1
|
Askonas C, Storm J, Camarda G, Craig A, Pain A. Transcriptional responses of brain endothelium to Plasmodium falciparum patient-derived isolates in vitro. Microbiol Spectr 2024; 12:e0072724. [PMID: 38864616 PMCID: PMC11218514 DOI: 10.1128/spectrum.00727-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
A hallmark of cerebral malaria (CM) is sequestration of Plasmodium falciparum-infected erythrocytes (IE) within the brain microvasculature. Binding of IE to endothelium reduces microvascular flow and, combined with an inflammatory response, perturbs endothelial barrier function, resulting in breakdown of the blood-brain barrier (BBB). Cytoadherence leads to activation of the endothelium and alters a range of cell processes affecting signaling pathways, receptor expression, coagulation, and disruption of BBB integrity. Here, we investigated whether CM-derived parasites elicit differential effects on human brain microvascular endothelial cells (HBMECs), as compared to uncomplicated malaria (UM)-derived parasites. Patient-derived IE from UM and CM clinical cases, as well as non-binding skeleton-binding protein 1 knockout parasites, were overlaid onto tumour necrosis factor (TNF)-activated HBMECs. Gene expression analysis of endothelial responses was performed using probe-based assays of a panel of genes involved in inflammation, apoptosis, endothelial barrier function, and prostacyclin synthesis pathway. We observed a significant effect on endothelial transcriptional responses in the presence of IE, yet there was no significant correlation between HBMEC responses and type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and level of IE binding to HBMECs, as we detected the same change in endothelial responses when employing both binding and non-binding parasites. Our results suggest that interaction of IE with endothelial cells in this co-culture model induces some endothelial responses that are independent of clinical origin and independent of the expression of the major variant antigen Plasmodium falciparum erythrocyte membrane protein 1 on the IE surface. IMPORTANCE Cerebral malaria (CM) is the most prevalent and deadly complication of severe Plasmodium falciparum infection. A hallmark of this disease is sequestration of P. falciparum-infected erythrocytes (IE) in brain microvasculature that ultimately results in breakdown of the blood-brain barrier. Here, we compared the effect of P. falciparum parasites derived from uncomplicated malaria (UM) and CM cases on the relative gene expression of human brain microvascular endothelial cells (HBMECs) for a panel of genes. We observed a significant effect on the endothelial transcriptional response in the presence of IE, yet there is no significant correlation between HBMEC responses and the type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and the level of IE binding to HBMECs. Our results suggest that interaction of IE with endothelial cells induces endothelial responses that are independent of clinical origin and not entirely driven by surface Plasmodium falciparum erythrocyte membrane protein 1 expression.
Collapse
Affiliation(s)
- Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grazia Camarda
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
3
|
Long B, MacDonald A, Liang SY, Brady WJ, Koyfman A, Gottlieb M, Chavez S. Malaria: A focused review for the emergency medicine clinician. Am J Emerg Med 2024; 77:7-16. [PMID: 38096639 DOI: 10.1016/j.ajem.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Malaria is a potentially fatal parasitic disease transmitted by the Anopheles mosquito. A resurgence in locally acquired infections has been reported in the U.S. OBJECTIVE This narrative review provides a focused overview of malaria for the emergency clinician, including the epidemiology, presentation, diagnosis, and management of the disease. DISCUSSION Malaria is caused by Plasmodium and is transmitted by the Anopheles mosquito. Disease severity can range from mild to severe. Malaria should be considered in any returning traveler from an endemic region, as well as those with unexplained cyclical, paroxysms of symptoms or unexplained fever. Patients most commonly present with fever and rigors but may also experience cough, myalgias, abdominal pain, fatigue, vomiting, and diarrhea. Hepatomegaly, splenomegaly, pallor, and jaundice are findings associated with malaria. Although less common, severe malaria is precipitated by microvascular obstruction with complications of anemia, acidosis, hypoglycemia, multiorgan failure, and cerebral malaria. Peripheral blood smears remain the gold standard for diagnosis, but rapid diagnostic tests are available. Treatment includes specialist consultation and antimalarial drugs tailored depending on chloroquine resistance, geographic region of travel, and patient comorbidities. Supportive care may be required, and patients with severe malaria will require resuscitation. Most patients will require admission for treatment and further monitoring. CONCLUSION Emergency medicine clinicians should be aware of the presentation, diagnosis, evaluation, and management of malaria to ensure optimal outcomes.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| | - Austin MacDonald
- Department of Emergency Medicine, Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | - Stephen Y Liang
- Divisions of Emergency Medicine and Infectious Diseases, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, USA.
| | - William J Brady
- Department of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alex Koyfman
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Summer Chavez
- Department of Health Systems and Population Health Sciences, Tilman J. Fertitta Family College of Medicine, USA.
| |
Collapse
|
4
|
Wassmer SC, de Koning-Ward TF, Grau GER, Pai S. Unravelling mysteries at the perivascular space: a new rationale for cerebral malaria pathogenesis. Trends Parasitol 2024; 40:28-44. [PMID: 38065791 PMCID: PMC11072469 DOI: 10.1016/j.pt.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
Cerebral malaria (CM) is a severe neurological complication caused by Plasmodium falciparum parasites; it is characterized by the sequestration of infected red blood cells within the cerebral microvasculature. New findings, combined with a better understanding of the central nervous system (CNS) barriers, have provided greater insight into the players and events involved in CM, including site-specific T cell responses in the human brain. Here, we review the updated roles of innate and adaptive immune responses in CM, with a focus on the role of the perivascular macrophage-endothelium unit in antigen presentation, in the vascular and perivascular compartments. We suggest that these events may be pivotal in the development of CM.
Collapse
Affiliation(s)
- Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia; Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
5
|
Othman B, Zeef L, Szestak T, Rchiad Z, Storm J, Askonas C, Satyam R, Madkhali A, Haley M, Wagstaff S, Couper K, Pain A, Craig A. Different PfEMP1-expressing Plasmodium falciparum variants induce divergent endothelial transcriptional responses during co-culture. PLoS One 2023; 18:e0295053. [PMID: 38033133 PMCID: PMC10688957 DOI: 10.1371/journal.pone.0295053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.
Collapse
Affiliation(s)
- Basim Othman
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tadge Szestak
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Rohit Satyam
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Aymen Madkhali
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Simon Wagstaff
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kevin Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
6
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
7
|
Tewey MA, Coulibaly D, Lawton JG, Stucke EM, Zhou AE, Berry AA, Bailey JA, Pike A, Dara A, Ouattara A, Lyke KE, Ifeonu O, Laurens MB, Adams M, Takala-Harrison S, Niangaly A, Kouriba B, Koné AK, Rowe JA, Doumbo OK, Patel JJ, Tan JC, Felgner PL, Plowe CV, Thera MA, Travassos MA. Natural immunity to malaria preferentially targets the endothelial protein C receptor-binding regions of PfEMP1s. mSphere 2023; 8:e0045123. [PMID: 37791774 PMCID: PMC10597466 DOI: 10.1128/msphere.00451-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.
Collapse
Affiliation(s)
- Madison A. Tewey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Jonathan G. Lawton
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Albert E. Zhou
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jason A. Bailey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pike
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Antoine Dara
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olukemi Ifeonu
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - John C. Tan
- Roche NimbleGen, Inc., Madison, Wisconsin, USA
| | - Philip L. Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California, USA
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Silva-Pedrosa R, Campos J, Fernandes AM, Silva M, Calçada C, Marote A, Martinho O, Veiga MI, Rodrigues LR, Salgado AJ, Ferreira PE. Cerebral Malaria Model Applying Human Brain Organoids. Cells 2023; 12:cells12070984. [PMID: 37048057 PMCID: PMC10093648 DOI: 10.3390/cells12070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Aline Marie Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Silva
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
10
|
Zhang X, Deitsch KW. The mystery of persistent, asymptomatic Plasmodium falciparum infections. Curr Opin Microbiol 2022; 70:102231. [PMID: 36327690 PMCID: PMC10500611 DOI: 10.1016/j.mib.2022.102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
Plasmodium falciparum causes millions of malaria infections and hundreds of thousands of deaths annually. These parasites avoid the adaptive immune response by systematically cycling through a limited repertoire of variant surface antigens after which the number of circulating parasites drops to extremely low levels, coinciding with a loss of symptoms and eventual clearance of the infection. However, in regions with extended dry seasons or in individuals who no longer reside in endemic areas, asymptomatic infections have been observed to persist for many months or years, potentially serving as reservoirs for transmission. Recent work suggests the possibility that parasites can assume a state in which no variant surface antigens are expressed, thus rendering them virtually invisible to the immune system and enabling them to persist at low levels indefinitely.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
11
|
Plasmodium falciparum and TNF-α Differentially Regulate Inflammatory and Barrier Integrity Pathways in Human Brain Endothelial Cells. mBio 2022; 13:e0174622. [PMID: 36036514 PMCID: PMC9601155 DOI: 10.1128/mbio.01746-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.
