamamura K, Sonoda S, Yamanaka T. Estimating the proportion of resistance alleles from bulk Sanger sequencing, circumventing the variability of individual DNA. JOURNAL OF PESTICIDE SCIENCE 2021; 46:160-167. [PMID: 36380969 PMCID: PMC9641237 DOI: 10.1584/jpestics.d20-064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/24/2020] [Indexed: 06/16/2023]
Abstract
Specimens should be examined as much as possible to obtain a precise estimate of the proportion of resistance alleles in agricultural fields. Monitoring traps that use semiochemicals on sticky sheets are helpful in this regard. However, insects captured by such traps are ordinarily left in the field until collection. Owing to DNA degradation, the amount of DNA greatly varies among insects, causing serious problems in obtaining maximum likelihood estimates and confidence intervals of the proportion of the resistance alleles. We propose a statistical procedure that can circumvent this degradation issue. R scripts for the calculation are provided for readers. We also propose the utilization of a Sanger sequencer. We demonstrate these procedures using field samples of diamide-resistant strains of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). The validity of the assumptions used in the statistical analysis is examined using the same data.
Collapse
Affiliation(s)
- Masaaki Sudo
- Institute of Fruit Tree and Tea Science, NARO, Kanaya Tea Research Station, 2769 Shishidoi, Kanaya, Shimada, Shizuoka 428–8501, Japan
| | - Kohji Yamamura
- Institute for Agro-Environmental Sciences, NARO, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Shoji Sonoda
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321–8505, Japan
| | - Takehiko Yamanaka
- Institute for Agro-Environmental Sciences, NARO, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| |
Collapse
|
38
|
Yin J, Yamba F, Zheng C, Smith SJ, Wang L, Li H, Xia Z, Zhou S, Xiao N. First report of N1575Y mutation in Anopheles gambiae in Sierra Leone. INFECTION GENETICS AND EVOLUTION 2021; 92:104852. [PMID: 33831542 DOI: 10.1016/j.meegid.2021.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
The resistance of mosquito vectors to insecticides is one of the biological obstacles in the fight against malaria. Understanding of the status and mechanisms underlying the insecticide resistance in Anopheles gambiae species is necessary for success of vector control efforts. The study aimed to determine the molecular forms of An. gambiae from four districts in Sierra Leone during May and June 2018, and the level of N1575Y mutation. The molecular form identification of adult female An. gambiae mosquitoes reared from larvae were carried out using polymerase chain reaction and sequencing. And the N1575Y mutations were detected using SNaPshot and sequencing. As a result, significant differences were found in the distribution of An. gambiae molecular forms among regions (P < 0.001). And a total of 638 An. gambiae sensu stricto, 106 An. coluzzi, and 4 hybrid individuals were identified. Moreover, the overall N1575Y mutation frequency was 10.2% with no statistical difference among regions (χ2 = 3.009, P = 0.390). In addition, no significant differences in N1575Y mutation frequency were found among different An. gambiae molecular forms (P = 0.383). In conclusion, the N1575Y mutation in An. gambiae populations in Sierra Leone was reported for the first time in the present study. It provides key evidence for the necessity of monitoring vector susceptibility levels to insecticides used in this country.
Collapse
Affiliation(s)
- Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases; Shanghai, China
| | - Frederick Yamba
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Canjun Zheng
- Division of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Samuel Juana Smith
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Lili Wang
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongmei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases; Shanghai, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases; Shanghai, China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases; Shanghai, China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases; Shanghai, China.
| |
Collapse
|
39
|
Leon RG, Dunne JC, Gould F. The role of population and quantitative genetics and modern sequencing technologies to understand evolved herbicide resistance and weed fitness. PEST MANAGEMENT SCIENCE 2021; 77:12-21. [PMID: 32633005 PMCID: PMC7754128 DOI: 10.1002/ps.5988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 05/11/2023]
Abstract
Evolution of resistance to multiple herbicides with different sites of action and of nontarget site resistance (NTSR) often involves multiple genes. Thus, single-gene analyses, typical in studies of target site resistance, are not sufficient for understanding the genetic architecture and dynamics of NTSR and multiple resistance. The genetics of weed adaptation to varied agricultural environments is also generally expected to be polygenic. Recent advances in whole-genome sequencing as well as bioinformatic and statistical tools have made it possible to use population and quantitative genetics methods to expand our understanding of how resistance and other traits important for weed adaptation are genetically controlled at the individual and population levels, and to predict responses to selection pressure by herbicides and other environmental factors. The use of tools such as quantitative trait loci mapping, genome-wide association studies, and genomic prediction will allow pest management scientists to better explain how pests adapt to control tools and how specific genotypes thrive and spread across agroecosystems and other human-disturbed systems. The challenge will be to use this knowledge in developing integrated weed management systems that inhibit broad resistance to current and future weed-control methods. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ramon G Leon
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Jeffrey C Dunne
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Fred Gould
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
40
|
VectorDisk: A Microfluidic Platform Integrating Diagnostic Markers for Evidence-Based Mosquito Control. Processes (Basel) 2020. [DOI: 10.3390/pr8121677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective mosquito monitoring relies on the accurate identification and characterization of the target population. Since this process requires specialist knowledge and equipment that is not widely available, automated field-deployable systems are highly desirable. We present a centrifugal microfluidic cartridge, the VectorDisk, which integrates TaqMan PCR assays in two feasibility studies, aiming to assess multiplexing capability, specificity, and reproducibility in detecting disk-integrated vector-related assays. In the first study, pools of 10 mosquitoes were used as samples. We tested 18 disks with 27 DNA and RNA assays each, using a combination of multiple microfluidic chambers and detection wavelengths (geometric and color multiplexing) to identify mosquito and malaria parasite species as well as insecticide resistance mechanisms. In the second study, purified nucleic acids served as samples to test arboviral and malaria infective mosquito assays. Nine disks were tested with 14 assays each. No false positive results were detected on any of the disks. The coefficient of variation in reproducibility tests was <10%. The modular nature of the platform, the easy adaptation of the primer/probe panels, the cold chain independence, the rapid (2–3 h) analysis, and the assay multiplexing capacity are key features, rendering the VectorDisk a potential candidate for automated vector analysis.
Collapse
|
41
|
Gueye OK, Tchouakui M, Dia AK, Faye MB, Ahmed AA, Wondji MJ, Nguiffo DN, J. Mugenzi LM, Tripet F, Konaté L, Diabate A, Dia I, Gaye O, Faye O, Niang EHA, S. Wondji C. Insecticide Resistance Profiling of Anopheles coluzzii and Anopheles gambiae Populations in the Southern Senegal: Role of Target Sites and Metabolic Resistance Mechanisms. Genes (Basel) 2020; 11:E1403. [PMID: 33255805 PMCID: PMC7760107 DOI: 10.3390/genes11121403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
The emergence and spread of insecticide resistance among the main malaria vectors is threatening the effectiveness of vector control interventions in Senegal. The main drivers of this resistance in the Anopheles gambiae complex (e.g., An. gambiae and Anopheles coluzzii) remains poorly characterized in Senegal. Here we characterized the main target site and metabolic resistances mechanisms among the An. gambiae and An. coluzzii populations from their sympatric and allopatric or predominance area in Senegal. Larvae and pupae of An. gambiae s.l. were collected, reared to adulthood, and then used for insecticides susceptibility and synergist assays using the WHO (World Health Organisation) test kits for adult mosquitoes. The TaqMan method was used for the molecular characterization of the main target site insecticide resistance mechanisms (Vgsc-1014F, Vgsc-1014S, N1575Y and G119S). A RT-qPCR (Reverse Transcriptase-quantitative Polymerase Chaine Reaction) was performed to estimate the level of genes expression belonging to the CYP450 (Cytochrome P450) family. Plasmodium infection rate was investigated using TaqMan method. High levels of resistance to pyrethroids and DDT and full susceptibility to organophosphates and carbamates where observed in all three sites, excepted a probable resistance to bendiocarb in Kedougou. The L1014F, L1014S, and N1575Y mutations were found in both species. Pre-exposure to the PBO (Piperonyl butoxide) synergist induced a partial recovery of susceptibility to permethrin and full recovery to deltamethrin. Subsequent analysis of the level of genes expression, revealed that the CYP6Z1 and CYP6Z2 genes were over-expressed in wild-resistant mosquitoes compared to the reference susceptible strain (Kisumu), suggesting that both the metabolic resistance and target site mutation involving kdr mutations are likely implicated in this pyrethroid resistance. The presence of both target-site and metabolic resistance mechanisms in highly pyrethroid-resistant populations of An. gambiae s.l. from Senegal threatens the effectiveness and the sustainability of the pyrethroid-based tools and interventions currently deployed in the country. The Kdr-west mutation is widely widespread in An. coluzzii sympatric population. PBO or Duo nets and IRS (Indoor Residual Spraying) with organophosphates could be used as an alternative measure to sustain malaria control in the study area.