Collapse
|
12
|
Song X, Wei W, Cheng W, Zhu H, Wang W, Dong H, Li J. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol 2022; 12:939532. [PMID: 35959375 PMCID: PMC9359465 DOI: 10.3389/fcimb.2022.939532] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wei
- Beijing School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| | - Haifeng Dong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| |
Collapse
|
13
|
Chaudhary A, Kataria P, Surela N, Das J. Pathophysiology of Cerebral Malaria: Implications of MSCs as A Regenerative Medicinal Tool. Bioengineering (Basel) 2022; 9:bioengineering9060263. [PMID: 35735506 PMCID: PMC9219920 DOI: 10.3390/bioengineering9060263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The severe form of malaria, i.e., cerebral malaria caused by Plasmodium falciparum, is a complex neurological syndrome. Surviving persons have a risk of behavioral difficulties, cognitive disorders, and epilepsy. Cerebral malaria is associated with multiple organ dysfunctions. The adhesion and accumulation of infected RBCs, platelets, and leucocytes (macrophages, CD4+ and CD8+ T cells, and monocytes) in the brain microvessels play an essential role in disease progression. Micro-vascular hindrance by coagulation and endothelial dysfunction contributes to neurological damage and the severity of the disease. Recent studies in human cerebral malaria and the murine model of cerebral malaria indicate that different pathogens as well as host-derived factors are involved in brain microvessel adhesion and coagulation that induces changes in vascular permeability and impairment of the blood-brain barrier. Efforts to alleviate blood-brain barrier dysfunction and de-sequestering of RBCs could serve as adjunct therapies. In this review, we briefly summarize the current understanding of the pathogenesis of cerebral malaria, the role of some factors (NK cells, platelet, ANG-2/ANG-1 ratio, and PfEMP1) in disease progression and various functions of Mesenchymal stem cells. This review also highlighted the implications of MSCs as a regenerative medicine.
Collapse
Affiliation(s)
- Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, New Delhi 110077, India; (A.C.); (P.K.); (N.S.)
| | - Poonam Kataria
- Parasite-Host Biology, National Institute of Malaria Research, New Delhi 110077, India; (A.C.); (P.K.); (N.S.)
| | - Neha Surela
- Parasite-Host Biology, National Institute of Malaria Research, New Delhi 110077, India; (A.C.); (P.K.); (N.S.)
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, New Delhi 110077, India; (A.C.); (P.K.); (N.S.)
- AcSIR, Ghaziabad 201002, India
- Correspondence: or ; Tel.: +91-25307203; Fax: +91-25307177
| |
Collapse
|
14
|
An update on cerebral malaria for therapeutic intervention. Mol Biol Rep 2022; 49:10579-10591. [PMID: 35670928 DOI: 10.1007/s11033-022-07625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral malaria is often pronounced as a major life-threatening neurological complication of Plasmodium falciparum infection. The complex pathogenic landscape of the parasite and the associated neurological complications are still not elucidated properly. The growing concerns of drugresistant parasite strains along with the failure of anti-malarial drugs to subdue post-recovery neuro-cognitive dysfunctions in cerebral malaria patients have called for a demand to explore novel biomarkers and therapeutic avenues. Due course of the brain infection journey of the parasite, events such as sequestration of infected RBCs, cytoadherence, inflammation, endothelial activation, and blood-brain barrier disruption are considered critical. METHODS In this review, we briefly summarize the diverse pathogenesis of the brain-invading parasite associated with loss of the blood-brain barrier integrity. In addition, we also discuss proteomics, transcriptomics, and bioinformatics strategies to identify an array of new biomarkers and drug candidates. CONCLUSION A proper understanding of the parasite biology and mechanism of barrier disruption coupled with emerging state-of-art therapeutic approaches could be helpful to tackle cerebral malaria.
Collapse
|
15
|
Wei W, Cheng W, Dai W, Lu F, Cheng Y, Jiang T, Ren Z, Xie Y, Xu J, Zhao Q, Yu X, Yin Y, Li J, Dong H. A Nanodrug Coated with Membrane from Brain Microvascular Endothelial Cells Protects against Experimental Cerebral Malaria. NANO LETTERS 2022; 22:211-219. [PMID: 34967631 DOI: 10.1021/acs.nanolett.1c03514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human malaria is a global life-threatening infectious disease. Cerebral malaria (CM) induced by Plasmodium falciparum parasites accounts for 90% of malaria deaths. Treating CM is challenging due to inadequate treatment options and the development of drug resistance. We describe a nanoparticle formulation of the antimalarial drug dihydroartemisinin that is coated in a biomimetic membrane derived from brain microvascular endothelial cells (BMECs) and test its therapeutic efficacy in a mouse model of experimental cerebral malaria (ECM). The membrane-coated nanoparticle drug has a prolonged drug-release profile and enhanced dual targeting killing efficacy toward parasites residing in red blood cells (iRBCs) and iRBCs obstructed in the BMECs (for both rodent and human). In a mice ECM model, the nanodrug protects the brain, liver, and spleen from infection-induced damage and improves the survival rate of mice. This so-called nanodrug offers new insight into engineering nanoparticle-based therapeutics for malaria and other parasitic pathogen infections.
Collapse
Affiliation(s)
- Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weijia Cheng
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feng Lu
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yaru Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tingting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Zhenyu Ren
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yiting Xie
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Jiahui Xu
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Qun Zhao
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xianjun Yu
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Yi Yin
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Oleinikov AV. Malaria Parasite Plasmodium falciparum Proteins on the Surface of Infected Erythrocytes as Targets for Novel Drug Discovery. BIOCHEMISTRY (MOSCOW) 2022; 87:S192-S177. [PMID: 35501996 PMCID: PMC8802247 DOI: 10.1134/s0006297922140152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Specific adhesion (sequestration) of Plasmodium falciparum parasite-infected erythrocytes (IEs) in deep vascular beds can cause severe complications resulting in death. This review describes our work on the discovery, characterization, and optimization of novel inhibitors that specifically prevent adhesion of IEs to the host vasculature during severe malaria, especially its placental and cerebral forms. The main idea of using anti-adhesion drugs in severe malaria is to release sequestered parasites (or prevent additional sequestration) as quickly as possible. This may significantly improve the outcomes for patients with severe malaria by decreasing local and systemic inflammation associated with the disease and reestablishing the microvascular blood flow. To identify anti-malarial adhesion-inhibiting molecules, we have developed a high-throughput (HT) screening approach and found a number of promising leads that can be further developed into anti-adhesion drugs providing an efficient adjunct therapy against severe forms of malaria.
Collapse
Affiliation(s)
- Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA.
| |
Collapse
|
17
|
Long RKM, Piatti L, Korbmacher F, Bernabeu M. Understanding parasite-brain microvascular interactions with engineered 3D blood-brain barrier models. Mol Microbiol 2021; 117:693-704. [PMID: 34837419 DOI: 10.1111/mmi.14852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Microbial interactions with the blood-brain barrier (BBB) can be highly pathogenic and are still not well understood. Among these, parasites present complex interactions with the brain microvasculature that are difficult to decipher using experimental animal models or reductionist 2D in vitro cultures. Novel 3D engineered blood-brain barrier models hold great promise to overcome limitations in traditional research approaches. These models better mimic the intricate 3D architecture of the brain microvasculature and recapitulate several aspects of BBB properties, physiology, and function. Moreover, they provide improved control over biophysical and biochemical experimental parameters and are compatible with advanced imaging and molecular biology techniques. Here, we review design considerations and methodologies utilized to successfully engineer BBB microvessels. Finally, we highlight the advantages and limitations of existing engineered models and propose applications to study parasite interactions with the BBB, including mechanisms of barrier disruption.
Collapse
Affiliation(s)
- Rory K M Long
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Livia Piatti
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | | | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Abstract
Host-directed therapy (HDT) is gaining traction as a strategy to combat infectious diseases caused by viruses and intracellular bacteria, but its implementation in the context of parasitic diseases has received less attention. Here, we provide a brief overview of this field and advocate HDT as a promising strategy for antimalarial intervention based on untapped targets. HDT provides a basis from which repurposed drugs could be rapidly deployed and is likely to strongly limit the emergence of resistance. This strategy can be applied to any intracellular pathogen and is particularly well placed in situations in which rapid identification of treatments is needed, such as emerging infections and pandemics, as starkly illustrated by the current COVID-19 crisis.