Collapse
Affiliation(s)
- Oumou. K. Gueye
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
| | - Abdoulaye K. Dia
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Mouhamed B. Faye
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Amblat A. Ahmed
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Murielle J. Wondji
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Daniel N. Nguiffo
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
| | - Leon. M. J. Mugenzi
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| | - Lassana Konaté
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Abdoulaye Diabate
- Centre Muraz/Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso BP 545, Burkina Faso;
| | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal;
| | - Oumar Gaye
- Service de Parasitologie-Mycologie, Faculté de Médecine, Pharmacie et d’Odontologie, Université Cheikh Anta Diop, Dakar BP 5005, Senegal;
| | - Ousmane Faye
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - El Hadji A. Niang
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
42
|
Guillem‐Amat A, Sánchez L, López‐Errasquín E, Ureña E, Hernández‐Crespo P, Ortego F. Field detection and predicted evolution of spinosad resistance in Ceratitis capitata. PEST MANAGEMENT SCIENCE 2020; 76:3702-3710. [PMID: 32431017 PMCID: PMC7587006 DOI: 10.1002/ps.5919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND The sustainable control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is compromised by the development of resistance to malathion and lambda-cyhalothrin in Spanish field populations. At present, field populations remain susceptible to spinosad. However, the resistant strain JW-100s has been obtained under laboratory selection with spinosad, and resistance has been associated with the presence of different mutations causing truncated transcripts of the α6 subunit of the nicotinic acetylcholine receptor (nAChRα6). RESULTS An F1 screen assay followed by the molecular characterization of surviving flies has been used to search for spinosad-resistant alleles in field populations. Two different resistant alleles giving rise to truncated isoforms of Ccα6 have been identified, which corresponds to an estimated allelic frequency of at least 0.0023-0.0046. The fitness values of the resistant nAChRα6 alleles found in the laboratory strain JW-100s were estimated to be 0.4 for RR and 0.2 for SR. Mathematical modelling predicted that spinosad-resistant alleles will rapidly decline over time in field populations if their fitness cost was the same as estimated for laboratory-resistant alleles. However, they are predicted to increase in the field if their fitness cost is lower and resistance management strategies are not implemented. CONCLUSION Spinosad-resistant alleles have been detected in field populations for the first time. Our modelling simulations indicate that the best option to delay the appearance of spinosad resistance would be its rotation with other insecticides without cross-resistance. The integrated F1 screen/molecular genetic analysis presented here can be used for future monitoring studies. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Guillem‐Amat
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas Margaritas SalasMadridSpain
| | - Lucas Sánchez
- Departamento de Biología Celular y MolecularCentro de Investigaciones Biológicas Margaritas SalasMadridSpain
| | - Elena López‐Errasquín
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas Margaritas SalasMadridSpain
| | - Enric Ureña
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas Margaritas SalasMadridSpain
| | - Pedro Hernández‐Crespo
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas Margaritas SalasMadridSpain
| | - Félix Ortego
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas Margaritas SalasMadridSpain
| |
Collapse
|
43
|
Oumbouke WA, Pignatelli P, Barreaux AMG, Tia IZ, Koffi AA, Ahoua Alou LP, Sternberg ED, Thomas MB, Weetman D, N'Guessan R. Fine scale spatial investigation of multiple insecticide resistance and underlying target-site and metabolic mechanisms in Anopheles gambiae in central Côte d'Ivoire. Sci Rep 2020; 10:15066. [PMID: 32934291 PMCID: PMC7493912 DOI: 10.1038/s41598-020-71933-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
Routine monitoring of occurrence, levels and mechanisms of insecticide resistance informs effective management strategies, and should be used to assess the effect of new tools on resistance. As part of a cluster randomised controlled trial evaluating a novel insecticide-based intervention in central Côte d’Ivoire, we assessed resistance and its underlying mechanisms in Anopheles gambiae populations from a subset of trial villages. Resistance to multiple insecticides in An. gambiae s.s. and An. coluzzii was detected across villages, with dose–response assays demonstrating extremely high resistance intensity to the pyrethroid deltamethrin (> 1,500-fold), and mortality following exposure to pyrethroid-treated bednets was low (< 30% mortality in cone bioassays). The 1014F kdr mutation was almost fixed (≥ 90%) in all villages but the 1575Y kdr-amplifying mutation was relatively rare (< 15%). The carbamate and organophosphate resistance-associated Ace-1 G119S mutation was also detected at moderate frequencies (22–43%). Transcriptome analysis identified overexpression of P450 genes known to confer pyrethroid resistance (Cyp9K1, Cyp6P3, and Cyp6M2), and also a carboxylesterase (COEAE1F) as major candidates. Cyp6P3 expression was high but variable (up to 33-fold) and correlated positively with deltamethrin resistance intensity across villages (r2 = 0.78, P = 0.02). Tools and strategies to mitigate the extreme and multiple resistance provided by these mechanisms are required in this area to avoid future control failures.
Collapse
Affiliation(s)
- Welbeck A Oumbouke
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK. .,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Antoine M G Barreaux
- School of Biological Sciences, University of Bristol, Bristol, UK.,Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Innocent Z Tia
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Eleanore D Sternberg
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.,Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Raphael N'Guessan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| |
Collapse
|
44
|
Dos Santos CR, de Melo Rodovalho C, Jablonka W, Martins AJ, Lima JBP, Dos Santos Dias L, da Silva Neto MAC, Atella GC. Insecticide resistance, fitness and susceptibility to Zika infection of an interbred Aedes aegypti population from Rio de Janeiro, Brazil. Parasit Vectors 2020; 13:293. [PMID: 32513248 PMCID: PMC7281914 DOI: 10.1186/s13071-020-04166-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Aedes aegypti is a vector of high relevance, since it transmits several arboviruses, including dengue, chikungunya and Zika. Studies on vector biology are usually conducted with laboratory strains presenting a divergent genetic composition from field populations. This may impair vector control policies that were based on laboratory observations employing only long maintained laboratory strains. In the present study we characterized a laboratory strain interbreed with Ae. aegypti collected from five different localities in Rio de Janeiro (Aedes Rio), for insecticide resistance (IR), IR mechanisms, fitness and Zika virus infection. Methods We compared the recently established Aedes Rio with the laboratory reference strain Rockefeller. Insecticide resistance (deltamethrin, malathion and temephos), activity of metabolic resistance enzymes and kdr mutation frequency were determined. Some life table parameters (longevity, blood-feeding, number and egg viability) and Zika virus susceptibility was also determined. Results Aedes Rio showed resistance to deltamethrin (resistance ratio, RR50 = 32.6) and temephos (RR50 = 7.0) and elevated activity of glutathione S-transferase (GST) and esterases (α-EST and pNPA-EST), but not acetylcholinesterase (AChE). In total, 92.1% of males genotyped for kdr presented a “resistant” genotype. Weekly blood-fed females from both strains, presented reduced mortality compared to sucrose-fed mosquitoes; however, Aedes Rio blood-fed females did not live as long (mean lifespan: Rockefeller = 70 ± 3.07; Aedes Rio = 53.5 ± 2.16 days). There were no differences between strains in relation to blood-feeding and number of eggs, but Aedes Rio eggs presented reduced viability (mean hatch: Rockefeller = 77.79 ± 1.4%; Aedes Rio = 58.57 ± 1.77%). Zika virus infection (plaque-forming unit, PFU) was similar in both strains (mean PFU ± SE: Aedes Rio: 4.53 × 104 ± 1.14 × 104 PFU; Rockefeller: 2.02 × 104 ± 0.71 × 104 PFU). Conclusion Selected conditions in the field, such as IR mechanisms, may result in pleiotropic effects that interfere in general physiology of the insect. Therefore, it is important to well characterize field populations to be tested in parallel with laboratory reference strains. This practice would improve the significance of laboratory tests for vector control methods.![]()
Collapse
Affiliation(s)
- Carlucio Rocha Dos Santos
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil. .,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil.