Collapse
|
19
|
Sahu PK, Duffy FJ, Dankwa S, Vishnyakova M, Majhi M, Pirpamer L, Vigdorovich V, Bage J, Maharana S, Mandala W, Rogerson SJ, Seydel KB, Taylor TE, Kim K, Sather DN, Mohanty A, Mohanty RR, Mohanty A, Pattnaik R, Aitchison JD, Hoffman A, Mohanty S, Smith JD, Bernabeu M, Wassmer SC. Determinants of brain swelling in pediatric and adult cerebral malaria. JCI Insight 2021; 6:145823. [PMID: 34549725 PMCID: PMC8492338 DOI: 10.1172/jci.insight.145823] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A–EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A–EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Fergal J Duffy
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Selasi Dankwa
- Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | - Lukas Pirpamer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Jabamani Bage
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Sameer Maharana
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Wilson Mandala
- Malawi University of Science and Technology, Limbe, Malawi
| | - Stephen J Rogerson
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kami Kim
- Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - D Noah Sather
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Akshaya Mohanty
- Infectious Diseases Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Anita Mohanty
- Department of Intensive Care, IGH, Rourkela, Odisha, India
| | | | - John D Aitchison
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Angelika Hoffman
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Maria Bernabeu
- Seattle Children's Research Institute, Seattle, Washington, USA.,European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
20
|
Factors Associated with Prolonged Hospital Length of Stay in Adults with Imported Falciparum Malaria-An Observational Study from a Tertiary Care University Hospital in Berlin, Germany. Microorganisms 2021; 9:microorganisms9091941. [PMID: 34576836 PMCID: PMC8466442 DOI: 10.3390/microorganisms9091941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Outcome of falciparum malaria is largely influenced by the standard of care provided, which in turn depends on the available medical resources. Worldwide, the COVID-19 pandemic has had a major impact on the availability of these resources, even in resource-rich healthcare systems such as Germany's. The present study aimed to determine the under-explored factors associated with hospital length of stay (LOS) in imported falciparum malaria to identify potential targets for improving management. This retrospective observational study used multivariate Cox proportional hazard regression with time to discharge as an endpoint for adults hospitalized between 2001 and 2015 with imported falciparum malaria in the Charité University Hospital, Berlin. The median LOS of the 535 cases enrolled was 3 days (inter-quartile range, IQR, 3-4 days). The likelihood of being discharged by day 3 strongly decreased with severe malaria (hazard ratio, HR, 0.274; 95% Confidence interval, 95%CI: 0.190-0.396) and by 40% with each additional presenting complication (HR, 0.595; 95%CI: 0.510-0.694). The 55 (10.3%) severe cases required a median LOS of 7 days (IQR, 5-12 days). In multivariate analysis, occurrence of shock (adjusted HR, aHR, 0.438; 95%CI 0.220-0.873), acute pulmonary oedema or acute respiratory distress syndrome (aHR, 0.450; 95%CI: 0.223-0.874), and the need for renal replacement therapy (aHR, 0.170; 95%CI: 0.063-0.461) were independently associated with LOS. All patients survived to discharge. This study illustrates that favourable outcomes can be achieved with high-standard care in imported falciparum malaria. Early recognition of disease severity together with targeted supportive care can lead to avoidance of manifest organ failure, thereby potentially decreasing LOS and alleviating pressure on bed capacities.
Collapse
|
21
|
Batte A, Berrens Z, Murphy K, Mufumba I, Sarangam ML, Hawkes MT, Conroy AL. Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges. Int J Nephrol Renovasc Dis 2021; 14:235-253. [PMID: 34267538 PMCID: PMC8276826 DOI: 10.2147/ijnrd.s239157] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24–59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI’s impact on long-term health in malaria-endemic areas are urgently needed.
Collapse
Affiliation(s)
- Anthony Batte
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Zachary Berrens
- Department of Pediatrics, Pediatric Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristin Murphy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ivan Mufumba
- CHILD Research Laboratory, Global Health Uganda, Kampala, Uganda
| | | | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea L Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Plasmodium falciparum goes bananas for sex. Mol Biochem Parasitol 2021; 244:111385. [PMID: 34062177 DOI: 10.1016/j.molbiopara.2021.111385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
The sexual blood stages of the human malaria parasite Plasmodium falciparum undergo a remarkable transformation from a roughly spherical shape to an elongated crescent or "falciform" morphology from which the species gets its name. In this review, the molecular events that drive this spectacular shape change are discussed and some questions that remain regarding the mechanistic underpinnings are posed. We speculate on the role of the shape changes in promoting sequestration and release of the developing gametocyte, thereby facilitating parasite survival in the host and underpinning transmission to the mosquito vector.
Collapse
|
23
|
Bioengineered 3D Microvessels for Investigating Plasmodium falciparum Pathogenesis. Trends Parasitol 2021; 37:401-413. [PMID: 33485788 DOI: 10.1016/j.pt.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
Plasmodium falciparum pathogenesis is complex and intimately connected to vascular physiology. This is exemplified by cerebral malaria (CM), a neurovascular complication that accounts for most of the malaria deaths worldwide. P. falciparum sequestration in the brain microvasculature is a hallmark of CM and is not replicated in animal models. Numerous aspects of the disease are challenging to fully understand from clinical studies, such as parasite binding tropism or causal pathways in blood-brain barrier breakdown. Recent bioengineering approaches allow for the generation of 3D microvessels and organ-specific vasculature that provide precise control of vessel architecture and flow dynamics, and hold great promise for malaria research. Here, we discuss recent and future applications of bioengineered microvessels in malaria pathogenesis research.
Collapse
|
24
|
MacCormick IJC, Barrera V, Beare NAV, Czanner G, Potchen M, Kampondeni S, Heyderman RS, Craig AG, Molyneux ME, Mallewa M, White VA, Milner D, Hiscott P, Taylor TE, Seydel KB, Harding SP. How Does Blood-Retinal Barrier Breakdown Relate to Death and Disability in Pediatric Cerebral Malaria? J Infect Dis 2020; 225:1070-1080. [PMID: 32845969 PMCID: PMC8922008 DOI: 10.1093/infdis/jiaa541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
Background In cerebral malaria, the retina can be used to understand disease pathogenesis. The mechanisms linking sequestration, brain swelling, and death remain poorly understood. We hypothesized that retinal vascular leakage would be associated with brain swelling. Methods We used retinal angiography to study blood-retinal barrier integrity. We analyzed retinal leakage, histopathology, brain magnatic resonance imaging (MRI), and associations with death and neurological disability in prospective cohorts of Malawian children with cerebral malaria. Results Three types of retinal leakage were seen: large focal leak (LFL), punctate leak (PL), and vessel leak. The LFL and PL were associated with death (odds ratio [OR] = 13.20, 95% confidence interval [CI] = 5.21–33.78 and OR = 8.58, 95% CI = 2.56–29.08, respectively) and brain swelling (P < .05). Vessel leak and macular nonperfusion were associated with neurological disability (OR = 3.71, 95% CI = 1.26–11.02 and OR = 9.06, 95% CI = 1.79–45.90). Large focal leak was observed as an evolving retinal hemorrhage. A core of fibrinogen and monocytes was found in 39 (93%) white-centered hemorrhages. Conclusions Blood-retina barrier breakdown occurs in 3 patterns in cerebral malaria. Associations between LFL, brain swelling, and death suggest that the rapid accumulation of cerebral hemorrhages, with accompanying fluid egress, may cause fatal brain swelling. Vessel leak, from barrier dysfunction, and nonperfusion were not associated with severe brain swelling but with neurological deficits, suggesting hypoxic injury in survivors.
Collapse
Affiliation(s)
- Ian J C MacCormick
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, a member of Liverpool Health Partners, Liverpool, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Valentina Barrera
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, a member of Liverpool Health Partners, Liverpool, UK.,NHS Blood and Transplant, Tissue and Eye Services R&D, Liverpool UK
| | - Nicholas A V Beare
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, a member of Liverpool Health Partners, Liverpool, UK.,St. Paul's Eye Unit, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Gabriela Czanner
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, a member of Liverpool Health Partners, Liverpool, UK.,Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Michael Potchen
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Samuel Kampondeni
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA.,Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi.,Division of Infection & Immunity, University College London, London, UK
| | - Alister G Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Malcolm E Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Macpherson Mallewa
- Department of Paediatrics and Child Health, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Valerie A White
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dan Milner
- American Society for Clinical Pathology, Chicago, IL, USA
| | - Paul Hiscott
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, a member of Liverpool Health Partners, Liverpool, UK
| | - Terrie E Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Karl B Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, a member of Liverpool Health Partners, Liverpool, UK.,St. Paul's Eye Unit, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Malaria threatens the lives of over 200 million individuals with the disease each year. Plasmodium falciparum is the predominant cause of severe malaria which may be lethal and result in neurocognitive sequelae despite appropriate treatment. We review recent advances regarding the pathophysiology of severe malaria and treatment recommendations for severe disease in the United States. RECENT FINDINGS Infected red blood cell (iRBC) sequestration in microvascular beds is a critical factor in the development of severe malaria syndromes. Interactions between iRBC variant adhesive peptides and the endothelial protein C receptor (EPCR) result in perturbations of coagulation and cytopreservation pathways. Alterations in the protein C/EPCR axis are implicated in cerebral malaria, respiratory distress, and anemia. Brain MRIs reveal the posterior reversible encephalopathy syndrome in cerebral malaria patients. Transcriptomic analysis reveals commonalities in disease pathogenesis in children and adults despite differences in clinical presentation. US guidelines for severe malaria treatment currently recommend intravenous artesunate including in pregnant women and children. SUMMARY Despite advances in our understanding of malarial pathogenesis much remains unknown. Antimalarial agents eradicate parasites but no treatments are available to prevent or ameliorate severe malaria or prevent disease sequelae. Further study is needed to develop effective adjunctive therapies.
Collapse
|
26
|
Cortés GT, Wiser MF, Gómez-Alegría CJ. Identification of Plasmodium falciparum HSP70-2 as a resident of the Plasmodium export compartment. Heliyon 2020; 6:e04037. [PMID: 32529065 PMCID: PMC7276435 DOI: 10.1016/j.heliyon.2020.e04037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022] Open
Abstract
The malarial parasite remodels the host erythrocyte following invasion. Well-known examples are adhesive proteins inserted into the host erythrocyte membrane, which function as virulence factors. The modification of the host erythrocyte may be mediated by a specialized domain of the endoplasmic reticulum, or Plasmodium export compartment (PEC). Previously, monoclonal antibodies recognizing the PEC were generated and one of these monoclonal antibodies recognize a 68 kDa parasite protein. In this study, the 68 kDa protein was affinity purified and analyzed by peptide mapping using mass spectrometry. The results demonstrate that the 68 kDa protein is the P. falciparum homolog of the endoplasmic reticulum resident HSP70 called PfHSP70-2. This finding is consistent with the PEC being a domain of the endoplasmic reticulum and suggests a role for PfHSP70-2 in the export of Plasmodium proteins into the host erythrocyte.
Collapse
Affiliation(s)
- Gladys T Cortés
- Departamento de Salud Pública, Facultad de Medicina, Laboratorio de Equipos Comunes, Universidad Nacional de Colombia, Calle 45 No. 30-03, Edificio 471, Bogotá, Colombia
| | - Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Claudio J Gómez-Alegría
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Grupo UNIMOL, Colombia
| |
Collapse
|
27
|
Pereira DMS, Carvalho Júnior AR, Lacerda EMDCB, da Silva LCN, Marinho CRF, André E, Fernandes ES. Oxidative and nitrosative stresses in cerebral malaria: can we target them to avoid a bad prognosis? J Antimicrob Chemother 2020; 75:1363-1373. [PMID: 32105324 DOI: 10.1093/jac/dkaa032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is currently a global effort to reduce malaria morbidity and mortality. However, malaria still results in the deaths of thousands of people every year. Malaria is caused by Plasmodium spp., parasites transmitted through the bite of an infected female Anopheles mosquito. Treatment timing plays a decisive role in reducing mortality and sequelae associated with the severe forms of the disease such as cerebral malaria (CM). The available antimalarial therapy is considered effective but parasite resistance to these drugs has been observed in some countries. Antimalarial drugs act by increasing parasite lysis, especially through targeting oxidative stress pathways. Here we discuss the roles of reactive oxygen species and reactive nitrogen intermediates in CM as a result of host-parasite interactions. We also present evidence of the potential contribution of oxidative and nitrosative stress-based antimalarial drugs to disease treatment and control.
Collapse
Affiliation(s)
| | | | | | | | | | - Eunice André
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Programa de Pós-graduação, Universidade CEUMA, São Luís, MA, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.,Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| |
Collapse
|
28
|
Harmsen C, Turner L, Thrane S, Sander AF, Theander TG, Lavstsen T. Immunization with virus-like particles conjugated to CIDRα1 domain of Plasmodium falciparum erythrocyte membrane protein 1 induces inhibitory antibodies. Malar J 2020; 19:132. [PMID: 32228596 PMCID: PMC7106694 DOI: 10.1186/s12936-020-03201-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/23/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND During the erythrocytic cycle, Plasmodium falciparum malaria parasites express P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) that anchor the infected erythrocytes (IE) to the vascular lining of the host. The CIDRα1 domain of PfEMP1 is responsible for binding host endothelial protein C receptor (EPCR), and increasing evidence support that this interaction triggers severe malaria, accounting for the majority of malaria-related deaths. In high transmission regions, children develop immunity to severe malaria after the first few infections. This immunity is believed to be mediated by antibodies targeting and inhibiting PfEMP1, causing infected erythrocytes to circulate and be cleared in the spleen. The development of immunity to malaria coincides with acquisition of broad antibody reactivity across the CIDRα1 protein family. Altogether, this identifies CIDRα1 as an important vaccine target. However, the antigenic diversity of the CIDRα1 domain family is a challenge for vaccine development. METHODS Immune responses in mice vaccinated with Virus-Like Particles (VLP) presenting CIDRα1 antigens were investigated. Antibody reactivity was tested to a panel of recombinant CIDRα1 domains, and the antibodies ability to inhibit EPCR binding by the recombinant CIDRα1 domains was tested in Luminex-based multiplex assays. RESULTS VLP-presented CIDRα1.4 antigens induced a rapid and strong IgG response capable of inhibiting EPCR-binding of multiple CIDRα1 domains mainly within the group A CIDRα1.4-7 subgroups. CONCLUSIONS The study observations mirror those from previous CIDRα1 vaccine studies using other vaccine constructs and platforms. This suggests that broad CIDRα1 antibody reactivity may be achieved through vaccination with a limited number of CIDRα1 variants. In addition, this study suggest that this may be achieved through vaccination with a human compatible VLP vaccine platform.
Collapse
Affiliation(s)
- Charlotte Harmsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Susan Thrane
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Adam F Sander
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
29
|
Cespedes JC, Hibbert J, Krishna S, Yan F, Bharti PK, Stiles JK, Liu M. Association of EPCR Polymorphism rs867186-GG With Severity of Human Malaria. Front Genet 2020; 11:56. [PMID: 32153634 PMCID: PMC7050639 DOI: 10.3389/fgene.2020.00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/17/2020] [Indexed: 11/14/2022] Open
Abstract
Background Cerebral malaria (CM) is characterized by the sequestration of Plasmodium-infected erythrocytes (pRBCs) to host brain microvasculature beds via P. falciparum erythrocyte membrane protein 1 (PfEMP1). Under normal conditions, activated protein C (APC) bound to endothelial protein C receptor (EPCR) has cytoprotective properties via the activation of protease-activated receptor 1 (PAR1). During malaria infection, pRBCs transports PfEMP1 to the membranes to bind EPCR in the same region as APC. As a result, APC is less capable of inducing cytoprotective effects via PAR1. Two studies involving adult malaria patients revealed that EPCR rs867186-GG allele is associated with protection against severe malaria, while three other studies involving child malaria patients could not show association between EPCR rs867186-GG genotype and severe malaria or increased mortality among children with CM. Methods We examined the association between the EPCR rs867186-GG genotype and the protection against cerebral malaria. Peripheral blood samples were collected from 47 malaria patients and 34 healthy individuals from a study conducted from 2004 to 2007 at the NSCB Medical College Hospital in India. CM and malaria-associated complications were defined based on WHO criteria. Genomic DNA was isolated from the peripheral blood mononuclear cells. Primer sequences were designed to contain rs867186 of the PROCR gene (NM 006404) and were used to amplify a 660 bp product as described before. PCR products were purified, and DNA sequences were determined by Sanger Sequencing (Genewiz, NJ). Nonparametric tests were used to compare the groups. To analyze differences in allele frequencies, we used chi-squared or Fisher's exact tests for categorical variables if the expected values were less than 5. P-value <0.05 was considered statistically significant. Results Our results showed significantly higher rates of AG and GG genotypes in CM patients compared to mild malaria (P = 0.0034). Conclusion Our results indicate that rs867186-GG or rs867186-AG genotypes are not associated with protection against HCM.