| | - Cynara de Melo Rodovalho
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Willy Jablonka
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Luciana Dos Santos Dias
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Mário Alberto Cardoso da Silva Neto
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia Correa Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
45
|
Van Leeuwen T, Dermauw W, Mavridis K, Vontas J. Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests. CURRENT OPINION IN INSECT SCIENCE 2020; 39:69-76. [PMID: 32361620 DOI: 10.1016/j.cois.2020.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Insecticide resistant pests become increasingly difficult to control in current day agriculture. Because of environmental and health concerns, the insecticide portfolio to combat agricultural pests is gradually decreasing. It is therefore crucial to make rational decisions on insecticide use to assure effective resistance management. However, resistance monitoring programs that inform on pest susceptibility and resistance are not yet common practice in agriculture. Molecular markers of resistance that are turned into convenient diagnostic tools are urgently needed and will only increase in importance. This review investigates which factors determine the strength, diagnostic value, and success of a diagnostic marker, and in which cases recent technical advances might provide new opportunities for decision making in an operational meaningful way.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Konstantinos Mavridis
- Molecuar Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| | - John Vontas
- Molecuar Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
46
|
Minetti C, Ingham VA, Ranson H. Effects of insecticide resistance and exposure on Plasmodium development in Anopheles mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2020; 39:42-49. [PMID: 32109860 DOI: 10.1016/j.cois.2019.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 05/10/2023]
Abstract
The spread of insecticide resistance in anopheline mosquitoes is a serious threat to the success of malaria control and prospects of elimination, but the potential impact(s) of insecticide resistance or sublethal insecticide exposure on Plasmodium-Anopheles interactions are poorly understood. Only a few studies have attempted to investigate such interactions, despite their clear epidemiological significance for malaria transmission. This short review provides an update on our understanding of the interactions between insecticide resistance and exposure and Plasmodium development, focusing on the mechanisms which might underpin any interactions, and identifying some key knowledge gaps.
Collapse
Affiliation(s)
- Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom
| | - Victoria A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom.
| |
Collapse
|
47
|
Samantsidis GR, Panteleri R, Denecke S, Kounadi S, Christou I, Nauen R, Douris V, Vontas J. 'What I cannot create, I do not understand': functionally validated synergism of metabolic and target site insecticide resistance. Proc Biol Sci 2020; 287:20200838. [PMID: 32453986 PMCID: PMC7287358 DOI: 10.1098/rspb.2020.0838] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 01/03/2023] Open
Abstract
The putative synergistic action of target-site mutations and enhanced detoxification in pyrethroid resistance in insects has been hypothesized as a major evolutionary mechanism responsible for dramatic consequences in malaria incidence and crop production. Combining genetic transformation and CRISPR/Cas9 genome modification, we generated transgenic Drosophila lines expressing pyrethroid metabolizing P450 enzymes in a genetic background along with engineered mutations in the voltage-gated sodium channel (para) known to confer target-site resistance. Genotypes expressing the yellow fever mosquito Aedes aegypti Cyp9J28 while also bearing the paraV1016G mutation displayed substantially greater resistance ratio (RR) against deltamethrin than the product of each individual mechanism (RRcombined: 19.85 > RRCyp9J28: 1.77 × RRV1016G: 3.00). Genotypes expressing Brassicogethes aeneus pollen beetle Cyp6BQ23 and also bearing the paraL1014F (kdr) mutation, displayed an almost multiplicative RR (RRcombined: 75.19 ≥ RRCyp6BQ23: 5.74 × RRL1014F: 12.74). Reduced pyrethroid affinity at the target site, delaying saturation while simultaneously extending the duration of P450-driven detoxification, is proposed as a possible underlying mechanism. Combinations of target site and P450 resistance loci might be unfavourable in field populations in the absence of insecticide selection, as they exert some fitness disadvantage in development time and fecundity. These are major considerations from the insecticide resistance management viewpoint in both public health and agriculture.