Collapse
Affiliation(s)
- Juan Carlos Cespedes
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Jacqueline Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Sri Krishna
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, India
| | - Fengxia Yan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Praveen K Bharti
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, India
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
30
|
Plasmodium yoelii Erythrocyte-Binding-like Protein Modulates Host Cell Membrane Structure, Immunity, and Disease Severity. mBio 2020; 11:mBio.02995-19. [PMID: 31911494 PMCID: PMC6946805 DOI: 10.1128/mbio.02995-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malaria is a deadly parasitic disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild symptoms, or fatal, depending on a delicate balance of host immune responses. Malaria parasites enter host red blood cells (RBCs) through interactions between parasite ligands and host receptors, such as erythrocyte-binding-like (EBL) proteins and host Duffy antigen receptor for chemokines (DARC). Plasmodium yoelii EBL (PyEBL) is known to play a role in parasite invasion of RBCs. Here, we show that PyEBL also affects disease severity through modulation of host immune responses, particularly type I interferon (IFN-I) signaling. This discovery assigns a new function to PyEBL and provides a mechanism for developing disease control strategies. Erythrocyte-binding-like (EBL) proteins are known to play an important role in malaria parasite invasion of red blood cells (RBCs); however, any roles of EBL proteins in regulating host immune responses remain unknown. Here, we show that Plasmodium yoelii EBL (PyEBL) can shape disease severity by modulating the surface structure of infected RBCs (iRBCs) and host immune responses. We identified an amino acid substitution (a change of C to Y at position 741 [C741Y]) in the protein trafficking domain of PyEBL between isogenic P. yoelliinigeriensis strain N67 and N67C parasites that produce different disease phenotypes in C57BL/6 mice. Exchanges of the C741Y alleles altered parasite growth and host survival accordingly. The C741Y substitution also changed protein processing and trafficking in merozoites and in the cytoplasm of iRBCs, reduced PyEBL binding to band 3, increased phosphatidylserine (PS) surface exposure, and elevated the osmotic fragility of iRBCs, but it did not affect invasion of RBCs in vitro. The modified iRBC surface triggered PS-CD36-mediated phagocytosis of iRBCs, host type I interferon (IFN-I) signaling, and T cell differentiation, leading to improved host survival. This study reveals a previously unknown role of PyEBL in regulating host-pathogen interaction and innate immune responses, which may be explored for developing disease control strategies.
Collapse
|
31
|
Arakawa C, Gunnarsson C, Howard C, Bernabeu M, Phong K, Yang E, DeForest CA, Smith JD, Zheng Y. Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. SCIENCE ADVANCES 2020; 6:eaay7243. [PMID: 32010773 PMCID: PMC6968943 DOI: 10.1126/sciadv.aay7243] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
Microcirculatory obstruction is a hallmark of severe malaria, but mechanisms of parasite sequestration are only partially understood. Here, we developed a robust three-dimensional microvessel model that mimics the arteriole-capillary-venule (ACV) transition consisting of a narrow 5- to 10-μm-diameter capillary region flanked by arteriole- or venule-sized vessels. Using this platform, we investigated red blood cell (RBC) transit at the single cell and at physiological hematocrits. We showed normal RBCs deformed via in vivo-like stretching and tumbling with negligible interactions with the vessel wall. By comparison, Plasmodium falciparum-infected RBCs exhibited virtually no deformation and rapidly accumulated in the capillary-sized region. Comparison of wild-type parasites to those lacking either cytoadhesion ligands or membrane-stiffening knobs showed highly distinctive spatial and temporal kinetics of accumulation, linked to velocity transition in ACVs. Our findings shed light on mechanisms of microcirculatory obstruction in malaria and establish a new platform to study hematologic and microvascular diseases.
Collapse
Affiliation(s)
- Christopher Arakawa
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Celina Gunnarsson
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Caitlin Howard
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Maria Bernabeu
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kiet Phong
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Eric Yang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Joseph D. Smith
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
32
|
Hoffmeister B, Aguilar Valdez AD. Hypertension is associated with an increased risk for severe imported falciparum malaria: a tertiary care hospital based observational study from Berlin, Germany. Malar J 2019; 18:410. [PMID: 31810471 PMCID: PMC6898961 DOI: 10.1186/s12936-019-3007-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Increasing numbers of aging individuals with chronic co-morbidities travel to regions where falciparum malaria is endemic. Non-communicable diseases are now leading risk factors for death in such countries. Thus, the influence of chronic diseases on the outcome of falciparum malaria is an issue of major importance. Aim of the present study was to assess whether non-communicable diseases increase the risk for severe imported falciparum malaria. Methods A retrospective observational study of all adult cases with imported falciparum malaria hospitalized between 2001 and 2015 in the tertiary care Charité University Hospital, Berlin, was performed. Results A total of 536 adult patients (median age 37 years; 31.3% female) were enrolled. Of these, 329 (61.4%) originated from endemic countries, 207 patients (38.6%) from non-endemic regions. Criteria for severe malaria were fulfilled in 68 (12.7%) cases. With older age, lack of previous malaria episodes, being a tourist, and delayed presentation, well-characterized risk factors were associated with severe malaria in univariate analysis. After adjustment for these potential confounders hypertension (adjusted odds ratio aOR, 3.06 95% confidence interval, CI 1.34–7.02), cardiovascular diseases (aOR, 8.20 95% CI 2.30–29.22), and dyslipidaemia (aOR, 6.08 95% CI 1.13–32.88) were individual diseases associated with severe disease in multivariable logistic regression. Hypertension proved an independent risk factor among individuals of endemic (aOR, 4.83, 95% CI 1.44–16.22) as well as of non-endemic origin (aOR, 3.60 95% CI 1.05–12.35). Conclusions In imported falciparum malaria hypertension and its related diseases are risk factors for severe disease.
Collapse
Affiliation(s)
- Bodo Hoffmeister
- Department of Respiratory Medicine, Clinic-Group Ernst von Bergmann, Potsdam and Bad Belzig, Niemegker Straße 45, 14806, Bad Belzig, Germany.
| | - Abner Daniel Aguilar Valdez
- Department of Endocrinology, Clinic Group Ernst von Bergmann, Potsdam and Bad Belzig, Niemegker Straße 45, 14806, Bad Belzig, Germany
| |
Collapse
|
33
|
Erice C, Kain KC. New insights into microvascular injury to inform enhanced diagnostics and therapeutics for severe malaria. Virulence 2019; 10:1034-1046. [PMID: 31775570 PMCID: PMC6930010 DOI: 10.1080/21505594.2019.1696621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Severe malaria (SM) has high mortality and morbidity rates despite treatment with potent antimalarials. Disease onset and outcome is dependent upon both parasite and host factors. Infected erythrocytes bind to host endothelium contributing to microvascular occlusion and dysregulated inflammatory and immune host responses, resulting in endothelial activation and microvascular damage. This review focuses on the mechanisms of host endothelial and microvascular injury. Only a small percentage of malaria infections (≤1%) progress to SM. Early recognition and treatment of SM can improve outcome, but we lack triage tools to identify SM early in the course of infection. Current point-of-care pathogen-based rapid diagnostic tests do not address this critical barrier. Immune and endothelial activation have been implicated in the pathobiology of SM. We hypothesize that measuring circulating mediators of these pathways at first clinical presentation will enable early triage and treatment of SM. Moreover, that host-based interventions that modulate these pathways will stabilize the microvasculature and improve clinical outcome over that of antimalarial therapy alone.
Collapse
Affiliation(s)
- Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Lennartz F, Smith C, Craig AG, Higgins MK. Structural insights into diverse modes of ICAM-1 binding by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 2019; 116:20124-20134. [PMID: 31527263 PMCID: PMC6778195 DOI: 10.1073/pnas.1911900116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A major determinant of pathogenicity in malaria caused by Plasmodium falciparum is the adhesion of parasite-infected erythrocytes to the vasculature or tissues of infected individuals. This occludes blood flow, leads to inflammation, and increases parasitemia by reducing spleen-mediated clearance of the parasite. This adhesion is mediated by PfEMP1, a multivariant family of around 60 proteins per parasite genome which interact with specific host receptors. One of the most common of these receptors is intracellular adhesion molecule-1 (ICAM-1), which is bound by 2 distinct groups of PfEMP1, A-type and B or C (BC)-type. Here, we present the structure of a domain from a B-type PfEMP1 bound to ICAM-1, revealing a complex binding site. Comparison with the existing structure of an A-type PfEMP1 bound to ICAM-1 shows that the 2 complexes share a globally similar architecture. However, while the A-type PfEMP1 bind ICAM-1 through a highly conserved binding surface, the BC-type PfEMP1 use a binding site that is more diverse in sequence, similar to how PfEMP1 interact with other human receptors. We also show that A- and BC-type PfEMP1 present ICAM-1 at different angles, perhaps influencing the ability of neighboring PfEMP1 domains to bind additional receptors. This illustrates the deep diversity of the PfEMP1 and demonstrates how variations in a single domain architecture can modulate binding to a specific ligand to control function and facilitate immune evasion.
Collapse
Affiliation(s)
- Frank Lennartz
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
| | - Cameron Smith
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
| | - Alister G Craig
- Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom;
| |
Collapse
|
35
|
Avril M, Benjamin M, Dols MM, Smith JD. Interplay of Plasmodium falciparum and thrombin in brain endothelial barrier disruption. Sci Rep 2019; 9:13142. [PMID: 31511575 PMCID: PMC6739390 DOI: 10.1038/s41598-019-49530-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/19/2019] [Indexed: 01/05/2023] Open
Abstract
Recent concepts suggest that both Plasmodium falciparum factors and coagulation contribute to endothelial activation and dysfunction in pediatric cerebral malaria (CM) pathology. However, there is still limited understanding of how these complex inflammatory stimuli are integrated by brain endothelial cells. In this study, we examined how mature-stage P. falciparum infected erythrocytes (IE) interact with tumor necrosis factor α (TNFα) and thrombin in the activation and permeability of primary human brain microvascular endothelial cell (HBMEC) monolayers. Whereas trophozoite-stage P. falciparum-IE have limited effect on the viability of HBMEC or the secretion of pro-inflammatory cytokines or chemokines, except at super physiological parasite-host cell ratios, schizont-stage P. falciparum-IE induced low levels of cell death. Additionally, schizont-stage parasites were more barrier disruptive than trophozoite-stage P. falciparum-IE and prolonged thrombin-induced barrier disruption in both resting and TNFα-activated HBMEC monolayers. These results provide evidence that parasite products and thrombin may interact to increase brain endothelial permeability.
Collapse
Affiliation(s)
- Marion Avril
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Max Benjamin
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | | | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, WA, 98109, USA. .,Department of Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
36
|
Storm J, Jespersen JS, Seydel KB, Szestak T, Mbewe M, Chisala NV, Phula P, Wang CW, Taylor TE, Moxon CA, Lavstsen T, Craig AG. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol Med 2019; 11:emmm.201809164. [PMID: 30610112 PMCID: PMC6365927 DOI: 10.15252/emmm.201809164] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequestration of Plasmodium falciparum‐infected erythrocytes (IE) within the brain microvasculature is a hallmark of cerebral malaria (CM). Using a microchannel flow adhesion assay with TNF‐activated primary human microvascular endothelial cells, we demonstrate that IE isolated from Malawian paediatric CM cases showed increased binding to brain microvascular endothelial cells compared to IE from uncomplicated malaria (UM) cases. Further, UM isolates showed significantly greater adhesion to dermal than to brain microvascular endothelial cells. The major mediator of parasite adhesion is P. falciparum erythrocyte membrane protein 1, encoded by var genes. Higher levels of var gene transcripts predicted to bind host endothelial protein C receptor (EPCR) and ICAM‐1 were detected in CM isolates. These data provide further evidence for differential tissue binding in severe and uncomplicated malaria syndromes, and give additional support to the hypothesis that CM pathology is based on increased cytoadherence of IE in the brain microvasculature.
Collapse
Affiliation(s)
- Janet Storm
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK .,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jakob S Jespersen
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Karl B Seydel
- College of Medicine, University of Malawi, Blantyre, Malawi.,Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Tadge Szestak
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Maurice Mbewe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Ngawina V Chisala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Patricia Phula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christian W Wang
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Terrie E Taylor
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Christopher A Moxon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Thomas Lavstsen
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
37
|
Penha-Gonçalves C. Genetics of Malaria Inflammatory Responses: A Pathogenesis Perspective. Front Immunol 2019; 10:1771. [PMID: 31417551 PMCID: PMC6682681 DOI: 10.3389/fimmu.2019.01771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Despite significant progress in combating malaria in recent years the burden of severe disease and death due to Plasmodium infections remains a global public health concern. Only a fraction of infected people develops severe clinical syndromes motivating a longstanding search for genetic determinants of malaria severity. Strong genetic effects have been repeatedly ascribed to mutations and allelic variants of proteins expressed in red blood cells but the role of inflammatory response genes in disease pathogenesis has been difficult to discern. We revisited genetic evidence provided by inflammatory response genes that have been repeatedly associated to malaria, namely TNF, NOS2, IFNAR1, HMOX1, TLRs, CD36, and CD40LG. This highlighted specific genetic variants having opposing roles in the development of distinct malaria clinical outcomes and unveiled diverse levels of genetic heterogeneity that shaped the complex association landscape of inflammatory response genes with malaria. However, scrutinizing genetic effects of individual variants corroborates a pathogenesis model where pro-inflammatory genetic variants acting in early infection stages contribute to resolve infection but at later stages confer increased vulnerability to severe organ dysfunction driven by tissue inflammation. Human genetics studies are an invaluable tool to find genes and molecular pathways involved in the inflammatory response to malaria but their precise roles in disease pathogenesis are still unexploited. Genome editing in malaria experimental models and novel genotyping-by-sequencing techniques are promising approaches to delineate the relevance of inflammatory response gene variants in the natural history of infection thereby will offer new rational angles on adjuvant therapeutics for prevention and clinical management of severe malaria.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Activated protein C (APC) is a homeostatic coagulation protease with anticoagulant and cytoprotective activities. Focusing on APC's effects in the brain, this review discusses three different scenarios that illustrate how APC functions are intimately affecting the physiology and pathophysiology of the brain. RECENT FINDINGS Cytoprotective APC therapy holds promise for the treatment of ischemic stroke, and a recently completed trial suggested that cytoprotective-selective 3K3A-APC reduced bleeding in ischemic stroke patients. In contrast, APC's anticoagulant activity contributes to brain bleeding as shown by the disproportional upregulation of APC generation in cerebral cavernous malformations lesions in mice. However, too little APC generation also contributes to maladies of the brain, such as in case of cerebral malaria where the binding of infected erythrocytes to the endothelial protein C receptor (EPCR) may interfere with the EPCR-dependent functions of the protein C pathway. Furthermore, discoveries of new activities of APC such as the inhibition of the NLRP3-mediated inflammasome and of new applications of APC therapy such as in Alzheimer's disease and graft-versus-host disease continue to advance our knowledge of this important proteolytic regulatory system. SUMMARY APC's many activities or lack thereof are intimately involved in multiple neuropathologies, providing abundant opportunities for translational research.