Collapse
Affiliation(s)
- George-Rafael Samantsidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece
| | - Rafaela Panteleri
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece
| | - Stella Kounadi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece
| | - Iason Christou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece
| | - Ralf Nauen
- Bayer AG, CropScience Division, R&D Pest Control, 40789 Monheim, Germany
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 118 55 Athens, Greece
| |
Collapse
|
48
|
Functional genetic validation of key genes conferring insecticide resistance in the major African malaria vector, Anopheles gambiae. Proc Natl Acad Sci U S A 2019; 116:25764-25772. [PMID: 31801878 PMCID: PMC6926047 DOI: 10.1073/pnas.1914633116] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Insecticide resistance in Anopheles gambiae mosquitoes can derail malaria control programs, and to overcome it, we need to discover the underlying molecular basis. Here, we characterize 3 genes most often associated with insecticide resistance directly by their overproduction in genetically modified An. gambiae. We show that overexpression of each gene confers resistance to representatives of at least 1 insecticide class, and taken together, the 3 genes provide cross-resistance to all 4 major insecticide classes currently used in public health. These data validate the candidate genes as markers to monitor the spread of resistance in mosquito populations. The modified mosquitoes produced are also valuable tools to prescreen the efficacy of new insecticides against existing resistance mechanisms. Resistance in Anopheles gambiae to members of all 4 major classes (pyrethroids, carbamates, organochlorines, and organophosphates) of public health insecticides limits effective control of malaria transmission in Africa. Increase in expression of detoxifying enzymes has been associated with insecticide resistance, but their direct functional validation in An. gambiae is still lacking. Here, we perform transgenic analysis using the GAL4/UAS system to examine insecticide resistance phenotypes conferred by increased expression of the 3 genes—Cyp6m2, Cyp6p3, and Gste2—most often found up-regulated in resistant An. gambiae. We report evidence in An. gambiae that organophosphate and organochlorine resistance is conferred by overexpression of GSTE2 in a broad tissue profile. Pyrethroid and carbamate resistance is bestowed by similar Cyp6p3 overexpression, and Cyp6m2 confers only pyrethroid resistance when overexpressed in the same tissues. Conversely, such Cyp6m2 overexpression increases susceptibility to the organophosphate malathion, presumably due to conversion to the more toxic metabolite, malaoxon. No resistant phenotypes are conferred when either Cyp6 gene overexpression is restricted to the midgut or oenocytes, indicating that neither tissue is involved in insecticide resistance mediated by the candidate P450s examined. Validation of genes conferring resistance provides markers to guide control strategies, and the observed negative cross-resistance due to Cyp6m2 gives credence to proposed dual-insecticide strategies to overcome pyrethroid resistance. These transgenic An. gambiae-resistant lines are being used to test the “resistance-breaking” efficacy of active compounds early in their development.
Collapse
|
49
|
Vontas J, Mavridis K. Vector population monitoring tools for insecticide resistance management: Myth or fact? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:54-60. [PMID: 31685197 DOI: 10.1016/j.pestbp.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/10/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Insecticide resistance is a large and growing problem for the control of mosquito disease vectors. The World Health Organization (WHO) established the Global Plan for Insecticide Resistance Management (GPIRM) in 2012. In that context, both classical and molecular tools, as well as entomological databases and decision support platforms have been developed and used for IRM. Despite major advances in the molecular elucidation of resistance mechanisms and the development of diagnostic tools, their impact on disease control programs has been limited. In most cases diagnostic tools provide a retrospective examination of changes imposed by insecticides rather than a prospective analysis to guide vector control strategies. The uncertainty of the predictive value of markers, the assay robustness and the common misconceptions in resistance diagnosis terminology are continuing challenges in monitoring vector resistance. Furthermore, an often logistics, as opposed to systematic scientific evidence, based approach to decision for the use of the very few alternative chemicals in vector control, has reduced the value of resistance monitoring in practice. The current deployment of new insecticidal active ingredients should necessitate the application of companion diagnostics (CDx) and the development of modern ways for interpretation and management of the data by trained programme managers. This will establish their real value for use in decision-making, in line with evidence based choice of chemicals in agriculture and medical applications.
Collapse
Affiliation(s)
- John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece.
| | - Konstantinos Mavridis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece
| |
Collapse
|
50
|
Seong KM, Mittapalli O, Clark JM, Pittendrigh BR. A review of DDT resistance as it pertains to the 91-C and 91-R strains in Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:86-94. [PMID: 31685201 DOI: 10.1016/j.pestbp.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
While insecticide resistance presents a challenge for those intent on controlling insect populations, these challenges have also generated a set of tools that can be used to ask fundamental biological questions about that resistance. Numerous species of insects have evolved resistance to multiple classes of insecticides. Each one of these species and their respective resistant populations represent a potential tool for understanding the molecular basis of the evolution of resistance. However, in-laboratory maintenance of resistant insect populations (and their comparative susceptible populations) suitable for asking the needed set of questions around the molecular consequences of long-term pesticide exposure requires a significant, in places prohibitive, level of resources. Drosophila melanogaster (hereafter referred to as Drosophila) is a model insect system with populations easily selected with pesticides and readily maintainable over decades. Even within Drosophila, however, few populations exist where long-term pesticide selection has occurred along with contrasting non-selected population. As such, the Drosophila 91-C and 91-R populations, which exhibit insecticide resistance to DDT (91-R), compared to a non-selection population (91-C), represent a unique resource for the study of high level DDT resistance. Moreover, with the availability of "omics" technologies over the past several decades, this paired population has emerged as a useful tool for understanding both the molecular basis of pesticide resistance and the molecular consequences of long-term pesticide exposure. In this review, we summarize the studies with these aforementioned populations over the past several decades, addressing what has been learned from these efforts.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|