Collapse
|
39
|
Lee WC, Russell B, Rénia L. Sticking for a Cause: The Falciparum Malaria Parasites Cytoadherence Paradigm. Front Immunol 2019; 10:1444. [PMID: 31316507 PMCID: PMC6610498 DOI: 10.3389/fimmu.2019.01444] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
After a successful invasion, malaria parasite Plasmodium falciparum extensively remodels the infected erythrocyte cellular architecture, conferring cytoadhesive properties to the infected erythrocytes. Cytoadherence plays a central role in the parasite's immune-escape mechanism, at the same time contributing to the pathogenesis of severe falciparum malaria. In this review, we discuss the cytoadhesive interactions between P. falciparum infected erythrocytes and various host cell types, and how these events are linked to malaria pathogenesis. We also highlight the limitations faced by studies attempting to correlate diversity in parasite ligands and host receptors with the development of severe malaria.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
40
|
Binding Heterogeneity of Plasmodium falciparum to Engineered 3D Brain Microvessels Is Mediated by EPCR and ICAM-1. mBio 2019; 10:mBio.00420-19. [PMID: 31138740 PMCID: PMC6538777 DOI: 10.1128/mbio.00420-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria research has been hindered by the inaccessibility of the brain. Here, we have developed an engineered 3D human brain microvessel model that mimics the blood flow rates and architecture of small blood vessels to study how P. falciparum-infected human erythrocytes attach to brain endothelial cells. By studying parasite lines with different adhesive properties, we show that the malaria parasite binding rate is heterogeneous and strongly influenced by physiological differences in flow and whether the endothelium has been previously activated by TNF-α, a proinflammatory cytokine that is linked to malaria disease severity. We also show the importance of human EPCR and ICAM-1 in parasite binding. Our model sheds new light on how P. falciparum binds within brain microvessels and provides a powerful method for future investigations of recruitment of human brain pathogens to the blood vessel lining of the brain. Cerebral malaria is a severe neurological complication associated with sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the brain microvasculature, but the specific binding interactions remain under debate. Here, we have generated an engineered three-dimensional (3D) human brain endothelial microvessel model and studied P. falciparum binding under the large range of physiological flow velocities that occur in both health and disease. Perfusion assays on 3D microvessels reveal previously unappreciated phenotypic heterogeneity in parasite binding to tumor necrosis factor alpha (TNF-α)-activated brain endothelial cells. While clonal parasite lines expressing a group B P. falciparum erythrocyte membrane protein 1 (PfEMP1) present an increase in binding to activated 3D microvessels, P. falciparum-IE expressing DC8-PfEMP1 present a decrease in binding. The differential response to endothelium activation is mediated by surface expression changes of endothelial protein C receptor (EPCR) and intercellular adhesion molecule 1 (ICAM-1). These findings demonstrate heterogeneity in parasite binding and provide evidence for a parasite strategy to adapt to a changing microvascular environment during infection. The engineered 3D human brain microvessel model provides new mechanistic insight into parasite binding and opens opportunities for further studies on malaria pathogenesis and parasite-vessel interactions.
Collapse
|
41
|
Blood-Brain Barrier in Cerebral Malaria: Pathogenesis and Therapeutic Intervention. Trends Parasitol 2019; 35:516-528. [PMID: 31147271 DOI: 10.1016/j.pt.2019.04.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Cerebral malaria is a life-threatening complication of malaria caused by the parasite Plasmodium falciparum. The growing problem of drug resistance and the dearth of new antiparasitic drugs are a serious threat to the antimalaria treatment regimes. Studies on humans and the murine model have implicated the disruption of the blood-brain barrier (BBB) in the lethal course of the disease. Therefore, efforts to alleviate the BBB dysfunction could serve as an adjunct therapy. Here, we review the mechanisms associated with the disruption of the BBB. In addition, we discuss the current, still limited, knowledge on the contribution of different cell types, microparticles, and the kynurenine pathway in the regulation of BBB dysfunction, and how these molecules could be used as potential new therapeutic targets.
Collapse
|
42
|
Meta-analysis of Plasmodium falciparum var Signatures Contributing to Severe Malaria in African Children and Indian Adults. mBio 2019; 10:mBio.00217-19. [PMID: 31040236 PMCID: PMC6495371 DOI: 10.1128/mbio.00217-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The clinical presentation of severe Plasmodium falciparum malaria differs between children and adults, but the mechanistic basis for this remains unclear. Contributing factors to disease severity include total parasite biomass and the diverse cytoadhesive properties mediated by the polymorphic var gene parasite ligand family displayed on infected erythrocytes. To explore these factors, we performed a multicohort analysis of the contribution of var expression and parasite biomass to severe malaria in two previously published pediatric cohorts in Tanzania and Malawi and an adult cohort in India. Machine learning analysis revealed independent and complementary roles for var adhesion types and parasite biomass in adult and pediatric severe malaria and showed that similar var profiles, including upregulation of group A and DC8 var, predict severe malaria in adults and children. Among adults, patients with multiorgan complications presented infections with significantly higher parasite biomass without significant differences in var adhesion types. Conversely, pediatric patients with specific complications showed distinct var signatures. Cerebral malaria patients showed broadly increased expression of var genes, in particular group A and DC8 var, while children with severe malaria anemia were classified based on high transcription of DC8 var only. This study represents the first large multisite meta-analysis of var expression, and it demonstrates the presence of common var profiles in severe malaria patients of different ages across distant geographical sites, as well as syndrome-specific disease signatures. The complex associations between parasite biomass, var adhesion type, and clinical presentation revealed here represent the most comprehensive picture so far of the relationship between cytoadhesion, parasite load, and clinical syndrome.IMPORTANCE P. falciparum malaria can cause multiple disease complications that differ by patient age. Previous studies have attempted to address the roles of parasite adhesion and biomass in disease severity; however, these studies have been limited to single geographical sites, and there is limited understanding of how parasite adhesion and biomass interact to influence disease manifestations. In this meta-analysis, we compared parasite disease determinants in African children and Indian adults. This study demonstrates that parasite biomass and specific subsets of var genes are independently associated with detrimental outcomes in both childhood and adult malaria. We also explored how parasite var adhesion types and biomass play different roles in the development of specific severe malaria pathologies, including childhood cerebral malaria and multiorgan complications in adults. This work represents the largest study to date of the role of both var adhesion types and biomass in severe malaria.
Collapse
|
43
|
Conroy AL, Datta D, John CC. What causes severe malaria and its complications in children? Lessons learned over the past 15 years. BMC Med 2019; 17:52. [PMID: 30841892 PMCID: PMC6404293 DOI: 10.1186/s12916-019-1291-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/31/2023] Open
Abstract
Over the past 15 years, malaria mortality has reduced by approximately 50%. However, malaria still causes more than 400,000 deaths annually, most of which occur in African children under 5 years of age. Significant advances in understanding the pathogenesis of the disease provide a basis for future work to prevent severe malaria and its complications. Herein, we provide an overview of advances in our understanding of severe malaria in African children over the past 15 years, highlighting key complications and identifying priorities to further reduce malaria-associated mortality.
Collapse
Affiliation(s)
- Andrea L Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 1044 W Walnut St R4 402D, Indianapolis, IN, USA
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 1044 W Walnut St R4 402D, Indianapolis, IN, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 1044 W Walnut St R4 402D, Indianapolis, IN, USA.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Endothelial cell protein C receptor (EPCR), a transmembrane glycoprotein present on the surface of endothelial cells and other cell types, is an essential component of the protein C (PC) anticoagulant system. EPCR is also shown to play a critical role in mediating activated protein C (APC)-induced cytoprotective signaling. The purpose of this review is to outline the mechanisms of EPCR-dependent cell signaling and discuss recent findings made in this area. RECENT FINDINGS Recent studies showed that the cleavage of protease-activated receptor (PAR)1 at a noncanonical site by APC-EPCR or the canonical site by thrombin when PC occupies EPCR induces β-arrestin-2-mediated biased cytoprotective signaling. Factor VIIa binding to EPCR is also shown to induce the cytoprotective signaling. EPCR is found to be a reliable surface marker for identifying human hematopoietic stem cells in culture. EPCR, binding to diverse ligands, is thought to play a role in the pathogenesis of severe malaria, immune functions, and cancer by either blocking the APC-mediated signaling or by mechanisms that are yet to be elucidated. SUMMARY Recent studies provide a mechanistic basis to how EPCR contributes to PAR1-mediated biased signaling. EPCR may play a role in influencing a wide array of biological functions by binding to diverse ligands.
Collapse
|
45
|
Gowda DC, Wu X. Parasite Recognition and Signaling Mechanisms in Innate Immune Responses to Malaria. Front Immunol 2018; 9:3006. [PMID: 30619355 PMCID: PMC6305727 DOI: 10.3389/fimmu.2018.03006] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Malaria caused by the Plasmodium family of parasites, especially P.falciparum and P. vivax, is a major health problem in many countries in the tropical and subtropical regions of the world. The disease presents a wide array of systemic clinical conditions and several life-threatening organ pathologies, including the dreaded cerebral malaria. Like many other infectious diseases, malaria is an inflammatory response-driven disease, and positive outcomes to infection depend on finely tuned regulation of immune responses that efficiently clear parasites and allow protective immunity to develop. Immune responses initiated by the innate immune system in response to parasites play key roles both in protective immunity development and pathogenesis. Initial pro-inflammatory responses are essential for clearing infection by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged pro-inflammatory responses owing to inappropriate cellular programming contribute to disease conditions. A comprehensive knowledge of the molecular and cellular mechanisms that initiate immune responses and how these responses contribute to protective immunity development or pathogenesis is important for developing effective therapeutics and/or a vaccine. Historically, in efforts to develop a vaccine, immunity to malaria was extensively studied in the context of identifying protective humoral responses, targeting proteins involved in parasite invasion or clearance. The innate immune response was thought to be non-specific. However, during the past two decades, there has been a significant progress in understanding the molecular and cellular mechanisms of host-parasite interactions and the associated signaling in immune responses to malaria. Malaria infection occurs at two stages, initially in the liver through the bite of a mosquito, carrying sporozoites, and subsequently, in the blood through the invasion of red blood cells by merozoites released from the infected hepatocytes. Soon after infection, both the liver and blood stage parasites are sensed by various receptors of the host innate immune system resulting in the activation of signaling pathways and production of cytokines and chemokines. These immune responses play crucial roles in clearing parasites and regulating adaptive immunity. Here, we summarize the knowledge on molecular mechanisms that underlie the innate immune responses to malaria infection.
Collapse
Affiliation(s)
- D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
46
|
Chesnokov O, Merritt J, Tcherniuk SO, Milman N, Oleinikov AV. Plasmodium falciparum infected erythrocytes can bind to host receptors integrins αVβ3 and αVβ6 through DBLδ1_D4 domain of PFL2665c PfEMP1 protein. Sci Rep 2018; 8:17871. [PMID: 30552383 PMCID: PMC6294747 DOI: 10.1038/s41598-018-36071-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 02/05/2023] Open
Abstract
Major complications and mortality from Plasmodium falciparum malaria are associated with cytoadhesion of parasite-infected erythrocytes (IE). The main parasite ligands for cytoadhesion are members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. Interactions of different host receptor-ligand pairs may lead to various pathological outcomes, like placental or cerebral malaria. It has been shown previously that IE can bind integrin αVβ3. Using bead-immobilized PfEMP1 constructs, we have identified that the PFL2665c DBLδ1_D4 domain binds to αVβ3 and αVβ6. A parasite line expressing PFL2665c binds to surface-immobilized αVβ3 and αVβ6; both are RGD motif-binding integrins. Interactions can be inhibited by cyloRGDFV peptide, an antagonist of RGD-binding integrins. This is a first, to the best of our knowledge, implication of a specific PfEMP1 domain for binding to integrins. These host receptors have important physiological functions in endothelial and immune cells; therefore, these results will contribute to future studies and a better understanding, at the molecular level, of the physiological outcome of interactions between IE and integrin receptors on the surface of host cells.
Collapse
Affiliation(s)
- Olga Chesnokov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Jordan Merritt
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Sergey O Tcherniuk
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Neta Milman
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
47
|
Immunization with Recombinant Plasmodium falciparum Erythrocyte Membrane Protein 1 CIDRα1 Domains Induces Domain Subtype Inhibitory Antibodies. Infect Immun 2018; 86:IAI.00435-18. [PMID: 30150256 DOI: 10.1128/iai.00435-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Plasmodium falciparum malaria pathogenesis is tied to the sequestration of parasites in the microvasculature. Parasite sequestration leading to severe malaria is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1) binding to endothelial protein C receptor (EPCR) via its CIDRα1 domains. CIDRα1 domains are targets of naturally acquired immunity, and a vaccine eliciting antibodies inhibiting the EPCR binding of CIDRα1 could potentially prevent disease and death from malaria. CIDRα1 domains have diversified in sequence to escape immune recognition but preserved structure to maintain EPCR binding. The EPCR-binding CIDRα1 domains separate into six major sequence types predicted to form a conserved structure in which only the amino acids essential for EPCR binding are highly conserved. Here, we investigated whether antibodies elicited by vaccination with single or multiple recombinant CIDRα1 domains are able to bind and inhibit diverse CIDRα1 domains. We found that EPCR binding-inhibitory antibodies to CIDRα1 variants closely related to those used for vaccination are readily elicited, whereas antibodies binding distant CIDRα1 variants are sporadically generated and are rarely inhibitory. Despite this, sequence similarity correlated poorly with the ability of induced antibodies to inhibit across diverse variants, and no continuous sequence regions of importance for cross-inhibitory antibodies could be identified. This suggested that epitopes of cross-variant inhibitory antibodies were predominantly conformational. Vaccination with immunogens engineered to focus immune responses to specific epitopes or an optimal choice of multiple CIDRα1 variants may improve elicitation of broadly reactive and inhibitory antibody responses.
Collapse
|
48
|
Chapelet A, Foucher Y, Gérard N, Rousseau C, Zambon O, Bretonnière C, Mira JP, Charreau B, Guitton C. An early increase in endothelial protein C receptor is associated with excess mortality in pneumococcal pneumonia with septic shock in the ICU. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:251. [PMID: 30290852 PMCID: PMC6173894 DOI: 10.1186/s13054-018-2179-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND This study investigated changes in plasma level of soluble endothelial protein C receptor (sEPCR) in association with outcome in patients with septic shock. We explored sEPCR for early sepsis prognosis assessment and constructed a scoring system based on clinical and biological data, in order to discriminate between surviving at hospital discharge and non-surviving patients. METHODS Clinical data and samples were extracted from the prospective "STREPTOGENE" cohort. We enrolled 278 patients, from 50 intensive care units (ICUs), with septic shock caused by pneumococcal pneumonia. Patients were divided into survivors (n = 194) and non-survivors (n = 84) based on in-hospital mortality. Soluble EPCR plasma levels were quantified at day 1 (D1) and day 2 (D2) by ELISA. The EPCR gene A3 haplotype was determined. Patients were followed up until hospital discharge. Univariate and multivariate analyses were performed. A scoring system was constructed using least absolute shrinkage and selection operator (lasso) logistic regression for selecting predictive variables. RESULTS In-hospital mortality was 30.2% (n = 84). Plasma sEPCR level was significantly higher at D1 and D2 in non-surviving patients compared to patients surviving to hospital discharge (p = 0.0447 and 0.0047, respectively). Early increase in sEPCR at D2 was found in non-survivors while a decrease was observed in the survival group (p = 0.0268). EPCR A3 polymorphism was not associated with mortality. Baseline sEPCR level and its variation from D1 to D2 were independent predictors of in-hospital mortality. The scoring system including sEPCR predicted mortality with an AUC of 0.75. CONCLUSIONS Our findings confirm that high plasma sEPCR and its increase at D2 are associated with poor outcome in sepsis and thus we propose sEPCR as a key player in the pathogenesis of sepsis and as a potential biomarker of sepsis outcome.
Collapse
Affiliation(s)
- Agnès Chapelet
- Medical Intensive Care Unit, Nantes University Hospital, Nantes, France.,Centre for Research in Transplantation and Immunology (CRTI) UMR1064, INSERM, Nantes University, Nantes, France.,Institute of Transplantation Urology Nephrology (ITUN), Nantes University Hospital, Nantes, France
| | - Yohann Foucher
- INSERM, UMR 1246 - SPHERE, Nantes University, Nantes University Hospital, Nantes, France
| | - Nathalie Gérard
- Centre for Research in Transplantation and Immunology (CRTI) UMR1064, INSERM, Nantes University, Nantes, France
| | | | - Olivier Zambon
- Medical Intensive Care Unit, Nantes University Hospital, Nantes, France
| | | | - Jean-Paul Mira
- Institut Cochin, INSERM U1016, Paris, France.,Medical Intensive Care Unit, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Béatrice Charreau
- Centre for Research in Transplantation and Immunology (CRTI) UMR1064, INSERM, Nantes University, Nantes, France.,Institute of Transplantation Urology Nephrology (ITUN), Nantes University Hospital, Nantes, France
| | - Christophe Guitton
- Medical Intensive Care Unit, Nantes University Hospital, Nantes, France. .,Centre for Research in Transplantation and Immunology (CRTI) UMR1064, INSERM, Nantes University, Nantes, France. .,Medical and Surgical Intensive Care Unit, Le Mans Hospital, Le Mans, France.
| |
Collapse
|
49
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Abstract
Human malaria is a complex disease that can show a wide array of clinical outcomes, from asymptomatic carriage and chronic infection to acute disease presenting various life-threatening pathologies. The specific outcome of an infection is believed to be determined by a multifactorial interplay between the host and the parasite but with a general trend toward disease attenuation with increasing prior exposure. Therefore, the main burden of malaria in a population can be understood as a function of transmission intensity, which itself is intricately linked to the prevalence of infected hosts and mosquito vectors, the distribution of infection outcomes, and the parasite population diversity. Predicting the long-term impact of malaria intervention measures therefore requires an in-depth understanding of how the parasite causes disease, how this relates to previous exposures, and how different infection pathologies contribute to parasite transmission. Here, we provide a brief overview of recent advances in the molecular epidemiology of clinical malaria and how these might prove to be influential in our fight against this important disease.
Collapse
Affiliation(s)
- Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Peter C Bull
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|